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Foreword

This Volume 22A, Fundamentals of Modeling for Metals Processing, represents an expansion of the
Handbook series in response to the expressed needs of members of the modeling and simulation
community.

ASM International is indebted to the Co-Editors, David Furrer and S. Lee Semiatin, who had the
vision for a comprehensive presentation of modeling of metals processing. They moved this vision
from inception to this unified collection of content in a remarkably short time, through tireless effort.
They recruited world renowned modeling experts who contributed entirely new content. We are like-
wise indebted to the approximately 120 volunteer authors and reviewers who fulfilled their commit-
ments, squeezing this time intensive activity into their lives busy with family, career, and
community commitments.

While this Handbook serves as an organizing vehicle for acquiring modeling knowledge, ASM
International is pleased to have the means to disseminate this outstanding source of information in
forms most attractive and most readily available to its members and to the technical community.

Modeling is an important aspect of “everything material.” One can model at the submicroscopic
scale where atomic structure is predominant; at an intermediate, or mesoscale at which grain size/grain
structure effects are important; and at the macroscopic, continuum level at which bulk properties are
typically determined. Through ASM’s strategic content development efforts, specific needs for high-
quality materials modeling information are met. Further enhancement will be forthcoming as the
Co-Editors complement this work with Volume 22B, Metals Process Simulation.

The need for modeling metallurgical behavior during processing has long been recognized and ASM
has been a forum for exchange of these ideas. Through mechanistic and phenomenological approaches,
solidification and deformation processes can be optimized, the resulting mechanical properties con-
trolled, and defects minimized. As computing power has increased and its cost decreased, more sophis-
ticated simulation of metallurgical processes has enabled material scientists and engineers to maintain
competitive advantage over those not willing or able to change.

As an organization of material scientists and engineers, ASM International is pleased to offer this
content to practitioners and students of modeling as they continue their exciting journey of tailoring
materials and processes to meet future functional needs. This new Handbook, in its printed and elec-
tronic forms, also moves us closer to achieving a strategic objective that will shape our society for
the next fifty years: to accumulate, review, and distribute comprehensive materials information and
to become the global resource for quality materials information.

Roger Fabian
President
ASM International

Stanley C. Theobald
Managing Director
ASM International
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Preface

Scientists and engineers have always been curious about cause and effect
relationships within nature. This is also the case relative tometals andmate-
rials. The understanding of the physics of metals has greatly increased from
the earliest days of the field of metallurgy. The discovery of mechanisms
that influence and control the behavior of metals has spurred continued
research and further discovery. Initial understanding and description of
controlling mechanisms were substantially phenomenological, based on
observations and perceived interactions of material and process variables
on resultant metallic material microstructure, mechanical properties and
behavior. The conversion of mechanistic relationships into mathematical
expressions is now the field of materials modeling.

The development of models and modeling methods is now allowing
more rapid discovery of new alloy systems with greater optimization and
application potential. Models are being integrated into computational tools
for design and simulation of component processing and manufacture. The
successful application of models by industry is also resulting in further pull
for even further development of models that are more accurate and predic-
tive. The study of mechanisms that control the evolution and behavior of
metallic materials is continuing today at an even more aggressive pace.

Mechanistic models that more accurately describe the physics of met-
allurgical processes, such as grain growth, precipitation, phase equlibria,
strength and deformation as examples are of great interest and impor-
tance to science and industry alike. Greater understanding of the physics
of metals to the atomistic level, along with increased computational
power, has resulted in further discovery and growth in the field of mod-
eling and simulation.

This Handbook provides a review of the models that support the under-
standing of metallic materials and their processing. An accompanying
volume will provide details of the integration of these models into soft-
ware tools to allow simulation of manufacturing processes. The distinctly
different, but complementary fields of Modeling and Simulation are
providing new and increased capabilities for metallic materials for com-
ponents and systems. The future of the metals industry is moving toward
an integrated computational materials engineering (ICME) approach as a
result of the hard work and dedication of the individuals, teams and orga-
nizations that have and continue to provide the needed models and simu-
lation tools that are capable of providing engineers with accurate
predictive guidance and direction.

D.U. Furrer, FASM
Roll-Royce Corporation

S.L. Semiatin, FASM
Air Force Research Laboratory

vwww.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction to Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin. . . . . . . . . . . . . . . . . . . . . . . . . . 3
Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Classes of Material Behavior Models . . . . . . . . . . . . . . . . . . . . 4
Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Integrated Computational Materials Engineering
John E. Allison, Mei Li, and XuMing Su . . . . . . . . . . . . . . . . . . . 7
Virtual Aluminum Castings. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Model Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Benefits of Virtual Aluminum Castings . . . . . . . . . . . . . . . . . 12
Manufacturing Process Selection and Optimization . . . . . . . . . 12
Design Improvement and Optimization. . . . . . . . . . . . . . . . . . 13
Benefits and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Model Quality Management
Charles Kuehmann and Herng-Jeng Jou . . . . . . . . . . . . . . . . . . 15
Fundamentals of Model Quality. . . . . . . . . . . . . . . . . . . . . . . 15
Calibration of Mechanistic Material Models . . . . . . . . . . . . . . 15
Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Model Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Example of Model Calibration, Verification, and Validation—
Martensite Start Temperature Prediction for Steels . . . . . . . . 17

Fundamentals of Process Modeling . . . . . . . . . . . . . . . . . . . . . . 21

Modeling of Deformation Processes—Slab and Upper
Bound Methods
Rajiv Shivpuri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
The Slab Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Upper Bound Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Modeling with the Finite-Element Method. . . . . . . . . . . . . . . . . . . 34
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Methods of Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Boundary-Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Finite-Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Model Development and Preprocessing . . . . . . . . . . . . . . . . . 37
The Basis of Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . 40
Linear Finite-Element Problems . . . . . . . . . . . . . . . . . . . . . . 43
Nonlinear Finite-Element Problems . . . . . . . . . . . . . . . . . . . . 43
Finite-Element Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Sheet Metal Forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Bulk Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Computational Fluid Dynamics Modeling . . . . . . . . . . . . . . . . . . . 55
Background and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Numerical Solution of the Fluid-Flow Equations . . . . . . . . . . . 58
Grid Generation for Complex Geometries. . . . . . . . . . . . . . . . 62
Computational Fluid Dynamics for Engineering Design . . . . . . 62
Issues and Directions for Engineering CFD . . . . . . . . . . . . . . 66

Transport Phenomena during Solidification
Jonathan A. Dantzig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Transport and Microstructure . . . . . . . . . . . . . . . . . . . . . . . . 72
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Modeling of Vapor-Phase Processes
Alain Dollet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Vapor-Phase Processes for the Synthesis of Materials . . . . . . . 75
Transport Regimes and Transport Equations . . . . . . . . . . . . . . 77
Modeling of Surface Interactions with the Vapor Phase . . . . . . 81
Gas-Phase Reactions in CVD . . . . . . . . . . . . . . . . . . . . . . . . 85
Modeling and Computation of Transport Equations in

Continuous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Modeling and Computation of Transport Equations in

Transition Regime Flows . . . . . . . . . . . . . . . . . . . . . . . . . 91
Modeling and Computation of Particle-Surface Interactions . . . 92
Simulation of CVD Processes . . . . . . . . . . . . . . . . . . . . . . . . 93
Simulation of PVD and Etching Processes . . . . . . . . . . . . . . . 98
Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Determination of Heat Transfer Coefficients for
Thermal Modeling
D. Scott MacKenzie and Andrew L. Banka . . . . . . . . . . . . . . . . 106
Sources of Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Determination of Heat-Transfer Coefficients . . . . . . . . . . . . . 110
Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Interface Effects for Deformation Processes
M. Krzyzanowski and J.H. Beynon . . . . . . . . . . . . . . . . . . . . . 127
Process Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Friction Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Determination of Friction Coefficient . . . . . . . . . . . . . . . . . . 129
Importance of an Appropriate Model and Accurate

Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Interface Heat-Transfer Coefficient . . . . . . . . . . . . . . . . . . . 130
Determination of Interface Heat-Transfer Coefficient . . . . . . . 132
Oxide Scale Mechanical Behavior . . . . . . . . . . . . . . . . . . . . 133
Effect of Lubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Effect of Process and Material Parameters on

Interfacial Phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Microforming and Size Effects Related to the

Tool-Workpiece Interface . . . . . . . . . . . . . . . . . . . . . . . . 137
Heat-Transfer Interface Effects for Solidification Processes
P.A. Kobryn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Casting-Mold Interface Heat-Transfer Phenomena . . . . . . . . . 144
Incorporating the Interface Heat-Transfer

Coefficient in Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Quantifying the Interface Heat-Transfer Coefficient

Experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Selecting the Interface Heat-Transfer Coefficient for a Given

Casting Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Fundamentals of the Modeling of Microstructure and
Texture Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Modeling Diffusion in Binary and Multicomponent Alloys
John Morral and Frederick Meisenkothen . . . . . . . . . . . . . . . . 155
Diffusion in Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xiwww.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Fundamentals of Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 155
Modeling Diffusion with Constant D Equations. . . . . . . . . . . 162
Modeling Variable D, Multicomponent, and Multiphase
Diffusion Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Diffusivity and Mobility Data
Carelyn E. Campbell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Diffusion Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Diffusion Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Diffusion Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Modeling Multicomponent Diffusivity Data . . . . . . . . . . . . . 175
Determination of Diffusion Mobility Coefficients . . . . . . . . . 176
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Appendix 1: Example of Diffusion Matrices for the
Ni-0.05Al-0.10Cr fcc Composition at 1200 �C. . . . . . . . . . 179

Localization Parameter for the Prediction of Interface
Structures and Reactions
Witold Lojkowski and Hans J. Fecht . . . . . . . . . . . . . . . . . . . . 182
Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
The Orientation Relationship. . . . . . . . . . . . . . . . . . . . . . . . 182
Model-Informed Atomistic Modeling of Interface Structures . . . 183
Nanosized Structural Elements of the Interface . . . . . . . . . . . 183
Theories to Predict Low-Energy Orientation Relationships . . . 183
Use of the Localization Parameter for Prediction
of Interface Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Estimating the Shear Modulus and Bonding Energy
Across the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Prediction of Interface Structure in Various Systems
and Their Transformations. . . . . . . . . . . . . . . . . . . . . . . . 187

Implications of Changes in Interface Structure for
Interface Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Models for Martensitic Transformations
G.B. Olson and A. Saxena . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Physics of Displacive Transformations . . . . . . . . . . . . . . . . . 192
Martensitic Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Martensitic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Overall Kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Modeling of Nucleation Processes
Emmanuel Clouet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Thermodynamic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Conditions for Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 203
The Capillary Approximation . . . . . . . . . . . . . . . . . . . . . . 204
Steady-State Nucleation Rate. . . . . . . . . . . . . . . . . . . . . . . 206
Transient Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Heterogeneous Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 207
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Kinetic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Cluster Gas Thermodynamics . . . . . . . . . . . . . . . . . . . . . . 210
Cluster Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
The Link with Classical Nucleation Theory . . . . . . . . . . . . 213
Extensions of Cluster Dynamics . . . . . . . . . . . . . . . . . . . . 214
Limitations of the Cluster Description . . . . . . . . . . . . . . . . 216

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Appendix—Phase-Field Simulations . . . . . . . . . . . . . . . . . . 217

Models of Recrystallization
Frank Montheillet and John J. Jonas . . . . . . . . . . . . . . . . . . . 220

Recrystallization and the Avrami Kinetics . . . . . . . . . . . . . . 221
Mesoscale Approach for DDRX. . . . . . . . . . . . . . . . . . . . . 224
Mesoscale Approach for CDRX. . . . . . . . . . . . . . . . . . . . . 229

Crystal-Plasticity Fundamentals
Henry R. Piehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Schmid’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Generalized Schmid’s Law . . . . . . . . . . . . . . . . . . . . . . . . 232
Taylor Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Bishop-Hill Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Bounds for Yield Loci from Two-Dimensional Sachs
and Bishop-Hill Averages . . . . . . . . . . . . . . . . . . . . . . . 235

Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Self-Consistent Modeling of Texture Evolution

David Dye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Measuring and Representing Textures. . . . . . . . . . . . . . . . . 240
Predictions of Texture Evolution . . . . . . . . . . . . . . . . . . . . 240
Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Crystal-Scale Simulations Using Finite-Element Formulations
P.R. Dawson and D.E. Boyce . . . . . . . . . . . . . . . . . . . . . . . . . 246

Crystal Elastoplasticity—Theory, Methods, and Applications . . 247
Application to the Continuum Scale . . . . . . . . . . . . . . . . . . 253
Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 257

Cellular Automaton Models of Recrystallization
C.H.J. Davies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

The Cellular Automaton Method . . . . . . . . . . . . . . . . . . . . 260
The Cellular Automaton Framework. . . . . . . . . . . . . . . . . . 260
Generating the Initial Microstructure . . . . . . . . . . . . . . . . . 262
Nucleation and Growth of Recrystallized Grains . . . . . . . . . 262
Developments in Cellular Automaton Simulations . . . . . . . . 265
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Monte Carlo Models for Grain Growth and Recyrstallization
Mark Miodownik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

The Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Incorporating Experimental Parameters into
the Potts Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Network and Vertex Models for Grain Growth
L.A. Barrales Mora, V. Mohles, G. Gottstein, and
L.S. Shvindlerman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

History of Development . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Initialization and Discretization of the Microstructure
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Topological Transformations . . . . . . . . . . . . . . . . . . . . . . . 288
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Phase-Field Microstructure Modeling
Chen Shen and Yunzhi Wang . . . . . . . . . . . . . . . . . . . . . . . . . 297

Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Modeling Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Modeling Growth and Coarsening . . . . . . . . . . . . . . . . . . . 302
Material-Specific Inputs—Thermodynamic and Kinetic Data. . . 303
Examples of Applications . . . . . . . . . . . . . . . . . . . . . . . . . 305
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Modeling of Microstructure Evolution during
Solidification Processing
Ch.-A. Gandin and I. Steinbach . . . . . . . . . . . . . . . . . . . . . . . 312

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Direct Microstructure Simulation Using the
Phase Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Direct Grain Structure Simulation Using the
Cellular Automaton Method . . . . . . . . . . . . . . . . . . . . . . 315

Coupling of Direct Structure Simulation at
Macroscopic Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Fundamentals of the Modeling of Damage Evolution
and Defect Generation . . . . . . . . . . . . . . . . . . . . . . . . . 323

Modeling and Simulation of Cavitation during Hot Working
P.D. Nicolaou, A.K. Ghosh, and S.L. Semiatin . . . . . . . . . . . . . 325
Cavitation Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Modeling of Cavity Nucleation . . . . . . . . . . . . . . . . . . . . . . 326

xiiwww.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Modeling of Cavity Growth . . . . . . . . . . . . . . . . . . . . . . . . 326
Modeling of Cavity Coalescence . . . . . . . . . . . . . . . . . . . . . 331
Modeling of Cavity Shrinkage. . . . . . . . . . . . . . . . . . . . . . . 333
Modeling and Simulation Approaches to Predict
Tensile Ductility and Develop Failure-Mode Maps. . . . . . . 333

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Modeling of Cavity Initiation and Early Growth during
Superplastic and Hot Deformation
A.K. Ghosh, D.-H. Bae, and S.L. Semiatin . . . . . . . . . . . . . . . . 339
Early Concepts of Creep Cavitation . . . . . . . . . . . . . . . . . . . 339
Cavitation Observations during Hot Working . . . . . . . . . . . . 340
Analysis of Cavitation under Constrained Conditions. . . . . . . 341
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Models for Fracture during Deformation Processing
Howard Kuhn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Fracture Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Fundamental Fracture Models . . . . . . . . . . . . . . . . . . . . . . . 358

Modeling of Hot Tearing and Other Defects in Casting Processes
Brian G. Thomas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Shrinkage Cavities, Gas Porosity, and Casting Shape. . . . . . . 363
Mold-Wall Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Mold-Wall Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Other Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Hot-Tear Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Heat-Transfer Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Thermomechanical Modeling . . . . . . . . . . . . . . . . . . . . . . . 365
Hot-Tearing Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Microsegregation Modeling. . . . . . . . . . . . . . . . . . . . . . . . . 368
Model Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Case Study—Billet Casting Speed Optimization . . . . . . . . . . 369
Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Phenomenological or Mechanistic Models for
Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Modeling of Tensile Properties
Peter C. Collins and Hamish L. Fraser . . . . . . . . . . . . . . . . . . 377
Current State of Understanding and Modeling
of Strengthening Mechanisms . . . . . . . . . . . . . . . . . . . . . 377

Examples of Predictive Models . . . . . . . . . . . . . . . . . . . . . . 388
Atomistic Modeling of Dislocation Structures and Slip
Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Modeling of Creep
Sammy Tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Fundamentals of Deformation . . . . . . . . . . . . . . . . . . . . . . . 400
Creep Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Creep Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Creep-Strengthening Mechanisms . . . . . . . . . . . . . . . . . . . . 405
Creep in Engineering Alloys—Microstructural Modeling . . . . 406

Microstructure-Sensitive Modeling and Simulation of Fatigue
David L. McDowell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Stages of the Fatigue Damage Process . . . . . . . . . . . . . . . . . 408
Hierarchical Multistage Fatigue Modeling . . . . . . . . . . . . . . 410
Small Crack Formation and Early Growth in Fatigue. . . . . . . 410
Design Against Fatigue Crack Initiation . . . . . . . . . . . . . . . . 412
Examples of Microstructure-Sensitive Fatigue Modeling . . . . 413
Closure—Challenges for Microstructure-Sensitive
Fatigue Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Modeling Creep Fatigue
Jeffrey L. Evans and Ashok Saxena . . . . . . . . . . . . . . . . . . . . 419
Modeling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Time-Dependent Damage Evolution. . . . . . . . . . . . . . . . . . . 419
Evolution of Crack-Tip Stress Fields Due to Creep . . . . . . . . 421
Time-Dependent Environmental Degradation . . . . . . . . . . . . 423

Oxidation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Fracture Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Summary of Creep-Fatigue Modeling Approaches . . . . . . . . . 426
Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 426

Modeling Fatigue Crack Growth
Andrew H. Rosenberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Basic Crack-Growth Considerations . . . . . . . . . . . . . . . . . . . 429
Load Interactions—Empirical Models . . . . . . . . . . . . . . . . . 430
Crack Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Geometric Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 433

Neural-Network Modeling
H.K.D.H. Bhadeshia and H.J. Stone . . . . . . . . . . . . . . . . . . . . 435
The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Noise and Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Transparency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Material Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Phase Equilibria and Phase Diagram Modeling
Y.A. Chang, H.-B. Cao, S.-L. Chen, F. Zhang,
Y. Yang, W. Cao, and K. Wu . . . . . . . . . . . . . . . . . . . . . . . . . 443
Overview and Background . . . . . . . . . . . . . . . . . . . . . . . . . 443
An Algorithm to Calculate Stable Phase Equilibria . . . . . . . . 444
Rapid Method for Obtaining a Thermodynamic

Description of a Multicomponent System . . . . . . . . . . . . . 446
Thermodynamically Calculated Phase Diagrams . . . . . . . . . . 450
Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Internal-State Variable Modeling of Plastic Flow
H. Mecking and A. Beaudoin. . . . . . . . . . . . . . . . . . . . . . . . . 458
Dislocation Movement in a Field of Point Obstacles . . . . . . . 459
Basic Equations for Flow Stress and Strain Hardening . . . . . . 460
Quantitative Description of Strain Hardening

of fcc Polycrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Other Lattice Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Stage IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Single-Phase Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Constitutive Models for Superplastic Flow
Indrajit Charit and Rajiv S. Mishra . . . . . . . . . . . . . . . . . . . . . 472
Mechanical Description of Superplasticity . . . . . . . . . . . . . . 472
Phenomenological Constitutive Models . . . . . . . . . . . . . . . . 473
Physically Based Constitutive Equations. . . . . . . . . . . . . . . . 474
Applicability of Superplastic Constitutive Equations . . . . . . . 476

Electronic Structure Methods Based on Density
Functional Theory
Christopher Woodward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Fundamentals of Density Functional Theory . . . . . . . . . . . . . 479
Pertinent Approximations and Computational

Details for Calculations in Metal Alloys . . . . . . . . . . . . . . 481
Practical Application of DFT in Metals and Alloys . . . . . . . . 482

Modeling of Microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Simulation of Microstructural Evolution in Steels
P.M. Pauskar and R. Shivpuri . . . . . . . . . . . . . . . . . . . . . . . 491

Microstructural Evolution during Hot Working . . . . . . . . . . . 491
Development of Models for Austenite Evolution

and Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Austenite Grain Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Modeling Austenite Decomposition . . . . . . . . . . . . . . . . . . . 498
Effect of Microstructure Evolution on Flow Stress . . . . . . . . 500
Physical Simulation in the Laboratory Environment. . . . . . . . 501
Simulation Using Finite-Element Analysis . . . . . . . . . . . . . . 501

xiiiwww.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Summary and Concluding Remarks . . . . . . . . . . . . . . . . . . . 504
Simulation of Microstructure and Texture Evolution in
Aluminum Sheet
Olaf Engler, Kai Karhausen, and Jürgen Hirsch . . . . . . . . . . . 510
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Evolution of Microstructure and Texture during the
Thermomechanical Processing of Al-Mn-Mg Sheet . . . . . . 510

Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Coupled Through-Process Simulation of Microstructure
and Texture Evolution in AA 3104. . . . . . . . . . . . . . . . . . 517

Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 520
Modeling of Microstructure Evolution during the
Thermomechanical Processing of Titanium Alloys
S.L. Semiatin and D.U. Furrer . . . . . . . . . . . . . . . . . . . . . . . . 522
Processing of Titanium Alloys . . . . . . . . . . . . . . . . . . . . . . 522
Dynamic and Static Spheroidization. . . . . . . . . . . . . . . . . . . 523
Static and Dynamic Coarsening . . . . . . . . . . . . . . . . . . . . . . 526
Final Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Summary and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . 533

Modeling and Simulation of Texture Evolution during the
Thermomechanical Processing of Titanium Alloys
S.L. Semiatin, M.G. Glavicic, S.V. Shevchenko,
O.M. Ivasishin, Y.B. Chun, and S.K. Hwang . . . . . . . . . . . . . . . 536
Fundamental Considerations for Titanium. . . . . . . . . . . . . . . 536
Texture Evolution during Recrystallization
and Grain Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Simulation of Deformation Texture Evolution . . . . . . . . . . . . 545
Transformation Texture Evolution . . . . . . . . . . . . . . . . . . . . 548
Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Application of Neural-Network Models
Wei Sha and Savko Malinov . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Principles and Procedures of NN Modeling . . . . . . . . . . . . . 553
Use of NN Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
Upgrading Software Systems by Database
Enhancement and Retraining . . . . . . . . . . . . . . . . . . . . . . 563

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
Modeling of Microstructure Evolution during the Thermomechanical
Processing of Nickle-Base Superalloys
J.P. Thomas, F. Montheillet and S.L. Semiatin . . . . . . . . . . . . . 566
Overview of Microstructure Evolution in Nickel-Base
Superalloys during Hot Working . . . . . . . . . . . . . . . . . . . 566

Modeling Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
JMAK Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Topological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Mesoscale Physics-Based Models . . . . . . . . . . . . . . . . . . . . 576
Current Status and Future Outlook. . . . . . . . . . . . . . . . . . . . 581

Physical Data on the Elements and Alloys . . . . . . . . . . . . . . . . 583

Periodic Table of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Periodic System for Ferrous Metallurgists . . . . . . . . . . . . . . . . . . 587

Physical Constants and Physical Properties of the Elements . . . . . 588
Density of Metals and Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Linear Thermal Expansion of Metals and Alloys . . . . . . . . . . . . . 602
Thermal Conductivity of Metals and Alloys. . . . . . . . . . . . . . . . . 604
Electrical Conductivity of Metals and Alloys . . . . . . . . . . . . . . . . 606
Vapor Pressures of the Elements . . . . . . . . . . . . . . . . . . . . . . . . 608

Reference Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

Metric Conversion Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

First Law of Thermodynamics—Conservation of Energy . . . . 613
Work Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Heat-Transfer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Property Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Second Law of Thermodynamics. . . . . . . . . . . . . . . . . . . . . 618
Mixtures and Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Heat Transfer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Convection Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 629
Thermal Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Fluid Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Properties of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
Fluid Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
Concept of the Control Volume. . . . . . . . . . . . . . . . . . . . . . 663
Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
Dimensional Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Boundary-Layer Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Differential Calculus and Equations . . . . . . . . . . . . . . . . . . . . . . 673
Basic Concepts of Differential Calculus . . . . . . . . . . . . . . . . 673
Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Expansion of a Function into a Power Series . . . . . . . . . . . . 675
Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . 677
Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 680

Integral Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Line, Surface, and Volume Integrals . . . . . . . . . . . . . . . . . . 686
Applications of Integration . . . . . . . . . . . . . . . . . . . . . . . . . 687

Laplace Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
Fundamental Transformation Rules . . . . . . . . . . . . . . . . . . . 691
Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
Applications of Laplace Transforms. . . . . . . . . . . . . . . . . . . 692

Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

xivwww.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Introduction

Introduction to Fundamentals of Modeling for
Metals Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Classes of Material Behavior Models . . . . . . . . . . . . . . . . . . . . 4
Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Integrated Computational Materials Engineering . . . . . . . . . . . . 7
Virtual Aluminum Castings . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Benefits of Virtual Aluminum Castings . . . . . . . . . . . . . . . . . . . 12
Manufacturing Process Selection and Optimization. . . . . . . . . . . 12

Design Improvement and Optimization . . . . . . . . . . . . . . . . . . . 13
Benefits and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Model Quality Management . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fundamentals of Model Quality . . . . . . . . . . . . . . . . . . . . . . . . 15
Calibration of Mechanistic Material Models . . . . . . . . . . . . . . . 15
Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Example of Model Calibration, Verification, and Validation—
Martensite Start Temperature Prediction for Steels . . . . . . . . . 17

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Introduction to Fundamentals of
Modeling for Metals Processing
D.U. Furrer, Rolls-Royce Corporation
S. L. Semiatin, Air Force Research Laboratory

THE FORMULATION AND APPLICATION
of modeling and simulation methods for metallic
materials and manufacturing process design and
development is rapidly increasing. Classicmodels
that predict the behavior of metals under proces-
sing conditions are continuing to be used and
enhanced with greater understanding of the
mechanisms that control the evolution of micro-
structure, texture, and defects. New theories and
associated mathematical models are being devel-
oped and applied to metallic alloy systems for
existing and new processingmethods. To comple-
ment empirical descriptions of material behavior
during processing, so-called first-principles
approaches, such as those based on atomistic and
molecular dynamics calculations, are now being
developed to provide fundamental understanding
of the mechanisms that control observed beha-
viors of existing and emerging alloys, such as
those for unique or highly demanding
applications.
The recent development of the integrated

computational materials engineering (ICME) dis-
cipline allows fundamental research to be linked
to industrial applications (Ref 1). See the article
“Integrated Computational Materials Engineer-
ing” in this Volume. The refinement of models
and modeling methods results in greater capabil-
ity and accuracy of metallurgical predictions,
such as phase equilibria, microstructure, and
subsequent mechanical properties. The ability to
rapidly apply fundamental models to practical
component design and manufacturing applica-
tions has spurred unprecedented collaboration
between universities, research laboratories, soft-
ware companies, and industrial users of modeling
and simulation tools. The linkage of component
design, alloy design, and component manufacture
through modeling and simulation methods will
allow for continued advancement in the area of
alloy research, advanced process and equipment
development, and enhanced component
capability.
Modeling and simulation activities are

increasing within the materials field as well as
other science and engineering disciplines.
Development, enhancement, and implementation

of computationalmodeling and analysis technolo-
gies to describe and predict physics-based
processes are occurring globally within universi-
ties and research centers in nearly every country
(Ref 2). In addition to increased collaboration
between industry and academia, there are
increased numbers of multinational collaborative
efforts aimed at increasing the capabilities and
state-of-the-art of material and process modeling.
Fundamental understanding of metallic materials
and processing is increasing rapidly and becom-
ing available globally through these and other
science and engineering efforts.
Volumes 22A and 22B of the ASM Hand-

book series describe the current state-of-the-art
of modeling and simulation for metals proces-
sing. The present Volume (22A), Fundamentals
of Modeling for Metals Processing, focuses on
mathematical descriptions of the behavior of
metallic materials during processing (and resul-
tant properties) as well as process modeling per
se. These models may be broadly characterized
into three types on the basis of approach and
mathematical expression utilized as being
phenomenological (based primarily on direct
observations/measurements), mechanistic/
physics based, or a combination of the two.
Phenomenological and mechanistic models

are also separated by application type, includ-
ing materials models or process models. Mate-
rials models for metals can also be considered
metallurgical process models, where grain
growth, precipitation, recrystallization, or dislo-
cation impedance are examples of processes
within metals and alloys. Materials models
describe how, for example, microstructure,
crystallographic texture, and defects evolve as
a function of local metallurgical process vari-
ables, including history and path dependences.
Process models, on the other hand, describe

manufacturing processes that require under-
standing of external independent parameters
and boundary conditions and provide informa-
tion about macroscopic component changes
and/or information for metallurgical process
models. The nomenclature within this field,
however, can cause some confusion, so it is

important to understand and clearly define the
type of models being discussed.
Manufacturing process modeling addresses

the integration of material behavior models with
the description of specific processes (e.g.,
forging, investment casting), which typically
include equipment/process characteristics and
interface effects (such as heat transfer and fric-
tion). The equations describing the physical
phenomena in material behavior models and/or
their coupling with process models are often
too complex for solution by analytical means,
except under somewhat restrictive (albeit often
insightful) conditions. This is usually the case
for real-world industrial processes. In such cases,
numerical simulation methods must be used to
describe material behavior, process mechanics,
and processing-structure-mechanical behavior
relationships. Volume 22B, Metals Process
Simulation, deals with the state-of-the-art of the
simulation of specific materials processes,
including associated input-data requirements.
Various major sections of this Volume sum-

marize the fundamentals of materials modeling,
including modeling of microstructure and tex-
ture evolution, modeling of damage and defect
evolution, modeling of mechanical properties,
and material-specific models for industrial
alloys. This article provides a brief historical
perspective, a classification of metallurgical
processes that are discussed within this
Volume, basic model development efforts, and
an overview of the potential future directions
for the modeling of metals processing.

Historical Perspective

Models of various forms have been devel-
oped nearly since the beginning of time.
Models can be very simple, such as an “if/then”
relationship, or extremely complex mathemati-
cal expressions with numerous parameters,
some of which may be easily measured and
well understood and others that are not physi-
cally observable or readily inferred. All models
have one thing in common: They attempt to
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provide improved understanding of the nature
and the variables that influence and control the
results of processes, whether a naturally occur-
ring process or man-made. The study of
processes leads to theories and subsequent
models that can and are used to predict future
applications of the studied process. Figure 1
shows a schematic flow path for the develop-
ment of models that provide improved under-
standing of processes, where metallurgical or
manufacturing process-based.
Models are developed due to need or curios-

ity. The drive to increase understanding of
nature and metallurgical processes has provided
a substantial foundation for materials and
process modeling. For the most part, the devel-
opment of material behavior and process mod-
els has been spearheaded by metallurgical and
mechanical engineers, respectively. Over the
last two decades, however, a great emphasis
has been placed on the need for coupling mate-
rial behavior and process models, leading to
work that is truly interdisciplinary in nature.
Material behavior models for processing

have evolved from ones that are largely empiri-
cal in nature to those that incorporate physics-
based mechanisms. For example, work in the
first half of the 20th century led to engineering
(phenomenological) models of:

� Deformation and strain hardening, such as
Schmid’s law and the Hollomon equation

� Kinetics of recrystallization (such as the
Avrami equation), grain growth (such as
the Beck equation), and precipitation/phase
transformation

� Ductility for solid-state processes

Similarly, phenomenological models of macro-
structure evolution during solidification and
evaporation during vapor processing were

developed for a number of alloy systems. For
the most part, these phenomenological models
were applicable only to the range of process
parameters for which measurements had been
made and hence were essentially methods of fit-
ting experimental data. The development of a
fundamental understanding of the mechanisms
underlying these phenomena, such as disloca-
tion glide/climb and diffusion, led to rudimen-
tary physics-based models, such as those for
the large-strain deformation of polycrystalline
aggregates, phase transformations based on
classical nucleation theory and diffusional
growth, and grain growth, among others, in
the 1940s to1960s. Beginning in the 1980s,
the incorporation of the fundamental concepts
of thermodynamics and thermal physics (due
to, for example, Gibbs, Ising, and others) led to
a great expansion of mechanism-based models,
such as those designed to predict phase equili-
bria (e.g., Calphad), recrystallization and grain
growth (Monte Carlo and cellular-automaton
techniques), and precipitation and solidification
problems (e.g., phase-field methods). The suc-
cessful implementation of these newer techni-
ques was made possible by the advent of
inexpensive computers and ever-increasing
computing power beginning in the 1990s.
Modern process models have evolved from

relatively simple analytical and numerical tech-
niques. These include the slab, upper-bound,
and slip-line field methods (for predicting
loads/forming pressures during metal forming,
for instance) and the solution of relatively
simple partial-differential equations (for vari-
ous heat flow, solidification, and diffusion
problems) that evolved during the 1920s to
1980s. The development of mainframe, mini-,
and then microcomputers and associated
software beginning in the 1970s and 1980s led

to the ability to simulate much more complex
processing problems, often based on finite-
difference or finite-element numerical techni-
ques. These latter approaches have also enabled
the simulation of coupled phenomena, such as
those involving simultaneous deformation/
solidification, energy transport, and mass
transport.

Classes of Material Behavior Models

Material behavior models can be grouped
broadly into three classes: statistical, phenome-
nological, and mechanism based.
Statistical models typically require large

amounts of experimental data to derive a math-
ematical relationship between independent/
controlled process parameters and predictions
of metallurgical process results. For example,
linear regression analysis is often used to “fit”
pairs or a series of data to determine relation-
ships (Ref 4). This approach has pros and cons.
One advantage is that data generated during the
manufacture of components can often be used
to generate models, but the available data often
do not contain all of the required parameters.
In other words, the data may mask second-order
or confounding parameters, making difficult the
establishment of statistical models that capture
the fundamental relationships. Other disadvan-
tages consist of not knowing a priori what met-
allurgical or processing parameters influence
the specific results of a process, and the issue
that not all metallurgical processes and relation-
ships are linear. A specific type of statistical
analysis, known as artificial neural-network
(ANN) modeling, overcomes some of these
drawbacks for the development of multivari-
able, nonlinear relationships, but this approach
also requires large amounts of data (Ref 5).
In addition, ANN, like other statistical
approaches, suffers from not being able to pre-
dict results outside the range of data used for
“training” the model. Since the physics of the
metallurgical process being modeled are not
known, extrapolating statistical-based models
outside the parameter range in which they are
trained is not advisable and can lead to errors
and large deviations from reality if the physics
of the process change are not captured within
the model.
Phenomenological models typically rely on

equations that define the relationship between
process variables and resulting microstructure,
properties, and so on. These types of models
can be used to describe phenomena such as
recrystallization, grain growth, and creep of
metallic materials. For example, Avrami (sig-
moidal-type) equations have been used
frequently to fit observations of the kinetics of
static (and dynamic) recrystallization and
other phase transformations during metals pro-
cessing (Ref 6–8). Such relationships quantify
the nucleation and growth mechanisms that
lead to an initial slow incubation period, fol-
lowed by a rapid rate of increase in the

Fig. 1 Process flow for development of models to increase understanding of metallurgical and manufacturing
processes. Source: Ref 3
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recrystallized/transformed volume fraction, and
then a final reduction in the rate of the process
until the reaction or metallurgical process
completes. Typical applications include the rate
of decomposition of austenite in steels that
underlie time-temperature-transformation and
cooling-transformation diagrams (Ref 9). Simi-
larly, Arrhenius rate-type equations are often
used to describe the temperature dependence
of metallurgical phenomena, such as the plastic
flow of metals at high temperature (using the
temperature-compensated strain rate, or Zener-
Hollomon parameter), grain growth (Ref 10),
and creep (using the Larson-Miller parameter)
(Ref 11).
In phenomenological models, the underlying

mechanism(s) that control the rate of the metal-
lurgical process are often not known precisely
nor explicitly incorporated. This type of model-
ing approach may also have several inherent
limitations:

� Experimental data are often needed to estab-
lish or calibrate the relationship, even for
mathematical expressions in which the form
is known.

� If the mechanism controlling the process
changes, the form of the fit assumed in the
model may not be appropriate.

Mechanistic models are often called physics
based due to their ability to include all of the
relevant physical parameters that influence the
outcome of a process to a high degree of fidel-
ity. As such, mechanism-based models tend to
be the most robust.
Examples of mechanistic models comprise

phase-field approaches for microstructure
evolution, such as solidification, grain growth,
and solid-state precipitate growth. In each of
these cases, the mechanisms that control the
migration of grain or interface boundaries, such
as bulk diffusion or interface reaction, and

suitable input parameters, such as grain/inter-
face boundary energy, must be known (Ref
12, 13). An example of a mechanistic mechani-
cal property relationship is the Hall-Petch
model for yield strength as a function of grain
size of single-phase alloys (Ref 14). This model
relates the applied stress for plastic flow to the
slip length within a grain and the stress concen-
tration for slip transmission into neighboring
grains. This simple model is effective and is
readily used for metallurgical understanding of
tensile property control and optimization (Ref
15). However, the grain size is not the only
microstructural feature that can influence the
yield strength. Additional models are required
to describe contributions from solid-solution,
precipitation/dispersion, and dislocation
strengthening (strain hardening).
Mechanistic models do provide the ability to

predict behavior outside the range for which
they were developed, provided the controlling
mechanism is unchanged. In some cases, the
failure of a mechanism-based model to describe
observations may provide the impetus for new
fundamental understanding. For instance, such
was the case for the discovery of microtwinning
during creep of nickel-base superalloys (Ref
16). Existing mechanistic creep models did
not accurately capture the behavior within a
specific temperature-stress regime. After care-
ful focused observations, the new mechanism
was discovered. Figure 2 shows micrographic
evidence of the new creep mechanism,
microtwinning, within nickel-base superalloys.
This Volume contains articles on a range of

metallurgical and materials processes. Table 1
lists the various formulations and mathematical
methods to predict the relationships and
interactions within metallurgical processes.
Further development of modeling tools will
continue to be seen in both mathematical
expression and mathematical formulation for
calculation of predictions.

Future Outlook

Modeling and simulation technology will
continue to grow because it provides a means

to assess “what-if” scenarios and to conduct
virtual experiments. Material behavior and pro-
cess models provide useful information to both
design and manufacturing engineers. Currently,
industry is developing holistic component and
product design approaches that include metal-
lurgical and process models. In this regard,
ICME provides a means of mathematically
linking complex metallurgical processes to the
mechanical design of components. ICME will
be the prevailing method in the future for
industry to design and optimize components,
alloys, and manufacturing processes in a
fully-coupled manner.
Another trend that is gaining momentum is

the increasing interest of academic and research
institutions in the development of fundamental
material behavior and process models for the
manufacture of metal products. This may be
due to factors such as:

� Widespread availability of inexpensive
computer hardware and software

� Limited mechanistic understanding of
metallurgical phenomena under processing
conditions for alloys of commercial impor-
tance and hence a strong technology pull
from industry

� Increased use of modeling and simulation
within industry develops a need for engi-
neers and scientists with knowledge and
background in this area

� Acceptance of modeling and simulation in
general as a worthy research subject

� Application of modeling and simulation as a
teaching method within multidisciplinary
engineering fields

� Shift toward near-term investments and the
concomitant reduction in research staff
within many companies

Despite the reduction in modeling research
within industry, the application of models in
the commercial milieu is creating an increased
demand for modeling tools, engineering
analysis capabilities, and engineers that can
apply modeling and simulation tools to indus-
trial challenges. These needs are being
addressed by academia in a very synergistic

Fig. 2 Recent discovery of microtwins in nickel-base
superalloys after creep deformation has led to

further investigation and development of a model that
describes this new mechanism. Courtesy of M. Mills,
The Ohio State University

Table 1 Examples of mathematical modeling approach and applications
for metals processing

Tool Typical application(s)

Slab, upper-bound, slip-line field models Loads, metal flow, gross defects in bulk forming
Finite-element models deformation processes Strain/metal flow, strain rate, temperature in deformation processes;

powder consolidation
Finite-element/finite-difference models
solidification processes

Fluid flow, solidification in solidification processes

Nucleation and growth models Plethora of phase transformations, recrystallization, etc.
Crystal-plasticity models Deformation-texture evolution
Cellular-automata models Recrystallization, solidification microstructure
Phase-field models Precipitation, grain growth, solidification microstructure
Monte Carlo models Grain growth, recrystallization
Vertex models Grain growth
Defect/failure models solid-state processes Cavity nucleation, growth, coalescence; failure maps
Defect/failure models — solidification Hot tearing, porosity
Constitutive equation models Material behavior, metal flow
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and collaborative manner. The development
and use of modeling tools is bringing the needs
of industry and the capabilities of academia and
research laboratories closer together. Stronger
ties between industry and academia associated
with model develop and utilization will
increase the rate of modeling and simulation
technology development and deployment. Fur-
ther work is needed to continue the path for-
ward for ICME, but the journey has begun
(Ref 1).
The great improvement in the speed of com-

puting systems and the efficiency of mathemat-
ical methods is also instrumental in giving rise
to the increased application of modeling and
simulation tools for complex industrial pro-
blems. The near-standard rule of thumb within
industry for the application of models is that
the computational time of the model should be
targeted at no more than overnight, although
this is exceeded for many complex applications.
Models that are being deployed today (2009)
would have taken weeks or months to run only
a short time ago due to slower computer speeds,
making numerical approaches impractical for
complex engineering problems. For this reason,
models were previously simplified to allow
increases in computational speed, but this
resulted in a lack of predictive accuracy. Com-
plex models with increasing detail of the phys-
ics of metallurgical processes are now being

employed with less simplification and greater
predictive accuracy within manageable engi-
neering timescales.
The rate of development of models will con-

tinue to increase based on increased under-
standing of underlying physics of
metallurgical problems. As models are estab-
lished that accurately predict the behavior of
metallurgical processes, further discovery of
unknown mechanisms will occur when these
models do not fit specific examples for new
materials or processing applications. The under-
standing of metallurgical processes is expand-
ing the range of metallurgical modeling over a
large range of length scales (Fig. 3). The new
frontier of atomistic and first-principles model-
ing is shedding new light on the understanding
of fundamental metallurgical mechanisms. Fur-
thermore, advances in these modeling methods
will provide further capabilities for other types
of models that require measurement or estima-
tion of fundamental material parameters, such
as boundary and interface energies.
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Integrated Computational Materials
Engineering*
John E. Allison, Mei Li, and XuMing Su, Ford Motor Company

INTEGRATED computational materials engi-
neering refers to the use of computer simulations
that integrate mathematical models of complex
metallurgical processes with computer models
used in component and process design. Cur-
rently, computational simulation is used in both
product design and manufacturing process devel-
opment with tools such as finite-element analysis
(FEA) and computational fluid dynamics (CFD),
as described in other articles in this Volume. On
the design side, for example, FEA and CFD
methods are quite well developed, yielding accu-
rate predictions of important design variables
such as the stresses, strains, and temperatures
to which a component is subjected. Simulation
of manufacturing processes is also conducted
using FEA or CFD, and these simulation tools
provide a means for determining whether the
component is manufacturable and for optimizing
the manufacturing process to reduce the
manufacturing time or improve the quality of a
component. The physical phenomena associated
with product performance and manufacturing
are generally governed by a few general princi-
ples (e.g., elasticity, heat transfer, mass trans-
port) that have been the subject of study and
development for centuries. Thus, product perfor-
mance and manufacturing simulations have
evolved to be quite sophisticated and computa-
tionally efficient.
In contrast, computational tools in the simula-

tion of metallurgical and materials processes (on
micro-, meso-, and macroscopic scales) have
lagged behind developments in other engineer-
ing disciplines. The behavior of materials
involves complex processes, especially when
the processes involve a multitude of discrete
interactions that are not adequately described
by the continuum models of behavior on macro-
scopic or mesoscopic scale. That is, computa-
tional modeling of material behavior includes
many processes with time and length scales that
are not adequately described by the well-devel-
oped continuum models for computer simulation
of engineering product and process designs.

This is not to say that major advances have
not been made in the tools of computational
materials science. However, these tools are gen-
erally designed for use in scientific research to
further mechanistic understanding rather than
for use in engineering decision making. The
computational materials tools are often direc-
tional in nature rather than quantitative, and, in
most cases, they require some form of empirical
calibration due to a lack of comprehensive phys-
ics-based understanding of the complex phenom-
ena at play. Most importantly, the computational
tools are not designed to be integrated with one
another nor with manufacturing simulation or
product performance codes. In addition, modern
component design requires consideration of
many different properties, which again adds a
multiplier effect on the complexity of the
computational problem.
Since the late 1990s with advances in com-

puter simulation, new computational tools have
been developed to include more complex materi-
als phenomena into the product and process
simulations. This approach is called integrated
computational materials engineering (ICME)
(Ref 1, 2), which has been defined as “the inte-
gration of materials information, represented in
computational tools, with engineering product
performance analysis and manufacturing-process
simulation” (Ref 2). For metals, this materials
information is in the form of quantitative proces-
sing-microstructure-property relationships linked
with thermodynamic phase equilibria databases.
The information can be from theoretical models,
empirical relationships, or databases; however,
this information also is captured in models that
can be integrated with one another and with
simulations of manufacturing and product per-
formance. By holistically integrating simulations
of materials, design, and manufacturing, ICME is
revolutionizing the way the materials community
provides input to the engineering and scientific
communities.
This article, based on a previous publication

(Ref 3) by the authors, briefly outlines an

example of a suite of computer-aided engineer-
ing (CAE) tools developed and implemented at
Ford Motor Company for quickly developing
durable cast aluminum power train components.
The CAE program, called virtual aluminum cast-
ings (VAC), captures extensive knowledge of
metallurgical processes that cover all key length
scales and puts this knowledge into advanced,
computationally efficient materials models.
These tools link analysis of manufacturing pro-
cesses and design in a holistic computational
environment enabling simultaneous engineering
of critical aluminum castings. This has resulted
in major benefits in reduced time and costs for
product creation and optimization.
TheVAC system stands as a key demonstration

of the ICME concept as a means of mathemati-
cally linking complex metallurgical processes
with the mechanical design of components.
Future advances will require formation of dedi-
cated teams of experts in materials, mechanics,
physics, engineering, computer science, and
information technology by industrial firms or gov-
ernment agencies wishing to develop tools for
specific applications. A recent report has made
extensive recommendations that would lead to a
widespread ICME capability (Ref 2). Although
ICME is still in its infancy, it has great potential
for producingmore robust simulations to optimize
components, alloys, and manufacturing processes
in a fully-coupled manner. Other articles in this
Volume also provide further details on the refine-
ment of models and modeling methods that result
in greater capability and accuracy ofmetallurgical
predictions, such as phase equilibria, microstruc-
ture, and subsequent mechanical properties.

Virtual Aluminum Castings

Simulation of materials in both product per-
formance analysis and manufacturing simula-
tion often involves use of nominal properties,
which have been previously measured experi-
mentally. The net result of this lack of

*This article is an adaptation of “Virtual Aluminum Castings: An Industrial Application of ICME,” JOM, The Mineral, Metals and Materials Society, Warrendale, PA, November 2006, p 28–35
and is published here with permission of TMS.
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computational capability is that the design and
manufacturing cyclemust be iterative and involves
a testing phase or phases to ensure that the material
properties and the component meet the designers’
intent. The influence of manufacturing history on
material performance is accounted for by using
minimum values for material properties that con-
tribute to the iterative process and result in overly
conservative and inefficient designs. The lack of
computational materials engineering tools also
results in a development process for newmaterials
that is empirical, slow, and can be disruptive.
Nowhere is this more evident than in the develop-
ment of designs and manufacturing processes for
cast aluminum engine blocks and cylinder heads.
Increasing engine performance requirements cou-
pled with stringent weight and packaging con-
straints are pushing aluminum alloys to the limits
of their capabilities.
To provide high-quality blocks and heads at

the lowest possible cost, engineers at Ford
Motor Company developed and implemented a
CAE process that tightly couples manufacturing
and design analysis of cast aluminum power
train components. The system, referred to as
VAC, is a suite of integrated computational
tools that enables the rapid development of
durable, cost-effective cast aluminum power
train components. The VAC system is based
on advanced material models that bridge the
many key dimensional scales from the atomis-
tic level to the component level. By using the
VAC system, virtual components are now
designed and cast, heat treated, and tested for
durability, all on a workstation long before
components are fabricated.

The VAC system is a holistic manufacturing
and design analysis system with robust compu-
tational models that help bridge the gaps
between program needs and engineering with
“up-front” analysis (i.e., providing analysis
before parts are cast). It demonstrates the capa-
bility and benefits of the ICME paradigm. The
development of the VAC system is the culmi-
nation of years of comprehensive research on
cast aluminum. It has been accomplished by a
combination of theoretical, experimental, and
computational technologies and has involved
development of a deep, fundamental under-
standing of dozens of separate phenomena. This
theoretical and empirical knowledge has been
captured in a computationally efficient software
package.
The VAC system is the rare technological

innovation that can be used to simultaneously
reduce cost, improve quality, save time, and
reduce weight. It is not asset-intensive and uses
existing CAE infrastructures, so it costs rela-
tively little to implement. The VAC system
has been successfully implemented within the
Ford power train design, manufacturing, and
CAE communities, has significantly reduced
product development time, and has saved Ford
millions of dollars.
General Description of the VAC System.

The central objective of the VAC system is to
significantly reduce the time required to
develop and optimize new cast aluminum com-
ponents and casting/heat treatment processes.
The product creation process for cast aluminum
blocks and heads has traditionally been a costly
method of design, build, test, redesign, build,

and retest. Manufacturing analysis is tradition-
ally conducted after the design is complete.
Subtle manufacturing changes made late in the
product development process can lead to engine
durability problems and, as a result, delays in
launching new products. By providing a holistic
analysis environment, the VAC system enables
manufacturing and product engineering to work
together simultaneously to solve these problems
long before components are cast and engines
tested.
This objective is accomplished by develop-

ing and validating a computational capability
with four interdependent parts (Fig. 1):

� Accurate simulation of the thermal history
of an aluminum component through casting
and heat treatment

� Prediction of the microstructure that evolves
during these manufacturing processes at all
locations in a casting (i.e., the local
microstructure)

� Prediction of critical local mechanical prop-
erties that result from these local
microstructures

� Coupling predicted local properties and new
damage and residual-stress models with
FEA methods to predict the durability of
engine components

Commercial casting simulation software, spe-
cifically MagmaSoft and ProCast, and FEA
software, specifically ABAQUS, provide the
basic framework for development of these
computational capabilities. This methodology
provides Ford with an unsurpassed capability

Fig. 1 Virtual aluminum castings methodology flowchart
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for quickly engineering low-cost, durable alu-
minum castings.
The development of VAC required activities

in several key areas, specifically:

� Use of advanced materials models to inte-
grate analytical tools for simulating the cast-
ing and heat treatment processes with
analysis of component durability

� Linking fundamental models for microstruc-
tural evolution with fundamental models for
property prediction

� Integration of fundamental knowledge of
phenomena occurring at a wide variety of
length scales into complete and coherent
models

� Validation of the integrated models
� Incorporation of these software tools into a

simultaneous manufacturing and product
engineering process, stressing computational
efficiency and having the right information
available at the right time

These areas also comprise the key areas of
the ICME methodology described elsewhere
(Ref 1, 2). Figure 2 shows the key processing,
microstructure, and property knowledge nodes
required for cast aluminum alloys. In develop-
ing the VAC tools, the focus was as much on
linking the models that describe these individ-
ual knowledge nodes as it was on the develop-
ment of the individual models themselves. The
interactions between these knowledge areas
and, in particular, the need to optimize multiple
properties as well as cost constraints demon-
strate the complexity of this problem and thus
the need to conduct this optimization in an
integrated modeling environment.
One of the challenges in developing VAC

tools was to develop a predictive approach cap-
turing the influence of the manufacturing

process history on the mechanical properties.
This is a significant challenge because these
models must account for metallurgical phenom-
ena that occur at vastly different length and
time scales (Fig. 3). For instance, solute diffu-
sion and precipitation in alloys is inherently
an atomistic process but can manifest itself via
changes in macroscopic properties, for exam-
ple, yield strength or thermal growth. Hence,
in constructing properties models in VAC,
modeling tools have been used and linked from
the atomistic scale through nanostructure and
microstructural length scales, all the way to
the macroscopic dimensions, as depicted in
Fig. 3. Metallurgical features at each of these
length scales influence properties in a wide
variety of complex ways; thus, it was necessary
to develop a fundamental and quantitative
understanding of the manner in which specific
properties were influenced by specific metallur-
gical features acting singularly or in combina-
tion. However, to ensure computational
efficiency, it was important to model only those
metallurgical processes and length scales that
are critical to the desired outcome. Develop-
ment of these models required a unique mix
of research expertise including experimental-
ists, theoreticians, numerical modeling, metal-
lurgy, physics, and engineering mechanics.

Model Development

To illustrate the needs and requirements for
ICME development, key aspects of integrated
computational engineering are described here
for Ford’s VAC program. Other examples are
given in Ref 2. The section “Benefits of Virtual
Aluminum Castings” in this article describes
how the VAC system has been used in process

selection, process optimization, and improved
component design criteria.

Linking Manufacturing Process to
Microstructure

Commercial software such as ProCAST and
MagmaSoft has been used in the past for cast-
ing process simulation; however, their primary
use has been for determining the castability of
geometries. These codes generally do not pre-
dict the local microstructures that evolve during
casting and heat treatment processes nor do
they predict local mechanical properties result-
ing from these local microstructures. For cast
aluminum, the key microstructural features are
microporosity, eutectic phases, and precipitate
phases.
To predict these local microstructural features,

it is critical to first be able to accurately predict
thermal history during casting and heat treatment
processes. Commercial casting simulation codes
have limited success in predicting microstructure,
in part due to limitations in their heat-transfer
coefficient databases. For decades, researchers
have attempted to obtain heat-transfer coefficients
for different metal-mold interfaces and processes
experimentally, analytically, or with inversemod-
eling approaches. However, for a variety of rea-
sons, it is usually difficult to apply the interfacial
heat-transfer coefficients (IHTCs) from the litera-
ture directly. Chief among these reasons is the
dependence of the IHTC on the casting geometry
and detailed differences in mold material, quench
media, and casting or quenching processes.
Therefore, a specialized optimization routine
was developed, called OptCast (Ref 4), that cou-
ples MagmaSoft or ProCAST with an optimiza-
tion program based on an inverse modeling
approach. OptCast enabled the development of
accurate IHTC for a wide variety of geometries,
casting processes, and heat treatment (water
quenching) processes. These improved heat-
transfer coefficients substantially increase the
accuracy of thermal histories predicted by the
casting and heat treatment simulations.
Prediction of microstructure and microsegre-

gation during solidification in a multicompo-
nent alloy is a crucial step in understanding
and simulating mechanical properties and
subsequent in-service performance of cast com-
ponents. In 319-type aluminum alloys (Al-Si-
Cu), the eutectic y or Al2Cu phase is of partic-
ular interest because it affects the subsequent
evolution of the precipitation-strengthening
phase, y0 (also Al2Cu), during the aging pro-
cess. During solution treatment, these eutectic
phases slowly dissolve, so it is also important
to include this effect. A software tool called
MicroMod was developed to couple solid-state
diffusion, dendrite arm coarsening, and dendrite
tip undercooling directly with a commercial
multicomponent phase diagram (CALPHAD)
computation tool, Pandat. Results from phase-
transformation kinetic models, such as the com-
mercial tool Dictra, were used for predictingFig. 2 Key processing-structure-property linkages and knowledge domains for cast aluminum alloys
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phase dissolution. MicroMod is capable of pre-
dicting secondary dendrite arm spacing and,
more importantly, the amount and type of the
eutectic phases that evolve during casting and
the dissolution of these phases during
subsequent thermal treatments.
At the nanoscale, accurately predicting the

amount and morphology of the precipitation-
strengthening phase, y0, is critical. Similar to
MicroMod, this precipitate prediction requires
an approach that links different modeling tech-
niques. The resulting model, called NanoPPT,
was accomplished by linking first-principles
atomistic calculations based on density func-
tional theory for the calculation of stable and
metastable thermodynamic functions, thermo-
dynamic phase equilibria calculations such as
ThermoCalc or Pandat for phase stability, and
microstructural evolution models for precipitate
kinetics and morphology (Ref 5, 6). The micro-
structural evolution models were heavily domi-
nated by empirically-derived relationships
(Ref 7). Ongoing developments are aimed at
the incorporation of a multiscale first-princi-
ples/phase-field approach, developed to reliably
predict y0 morphologies (Ref 8, 9), thereby

eliminating one of the key empirical compo-
nents of the current version of NanoPPT.
Microporosity is a common microstructural

feature that can have a profound influence on
properties such as fatigue. The VAC tool
MicroPore, a subroutine for commercial casting
simulation codes, uses the calculated casting
thermal histories to quantitatively predict the
relevant characteristics of microporosity. It
incorporates the complex, nonlinear physics of
nucleation and growth of pores. It models both
the macroscopic phenomena that control micro-
porosity, including fluid flow and pressure var-
iations in the melt, and microscopic
phenomena such as segregation of hydrogen/
alloying elements to accurately predict the local
pore size.

Linking Microstructures to Mechanical
Properties

As described previously, the ICME philoso-
phy was applied to develop the microstructural
evolution models in VAC through linking mod-
els operating at different length scales. It was
also used in development of the models for

prediction of mechanical properties resulting
from these microstructures.
Yield Strength. The authors’ approach for

modeling the age-hardening yield strength
behavior of Al-Si-Cu cast alloys uses microme-
chanical models of precipitation strengthening
that connect key microstructural parameters
for realistic precipitate morphologies (e.g.,
{100} plates) with the age-hardening response
(Ref 7). The microstructural parameters of the
key strengthening y0 plates measured by trans-
mission electron microscopy and a combined
first-principles/computational-thermodynamics
model of y0 volume fraction (Ref 10, 11) are
used in the micromechanical model to predict
precipitation strengthening, producing a
completely parameter-free model of this contri-
bution to the strength. This yield strength
model, called LocalYS, is linked with micro-
structural evolution models (MicroMod and
NanoPPT), producing a model of the macro-
scopic, location-dependent yield strength
behavior throughout the cast part.
Thermal Growth. In Al 319 castings aged

for peak strength (e.g., T6), a macroscopic, irre-
versible dimensional change (termed thermal

Fig. 3 Metallurgical length scales that dominate properties in cast aluminum alloys

10 / Introduction

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



growth) occurs during extended high-tempera-
ture exposure (Ref 12). Hence, heat treatment
schedules are often devised in an effort to stabi-
lize the casting with respect to in-service
dimensional changes. The unique combination
of first-principles atomistic calculations,
computational thermodynamics, and experi-
mental measurements used to construct
NanoPPT was similarly used to produce a
model, called LocalTG, of thermal growth in
Al 319 (Ref 6). The precipitation of Al2Cu
(y0) is the major contributor to thermal growth,
and the model, based on y0 and y evolution,
provides a quantitative and accurate predictor
of measured thermal growth. Like the yield
strength model, LocalTG was also made possi-
ble only via a linkage with the microstructural
models, NanoPPT and MicroMod (Ref 5).
As an illustrative example of the integration

of microstructural evolution, length-scale infor-
mation, and properties, the general expression
for thermal growth g(t,T) is examined. Growth
is given as a function of time and temperature
(Ref 6) as:

gðt; T Þ ¼ ð1� gÞ½dV
0
y

3V
f 0yðt; T Þ þ

dV�

3V
fyðt; T Þ�

(Eq 1)

In this relationship, dVy0 and dVy are the vol-
ume changes associated with copper atoms
going from solid solution to precipitate phases
y and y0, respectively. These volume changes
are determined using first-principles atomic-
scale calculations. The symbols fy and fy0 are
the fractions of copper involved in y and y0
phases as a function of time and temperature.
These quantities are determined from NanoPPT
using a unique combination of first principles,

CALPHAD, and empiricism developed for the
alloy in question. The factor g accounts for
the fraction of copper lost to eutectic y phase
and is predicted from the solution treatment dis-
solution model contained within MicroMod.
By incorporating this thermal growth model

into a time- and temperature-dependent
“swelling” module within ABAQUS, one is
able to predict not only the thermal growth that
occurs in cast aluminum engine blocks and
heads as a function of heat treatment and in-ser-
vice temperature and time but also the stresses
that develop due to growth in these parts. Com-
bining these tools with residual-stress models
(see subsequent text) produces a tool within
the VAC suite for not only process optimization
of heat treatment times and temperatures but
also design optimization of blocks and heads.
Thus, thermal growth provides a valuable
example where important phenomena occur
and must be accurately modeled on scales rang-
ing from angstroms to meters.
Fatigue Properties. Fatigue strength is one

of the most important properties impacting cast
aluminum engine components. The ability to
predict the influence of casting history on the
local fatigue strength is therefore a key capabil-
ity within the VAC toolset. The authors’ local
fatigue strength model, LocalFS, is based on a
novel short-crack growth fatigue model (Ref
13) that relates the size of micropores to the
high-cycle fatigue response. The local pore size
characteristic predicted by the microporosity
model described previously is used in turn to
predict the local fatigue strength in the critical
regions. Figure 4 illustrates the procedural flow
necessary to calculate pore size with MicroPore
for a casting component and links it to the pre-
diction of local fatigue properties.

Linking Material Properties to
Performance Prediction

The material properties obtained previously
are integrated into engineering analysis by
another link, that is, the coupling of material
properties to product performance predictions,
in this case, durability. For that purpose,
another critical VAC component, the prediction
of residual stresses, was required.
Residual-Stress Analysis. The prediction of

residual stresses in complex castings represents
a formidable engineering challenge. The resid-
ual stresses most concerned in VAC are those
formed during heat treatment of cast aluminum
cylinder head and blocks. The QuenchStress
VAC module was developed to predict residual
stresses due to casting and heat treatment.
Residual stresses in a heat treated cast alumi-

num engine component are mainly introduced
during the quench step following the solution
treatment, when the component is quickly
cooled from approximately 500 �C to much
lower temperatures by immersing the compo-
nent in water or polymer quenchant or by using
forced air. The temperature gradient from the
surface to the interior of the component leads
to nonuniform thermal expansion and nonuni-
form plastic deformation and residual stresses.
The residual stresses generated during quench-
ing are relaxed partially during the aging step
of heat treatment. Any attempt to predict resid-
ual stresses in a heat treated aluminum compo-
nent thus involves thermal analysis for the
transient temperature field during quenching
and stress analysis for both quench and aging.
The thermal analysis of forced-air quench

processes can be handled reasonably conve-
niently by commercial computational fluid
dynamics (CFD) codes (Ref 14). Water quench-
ing is much more difficult to simulate, because
it involves boiling and vaporization of water on
metal surfaces. Due to the limitations of current
CFD codes for solving this problem, the authors
adopted an inverse modeling approach using
the previously described OptCast software. In
this instance, the heat-transfer problem is trea-
ted as a boundary value problem, using temper-
ature-dependent IHTC on the metal surface to
represent the complicated thermal activity
between water and the metal surface (Ref 15).
The influence of geometrical features within a
component on the IHTC is accounted for by
dividing the geometric surface into several
groups. A database of temperature-dependent
IHTCs is obtained for different water and com-
ponent conditions.
The key to success of a robust residual-stress

analysis is the material constitutive relation-
ship. The material response to loading during
the quench process is strongly temperature and
strain-rate dependent. Experimental measure-
ments of stress and strain relationships were
carried out at isothermal conditions for various
temperatures and strain rates. These test data
were captured in a unified material relationshipFig. 4 Virtual aluminum castings process flow for predicting local characteristic pore size and local fatigue strength
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(Ref 14, 16). A computationally efficient, user-
defined material subroutine, called QuenchS-
tress, was developed to interface the material
relationship with the commercial finite-element
code, ABAQUS.
Durability Prediction. Accurate durability

prediction routines required the ability to pre-
dict the material stress-strain response and
fatigue response during the complex thermome-
chanical cycling that occurs in cylinder heads
and blocks. For this purpose, the HotStress sub-
routine was developed. It is based on a unified
viscoplastic material relationship (Ref 16, 17)
and integrates the results of the viscoplasticity
model with output from the previously
described local yield strength model. It also
accounts for the impact of material aging dur-
ing both heat treatment and engine operation.
The final module of the VAC toolset is a

durability model, Hotlife, which predicts how
the component responds to a wide variety of
loading conditions. These durability models
(Ref 14, 17) have been implemented into an
ABAQUS postprocessor, using the VAC-pre-
dicted local properties and residual-stress mod-
els as inputs. These durability models predict
the response of the structure to complex high-
cycle, low-cycle, and thermomechanical fatigue
loading sequences. Normally, such durability
models are based on a database approach that
assumes an average material property with no
manufacturing influence on the mechanical
properties. The VAC tools are unique in that
they account for the influence of the casting
and heat treat process on the variation in local
properties as well as the local residual stresses
that are produced during the manufacturing
processes.

Model Validation and Integration into
the Engineering Process

Despite the many benefits of a tool such as
VAC, convincing manufacturing and product
engineers to move from a physical world to a
virtual world requires them to have a strong
sense of confidence in the methodology. Thus,
an essential and integral step of VAC tools
development is the experimental validation of
these integrated models. This step involved
the development of many novel experimental
techniques for quantification of such factors as
residual stresses (Ref 14, 15) and component
durability (Ref 18) and a comprehensive exper-
imental validation from castings manufactured
under a wide variety of casting and heat treat-
ment process conditions. Figure 5 shows a typ-
ical validation of the local yield strength model.
An important aspect of validation is determin-
ing, with the target user, the range over which
the product may operate and an acceptable
degree of correlation. For the yield strength
example shown in Fig. 5, the model predictions
have an excellent correlation with the experi-
mental measurements in the normal production
region and a reasonable correlation even far
beyond this region.

Another critical success factor was the inte-
gration of the VAC toolset into an efficient
engineering methodology. This was another
challenging aspect of the VAC development.
Typically, manufacturing simulation is con-
ducted after performance modeling and is used
to ensure that a well-designed (from a mechan-
ical perspective) part can be manufactured. For
VAC to succeed, it was necessary to reverse
these procedures; that is, the manufacturing
simulation must come prior to prediction of
the engine component durability. Organiza-
tional cultural changes were required as well
as development of timing plans and procedures
to ensure that critical manufacturing informa-
tion was available earlier in the process than
was previously typical. Ensuring that program
timing could either be met or accelerated
requires that these complex computations can
be completed efficiently and that handoffs
between manufacturing CAE and product (per-
formance) CAE are organized and efficient.
To accomplish this, substantial effort was
expended in development of computationally
efficient, proprietary algorithms and procedures
as well as specialized software linking the out-
puts of casting simulations codes to FEA codes.

Benefits of Virtual Aluminum
Castings

The VAC methodology implemented at Ford
is used in a variety of engine programs with a
number of important benefits. It provides a
common tool for use by the global Ford power
train CAE community, and this common tool
captures a comprehensive knowledge in casting
technology, product design, metallurgy, phys-
ics, and mechanics of cast aluminum alloys. A
key benefit is a 15 to 25% reduction in the time

it takes to develop a new cylinder head or
block. This was accomplished by minimizing
or eliminating costly and time-consuming itera-
tions, the need for which would previously have
been discovered only during engine testing.
Although engine durability testing remains a
key requirement of the design verification, the
use of VAC has enabled cost-savings by reduc-
ing the number of specialized component tests
required to assure product durability. In addi-
tion to cost-savings resulting from an improved
product and process development process, the
VAC tools have been used to optimize the key
economic aspects of a casting or heat treatment
process (e.g., cycle time) while ensuring that
the component is manufacturable and that com-
ponent durability and quality are not compro-
mised. Since its inception, it is estimated that
the use of VAC tools has saved Ford millions
of dollars in direct cost-savings or cost-avoid-
ance. Examples are given as follows.

Manufacturing Process Selection
and Optimization

The VAC system provides engineers a tool to
explore different manufacturing processes and
then select the most economical manufacturing
process to produce components that meet the
property requirements. One example is the
application of the prediction of local fatigue
properties in the selection of a manufacturing
process for a cylinder head. In a demonstration
of the VAC capability, two different casting
processes were evaluated for fabricating a cyl-
inder head. Figure 6 shows the comparison of
local fatigue strength predictions in the cylinder
head produced by the two different casting pro-
cesses, noted here as process A and B. It can be
seen that the fatigue strength in the valve bridge

Fig. 5 Experimental validation of virtual aluminum castings local yield strength predictions for a wide range of
components, heat treatments, and casting conditions
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(a critical region of cylinder head durability)
was higher using process A, a lower-cost pro-
cess, than that produced by process B. In addi-
tion to mapping local fatigue strength and yield
strength, residual stresses could also be deter-
mined. By carefully and simultaneously analyz-
ing all critical regions and properties, it could
be determined that casting process A provided
improved product performance at a substan-
tially reduced cost.
Virtual aluminum castings also provide a

valuable tool to engineers for optimizing the
manufacturing process. A hypothetical example
is the use of the local yield strength model to
optimize the heat treatment process for a cylin-
der block. In this example, the property target
for the key bolt boss shown in Fig. 7 was given
to be 220 MPa. An initial heat treatment
process for this block included a 5 h aging

at 240 �C. As shown in Fig. 7(a), the yield
strength at this bolt boss was predicted to be
210 MPa, which is below the property target.
Using VAC, a new heat treatment process,
based on aging for 3 h at 250 �C, was predicted
to increase the yield strength to the desired
level. The optimized aging process not only
allows the component to meet the property tar-
get but also makes the process faster by reduc-
ing the cycle time by 2 h.

Design Improvement and
Optimization

Another key benefit of the VAC tools is the
opportunities for design improvement and opti-
mization made possible by the improvement in

durability predictions. These predictions are
improved specifically by the incorporation of
two key factors currently missing from other
durability predictions:

� Property predictions that are dependent on
the location through the cast part and sensi-
tive to manufacturing history

� Incorporation of residual stresses

One example of the way VAC tools led to a
design improvement is illustrated by the ability
to predict the spatial variation in fatigue proper-
ties and the influence of the casting process on
these location-dependent properties. The use
of these local properties is vastly superior to
the use of average or nominal properties in cal-
culations. As shown in Fig. 6, the fatigue prop-
erties in a complex cast component can vary by
30 to 40%, in this case, from 56 MPa to over 84
MPa. The use of a nominal property on the
upper end of this range in fatigue calculations
would result in an overly optimistic calculated
life and the potential for a component that does
not pass the engine durability phase of the prod-
uct development cycle. This could require a
change in the geometry or the casting process,
resulting in costly and time-consuming iterative
rework of the casting tooling. In contrast, use of
a nominal fatigue property on the low end of
this range could lead to an overly conservative
design. While this would be a durable design,
it would be a heavier and thus more costly
design than required to meet the design intent
of the component. In contrast, use of the
VAC-predicted local fatigue properties leads
to an accurate understanding of the influence
of casting on local properties, and this enables
a more robust durability prediction. The use of
VAC tools also provides a capability for putting
the right properties where they are needed
throughout the component. This capability
leads to substantial improvements in product
development timing and an optimum (e.g.,
lightweight and low-cost) design.
Residual stresses can also play an important

role in determining the durability of engineer-
ing components. By influencing the mean stres-
ses during high-cycle fatigue events, residual
stresses can radically influence the fatigue resis-
tance of a component. However, due to the dif-
ficulty in calculating these residual stresses,
they are often excluded from durability design
calculations. When residual stresses are calcu-
lated using VAC tools, fatigue durability esti-
mates can be more realistic. For example,
without accounting for residual stresses, the
predicted life of a cylinder head is estimated
at over 107 cycles, a typical design life for a
cylinder head. However, when the residual
stresses are calculated using the VAC tools,
the predicted life of the head would be an order
of magnitude less, thus necessitating design
changes. The VAC tools thus offer a capability
to quantify and account for this life-limiting
factor long before components are cast and
assembled into a running engine.

Fig. 7 Using virtual aluminum castings predictions of the local yield strength in a hypothetical cylinder block to
optimize the heat treatment process. (a) Initial heat treatment process: 5 h age at 240 �C. (b) Optimized

heat treatment process: 3 h age at 250 �C. Note: Property target in bolt boss area indicated by arrow is 220 MPa.

Fig. 6 Using virtual aluminum castings predictions of local fatigue strengths in the selection of a manufacturing
process for a cylinder head. (a) Casting process A. (b) Casting process B
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Benefits and Outlook

The benefits demonstrated by the VAC meth-
odology are concrete proof that the promise of
the ICME concept can be realized in practice.
Linking manufacturing, materials, and design in
a holistic CAE environment has resulted in a tool
with unsurpassed capabilities. Having established
the fundamental framework of VAC, it can be
upgraded quickly and relatively inexpensively to
other alloys, new casting processing methods,
and non-power train (e.g., body and chassis) cast
aluminum components. Ford is currently extend-
ing this technology to high-pressure die castings,
a relatively new process for Ford aluminum
engine blocks and magnesium castings. The
ICME concept is also under investigation to deter-
mine its applicability to areas ranging from sheet
metal to plastics and paints.
The ability to integrate manufacturing pro-

cesses and component design through advanced
materials models has much promise. As this
article and other work (Ref 2, 19) indicate,
ICME tools are feasible with significant value
where they have been implemented. Although
this value has been demonstrated, the field
of ICME is in its infancy, and ICME tools
are not yet commercially available. Future
advances will require formation of dedicated
teams of experts in materials, mechanics, phys-
ics, engineering, computer science, and infor-
mation technology by industrial firms or
government agencies wishing to develop tools
for specific applications. A recent report has
made extensive recommendations that would
lead to a widespread ICME capability (Ref 2).
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Model Quality Management
Charles Kuehmann and Herng-Jeng Jou, QuesTek Innovations LLC

MODEL QUALITY is a key factor in the
success or failure of any computational materi-
als modeling activity. Unfortunately, no single
or simple measure of model quality is available
but must be referenced in the context of the
intended use of the model. For instance, a
model used to predict variation in manu-
facturing for a fixed product must exhibit high
accuracy to small changes in process and mate-
rial input parameters but does not need the
ability to extrapolate accurately over large var-
iations of composition or process variables.
A model used to design a new alloy for a range
of potential end uses must discern relative
responses across large composition and process
variations but may not need high absolute accu-
racy. Quality relates to the purpose of a model
and is defined by the intended use and user.
To our benefit, many other disciplines have

forged ahead of materials science and engin-
eering in the application of computational
modeling, and these disciplines have developed
significant groundwork for the quality assess-
ment of computational models. Organizational
research was an early pioneer of computational
modeling to predict the responses of large,
complex systems, including companies, mar-
kets, social systems, and even whole econo-
mies, to variations in populations and public
policy. Computational fluid dynamics is another
pioneering application, and as early as 1998,
the American Institute of Aeronautics and
Astronautics published a guide for model verifi-
cation and validation (Ref 1). A similar guide
exists for solid mechanics, published in 2006
by the American Society of Mechanical
Engineers (Ref 2). Additionally, because
computational models are, by nature, software
tools, the Institute of Electrical and Electronics
Engineers has many available resources to
assist in the verification of software codes
(Ref 3). Because the objective of this article is
to provide guidelines for the assessment of
model quality in materials science and engi-
neering, and considering the vast scope that
materials models potentially entail, the reader
is highly encouraged to review the aforemen-
tioned references to further explore the topic.

Fundamentals of Model Quality

Because the key assessment of the quality of
a computational model is the ability of the
model to achieve its intended purpose, the first
cornerstone of that assessment is a clear state-
ment of the intended purpose. The modeler
must clearly indicate the intended use and
objective of the model or simulation, including
the range of parameters over which the model is
expected to serve its’ intended function. The
underlying fundamental basis of the model is
also a critical feature and must be communi-
cated to the user, including key assumptions
and simplifications that are employed in imple-
mentation. Lastly, details of the model cali-
bration protocol and the verification and
validation status are also requisite for a com-
plete assessment of model quality. These issues
are summarized in this article, and further
details can be found in the appropriate
references.
There is an intrinsic interplay between model

building and experimental data development for
calibration, verification, and validation pur-
poses. This interplay is best represented by the
Sargent circle in Fig. 1. The first step involves
the development of an appropriate mathemati-
cal model based on the relevant mechanisms
involved in the phenomena to be modeled.
The mathematical model is influenced by the
observations of reality in terms of the selection
of appropriate mechanisms and applicable
simplifying assumptions. Programming techni-
ques are used to translate the mathematical
model into computer code, and verification is
employed to ensure the code accurately reflects
the mathematical model. Predictions from the
computational model can then be compared
with observations of the real system to provide
validation. Such verification may further pro-
vide insights into the true nature of the real
system and allow further refinement of the
operating mechanisms and their incorporation
into the mathematical model. As such feedback
is accomplished, the circular nature of the
overall process is preserved.

Calibration of Mechanistic
Material Models

Mechanistic models for materials play a crit-
ical role in materials science, design, and
engineering. A mechanistic model, either pro-
cess-structure model or structure-property
model, captures the operating physical mechan-
isms in the mathematical formulation, based on
a set of assumptions. Use of mechanistic mate-
rial models allows extrapolation beyond the
original experimental calibration/validation
dataset, as long as the utilized mechanisms
operate and the assumptions are valid. In addi-
tion, mechanistic material models are often
hierarchical, building on top of other funda-
mental mechanistic submodels. An advantage
of this approach is to promote model reuse.
Calibration protocols for mechanistic models

must start with the calibration of any funda-
mental models incorporated into the modeling
framework. An efficient protocol employs
independent experimental measurements to
decouple and/or minimize the cross interaction
between adjustable model parameters, allowing
the determination of the parameters with high
fidelity and minimal overfitting. The protocol
must also logically and sequentially address
the data and parameters used by the model.
The development of an experimental procedure
to produce calibration data must avoid any

Fig. 1 Sargent circle for model verification and
validation. Source: Adapted from Ref 4
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significant risk of invalidating the model assump-
tions. During the calibration, it is useful to
estimate the accuracy of the model parameters,
based on instrumental precision, experimental
variation, and variation from fundamental models
used. The requirement for model parameter accu-
racy will depend on the application of the model.
When more accuracy is required, it is desirable
to extend and refine the calibration procedure.
A calibration is considered complete when satis-
factory accuracy of the parameters is obtained.
Several examples are provided in the following
discussion to demonstrate the principles outlined
previously.
Example: Martensitic and Bainitic Trans-

formation Kinetics in the Austenitic Decom-
position of Steels. A mechanistic model for
prediction of martensitic and bainitic kinetics in
multicomponent steels is valuable for alloy
design of high-performance steels (Ref 5).
Conventional empirical models are limited to
composition ranges within a range of known
experimental experience. Ghosh and Olson (Ref
6) established a foundation of mechanistic mar-
tensitic kinetics, later extended by Y. Mitsutani
(Ref 7) for bainitic kinetics. These models are
built hierarchically, using other models for ther-
modynamics (CALPHAD based) (Ref 8), elastic
modulus (Ref 9), and distributed defect potency
(Ref 10). Calibration of such a complex model
begins with subcalibration of the individual
models from independent experimental data,
such as thermodynamic T0 temperatures, compo-
sition-dependent shear moduli, and pre-existing
defect-size distribution data from small-particle
experiments. The few remaining unknown
model parameters can then be calibrated by a
limited set of experimental martensitic and bai-
nitic start temperatures. This model is described
in more detail later in this article.
Example: Mechanistic Precipitation Mod-

els. Precipitates represent an important class
of microstructure in alloys, due to their signifi-
cant impact on properties such as strength,
toughness, and fatigue. PrecipiCalc (Ref 11)
was created with a goal of modeling the evolu-
tion of precipitate microstructure in multicom-
ponent alloys during complex heat treatment
in reasonable computation speed. Two major
submodels of PrecipiCalc are CALPHAD ther-
modynamics and mobility databases, and a
key PrecipiCalc model parameter is matrix/pre-
cipitate interfacial energy. To decouple the
interaction of these model parameters, an
attempt was made to develop a robust calibra-
tion protocol (Ref 12). In the procedure, the
underlying thermodynamics and mobility data-
bases were selected based on the desirable
accuracy of model parameters. Conventionally,
coarsening experiments were often used to
determine the interfacial energy based on the
well-established correlation of the interfacial
energy to the coarsening-rate constant. How-
ever, the coarsening rate depends both on inter-
facial energy and diffusivity. By using a novel
nucleation-onset temperature experiment, the
interfacial energy can be determined while

minimizing the potential impact due to uncer-
tainties in the available diffusivity data. The
nucleation-onset temperature depends exponen-
tially on interfacial energy but only linearly on
the diffusivity. With such a technique, it is pos-
sible to decouple the model parameters and
allow them to be independently calibrated with
experimental data. The extent to which model
parameters can be independently calibrated
and validated improves model quality.
Example: Analytical Precipitation-

Strengthening Model. Many high-perfor-
mance alloys depend on fine precipitates to pro-
vide superior strength. A useful mechanistic
and analytical precipitation-strengthening
model takes precipitation microstructure (size,
fraction, and distribution) as an input and pro-
vides an estimate of yielding stress. Depending
on the strengthening mechanisms, submodels
may include the elastic moduli of the matrix
and precipitates, antiphase-boundary (APB)
energies, lattice mismatch, and others. The cal-
ibration of a precipitation-strengthening model
should start with these submodels to ensure that
desirable accuracy is available for these key
input parameters. Error and uncertainty from
submodel inputs have a strong effect on the
overall accuracy of higher-order complex mod-
els. If the submodel accuracy is insufficient and
independent data are unavailable to further
improve it, the submodel parameters can
become a part of the calibration of the higher-
order model. For example, a lack of accurate
APB energy predictions for ordered precipitate
phases requires this quantity to be calibrated
experimentally with strength data within a
precipitation-strengthening model. A further
complication here is the determination of the
precipitation-strengthening contribution of the
overall strength in alloys. In addition to precip-
itation strengthening, alloys are often strength-
ened by multiple mechanisms, including solid-
solution, Hall-Petch (grain size), and disloca-
tion strengthening. Accurately backing out the
precipitation-strengthening contribution from
the overall alloy strength requires careful
experimental design and reliable strengthening
models for the other relevant mechanisms.

Model Verification

Verification of computational science soft-
ware determines the accuracy of the software
implementation against the original mathemati-
cal models (Fig. 1). In high-performance
computational science, several published arti-
cles address recommended best practices in
numerical algorithm verification, numerical
error estimation, and software quality assur-
ance. Materials scientists and engineers should
certainly apply these established guidelines
and formal software engineering methodologies
whenever possible to verify the established
materials modeling software. In this section,
the authors share some observations on the area
of computational materials science software.

Materials models can be a simple algebraic
formula or a set of complex differential/integral
equations. When there is a software develop-
ment need, the method of implementation typi-
cally falls into one or more of the following
categories:

� Commodity software, such as spreadsheets
� Scripts or macros running within general-

purpose scientific software, such as MatLab
and Mathematica

� Scripts or macros running within specific-
purpose scientific software, such as
Thermo-Calc and ABAQUS

� General programming languages (such as
Python, C++, and Java), often using spe-
cial-purpose application programming inter-
faces (APIs) such as the NAG or IMSL
numerical libraries. (Commercially available
NAG and IMSL libraries contain large col-
lections of well-tested numerical algorithms
in several different programming languages.
These reliable numerical libraries can signif-
icantly reduce the amount of work in
software verification when developing a
materials model.)

With many choices of available software pro-
grams and components to assist materials model
implementation, the implementation method
depends on the complexity of mathematical equa-
tions, familiarity of available software, computa-
tional efficiency, end-user requirements, and,
sometimes to a lesser extent, verification proce-
dures. Materials modeling software developers
often rely on well-established third-party pro-
grams and software components to deal with the
extensive numerical solving portion of the prod-
uct. However, the verification protocol and soft-
ware quality assurance of the final overall
product is usually not in the original consideration
when choosing implementation methods, and it
could result in a software product that is difficult
to test for accuracy and to maintain the quality.
It is highly recommended that materials model
developers take into account the model verifica-
tion consideration during software implementa-
tion planning to identify suitable programs,
software components, and programming
languages.

Model Validation

Validation is the processes used to determine
that a model possesses suitable accuracy for use
in the context of its intended purpose. It is not
an absolute state but a spectrum based on the
confidence of the intended user population that
can vary with time and in comparison to other
options to achieve similar results. Validation
essentially involves applying tests of the
model to explore its limits of accuracy and
applicability. It is important to understand that
failure of any single test in validation is not a
failure of the model itself but is essential in
defining limits and boundaries of validity, in
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essence, improving the usefulness of a model.
Validity tests can take many forms, a number
of which are discussed subsequently.
Boundary-value tests exercise the limits of

a model at the extremes of potential input para-
meters to determine if the results conform to
expected behaviors. An example of this
approach could be precipitate growth at very
long times, where classical particle coarsening
would be expected. When a model behaves well
at these extreme conditions, confidence in the
model results for other conditions is enhanced.
Degenerate Problem Tests. Comparing the

results of the model for well-known, simplified
degenerate problems for which exact analytical
solutions may be available is another key test of
validity. In this case, for example, a multicom-
ponent model can be exercised for a simpler
binary system, where analytical solutions may
exist. Such tests can also be applied to degener-
ate problems for which other model predictions
have been well validated and established. The
degree to which the complex model can accu-
rately depict the behavior of the simpler analyt-
ical or model-based solution increases the
expectation that the solutions to more complex
problems are valid.
Sensitivity tests determine the response of

the system to variation in input variables and
model parameters. If the model response to
such variation is consistent with expected
behavior and general physical principles, higher
confidence in the model results is achieved.
Anomalies or unexpected sensitivities contrary
to expectations must be further explored before
a model is deemed invalid. Nonlinear behavior
in materials phenomena can make it extremely
difficult to discern true “normal” behavior in
complex systems, which is precisely the reason
that computational modeling has a large utility
in this field.
Comparisons with Real-World Observa-

tions. Comparisons of model outputs against
real-system observations are the gold standard
for model validation. It is important to consider
that empirical data are only another representa-
tion of the real system and are subject to their
own biases, errors, and complexities. In com-
paring data to simulation or model results,
quantification of the fidelity of the dataset is
key to making a strong case for or against
model validation. Significant difficulties can
arise when test conditions are not well known,
controlled, and documented. In a perfect case,
all simulation inputs and boundary conditions
would be well controlled and reported for the
dataset used for validation, but such a situation
is atypical. Often, missing conditions must be
assumed, and it is worthwhile to exercise the
model for a range of expected values of such
conditions to estimate the range of possible
outcomes from the model based on the
variation.
Commonly, data-driven validation efforts

collect as much data as possible from available
sources and compare these values with model
predictions, using statistical methods to remove

the effects of so-called outliers. A more appro-
priate method, however, evaluates the empirical
dataset for inconsistencies, errors, and biases
prior to comparison with model predictions. If
outliers exist after closely evaluating the avail-
able data, they must be closely studied for
possible insight into deficiencies in the funda-
mental structure or assumptions of the model.
When a valid dataset is achieved, then statisti-
cal analysis techniques can be used to evaluate
the degree of correlation of the data-driven
estimate of the system response to the computa-
tional model-derived estimate.
Engineers seeking stronger validation of

computational models are highly encouraged
to produce unique data specifically for the vali-
dation exercise. Such validation experiments
can be tightly controlled and all model input
parameters closely measured. Such data can
effectively span the range of expected condi-
tions for which the model will be used. In addi-
tion, sample characterization and data relating
to underlying assumptions of the model can be
developed, further enhancing the validation
process.
Benchmarking is a subset of comparative

validation that can use either well-known and
validated experimental datasets or model results
that, in themselves, have been well validated
with multiple techniques and methods. The util-
ity of benchmarking is directly related to the
availability of appropriate benchmark cases for
the phenomena of interest. Thus, it is imperative
that, as computational materials modeling gains
stronger adoption, the community allocates
appropriate resources to publish and evaluate
modeling results, thus establishing appropriate
and important benchmarks. Benchmarking can
go beyond validation and also measure relative
computational speed, accuracy, and breadth for
available modeling approaches and implementa-
tions, providing valuable information for users

to discern the best models and for modelers to
further refine their efforts.

Example of Model Calibration,
Verification, and Validation—
Martensite Start Temperature
Prediction for Steels

To provide readers with a complete model-
development cycle, an example based on mech-
anistic martensite start temperature (Ms) is
provided in this section.
Ms Model Calibration. The mechanistic

nature of a martensite kinetics model demands
a multilevel modeling hierarchy, as shown in
Fig. 2. This hierarchy establishes the fundamen-
tal mechanisms involved in the heterogeneous
nucleation of martensite. Using this modeling
hierarchy, the Ms modeling diagram is described
in Fig. 3 and establishes the mathematical repre-
sentation to be used to describe the fundamental
mechanisms in Fig. 2. Thus, the calibration
of model parameters and submodels requires
independent calibration in various structural
levels:

� Multicomponent CALPHAD thermodynamics
database (Ref 8)

� Composition- and temperature-dependent
austenite shear modulus (Ref 9)

� Potency distribution of autocatalytic nucle-
ation sites (Ref 10)

� Potency distribution of initial nucleation site
(Ref 13)

After calibration of the aforementioned sub-
level models, calibration of the critical driving
force, DGcrit, which includes surface energy
and frictional work by solute strengthening
and dislocation, was established in Ref 5 and

Fig. 2 System diagram for the dynamic structural hierarchy for heterogeneous nucleation of martensite
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6, using approximately 120 experimental Ms

measurements published in the literature.
Ms Model Verification. Implementation of

the Ms model required two key software
components:

� Thermo-Calc TQ API (Ref 14) for calcula-
tion of the nonpartitioning Gibbs free ener-
gies for the body-centered cubic and face-
centered cubic phases using the CALPHAD
database calibrated and established earlier
(Ref 8)

� The NAG library was used to iteratively
search for the root of a nonlinear energy bal-
ance equation of one unknown, the Ms tem-
perature. The numerical accuracy of the
solution was set to be less than 1 �C and is
more than adequate, considering the experi-
mental error is at least 10 �C.

The overall software architecture is presented
in Fig. 4. The results of the software code
implemented according to this architecture
were compared to an earlier implementation

used in the Thermo-Calc software to ensure
the software achieved consistent accuracy.
Ms Model Validation. Using the verified Ms

software implementation, predictions of Ms

temperature were made for a large dataset with
approximately 350 steel compositions. Figure 5
(a) shows a correlation plot of the experimental
measurements to the model predictions. The
points on the solid diagonal line represent a per-
fect correlation. The two diagonal dashed lines
represent a departure of 30 �C on either side
of the perfect 1 to 1 correlation. The data repre-
sent many classes of steels, including low-alloy
steels, stainless steels, and cobalt-nickel steels.
Figure 5(b) is a probability plot of the Ms pre-
diction error, showing a standard deviation of
35 �C, similar to the experimental error. Con-
sidering the broad range of steel compositions,
the mechanistic Ms computational model is
found to provide acceptable prediction capabil-
ity and has been used in the design of a number
of new martensitic alloys (Ref 15, 16).
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Modeling of Deformation Processes—
Slab and Upper Bound Methods
Rajiv Shivpuri, The Ohio State University

THE GOVERNING RELATIONS OF
PLASTICITY used in metal forming are highly
nonlinear, with complex boundary conditions.
They can only be solved for a limited number
of idealized processes with known boundary
conditions. Several examples of the ideal solu-
tions are included in textbooks by Hill (Ref
1), Johnson and Mellor (Ref 2), Hosford and
Caddell (Ref 3), and Thomsen et al. (Ref 4).
Due to the inherent assumptions, these solu-
tions have limited industrial applications and
are primarily used to calibrate approximate
models, such as slab, upper bound, or finite-ele-
ment approaches. To solve more industrially
relevant problems, approximate techniques
have been developed that model more geomet-
rically complex problems with industrially
acceptable boundary conditions. The most pop-
ular of these methods are the slab method (SM),
the upper bound method (UBM), and the finite-
element method (FEM). The slab method and
upper bound method of analysis assume a
known deformation field in the plastically
deforming body and assume this field either
satisfies the force equilibrium (SM) or power-
conservation equations (UBM) to determine
the stress field or the external load applied. In
the slab analysis, the stress equilibrium is
achieved by assuming a simple homogeneous
deformation field and ignoring deformation
compatibility. In the UBM, deformation and
compatibility equations are satisfied by the
assumed kinematically admissible velocity
fields, while the stress equilibrium equations
are not. Therefore, the slab method often pro-
vides a lower bound and the UBM an upper
bound to the actual plastic field.
The attractiveness of these methods is that

they provide closed-form solutions to metal-
forming problems, and therefore, these equations
can be used:

� For process optimization
� For preform design using inverse techniques
� As a benchmark for validating predictions of

higher-fidelity numerical models

Both these methods have been extended to
more complex deformation fields by discretizing
the deforming body into finite-volume elements;
examples of these are the finite slab element
method (FSEM) and the upper bound elemental
technique (UBET).
Several researchers have compared various

modeling techniques to determine their efficacy
in predicting metal flow and forming forces.
For example, Shivpuri and Chou (Ref 5)
provided a comparison of the SM, UBM, and
FEM approaches in predicting force and torque
in cold flat rolling. They found that each
approach had its own region of superior perfor-
mance. More recently, Hsu and Tzou (Ref 6)
compared slab and UBM approaches in model-
ing double-layer clad sheet compression form-
ing. In this, the metal flow is analyzed using
velocity fields (UBM) and the die pressures
using balance of forces (SM). They found the
two approaches to provide complementary
results.

The Slab Method

The slab method was made popular in the
early 1900s by Sachs (Ref 7), Siebel (Ref 8),
von Karman (Ref 9), and Orowan (Ref 10) by
extending the free-body equilibrium approach
to differential elements in the deforming field.
They applied it to the simple deformation fields
of forging (upsetting), drawing, and rolling by
using the assumptions that the principal axes
of deformation are normal to the applied loads,
and the effects of friction do not change the
direction of principal axes or distort the defor-
mation field. This results in homogeneous
deformation, with plane sections remaining
plane. These assumptions converted the partial
differential equations of plasticity to ordinary
differential equations of first order that can be
solved by simple force-boundary conditions on
the die. Typically, the slab analysis procedure
consists of the following steps (Ref 3):

� Assume a homogeneous deformation field in
the plastically deforming field defined by the
principal axes of strain and stresses.

� Isolate a slab (differential element) by taking
two cuts perpendicular to the principal direc-
tion, Xi, with thickness dXi and the other
dimensions defined by the tooling.

� Derive equilibrium equations (differential
equations) by balancing the forces on this dif-
ferential element in the principal directions.

� Solve the differential equations by integrat-
ing with the force-boundary conditions.

� Obtain an equation that relates the dimensions
of the deforming zone to the applied forces.

An example of application of the slab method
to plane-strain drawing is shown in Fig. 1.
In this, the force balance on the differential
elements yields the following equation:

sd

2k
¼ 1þB

B
1� te

to

� �B
" #

(Eq 1)

where sd is the drawing stress, k is the shear
yield stress, B = m cot a, m is the friction coef-
ficient, a is the half-die angle, te is the exit strip
thickness, and to is the entry strip thickness.
This nonlinear equation can be used for process
design, such as determining the optimum die
angles for a given reduction. In this solution,
the friction is kept constant over the entire
die-workpiece contact surface, the material
does not work harden, and the half-die angle
is a constant. However, it is possible to extend
this method to work-hardening material, dis-
crete variations in die angle, and nonconstant
friction by dividing the plastic zone into multi-
ple zones. Then, force conservation is applied
to each zone, with the unknown constant
determined by the stress compatibility at the
interface of these zones. This approach has
been extended to other steady-state metalform-
ing problems, such as rod drawing, tube draw-
ing, plane-strain rolling (bloom, slab, or strip),
and plane-strain strip deep drawing (sheet
forming).
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Selected examples of application of this
method to metalforming processes are included
in the following.
Example 1: Drawing of Plates, Rods, and

Tubes. The slab method is ideally suited to
the plane-strain or axisymmetric drawing of
plates, rods, and tubes. In plane-strain drawing,
the slab element is a rectangular plate (Fig. 1),
while in axisymmetric drawing, it is a round
disc (in rod drawing) or a ring (in tube drawing).
In either case, the forces (or stresses) are
balanced on the differential element, with
friction taken as uniform at the tool-slab bound-
ary. This results in a friction hill that is linear
for the friction factor model and nonlinear
for the coefficient of friction model, with
the die pressure increasing from the open
boundary toward the center and reaching a

maximum at the neutral surface. Due to the
force-balancing approach, the slab method
permits the inclusion of forward and back ten-
sions in the model formulation. In a recent
paper, Rojas et al. (Ref 11) used the slab method
to determine tensions in the drawing of
symmetric profiles using various work-hardening
models. Because the work-hardening models
are nonlinear (and coupled), the drawing
problem was solved incrementally. The tension
predictions from the slab analysis compared
favorably with results from the analytical,
FEM (Ref 12), and experimental results
(Ref 13).
Example 2: Plane-Strain Compression of a

Block. Figure 2 illustrates the plane-strain com-
pression of a block, where h < b, and sliding
friction with a constant coefficient, m, prevails

at the interfaces. A force balance on the slab
in the x-direction is sxh + 2mP dx � (sx +
dsx)h = 0, which simplifies to:

2mPdx ¼ hdsx (Eq 2)

Again, sx and sy (taken as �P) are consid-
ered as principal stresses. Note that with low
m, the shear influence is again considered to
be small with respect to the directions of the
principal stresses. For plane strain, sx � sy =
2k or sx + P = 2k, so dsx = �dP. Now, Eq 2
can be expressed as:

2m Pdx ¼ h dP or

dP

P
¼ 2m

h
dx

(Eq 3)

where at x = 0, sx = 0 and P = 2k. Integrating:

ln
P

2k
¼ 2mx

h
(Eq 4)

or

P

2k
¼ exp

2mx
h

(Eq 5)

This is valid from the surface (x = 0) to the
centerline (x = b/2), where P is a maximum:

P

2k

� �
max

¼ exp
mb
h

(Eq 6)

It should be noted that there is a limitation on
the values of m for which this development
is valid. The shear stress at the interface,
which in the derivation is taken as mP, cannot
exceed the shear strength of the work material,
k. Because mP� k, Eq 4 and 5 are valid only for:

x � �h
2m

ln 2m (Eq 7)

and

b

h
� � 1

m
ln 2m (Eq 8)

The rise of P toward the centerline shown in
Fig. 3 is referred to as the friction hill.
Of great interest is the mean pressure on

the tool-workpiece interface. This pressure, Pa,
times the contact area is the force that must be
applied.
Average Pressure during Plane-Strain

Compression. The force acting on the left side
of the centerline is:

Fy ¼
ðb=2
0

Pdx ¼
ðb=2
0

2k exp
2mx
h

dx

¼ 2k
h

2m
exp

mb
h

� �
� 1

� �
(Eq 9)

so the average pressure is Fy divided by the
area on which it acts, Pav = Fy/(b/2), or:

Fig. 1 Schematic of the slab element in plane-strain drawing of a plate (left) and the balance of forces on the selected
slab, where F = drawing force, te = thickness of plate at exit, to = thickness of plate at entry, a = half-angle of

the die, w = width of the plate, dx = thickness of differential element, sx = drawing stress, dsx = incremental stress,
dt = incremental thickness, p = die pressure, and m = friction factor. Source: Ref 3

Fig. 2 Essentials for a slab force balance. Source: Ref 14
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Pav

2k
¼ h

mb
exp

mb
h

� �
� 1

� �
(Eq 10)

Expanding, expðmb=hÞ � 1 ¼ 1þ ðmb=hÞ þ ðmb=hÞ2=2!
þ � � � � 1; so for small values of mb/h:

Pav

2k
¼ 1þ mb

2h
þ � � � � 1þ 1

2

mb
h

(Eq 11)

Numerical Example. Plane-strain compres-
sion is conducted on a slab of metal whose
yield shear strength, k, is 15,000 psi. The width
of the slab is 8 in., while its height is 1 in.
Assuming the average coefficient of friction at
each interface is 0.10:

1. Estimate the maximum pressure at the onset
of plastic flow.

2. Estimate the average pressure at the onset of
plastic flow.

Solution. For problem 1, from Eq 6:

Pmax ¼ 2k exp
mb
h

� �
¼ 30; 000 exp

0:1� 8

1

� �

so, Pmax = 30,000(2.226) = 66,800 psi.
For problem, first use the exact solution

given by Eq 10:

Pa ¼ 30; 000

0:8
ðe0:8 � 1Þ ¼ 46; 000 psi

Next, use the approximation given by Eq 11:

Pa ¼ 30; 000ð1þ 0:4Þ ¼ 42; 000 psi

This indicates that a value of 0.8 for (mb)/h should
not be considered small in this context. For
instance, if bwere 4 in., hwere 1.5 in., and mwere
0.05, then (mb)/h would be 0.133. The respective
values of Pa using Eq 10 and 11 would then
be 32,100 and 32,000 psi, which are nearly the
same.
Example 3: Flat and Shape Rolling. The

slab method has been widely applied to the flat
rolling process for the determination of roll
loads, roll friction, roll tensions (backward and
forward, Ref 15), and roll deformations. Some
slab method solutions have been combined with
other solution methods, such as UBM and
FEM, to handle deformation gradients, while
others have been used in tension algorithms for
gage control. A comprehensive analysis of the
roll tensions in flat rolling was provided by Bland
and Ford (Ref 16) and later extended by Alexan-
der (Ref 17). The approach used by Bland and
Ford, included in the textbook by Rowe (Ref
18), is shown in Fig. 4. In this approach, the
forces on the slab element are calculated as it
enters the roll gap and proceeds toward the exit.
The location of the neutral plane (which deter-
mines the direction of friction) is determined by
balancing the forces in the horizontal direction,
including the forward and backward tension.
These tensions affect the position of the neutral
point and, in doing so, determine the amount of

forward and backward slip between the rolls
and the sheet. The well-known solution for the
roll pressure, attributed to Bland and Ford, is:

ln
p

S

� �
¼ ln

ha

R
þ a2

� �
	 2m; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh1a=R

p
Þ tan�1

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1a=R

p
 !

þ constant ðEq 12Þ

where p is the roll-separating pressure, S is the
yield strength of the sheet material, ha is the
exit thickness of the sheet, R is the roll radius,
a is the angle of the bite, and m is the coulomb
coefficient of friction. The positive sign (+)
applies to the exit side of the neutral
plane and the negative sign (�) to the entry
side of the roll bite. Front and back tensions
(þ�t) can easily be incorporated in this solution
by replacing the front and back pressures
at the two ends as p = S � t. In either case,
roll tensions reduce the roll pressures
considerably.

More recently, the slab approach has been
applied to cold rolling of thin foils (Ref 19)
and combined with the rigid-plastic FEM algo-
rithms to model shape rolling (Ref 20, 21) and
flat rolling of wire (Ref 22). In the shape rolling
models of Shin and Shivpuri, the deformation
of the slab element normal to the plane of the

slab (longitudinal direction) is neglected.
Hence, plane sections remain plane, and force
balance can be applied (Fig. 5). However,
deformation in the transverse plane due to the
shape of roll passes (caliber) is included, using
rigid-plastic FEM. This incorporation of slab
element in the FEM formulation considerably
speeds up the calculation procedures. For
example, on a standard personal computer
using an Intel Core 2 processor, an eight-pass
shape rolling sequence using FSEM can be
simulated in half an hour, while it takes several
days using the fully coupled three-dimensional
FEM model. More recently, semiempirical rela-
tions of microstructural evolution have been
incorporated in the FSEM formulation to simul-
taneously model the metal flow and thermome-
chanical history during the shape rolling
process. This simplification permits the inclu-
sion of microstructural evolution equations in
the formulation (Ref 23).
Example 4: Extrusion. The application of

the slab method to extrusion has not been as
widespread as in plane-strain drawing and flat
rolling. This is primarily due to the complexity
of deformation in extrusion, with considerable
distortion. Due to this deformation complexity,
the inherent assumptions of plane sections
remaining plane in the slab method are not
valid in extrusion. Other modeling methods,

Fig. 3 Friction hill in plane-strain compression with a constant coefficient of friction. Source: Ref 14
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such as the upper bound method, are more
suited to extrusion processes. However, in
selected cases with more uniform deformation
(rods, tubes, and plates), the slab method may
be applicable. Such a case of axisymmetric
extrusion of bimetallic tube has been modeled
by Chitkara and Aleem (Ref 24, 25) using the
slab method. They assumed two different slabs
for the two materials and then sought force bal-
ance at the bimetallic boundary. The results of
the analysis compare favorably with the experi-
ments carried out on bimetallic tubes comprising

high-conductivity copper and commercially
pure aluminum. They included both the copper-
aluminum and the aluminum-copper pair.
Example 5: Forging. In non-steady-state

deformation, such as forging, the slab analysis
is often applied by assuming the deformation
to consist of a series of equilibrium states
(quasi-static states) where steady state can be
assumed. This time-history approach has
been used effectively, with time taken as the
integration constant. Example applications
include calculation of forging load for

connecting rod forging (Ref 26), cold heading
(Ref 27), axisymmetric closed-die forging
(Ref 28), sintered billets (Ref 29), and spur gear
preforms (Ref 30). In some of these applica-
tions, the slab method has been compared
with UBM and FEM approaches and
found to be sufficiently accurate for load
determination.

Upper Bound Method

The upper bound method is based on the
principle of virtual work or virtual power,
which states that for a closed system, work/
power is conserved. In an isothermal deforming
medium, this can be stated as:

Internal work ðInternal powerÞ
¼ External work ðExternal powerÞ

Often in metalforming, these work elements
can be expressed as:

Internal work ¼ Homogeneous work

þ Redundant work

External work ¼Work by applied forces

þWork by frictional forces

In the application of this approach to isother-
mal metal forming, a common procedure is
(Ref 3):

1. Assume a velocity field inside the deforming
body consisting of a finite number of veloc-
ity discontinuities or nonlinear velocity
expressions with unknown parameters.

2. Represent internal work in terms of this
velocity field.

3. Represent external work in terms of different
velocity fields.

4. Formulate the work balance (or power bal-
ance) equations based on the virtual work
principle.

5. Solve for forces required, for given work-
piece deformation, or for unknown velocity
parameters if the external forces are known.

6. In the aforementioned calculations, friction
is assumed as a penalty factor on the veloc-
ity at the interface.

When the internal energy dissipation is
distributed over a finite number of internal
planes or surfaces, as shown in Fig. 6, the gov-
erning equation inside the deforming body can
be expressed as (Ref 3):

dW=dt ¼
X
i

k:Si�V 
i
¼ ððkV?ð12Þ>
Þ=V?xÞSV?ðxÞ ¼ kSV 
12

(Eq 13)

where the planes and velocity discontinuities
are shown in Fig. 6(a), and the velocity compat-
ibilities are satisfied through the velocity
vector diagram (Fig. 6b), also known as a hodo-
graph. This discrete description of velocity

Fig. 4 Geometric representation of plane-strain deformation in the rolling of a plate, strip, or sheet. (a) Slab element
and boundary conditions. (b) Force equilibrium on the slab element. Source: Ref 18. The symbols are self-

explanatory.
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discontinuities in the deforming medium is
widely used in solving two-dimensional metal-
forming problems with a simplified description

of friction, flow work hardening, and heat trans-
fer. In most cases, these phenomena are taken to
be constant on a particular discontinuity plane.

In the continuum formulation, the upper
bound method is expressed on the volume of
the deforming continua. In this approach, a vir-
tual displacement is imposed on the deforming
field while keeping the forces constant. For a
small volumetric element, this is equivalent to
imposing a first-order variation on the strain-
energy field, given by:

dE ¼
ð
sij deij dV ¼

ð
Fidui dS (Eq 14)

where E is the strain energy in the deforming
differential volume, dV; sij is the stress field;
deij is the strain increment; Fi is the component
of the external force applied; dui is the incre-
mental displacement, and dS is the external sur-
face area of the body with volume V. In a
nonstationary field, the deformation is time
dependent, and the displacement increment
can be replaced by velocity, giving the equation
for power balance as:

_E ¼
ð
sij _eij dV þ

ð
Fi vi dS þ

ð
ti vi dS (Eq 15)

Because the stress is held constant during the
deformation as the deformation increases from
zero to the current value, it provides an upper
bound on the power required for deformation.
This is also the reason why the theory based
on UBM is often called the flow theory of plas-
ticity. The procedure for applying the upper
bound to metalforming problems is:

1. Assume a family of admissible velocity
fields that satisfy the continuity conditions,
the conditions of incompressibility (compat-
ibility conditions), and velocity boundary
conditions.

2. Calculate the power (energy rate) for the
deformation that consists of homogeneous
deformation, redundant shear (inside body),
and frictional shear (on the surface).

3. The velocity field that minimizes the power
is the closest to the actual deformation field.

4. Calculate the external load needed for the
deformation by dividing the power with the
relative velocity between the die and the
deforming material.

Early examples of the application of UBM to
steady-state metalforming processes, especially
extrusion and drawing, are included in the
books by Avitzur (Ref 31–33). Later, UBM
was applied successfully to non-steady-state
deformation, such as in forging, by treating
these processes as a series of quasi-steady-state
processes and iterating over time (Fig. 7).
Recently, the UBM methods have been

extended to numerical analysis using the fol-
lowing approaches:

� Break the body into finite elements and
define the velocity fields in a piecewise con-
tinuous manner. This approach, often known
as the upper bound elemental technique
(UBET), has been applied successfully to

J-th slab element

J-th cross
sectionU U

S

S

b

b

z z z
j

j

j

j

( j–l) (n–l)
1

p (pressure)

f (friction)

y

z

f

f

z

x

y

nz

z

UU
( j–1)

( j–1)

U

U

U

S

S

b

b

j

j

f

f

x

Incoming velocity

Outgoing velocity

Back tension

Front tension

Velocity of the j-th
section

Longitudinal strain
(rate) of the j-th
section

z

z

z

z

J-th slab element

Generated by tasks V1.1

5 . 71 = A

5 . 38 = B

5 . 05 = C

4 . 72 = D

4 . 39 = E

4 . 06 = F

3 . 40 = H

3 . 07 = I

2 . 74 = J

2 . 41 = K

2 . 08 = L

1 . 75 = M

1 . 42 = N

3 . 73 = G

e e

e

D
F

H
K

L
M

L

L

LK

K

KL

L

L

L

L

L

L

L

LK

LK
M

M

L
M

M

M

M M

M

M

M

PK

R

H

A

M M

M

M

M

M

M

LK

L

L

K

R

M

M

M

M

MZX

D

Fig. 5 Formulation of the finite and slab element method for the shape rolling process. In the top figure, the
deforming workpiece is cut into a finite number of slabs. The force balance is applied on the slab element

(Jth cross section), while the transverse deformation is handled through the finite-element method. Source: Ref 12, 20
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forging, profile extrusion, and complex
shape rolling.

� Use the UBM as a starting point in a finite-
element formulation (FEM), where the New-
ton-Raphson algorithm is used for numerical
integration. Such an approach is used in the
popular commercial software DEFORM.

� Use UBM to speed up FEM calculations, espe-
cially if the three-dimensional field can be sim-
plified to 2.5 dimensions by assuming a known
velocity field in a selected direction. Such an
approach is used in CADEX (Computer-Aided
DesignofExtrusions), a software for die design
in shape extrusion (Ref 35).

The UMB method and its incremental formu-
lation (UBET) have been widely applied to
simplified industrial problems by metalforming
researchers. Selected examples are included.
Example 6: Extrusion of Tubes and Pro-

files. Upper bound methods have been exten-
sively applied to the extrusion of tubes and
profiles, where the metal flow can easily be
represented with continuous or piecewise con-
tinuous functions. Manibu Kiuchi in Japan
was one of the first to develop a systematic
UBM-based procedure for modeling three-
dimensional extrusion of simple profiles with
constant thickness. Kiuchi and Ishikawa (Ref
36) demonstrated its application to the extru-
sion of a T-profile using a complex functional
form for the velocity field with unknown para-
meters that were determined by power minimi-
zation. Selected results from their paper are
presented in Fig. 8. Later, Stahlberg and Hou
(Ref 37) applied UBET to the extrusion of com-
plex aluminum profiles such as T-, U-, and I-
shapes, and Shivpuri and Momin (Ref 38) and
Damodaran and Shivpuri (Ref 39) applied
UBET to the hot extrusion of high-temperature
material. In their model, they were able to
include flow division as the metal enters vari-
ous ports. Later, Chitkara and Aleem (Ref 24,

25) used UBM to model extrusion of bimetallic
tubes of copper-aluminum and aluminum-cop-
per material pairs. Their predictions compared
well with experiments on tubes of short length.
Recently, Ebrahimi et al. (Ref 40) applied
UBM to the extrusion of tubes using flat dies.
They calibrated their model by comparing it
to load-stroke curves from extrusion of
commercially pure aluminum tubes. Then,
the calibrated model was used to examine mate-
rial flow and compare predictions to FEM
models.
Example 7: Rolling and Ring Rolling.

While there are many applications of UBM to
plane-strain flat rolling, including slabs, plates,
strips, and sheets (Ref 41–43), applications to
ring rolling are rare due to the transient nature
of the process, especially the continuously
evolving state of the ring profile as it is being
rolled. In 1994, Hahn and Yang (Ref 44)
presented a UBM formulation for ring rolling
by dividing the ring profile into multiple
sections, choosing different piecewise continu-
ous velocity functions for these sections, and
then assuring flow continuity at the interface
boundary of these sections. They compared
the predictions of roll torque and profile height
for different ring configurations with the
measurements on a table-top ring rolling setup.
Example 8: Forging. In 1986, Kiuchi devel-

oped UBET-based solvers (CAS-UBET: Com-
puter-Aided System-Upper Bound Elemental
Technique) to model forging of simple shapes,
such as disks with simple flanges (Ref 45).
The main objective of this modeling was to
determine forging load as a function of die
stroke for various geometric parameters
(Fig. 9). He extended this approach to more
complex three-dimesional shapes, including
ones with protruding bosses (Fig. 10). In his
approach, die underfilling was minimized by
varying processing conditions and geometric
parameters. He was able to handle multiple

preform design using this elemental approach.
Later, Hou and Stahlberg (Ref 46) applied
UBET to forging with grooved dies, Wang
et al. (Ref 47) to the forging of a blade, Rana-
tunga et al. (Ref 48) to the design of flash gap
in the forging of an aeroengine disk, Alfozan
and Gunasekhera (Ref 49) to a disk with extru-
sion forging of many ribs, and Hwang et al.
(Ref 50) to nonaxisymmetric forging of flanged
parts with heads of various shapes, including
hex and gear type. Bramley (Ref 51) further
extended the UBET approach (Tetrahedral Ele-
ment Upper Bound Analysis, or TEUBA) to the
preform design and flash land determination for
forging of simple parts, (Fig. 11).
Example 9: Glass Lubrication in Hot

Extrusion. Glass lubrication plays a pivotal role
in the hot extrusion of steel, titanium, and
superalloy shapes using the Sojournet process.
In this case, the glass not only provides for
low friction but also determines the die profile
by flowing together with the hot metal during
extrusion. To model this multimaterial three-
dimesional system, Shivpuri and Damodaran
(Ref 52) developed a UBM approach that com-
bines one-dimensional heat transfer with the
glass and metal rheologies to model the extru-
sion process. The software CADEX, based on
this approach, is used at many extrusion compa-
nies in the United States.
Example 10: Hybrid Approaches. As pre-

sented earlier, the slab method has been com-
bined with FEM to create a computationally
efficient model (Ref 20, 21) that not only pre-
dicts metal flow but also microstructural predic-
tion for multipass shape rolling. As with slab
methods, UBM has also been combined with
FEM by Liu et al. (Ref 53) to carry out preform
design of an aeroengine disk by using reverse
simulation. In this approach, the design is car-
ried out by UBM, and verification of this design
is by FEM simulations. Forgings from the orig-
inal design and the modified design are pre-
sented in this article, but the results are not
compared to those predicted.

Summary

While FEM has provided metalforming engi-
neers a formidable tool for predicting metal
flow and microstructural prediction, its applica-
tion is often limited to process parameter deter-
mination for processes with known problems.
The use of FEM in process design and/or pre-
form design (reverse engineering) is limited
by the incremental nature of the solution.
Approximate closed-form analytical methods,
such as slab and upper bound methods, are
computationally efficient and can be used for
forward and inverse design of metalforming
problems. The inclusion of elemental-incre-
mental algorithms (slab element method or
UBET) has widened the application of slab
and upper bound approaches to transient pro-
blems, and the inclusion of piecewise continu-
ous functions has increased their application to

Fig. 6 (a) Change in metal flow across velocity discontinuities in a deforming medium (Y-Y 0). (b) Hodograph or
vector diagram for the velocity discontinuities used in the work calculations. Source: Ref 3
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more complex geometries. A typical SLEM or
UBET simulation cycle takes a few minutes
for even a complex problem. Recently, these
approaches have been combined with FEM for
geometries that have 2.5-dimensional
characteristics.
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Modeling with the Finite-Element Method

ENGINEERING MODELS are often used to
determine the response of structure, component,
process, or system to a set of conditions. Themod-
elsmay be based on closed-form equations, which
allow analytical solutions to the response of
behavior of a system. In many cases, however,
analytical (closed-form) solutions are not possible
for complex systems. In this case, numerical
methods are needed to provide approximate solu-
tions in modeling the behavior of a system.
Numerical methods are used in many types of
engineering models, and the widespread avail-
ability and computing capability of computers
has increased the precision, flexibility, and accu-
racy of approximate numerical methods.
In general, engineering models are defined in

terms of differential equations that quantify rela-
tionships in the physical response or behavior of
a system. Examples include the differential
equations used in continuum mechanics, heat
transfer, mass transport, fluid dynamics, and
thermodynamics. Differential equations also
can be categorized as either partial or ordinary.
Partial differential equations are required when
the behavior is a function of time and space or
of more than one space variable. However, if
the problem can be simplified to one independent
variable (time or one space variable), ordinary
differential equations can be used in understand-
ing the effect of certain parameters on the
response or behavior of the process or object.
There are several techniques for solving differ-

ential equations. Numerical algorithms to solve
differential equations consist of lumped-parameter
methods or the so-calledmeshed-solution methods
(such as finite-element analysis). If the problem
can be simplified for the use of ordinary differen-
tial equations, then a lumped-parameter model
maybeused.A lumped-parametermodelmayhelp
in understanding the effect of certain parameters
on the process. However, these methods do not
model spatial variation directly, and the para-
meters do not necessarily always have direct
physical significance.
Typically, partial differential equations are

required to describe the process in terms of
time, space, field variables, and internal states.
Several methods have been developed for the
numerical solution of partial differential equa-
tions. This typically involves meshed-solution
methods such as the finite-element method
(FEM), the finite-difference method (FDM),
and the boundary-element method (BEM). Each
has different suitability for different types of

problems. For example, the FDM is often
adopted in fluid mechanics but is seldom used
in solid and structural mechanics. Finite-
element methods are the most common for linear
and nonlinear continuum mechanics, although
the BEM has advantages in some applications
of continuum mechanics.
This article briefly introduces the methods of

so-called meshed solutions, with an emphasis on
the FEM. As background on the general concepts
of numerical methods in modeling engineering
systems, an introduction is given of some basic
differential equations that are used to model the
responses of structures, components, processes,
or systems. An emphasis is placed on continuum
mechanics as it relates to metal deformation or
forming. The mathematical principles of solving
differentials then are outlined (only in broad
terms) as a way to illustrate why FEMs play such
an important role in the modeling of systems and
processes. Again, an emphasis is placed on the
processes of metal deformation, although some
linear (elastic) structural problems are briefly
reviewed to help illustrate the concept of the
FEMs. The selected references also provide more
details on the principles and applications of finite-
element modeling.

Differential Equations

As noted, engineering models are often based
on differential equations that describe the physical
behavior of a system. Partial differential equations
are required when the behavior is a function of
more than one variable. When the system
response can be simplified to one independent
variable, then ordinary differential equations can
be used. The basic types of partial differential
equations are described in this section, with a
focus on continuum mechanics as an example.
Modeling of other phenomena is described in
more detail in other articles in this Volume.
Partial differential equations can be divided

into three categories: hyperbolic, parabolic,
and elliptic. Standard hyperbolic equations
include the wave equation:

1

c2
@2u

@t2
¼ @2u

@x2
þ @2u

@y2
þ @2u

@z2

where c is the wave speed. Parabolic partial
differential equations include the diffusion
equation:

D
@u

@t
¼ @2u

@x2
þ @2u

@y2
þ @2u

@z2

where D is the diffusivity.
Elliptic equations are usually used to model

steady-state phenomena. When hyperbolic or
parabolic equations are assumed to be invariant
with time, then they reduce to elliptic equa-
tions. For example, when the time dependence
is removed from the wave equation or the diffu-
sion equation, they reduce to the Laplace or
Poisson equations for steady-state heat conduc-
tion in solids with constant properties:

@2u

@x2
þ @2u

@y2
þ @2u

@z2
¼ 0 ðLaplace equationÞ

@2u

@x2
þ @2u

@y2
þ @2u

@z2
þ gðx; y; zÞ

k
¼ 0

ðPoisson equationÞ

where the Possion equation includes a heat-
source function, g(x, y, z), with k as the thermal
conductivity of the material.
Continuum Mechanics Equations. Contin-

uum mechanics models are based on steady-state
equations ofmechanical equilibrium and constitu-
tive equations for mechanical flow. The complete
set of equations serves as the foundation for
continuum mechanics models of bulk working
processes. A model for each case is developed by
imposing appropriate boundary conditions and
initial conditions (tool and workpiece geometry,
temperature, heat flow, etc.) on the solutions for
the set of equations. In addition,models of thermo-
mechanical processes may also require descrip-
tion of thermophysical behavior and the contact
interface between the tool and worked material.
Equilibrium and Compatibility (Strain-

Displacement) Equations. Steady-state equations
include the forces acting on an element and the com-
patibility of strain displacements. The steady-state
equations in describing the various forces acting on
an element in mechanical equlibrium are:

@�x
@x
þ @txy

@y
þ @txy

@z
¼ �Fx

@txy
@x
þ @�y

@y
þ @tyz

@z
¼ �Fy

@txz
@x
þ @tyz

@y
þ @�z

@z
¼ �Fz ðEq 1Þ

where s is the normal stress component, t is
the shear stress component, and F is the body
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force/unit volume component. Similarly, the
strain-displacement relationships are given as:

ex ¼ @u

@x
gxy ¼

@u

@y
þ @v

@x

ey ¼ @v

@y
gyz ¼

@v

@z
þ @w

@y

ez ¼ @w

@z
gzx ¼

@w

@x
þ @u

@z
ðEq 2Þ

where e is the normal strain, g is the shear strain,
and u, v, and w are the displacements in the x, y,
and z directions, respectively. In addition to
boundary conditions, the solution of these equa-
tions may be complicated further by time depen-
dence of the force functions, the nonlinear
stress-strain behavior of plastic deformation
(i.e., constitutive equations), and the flow rules
of plastic deformation (such as the Von Mises
yield citerion) under combined stresses.
Constitutive Equations. For a given material,

the relations between stress components in Eq 1
and strain components in Eq 2 are given by the
constitutive equations representing the behavior
of that material. The simplest example of a con-
stitutive equation is the well-known Hooke’s
law in the elastic regime:

s ¼ eE (Eq 3)

where E is the elastic modulus of the material,
which is measured in a simple tension test or
by ultrasonic means.
During plastic deformation of most metallic

materials, the stress-strain curve becomes
nonlinear, because hardening (or less frequently
softening) of the material can occur when
continuing plastic strain is built up. The strain
rate can also influence the hardening or soften-
ing of a material. The general form of the con-
stitutive equation for deformation processing is:

s ¼ fðe; e
:

; T Þ (Eq 4)

where �s is the equivalent (or effective) com-
bined stress, �e is the equivalent true strain, _�e is
the equivalent true strain rate, and T is the pro-
cessing temperature. Most software packages
for bulk forming modeling have options to
input the testing data in a tabular form or as a
constitutive equation. The tabular form is easy
to use but is not based on metallurgical princi-
ples, as with some constitutive equations.
The most frequently used constitutive equa-

tion is:

s ¼ Ken; _enþY (Eq 5)

where n is the strain-hardening exponent, m is
the strain-rate sensitivity, and Y and K are coef-
ficients. Strain-rate sensitivity is important at
elevated temperatures, while it has little influ-
ence at room temperature for most metallic
materials. In contrast, the importance of the
strain-hardening exponent becomes more sig-
nificant with decreasing temperature.
Equation 5 does not reflect the influence of

temperature. For each temperature, there is a

set of equations. A more fundamentally sound
equation has been proposed by Sellars and
Tegart (Ref 1) by assuming materials flow dur-
ing deformation as a thermally activated process:

e
:

¼ A½sinhðasÞ�n0 exp � Q

RT

� �
(Eq 6)

where A, a, and n0 are constants determined by
fitting empirical data, and Q is the apparent
activation energy. At low stresses a�s < 0:8ð Þ,
the equation reduces to a power law:

e
:

¼ A1sn0 exp � Q

RT

� �
(Eq 7)

At high stresses a�s > 1:2ð Þ;, the equation
reduces to an exponential form:

e
:

¼ A2 exp bsð Þ exp � Q

RT

� �
(Eq 8)

where b = an0.
Other constitutive relations have been pro-

posed to describe dynamic recovery and
dynamic recrystallization, such as the Laasoul-
Jonas model (Ref 2) and the internal variable
model (Ref 3). In all cases, constitutive equa-
tions are empirical-based relations derived from
the reduction of test data.
For more details on constitutive equations,

see the article “Constitutive Equations” in Met-
alworking: Bulk Forming, Volume 14A, ASM
Handbook, 2005, page 563.
Yield Criteria (Flow Rules). Continuum

mechanics also include rules or models for when
a material yields or flows. In structural analysis,
yield criterion may be characterized as a “failure
theory,” because plastic deformation is an unde-
sired outcome in structural design. In bulk defor-
mation, yielding of the workpiece is intended,
and yield criteria are used in the modeling of
flow under combined stresses.
The continuum mechanics of metallic materi-

als includes several theories for yielding, as
described in a historical sketch of continuum
plasticity theory with an introduction on
computational methods in solid mechanics
(Ref 4). The first yield criterion for metals
was proposed by Henri Tresca in the 1860s.
The Tresca criterion is based on the premise
that yielding is dependent on just shear stresses,
whereby plastic flow begins when the shear
stresses exceed the shear yield strength of the
metallic material. Although the Tresca yield
criterion is adequate, it neglects the intermedi-
ate principal stress, s2.

The Levy-von Mises yield criterion is con-
sidered to be a more complete and generally
applicable yielding criteria. It is based on the
theory of Richard von Mises that incorporated
a proposal by M. Levy, which stated that the
tensor components of plastic-strain increments
are in proportion to each other just as are the
tensor components for deviatoric stress. It is
based on the second tensor invariant of the
deviatoric stresses (that is, of the total stresses

minus those of a hydrostatic state with pressure
equal to the average normal stress over all
planes) (Ref 4). The von Mises yield criterion
is thus expressed as:

2s2
0 ¼ s1 � s2ð Þ2þ s2 � s3ð Þ2þ s3 � s1ð Þ2 (Eq 9)

where s0 is the uniaxial yield (flow) stress
measured in tension or compression, and s1,
s2, s3 are the three principal stresses.
Fracture Criteria. Continuum mechanics

can also be used in conjunction with multiaxial
fracture criteria to gain insights and solutions
on the prevention of flow-related cracks. Vari-
ous fracture (or microstructural damage) cri-
teria have been developed to evaluate
workability (e.g., Ref 5–9), but not all are easily
incorporated into continuum mechanics models
of processes. One criterion that gives a very
accurate description of workability and is easily
implemented in the models is that due to
Crockcroft and Latham (Ref 5):

ðef
0

s1de � C (Eq 10)

wheres1 is themaximumprincipal stress,�ef is the
equivalent strain at fracture, and C is a constant
representing the workability of the material.
If s1 < 0, then there are only compressive stres-
ses, and no fracture occurs. The Crockcroft-
Latham criterion is phenomenological based
rather than mechanistic, but it captures the physi-
cal concept and intuitive understanding that dam-
age accumulation, or workability, is dependent
both on the degree of plastic deformation (repre-
sented by the integral over effective strain) and
tensile stress (represented by the maximum prin-
cipal stress). Furthermore, both of these physical
quantities are readily available outputs of contin-
uum mechanics models and can be evaluated at
every localized region or point throughout the
material to determine potential sites of crack initi-
ation. As with any constitutive relation, the value
of incorporating this workability criterion into
process analyses depends on accurate representa-
tion of the actual material behavior, represented
by the coefficient C in this case.
A more recent fracture criterion is theorized

as (Ref 8):

s1f :
e
s
� C0 (Eq 11)

where sIf is the maximum principal stress at
fracture, and C0 is a workability constant. This
criterion can be related directly to bulk work-
ability tests. For incremental loading, Bandstra
(Ref 9) proved that the criterion can be
expressed as:

ðef
0

s1

s
de � C0 (Eq 12)

A review of fracture criteria can be found in
Ref 8, and some examples are given in the arti-
cle “Models for Fracture during Deformation
Processing” in this Volume.
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Methods of Solution

As noted previously, there are several techni-
ques for solving differential equations. Numeri-
cal algorithms to solve differential equations
consist of lumped-parameter methods or the
so-called meshed-solution methods (such as
finite-element analysis). If the problem can be
simplified for the use of ordinary differential
equations, then a lumped-parameter model
may be used. A lumped-parameter model may
help in understanding the effect of certain para-
meters on the process. However, these methods
do not model spatial variation directly, and the
parameters do not necessarily always have
direct physical significance.
Numerical methods for solving the govern-

ing equations of a model are required when the
simplifying assumptions of methods described
in the preceding are not justified. The general
types of numerical techniques used in the solu-
tion of partial differential equations include:

� The finite-element method (FEM)
� The boundary-element method (BEM)
� The finite-difference method (FDM)

With the continued improvement in computer
capabilities, these numerical techniques have
become very effective in the engineering analy-
sis of static problems, dynamic conditions
(where the calculation of inertial and/or damp-
ing forces involves derivatives with respect to
time), or quasi-static conditions where rate-
dependent plasticity may require a realistic esti-
mation of time (but where inertial forces may
still be neglected).
In applications involving continuum mechan-

ics, the FEM is the most common technique,
although the BEM has advantages in some
applications of continuum mechanics. The
FDM has proven to be useful in fluid and ther-
mal problems but is seldom used in solid and
structural mechanics. Nonetheless, the FDM is
a simple and efficient method for solving ordi-
nary differential equations in problem regions
with simple boundaries. For each node of the
mesh, the unknown function values are found,
replacing the relevant differential equation,
(i.e., dy = f[x,y]dx) by a difference equation:

�y ¼ f xþ�x=2; yþ�y=2ð Þ�x (Eq 13)

where Dx Dy are steps in an interative proce-
dure. Hyperbolic and parabolic partial differen-
tial equations are often solved using a hybrid of
the FEM and FDM. The spatial variables are
modeled using the FEM, and their variation
with time is modeled by the FDM.
Other numerical techniques include:

� Finite-volume methods, which are important
in highly nonlinear problems of fluid
mechanics

� Spectral methods, which are based on trans-
forms that map space and/or time dimensions
to spaces where the problem is easier to solve

� Mesh-free methods, which are a recent
development of FDMs with arbitrary grids

These techniques and the FDM are only men-
tioned for reference without further discussion.
The FEM and BEM are more common in the
modeling of bulk deformation processes, as
described later in this article in more detail.
Application of these computer models has
become an essential tool in meeting product
requirements of dimensional tolerances, surface
finish, and consistency of properties.
Meshed (discrete-element) numerical

methods include various numerical methods,
such as FEM, BEM, and FDM. These numeri-
cal methods provide approximate solutions by
converting a complex continuum model into a
discrete set of smaller problems with a finite
number of degrees of freedom. The meshes
are created by using structured elements such
as rectilinear blocks or unstructured meshes
with variable-shaped elements (e.g., tetrahedra,
bricks, hexahedral, prisms, and so forth) for
better fidelity to the macroscopic conditions or
boundaries.
The choice of a method depends on the dif-

ferent types of equations and boundary condi-
tions. Within these methods, one can use a
structured or an unstructured mesh. Structured
meshes are created by using rectilinear, brick-
like elements. It is easy to use this type of
mesh; however, fine geometry details may be
missed. Unstructured meshes can be of any
shape—tetrahedra, bricks, hexahedral, prisms,
and so forth. Many of the disadvantages of
using a structured mesh are eliminated through
this type of a mesh.
Once a discrete-element model has been cre-

ated, mathematical techniques are used to
obtain a set of equilibrium equations for each
element and the entire model. By applying var-
ious boundary conditions and loads to the
model, the solution of the simultaneous set of
equations provides the resulting responses any-
where in the model while still providing conti-
nuity and equilibrium. The process of solution
is essentially a computer-based numerical
method, where interpolation functions (polyno-
mials) are used to reduce the behavior at an
infinite field of points to a finite number of
points.
Meshed-solution models have advantages

over the typical closed-form solutions, because
they more readily give solutions to irregular
shapes, variable material properties, and irregu-
lar boundary conditions. Construction of a dis-
crete meshed model for numerical solution
may be necessary if the modeled volume:

� Has a complex shape (as is common in bulk
forming)

� Contains different phases and grains
� Contains discontinuous behavior such as a

phase change
� Has a nonlinear physical process such

as when the heat-transfer coefficient is a
nonlinear function of the temperature

In many instances, meshed models are supple-
mented by some nonmeshed symbolic or ana-
lytical modelling. This is done in order to
decide on appropriate boundary conditions for
the meshed part of the problem, because it is
the boundary conditions that effectively model
the physical problem and control the form of
the final solution. Analytic models are always
useful for distinguishing between mechanisms
that have to be modeled separately or modeled
as a coupled set.

Boundary-Element Method

The BEM is a technique for representing a
complex structure or component as a computer
model in order to determine its response to a
set of given conditions. Like the FEM, the
model is formed by subdividing the structure
into small elements to form the overall model.
However, unlike the FEM, only the surface
(or boundary) of the problem requires subdivi-
sion, thereby reducing the dimensionality of
the problem and thus dramatically reducing
the computational effort in obtaining a solution.
The BEM has a more restricted range of

application than FEM has. In general it is appli-
cable mainly to linear elliptic partial differential
equations. It also requires reformulation of the
governing partial differential equations into a
Fredholm integral equation, which applies to a
range of physical problems. For example, ellip-
tic partial differential equations such as the
Laplace or Helmholtz equations can be refor-
mulated as Fredholm integral equations and
then solved by the BEM. The advantage is that
the mesh need only cover the boundaries of the
domain.
The BEM can be an effective tool in the

analysis of various metal-forming problems in
rolling and extrusion. For example, Ref 10
demonstrates that the BEM can be used to effi-
ciently and accurately analyze planar and
axisymmetric forming problems involving both
material and geometric nonlinearities, along
with complicated interface conditions. Like
FEM, the use of BEM in the modeling of
metal-forming operations may require consider-
ation of elastic-plastic behavior and elastic-
viscoplastic problems involving large strains.
Elastic strains (plastic or viscoplastic) are pre-
sumed to be large. When strains become large,
the original mesh may become so distorted that
the interpolation polynomials are incapable of
modeling the geometry of the elements and
their relevant state variables. This requires a
process of remeshing.

Finite-Element Methods

Finite-element analysis (FEA) is a computer-
based analytical technique that allows numeri-
cal solutions to be obtained for complex mathe-
matical and engineering problems by creating a
discrete or finite number of individual nodes
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and elements. Discrete elements fill the appro-
priate geometry, and the method enables the
systematic solution of equilibrium equations
for each element and the entire model with as
much fidelity to geometry as needed.
Finite-element analysis is a powerful analysis

tool that is flexible for solving problems with
irregular shapes, variable material properties,
and irregular boundary conditions. With
advancements in computer technology, the use
of numerical methods such as FEA has grown.
The method was originally developed for struc-
tural problems (stress displacement of complex
geometries), but the same concepts and princi-
ples apply to many kinds of engineering pro-
blems. In deformation processes, FEA is a
useful tool in die design and process analysis.
Common problems solved by FEA include
insufficient die filling, poor shape control, poor
flow of material, cracks and voids that lead to
fracture, and inadequate properties from micro-
structural variations (grain size).
The application of FEM in metal forming

(e.g., Ref 11–13) has brought great changes
to design methodologies that were formerly
based on trial-and-error approaches. For
example, shape changes during forging are
easily predicted by FEM. The detailed temper-
ature, strain, and strain-rate histories at each
individual material point in a workplece are
also available from FEM simulations. Simula-
tion of thermomechanical processes can be
based on models of continuum mechanics,
transport phenomena (heat flow), and metal-
lurgical phenomena (e.g., grain growth and
recrystallization).
The range of FEA applications in the area of

materials processing is extremely wide, and a
brief review of the finite-element techniques
applied to metal forming, nonmetal forming,
and powder metallurgy are briefly discussed in

Ref 14 with an encyclopedic view of the differ-
ent possibilities in these various fields of appli-
cation. Many texts (e.g., Ref 11–13) also
describe finite-element theory and how it is
used in forming analyses. Models may be based
on continuum mechanics in the evaluation of
flow and/or fracture problems supplemented
by more sophisticated thermomechanical/ther-
mophysical models for the simulation of micro-
structural evolution.

Model Development and
Preprocessing

The process of modeling is done in different
cycles. Figure 1 outlines some of the basic
stages, with three loops suggesting three levels
of activities in any modeling effort. The outer
loop is managed by someone close to the pro-
cess who understands the business context of
the problem and can concentrate on specifying
the objective and providing the raw data. The
innermost loop (shaded) requires mostly
computational skills, while the middle loop
(unshaded) consists of activities balancing the
other two. It may very well happen that all
three of some combination of the activities
can be done by the same person. However, very
seldom is that the case. This highlights the need
for forming modeling teams where all aspects
of the problem can be addressed rigorously. It
also emphasizes the importance of training
and appropriate software tool development so
that the input and output of the tools can be eas-
ily understood by all involved in the process.
Figure 2 shows the FEA process. Finite-

element preprocessing defines the physical
problem and converts it into a form that the
computer can solve. The preprocessing stage
consists of:

� Geometry definition and manipulation
� Specification of material properties
� Generation of the finite-element mesh
� Definition of generalized loads and displace-

ments both at the boundary and distributed
through the body (inertia and gravitational
loads)

The material properties may be specified as con-
stant or variable. When variable, they are often
input as tables of properties or as mathematical
functions, such as exponentials. Finite-element
preprocessing may consume as much as 80%
of the calendar time in the finite-element
process.

Defining the Problem

Before a full-fledged FEA is undertaken,
several questions must be answered:

� Is FEA appropriate?
� What is desired from the FEA?
� When are results needed?
� What are the product and process limitations?

If it is determined that FEA would provide ade-
quate answers, information is gathered to start
the modeling process. The required information
includes the geometry of interest, initial and
boundary conditions, material properties and
material behavior models, and an approximate
solution to ensure that the finite-element results
are not physically absurd.
Next comes defining the physics of the pro-

cess. This involves using the appropriate set of
mathematical equations and the corresponding
initial conditions and boundary conditions.
Subsequently, the solution method must be
determined. This involves choosing the appro-
priate algorithms to solve the numerical
approximations of the mathematical equations.
The development of any model requires the

definition of appropriate boundary conditions
and the applicable governing equations of the
major phenomena occurring in the process
(e.g., convection, radiation, chemical reaction,
diffusion, deformation). The complexity of the
boundary conditions and the governing differ-
ential equations determine the possible methods
of solution.
Boundary Conditions. Application of

appropriate boundary conditions is a major part
of the activity of process modeling. Boundary

Fig. 1 Modeling cycles. Source: Ref 15 Fig. 2 Typical finite-element process
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and initial conditions represent geometric factors
(e.g., symmetry, tool shape, and workpiece
shape), thermal factors (e.g., heat flux and tem-
perature) and loads (e.g., tool pressure and tool
friction) pertinent to the particular problem
being modeled. These conditions or constraints
influence the complexity of the problem and
the most appropriate method or algorithm for
solving the equations of the model.
For example, consider the simple example of

a uniformly loaded cantilever beam (Fig. 3a).
In this case (assuming uniform loading and a
rigid connection), then closed-formed equations
can provide analytical solutions for the deflec-
tion and bending stress over the length of the
beam (Fig. 3a). However, if the boundary condi-
tions are altered by the addition of simple sup-
ports (Fig. 3b), then the system becomes
statically indeterminate (i.e., there is no longer
a closed-formed solution that specifies deflection
over the length of the beam). In this case,
numerical techniques (such as FEA) are required
to find approximate solutions of deflection and
bending stresses. Likewise, the solution of
dynamic problems may also require numerical
techniques, depending on the complexity of the
equations in the models and the appropriate
boundary conditions.
In analytical solutions models, boundary con-

ditions must be set at a very early stage. In
meshed-solution models, boundary conditions
are typically represented separate from the main
equations and decoupled to some extent from the
model itself. Therefore, sensitivity analysis can
be done much easier using meshed methods.
Material Properties. All models of bulk-

working processes require input of accurate

material properties so that the fundamental
materials behavior can be represented faithfully
by the constitutive equations. Acquiring these
properties can be difficult and expensive. Sensi-
tivity analysis of the model with respect to var-
iations in property data should be done. In
many instances, it may be possible to use mod-
els with inexact material property information
in order to predict trends, as opposed to deter-
mining actual values. Problems may arise if
the material properties are improperly extrapo-
lated beyond their range of validity. In defor-
mation modeling, Young’s modulus. Poisson’s
ratio, anisotropic behavior, and flow stress
(as functions of stress, strain, strain rate, and
temperature) are needed.
The requirements for particular data and the

way in which it is gathered is an important step
in the construction of a model. Researchers typ-
ically play down this step as an industrial
implementation detail. On the other hand,
industrial practitioners place a greater emphasis
on data gathering, because they know the diffi-
culties and time involved in gathering data on
production-scale equipment.
Symmetry. In the development process of

FEMs, the exploitation of symmetry can greatly
reduce the computer resources required to solve
a problem, and can sometimes move problem
solution from infeasibility to feasibility. Sym-
metry applies in the context of both geometry
and the loads (including the boundary
reactions).
Symmetry arises when a geometric element

is translated, rotated, mirrored, or swept. At
least four major types of symmetry arise in
finite-element problems: bilateral symmetry,

rotational symmetry, axisymmetry, and transla-
tional symmetry.
Bilateral symmetry is synonymous with

reflective or mirror symmetry. This is perhaps
the simplest, most intuitive type of symmetry.
It does carry with it the idea of handedness, that
is, right hand versus left hand. If the fundamen-
tal region being reflected is itself symmetric,
then right hand versus left hand need not be
considered. If the small asymmetry is structur-
ally insignificant, it is sometimes adequate to
model the weaker half of the object. An exam-
ple might be a connecting rod with a small oil-
feed hole on one side.
Rotational symmetry exists when a funda-

mental part of the structure spans 360�/n, where
n is an integer. Examples of rotationally sym-
metric objects include things such as a stool, a
marine propeller, and a fan blade. Dihedral
symmetry is a special case of rotational symme-
try. It occurs when the fundamental region to be
rotated is itself bilaterally symmetric.
Axisymmetry is another special case of rota-

tional symmetry. Every cross section through
the axis of rotation of an axisymmetric object
is identical. Axisymmetry can reduce a three-
dimensional problem to a two-dimensional one.
Translational symmetry occurs when a fun-

damental unit is translated one or more times.
A prismatic structure is a special case of trans-
lational symmetry. Often, structures comprise a
fundamental element that is both translated
and rotated. Superelement techniques are some-
times useful for such structures.
Antisymmetry refers to symmetry accompa-

nied by a change in some property. For exam-
ple, a photographic print is antisymmetrical to
its negative. In the context of FEA, antisymme-
try pertains to a problem whose geometry,
loads, and displacement boundary conditions
exhibit symmetry but the sense of whose loads
are reversed.
For linear elastic structures, it is valid to

superpose or add the results of multiple solu-
tions. This permits decomposing of loads that
do not have symmetry into their symmetric
and antisymmetric components and superposing
these component loads. This allows modeling a
structure with geometrical symmetry as a
reduced model, even when the loads are not
symmetric (Fig. 4).

Mesh Generation

Finally, the problem must be discretized (i.e.,
the continuum must be broken into many smal-
ler pieces or elements, as in Fig. 5. In the early
development of FEA, when computing power
was a factor limiting the generic use of FEA,
models were simplified as much as possible
through the use of two-dimensional (2-D) ana-
lyses, symmetry, linearity, and steady-state con-
ditions. As computing power increased, so did
the complexity of finite-element modeling and
analysis techniques. The first analyses and ele-
ments available were limited to 2-D beams

Fig. 3 Effect of boundary conditions on the solution of a cantilever problem. (a) The beam deflection and bending
stresses for a uniformly loaded cantilever can be solved by a closed-form equation as shown. (b) A

supported cantilever beam is statically indeterminate, and numerical methods are required to approximate deflection
and bending-stress conditions that are consistent with the boundary conditions established by the additional supports
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and spars. The progression was then toward
three-dimensional (3-D) spars and beams, 2-D
solid and axisymmetric elements, and the full
3-D elements. Along with the progression in
element capability was the advancement toward
nonlinear and transient analyses. Contact ele-
ments, elastic/plastic properties, large deflec-
tion, and viscoplastic and dynamic impact
analyses are now readily available.
In this stage of model development, the shape,

size, and complexity of the elements must be
defined and refined to provide a suitable basis
for numerical approximation of the system. The
factors that impact the selection of the elements
are the type of the problem, geometry, accuracy
desired, availability within the algorithm, nature
of the physical problem, and user familiarity.
Typical elements are either linear or quadratic
and can be one-, two- or three-dimensional.
Figure 6 schematically shows some typically
used elements.
The size and number of elements are pri-

marily determined by the various gradients
(temperature, stress, etc.) in the system. For
example, if the gradients are steep, a larger
number of smaller-sized elements should be
used. The mesh can be made coarser (fewer
elements) or finer (more elements), depend-
ing on the needs of the problem. Coarser
meshes use minimal computer resources in
terms of storage and run time. However,
because the representation is approximate,
the results can be crude. Finer meshes pro-
vide a more accurate representation with
improved results.

When an FEA mesh is generated, it may be
obtained by acting upon a defined geometry.
In this case, the mesh is sometimes referred to
as top-down mesh. When the mesh itself is the
only definition of the geometry, it may be
referred to as bottom-up.
Top-down meshing is accomplished by one

of two methods: mapped meshing or free mesh-
ing. A mapped mesh requires that the geometry
be subdivided into canonical shapes, such as
quadrilaterals in two dimensions and cuboids
in three dimensions. A mesh is then mapped
into these regions. This process generally pro-
vides for more user control than free meshing,
but it is quite time-consuming.
Free meshing, by contrast, relies on one of

several algorithms to fill any arbitrary geome-
try with elements. In two dimensions, these
elements are usually triangles or quadrilat-
erals. In three dimensions, robust algorithms
exist to fill an arbitrary space with tetrahedra.
However, robust algorithms to fill an arbitrary
space with hexahedra are lacking. One of the
issues in finite elements is the relative perfor-
mance of these two element types. Because
the shape functions of these elements are anal-
ogous to those of the triangle and quadrilateral
in two dimensions, performance of the low-
order hexahedron may be superior over that
of the low-order tetrahedron. In practice,
high-order tetrahedra are often used to
increase accuracy at the expense of increased
computational time.
Most finite-element preprocessors offer con-

structs for defining geometry, but it is also

desirable that geometry can be imported or
exported from/to other software systems.
National and international standards organiza-
tions have attempted to standardize geometry
descriptions toward these ends. Geometry is
sometimes described as clean or dirty, and tools
to transform the latter into the former are often
needed. Extraneous points or edges must be
eliminated. Surfaces or edges smaller than
those of the desired finite-element size must
be blended or eliminated without corrupting
the model. Sometimes, small features such as
fillets and bosses are unimportant for prelimi-
nary analyses but become important as the
design matures. For this reason, feature
suppression is a desirable option.
Another issue to be considered is the num-

ber of analysis codes supported. Large organi-
zations often deal with several commercial
codes, and the needs of any organization will
change with time. Preprocessors are always
incomplete with regard to the number of fea-
tures supported. For example, can seldom-
used elements or routines be supported? Can
the applied tractions be varied parabolically,
sinusoidally, and so on? Can rotation be
simulated? Can loads be scaled and super-
posed? Are contact capabilities supported?
Are multiple coordinate systems conveniently
supported? Are multipoint constraints sup-
ported? What about failure theories? Are com-
posite materials modeled?
It is preferable to define loads and boundary

conditions relative to the geometry rather than
to the finite-element mesh. This permits
remeshing of the geometry without the need to
redefine loads and boundary conditions. It is
also desirable to specify hard points, lines, or
surfaces where parts will interact with other
parts, so that the interaction (e.g., spot welding,
adhesive bonding, etc.) can be properly repre-
sented. Those who must create a shell mesh
from a solid geometry need a capability called
midsurface extraction in order to optimally
specify the defining surface for plate/shell
representation.
Still another function of a preprocessor is the

ability to group and categorize various items
into convenient sets. Items may be organized
geographically (spatially), by material, by a
property such as thickness or moment of inertia,
by contact pairing, by convection coefficient, or
by various other attributes.
Finite-element model validation is another

capability expected of the finite-element pre-
processor. Elements must be investigated for
geometric distortion. The traditional criteria
(Fig. 7) are aspect ratio, taper, skew, warping,
and edge curvature. Because even these tradi-
tional metrics are defined differently in differ-
ent analysis codes, the user needs some
control over their definition, their values, or
the strategies imposed by the preprocessor for
mesh cleanup, mesh smoothing, or element
splitting. Still other validation tools are some-
times desirable: the ability to search for dupli-
cate nodes or elements, inconsistent normals

Fig. 4 (a) Superposition of symmetric (b) and antisymmetric (c) loads. In symmetric loads (b), the abbreviation
“SYMM” denotes that ux = 0 everywhere on the cross section for continuum elements (e.g., hexagonal and

tetragonal elements), or that ux = Ry = Rz = 0 for line elements (e.g., beams). In antisymmetric loads (c), the
abbreviation "ANTISYMM" denotes boundary conditions that are the complement of the SYMM set, e.g., uy = uz = 0
everywhere on the cross section for continuum elements.
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in shells, duplicate edges (implying a lack of
continuity), missing elements, and so on.
Finally, returning to Fig. 2, it is apparent

that the design process is iterative, that both

geometry and mesh need to evolve and be
updated in an appropriate manner. Macroin-
struction capability in a preprocessor can greatly
contribute to its usefulness. The ability to be a

part of a looping scheme where geometry is
modified by the previous iteration in the loop
is becoming more and more important.

The Basis of Finite Elements

To understand why some elements outperform
other elements in certain problems, it is appro-
priate to review the Rayleigh-Ritz procedure
(Ref 16) on which the FEM can be based. There
are more general and mathematically sophisti-
cated ways to approach finite-element theory,
but they are less intuitive and less instructive to
describe the underlying concept of the FEM.
The Rayleigh-Ritz procedure is an approxi-

mate method for solving structural problems
based on the principle of virtual work. The prin-
ciple of virtual work states that the total potential
energy of an elastic system is a minimum (or
stationary) when the system is in equilibrium.
The Rayleigh-Ritz method reduces a continuum
with infinitely many degrees of freedom (DOF)
to a system with finite number of degrees of
freedom. It accomplishes this by assuming the
displacements of the continuum to be a function
of a finite number of undetermined coefficients.
An example of solving for solution for these

undetermined coefficients is illustrated as fol-
lows. This section also defines and contrasts
two different types of elements: continuum
and structural.
The Reduction of an Infinite DOF System

to a Finite DOF System. A continuous system
with infinitely many DOF may be approximated
by a system with finite DOF. This can be
accomplished by assuming a shape function
with one or more undetermined coefficients
whose values are to be determined.
For example, the simply supported beam of

Fig. 8, which is loaded by a central concen-
trated load, P, is considered. A sinusoidal shape
function is assumed, such that:

y ¼ A sin px=Lð Þ 0 < x < L (Eq 14)

Here, A is the undetermined coefficient, and y is
the displaced position of the beam centerline.
When x = 0 and x = L, then y = 0. It should also
be noted that:

d2y=dx2 ¼ �A p=Lð Þ2sin px=Lð Þ

This second derivative, which is proportional to
beam curvature and therefore to moment, also
vanishes at x = 0 and at x = L. Therefore, both
the deflections and moments are zero at the
ends of the beam. These are the appropriate
boundary conditions.
The Rayleigh-Ritz procedure can be used to

determine the value of the coefficient A. The
method consists of finding an expression for
the total potential energy of the system in terms
of A, differentiating that expression with
respect to A, and equating the results to zero.
That is, one finds the deformed geometry that
provides the minimum value of the total

Fig. 5 Common types of finite elements used in modeling with examples. (a) Beam spar elements used to construct,
for example, a beam element model. (b) Two-dimensional solid-model element with example. (c) Two-

dimensional axisymmetric solid-model element with example. (d) Three-dimensional solid-model elements with
simplified example
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potential energy. In symbols, this is: V = elastic
strain energy + gravitational potential energy,
or:

V ¼ U þ � (Eq 15)

where:

U ¼ ð2
1

Þ
ð
EI d2y=dx2
� 	2

dx (Eq 16)

E is Young’s modulus (material stiffness), I
is section modulus (geometric stiffness), and:

� ¼ P �Að Þ (Eq 17)

For minimum potential energy:

dV =dA ¼ 0 (Eq 18)

so that:

dV =dA ¼ d=dA p4EIA2=4L3
� 	� PA

 � ¼ 0

(Eq 19)

and therefore:

A ¼ 2PL3
� 	

= p4EI
� 	

(Eq 20)

and:

y ¼ 2PL3
� 	

= p4EI
� 	

sin px=Lð Þ (Eq 21)

A comparison of this solution with the known
analytical solution shows that the deflections dif-
fer by 3% or less. However, the peak stress dif-
fers from the accepted solution by 19%.
A better approximation to this beam-bending

problem should result from adding another
degree of freedom, for example:

y ¼ A sin px=Lð Þ þBsin 3px=Lð Þ (Eq 22)

Following the same procedure as before and
using @V =@A ¼ 0 and @V =@B ¼ 0, then:

A ¼ 2PL3
� 	

= p4EI
� 	

(Eq 23)

and:

B ¼ 2PL3
� 	

= 27p4EI
� 	

(Eq 24)

Comparing this new solution to the analytical
solution, deflections are everywhere within a
þ�1% band of the analytical solution, and peak
stress differs from the accepted solution by 8%.
The FEM can be thought of as an extension

to the Rayleigh-Ritz method. There are two
major differences:

� In the Rayleigh-Ritz method, the structure is
treated in its entirety, as one “element.” In
the FEM, multiple elements and nodes are
used.

� In conventional finite elements, the values of
the nodal displacements and rotations are the

variables; they are the undetermined coeffi-
cients. This is advantageous, because it is
intuitive to understand and more convenient
to specify displacements and rotational con-
straints at boundaries than to deal with,
say, amplitudes of sine waves.

In summary, the FEM may be thought of as
follows. The geometric continuum is divided
into a number of elements (e.g., triangles, quad-
rilaterals, tetrahedra, etc.). The internal displa-
cements of these elements are expressed in
terms of the displacements at the nodes of the
elements by means of interpolation functions,
similar to the sinusoidal approximation (usu-
ally, the interpolation functions are polyno-
mials) illustrated in the beam problem. An
energy expression is formed and minimized in
order to obtain a set of algebraic equations.
The solution of these algebraic equations pro-
vides the displacements at the nodes. The
values of the displacements at each node are
analogs to the coefficient A in the previous
example. In the FEM, the number of DOF is
the product of the number of nodes multiplied
by the number of unknowns per node. Knowing
the displacements at each node implicitly gives
the displacements and stresses throughout the
continuum. As a generalization, the displace-
ments obtained by this method are typically
more accurate than the stresses.
Continuum Elements. A continuum element

is one whose geometry is completely defined by
its nodal coordinates. Hexahedra, pentahedra,
and tetrahedra are the continuum elements
commonly used in a 3-D domain. Quadrilat-
erals and triangles are the continuum elements
commonly used in a 2-D domain.
Tetrahedra, pentahedra, and hexahedra typi-

cally have three DOF at each node. The three
DOF at each node are the three translations
(u, v, w) in the three spatial directions
X;Y; Z orð R;�;Z or R;�; �Þ. Figure 9 shows
the assumed interpolation function that may be
employed for each of these fundamental ele-
ments. Only the u displacement function is
shown; the others have analogous form.
Triangles and quadrilaterals typically have

two DOF at each node, the in-plane displace-
ments. Triangles and quadrilaterals can also be
structural elements, for example, when the
bending (rotational) DOF are added. Structural
elements are discussed as follows.
Figure 10 shows the possibility of enhancing

continuum elements by adding interior nodes.
(A node could also exist at the centroid, or mul-
tiple nodes could exist along edges.) The extra
nodes supply more independent variables so
that the displacement functions can contain
more terms. The elements without interior
nodes are sometimes called lower-order ele-
ments, and the ones with interior nodes are
sometimes called higher-order elements.
Most commercial codes permit the selective

omission of the interior nodes. This permits
joining of lower-order elements to higher-order
elements. If interior nodes are used, curved

Fig. 8 Simply supported beam with central
concentrated load, P

Fig. 7 Types of quadrilateral element distortion

Fig. 6 Linear and quadratic elements used in typical finite-element analyses
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edges and faces are possible. When the same
interpolation functions are used for both the
geometry and the displacements, the elements
are known as isoparametric.
The optimum choice of element is code

dependent and problem dependent. A generali-
zation that is sometimes made is to use the
higher-order elements for “smooth” problems,
those relatively free of geometric and load dis-
continuities. Conversely, the lower-order ele-
ment is used where there are abrupt changes
in geometry, material, or loading.
Structural Elements. In addition to the con-

tinuum elements depicted in Fig. 9 and 10,
there are a number of elements that behave in
accordance with certain structural assumptions
that predate finite-element technology. As long
as these structural assumptions are valid, they
provide for maximum solution efficiency
(Fig. 11).
Beam elements are typically based on the so-

called Euler-Bernoulli assumptions. These
assumptions are that plane sections of the beam
remain plane under deformation and that

bending stress is therefore directly proportional
to the distance from the bending axis. The
through-thickness normal stress is assumed to
be zero. Shear deformations are not considered
in the Euler-Bernoulli beam. The so-called
Timoshenko beam adds shear deformation
capability and possibly rotary inertia. The shear
deformation is assumed to be constant through-
out the beam depth, not parabolic. The
Timoshenko assumptions tend to “soften” the
response of the beam (i.e., displacements are
higher and natural frequencies are lower than
for the corresponding Euler-Bernoulli beam).
Plate elements are often based on the Kirch-

off assumption that, after deformation, normals
to the midsurface of the element remain normal
to that surface. The Kirchoff assumption for
plates is analogous to the Euler-Bernoulli
assumptions for beams. More sophisticated
assumptions are made for the Mindlin plate ele-
ment, which is analogous to the Timoshenko
beam. Shells, by definition, are curved surfaces.
Finite-element representation of shells may be
as flat facets or as curved elements. In either
case, the finite elements representing shells
must carry membrane as well as bending loads.
The use of elements based on these various
structural assumptions generally results in a
very efficient model, especially for vibration
and buckling problems. Accuracy of stresses
may suffer at edges or discontinuities in the
structure. This could be an important consider-
ation for composite materials, subject to delam-
ination from local though-thickness tensile
stresses at the edges.
Superelements (Substructures). Several

standard techniques exist that improve compu-
tational efficiency in special situations. The
use of the various forms of symmetry has
already been discussed. Another of these tech-
niques is variously known as superelement or
substructuring technology. The superelements
are individually modeled, and the behavior of
their interior nodes is determined as a function
of the behavior of their external nodes. The
assembly of superelements is then analyzed in

a separate run. The original motivation for this
technique was to permit the solution of pro-
blems too large to be accomplished in a single
pass. That is, it was an attempt to get around
computer resource limitations. With the
startling advances in hardware technology, that
motivation has largely disappeared. However,
there are several situations where superelement
technology provides important advantages.
These are:

� Iterative redesign of a structure will affect
only one or a few of the superelements.

� Analysis of assemblies will be done by ana-
lysts in disparate locations, perhaps by indi-
vidual groups on subassemblies
(substructures), with results later integrated
into the whole.

� Nonlinear analysis is needed in which one or
more superelements retain linear behavior.

� Identical units occur repetitively within the
structure.

� Mesh redesign is needed in a critical local
region for more accurate results.

There are some potential pitfalls with the
technology. Two examples are:

� The bandwidth (or wavefront) may be
adversely affected by the substructuring
process.

� The mass distribution may be adversely
affected for dynamic problems, although no
loss of accuracy is experienced for static

Fig. 9 Continuum elements (lower-order elements).
(a) u = ao + a1x + a2y; @u=@x ¼ a1;

� ¼ Eex ¼ E@u=@x ¼ Ea1 ¼ constant. (b) u = ao + a1x +
a2y + a3xy; @x=@x ¼ a1 þ a3y; s ¼ Eex ¼ Eða1 þ a3yÞ
¼ linear. (c) u = directionally dependent. (d) u = ao +
a1x + a2y. (e) u = ao + a1x + a2y + a3xy

Fig. 11 Structural elements. (a) Beam element. A
beam requires two or more nodes, two

bending stiffnesses, torsional stiffness, orientation about
the line connecting the nodes, material properties, and
six degrees of freedom per node. (b) Plate elements. (c)
Shell element. (d) Elbow element

Fig. 10 Continuum elements (higher-order elements).
(a) to (c) Sometimes called serendipity

elements. (d) to (f) Sometimes called Lagrange elements
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problems. A technique called component
mode synthesis attempts to compensate for
the altered mass distribution (Ref 16).

Multipoint Constraints. In a variety of
situations, it is desirable to use multipoint con-
straints (MPC), that is, to constrain the dis-
placement of a node to that of another node or
to a function of the displacements of other
nodes. These situations include:

� Joining incompatible elements
� Simulating a rigid body
� Joining structural elements to continuum

elements
� Distributing a load in a convenient fashion
� Joining dissimilar materials
� Transition of mesh density

Examples of the first three are shown in Fig. 12.
Some comments on these situations follow.
Joining Incompatible Elements. The eight-

noded quadrilateral, 201, is joined to the four-
noded quadrilateral, 101, by constraining the
midside node of 201, node 10, to displace the
average of the two corner nodes. In that way,

no gap or interpenetration of the two elements
can occur along their common edge. The MPC
is an effective way to join these two different
element types.
Joining Structural Elements to Continuum

Elements. Shell elements typically have five
DOF per node, three translations, and two bend-
ing rotations. Three-dimensional continuum
elements (i.e., solids) have only the three trans-
lational DOF. Joining these two element types
will produce a hinge at their interface unless
care is taken. Commonly, the hinge is pre-
vented by constraining the interface nodes to
immediately adjacent nodes.

Linear Finite-Element Problems

Many finite-element problems can be solved
as linear problems. In structural applications,
for example, deflections are assumed to be
small in the linear (elastic) stress-strain region.
Under these assumptions, solution times are
quite predictable. Linear algebra can apply in
this case, as described subsequently for a gen-
eral structural problem.
Linear Algebra Solution for a Structural

Problem. For static structural problems, the
FEM results in a system of equations that can
be expressed in matrix form as:

Ff g ¼ K½ � uf g (Eq 25)

where {F} is a columnvector of forces, {u} is a col-
umn vector of displacements, and [K] is a square
matrix. There will bemultiple {F} and {u} vectors
for problems with multiple load cases. The size of
the [K] matrix is the product of the number of
nodes and the number of DOF per node. If all
DOF of the problem acted completely indepen-
dently of each other (e.g., a number of axial
springs, each separately attached to ground but
not to each other), then the stiffness matrix would
be purely diagonal (that is, all terms off the diago-
nal in the matrix [K] would be zero).
Most structural problems have stiffness terms

clustered, or banded, around the diagonal. This
bandedness may be influenced by either the
node-numbering strategy or the element-num-
bering strategy. Various solution strategies
(solvers) are available in commercial codes,
and they exploit (or ignore) bandedness in dif-
ferent ways. Some commercial codes offer only
one solver; others may offer a half dozen or
more. Be aware that some solvers are sensitive
to the node-numbering strategy (e.g., sparse
solver, skyline solver), while some solvers are
sensitive to the element-numbering strategy
(wavefront, multifront). Iterative solvers, on
the other hand, are insensitive to node and ele-
ment numbering and are indeed insensitive to
bandedness. For this reason, the iterative sol-
vers are excellent for large, chunky continuum
problems, the kind of problems with large
bandwidth. Iterative solvers are usually well
suited to parallel computers (multiple central
processing units), whether the computers share

memory or not. Iterative solvers, however, are
not as efficient for problems with multiple load
cases, because each load case requires a repeti-
tion of the iteration strategy.
Dynamic structural problems add mass and

damping terms to the system of equations:

Ff g ¼ K½ � uf g þ C½ � du=dtf g þ M½ � d2u=dt2
n o

(Eq 26)

where {du/dt} and {d2u/dt2} are column vec-
tors of velocities and accelerations, respec-
tively. The viscous damping matrix [C] is
usually assumed to be proportional to either
the [K] matrix or the mass matrix, [M], for
computational efficiency. The [C] and [M]
matrices are generally banded. Special techni-
ques of lumping masses at nodes are often used
to make the [M] matrix diagonal for computa-
tional efficiency. Dynamic problems can be
solved in the time domain, using time-stepping
procedures starting from known initial condi-
tions. Because an additional solution is required
for each time increment, this analysis is expen-
sive. Dynamic problems, such as the determina-
tion of natural frequencies, can be solved in the
frequency domain as opposed to the time
domain. This is accomplished by assuming that
the displacement vector is a harmonic function:

fug ¼ ffgeiot ¼ ffgðcosotþ isin otÞ (Eq 27)

where

i ¼
ffiffiffiffiffiffiffi
�1
p

and t is time, ffg is the modal vector (vector of
unknown amplitude at the nodes), and o is the
natural frequency associated with the mode
shape. This assumption creates an eigenvalue
problem (Ref 17).

Nonlinear Finite-Element
Problems (Ref 18)

Many systems are nonlinear. These problems
usually require iterative solution techniques and
additional computer resources (e.g., disk space
and solution time).One basic example of a nonlin-
ear problem would be when stress causes plastic
deformation, so that strain is not directly propor-
tional to load. Large deflections can also result
in nonlinear problems, depending on geometry.
Problems of flat plates, for example, are usually
assumed to be linear if the lateral deflection does
not exceed the thickness of the plate. After that
point, the plate stiffens due to membrane effects.
Another type of large deflection problem occurs
when the direction of the load follows the defor-
mation of the structure. Still other types occur
when a gap is closed or opened, or one component
of an assembly strikes another.
Problems of inelastic material behavior are

another class of nonlinear problems. Problems
of creep, relaxation, hysteresis, phase change,
and residual stress fall into this category.

Fig. 12 Multipoint constraints. (a) Joining
incompatible elements. If u and v denote

displacements in the x and y directions, respectively,
and subscripts refer to the nodes, then u10 = (u2 + u3)/2
and v10 = (v2 + v3)/2. This assumes that node 10 is
halfway between nodes 2 and 3. (b) Simulating a rigid
body. For a rigid body motion �y; u2 ¼ u1L sin y�y and
v2 ¼ v1 þ L cosy�y. The motion of node 2 is
constrained to that of point 1. (c) Joining structural
elements to continuum elements. (1) Solid continuum
elements with three translational degrees of freedom per
node only. (2) These nodes are slaved to nodes
immediately above and below them in order to prevent
simulation of the mechanism (hinge). (3) Plate element
with bending stiffness (three translational degrees of
freedom, two rotational degrees of freedom)
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Fortunately, most nonlinear material models
used in finite-element solutions carry over from
disciplines that predate finite-element technol-
ogy (e.g., theory of plasticity). However, for
problems involving a high rate of deformation
(e.g., the forming of metal or the crash of a
vehicle), special finite-element software based
on so-called explicit integration techniques is
available (Ref 19).
A problem is nonlinear if the force-displace-

ment relationship depends on the current state,
that is, on current displacement, force, and
stress-strain relationship:

P ¼ KðP;uÞu (Eq 28)

where u is a displacement vector, P is a force
vector, and K is the stiffness matrix. Linear
problems form a subset of nonlinear problems.
For example, in classical linear elastostatics,
this relationship can be written in the form:

P ¼ Ku (Eq 29)

where the stiffness matrix K is independent of
both u and P. If the matrix K depends on other
state variables, such as temperature, radiation,
and so on, but does not depend on displacement
or loads, the problem is still linear. Similarly, if
the mass matrix is constant, the following
dynamic problem is also linear:

P ¼M€uþKu (Eq 30)

There are three sources of nonlinearities:
material, geometry, and boundary condition.
The material nonlinearity results from the non-
linear relationship between stresses and strains
due to material plasticity. Geometric nonlinear-
ity results from the nonlinear relationship
between strains and displacements or the nonlin-
ear relationship between stresses and forces. If
the stress measure is energetically conjugate to
the strain measure, both sources of nonlinearity
have the same form. This type of nonlinearity
is mathematically well defined but often difficult
to treat numerically. Boundary conditions such
as contact or friction are also sources of nonli-
nearities. This type of nonlinearity manifests
itself in several real-life situations, for instance,
in metal forming, gears, interfaces of mechanical
components, pneumatic tire, and crash. A load
on a structure causes nonlinearity if it changes
with the displacement and deformation of the
structure (such as pressure loading).
The kinematics of deformation can be

described by Lagrangian, Eulerian, and Arbi-
trary Lagrangian-Eulerian (ALE) formulations.
In the Lagrangian method, the finite-element
mesh is attached to the material and moves
through space along with the material. In the
Eulerian formulation, the finite-element mesh
is fixed in space, and the material flows through
the mesh. In the ALE formulation, the grid
moves independently from the material, yet in
a way that spans the material at any time. The
Lagrangian approach can be further classified
in two categories: the total and the updated

Lagrangian methods. In the total Lagrangian
approach, equilibrium is expressed with the
original undeformed reference frame, while, in
the updated Lagrangian approach, the current
configuration acts as the reference frame. In
the latter, the true or Cauchy stresses and an
energetically conjugate strain measure, namely,
the true strain, are used in the constitutive rela-
tionships. The updated Lagrange approach is
useful in:

� Analyses of shell and beam structure in
which rotations are large so that the nonlin-
ear terms in the curvature expressions may
no longer be neglected

� Large strain-plasticity analyses in which the
plastic deformations cannot be assumed to
be infinitesimal

In general, this approach can be used to analyze
structure where inelastic behavior causes large
deformations. The (initial) Lagrangian coordi-
nate frame has little physical significance in
these analyses, because inelastic deformations
are, by definition, permanent. Therefore, the
updated Lagrangian formulation is appropriate
for the simulations of sheet metal forming pro-
cesses. For theses analyses, the Lagrangian
frame of reference is redefined at the last com-
pleted iteration of the current increment. The
variational form of the equation for the static
problem in the updated Lagrangian approach
is given as:

ð
V

@dui
@xj

sijdV �
ð
�

duifid� ¼ 0 (Eq 31)

where V is the volume considered, G is the sur-
face on which the traction components fi are
imposed, and sij is the Cauchy stress. The line-
arized variational form of Eq 31 needed for the
Newton-Raphson numerical solver can be writ-
ten as:

ð
V

@dui
@xj

Cijkl
@�uk

@xl
dVþ

ð
V

@dui
@xj

sji
@�ui

@xl
dV

¼ �
ð
V

@dui
@xj

sijdV þ
ð
�

duifid�

(Eq 32)

The left side of Eq 32 corresponds to the
material and geometric stiffness, while its right
side is associated with the internal and external
force vectors, respectively. In the FEM, the left
side dominates the convergence rate, and the
right side directly controls the accuracy of the
solution.

Finite-Element Design

Finite-element methods are used mostly for
analysis of boundary-value problems. This
means that the problem is well set, with known
tool and material geometries, material and
interface properties, and realistic stress- and

displacement-imposed boundary conditions.
This type of application of the method is
referred to as FEA. However, in practice, the
final shape of the product is imposed, and the
manufacturing process must be designed
around it. Therefore, in order to improve the
conventional trial-and-error-based practices for
optimizing forming processes, either by experi-
ments or FEA, a finite-element design theory,
called ideal forming theory, was proposed
(Ref 20, 21). The finite-element implementation
involves a time-efficient one-step code,
providing not only the initial blank geometry
but all the intermediate shapes and the entire
load history necessary to achieve it, thus
providing invaluable information about the
ideal process parameters.
This application is referred to as finite-

element design, or the Ideal Forming Design
Theory. In this theory, materials are prescribed
to deform following the minimum plastic work
path. The final product shape is specified, and
the initial blank shape is obtained from the
global extremum plastic work criterion as a
one-step backward solution. Although the theory
is general enough to accommodate any other
form of constraints, the underlying physical
assumption of this extremum work condition is
that the strain gradients are minimized on the
overall part, thus departing as much as possible
from plastic flow localization modes. In order
to consider local thinning effects due to friction,
a method based on a modified extremum work
criterion has also been developed (Ref 22). The
ideal forming theory has been successfully
applied for sheet-forming processes to optimize
flat blanks (Ref 23–25) and also for bulk form-
ing in steady and nonsteady flows (Ref 26, 27).

Sheet Metal Forming

Nonlinear FEMs are becoming very popular
in sheet metal forming process simulations
(Ref 18). Nonlinearities occur in sheet metal
forming processes from elastoplastic material
behavior, large rotations, and contacts between
the tools and the blank.
Finite-element analyses of sheet metal form-

ing processes can be broadly classified into three
categories according to the element types used:

� Membrane analysis (plane stress without
bending stiffness)

� Shell analysis (plane stress with bending
stiffness)

� Continuum analysis (general stress state)

For sheet metal forming simulations, the shell
analysis is the most popular. Two basic
approaches concerning the development of non-
linear shell finite elements include:

� Classical shell elements
� Degenerated solid elements

The classical shell elements are directly
based on the governing differential equations
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of an appropriate shell theory. Despite the
potential economy of such elements, the devel-
opment of nonlinear shell elements involves
mathematical complexities. The degenerated
solid element, which was initiated by Ahmad
et al. (Ref 28) for the linear analysis of contin-
uum formulation, is reduced in dimensionality
by direct imposition of kinematics and constitu-
tive constraints. The works of Ramm (Ref 29),
Parish (Ref 30), Hughes and Liu (Ref 31, 32),
Dvorkin and Bathe (Ref 33), and Liu et al.
(Ref 34), among many others, constitute repre-
sentative examples of this methodology carried
out in the most general way for the nonlinear
regime. The application of shell elements to
sheet-forming simulations can be found in
Ref 35 to 40. The kinematic formulation for a
continuum-based shell is summarized in Ref 18.

Elastic-Plastic Stress Integration
(Ref 18)

Most rate-independent plastic models are for-
mulated in terms of rate-type constitutive equa-
tions, for which the integration method has a
considerable influence on the efficiency, accu-
racy, and convergence of the solution. In the
simulation of sheet-forming processes, the con-
stitutive equation is integrated along an
assumed deformation path.
Among the infinite ways to assume the defor-

mation path, the minimum plastic work path in
homogeneous deformation has been found to have
several advantages. Requirements for achieving
minimum plastic work paths in homogeneous
deformation are well documented in Ref 41 to
44.Theminimumworkpath,which is also the pro-
portional logarithmic (true) strain paths, is
achieved under two conditions. First, the set of
three principal axes of stretching is fixed with
respect to the material; second, the logarithms of
the principal stretches remain in a fixed ratio.
The incremental deformation theory based on

theminimumplasticworkpath enables convenient
decoupling of deformation and rotation by the
polar decomposition at each process increment.
The resulting incremental constitutive law is
frame-indifferent (objective), because the theory
uses a materially embedded coordinate system.
The incremental deformation theory is useful

for the FEM of rigid-plastic and elastoplastic
constitutive formulations. In rigid plasticity, the
theory was introduced for process analyses by
Yang and Kim (Ref 45), Germain et al. (Ref
46), Chung and Richmond (Ref 47, 48), and
Yoon et al. (Ref 49). For elastoplastic materials,
the incremental deformation theory has been suc-
cessfully applied for materials exhibiting isot-
ropy (Ref 50) and planar anisotropy (Ref 40, 51).
Continuum Models. The most popular

scheme for stress integration is the predictor-
corrector method (often called return mapping).
This method is applied in two successive steps:
the prediction step, during which a trial stress
state is estimated, and the corrector step, during
which a flow rule is applied by return mapping
procedures in order to bring (project) the stress

onto the yield surface or, in other words, to
ensure the consistency condition (i.e., the stress
state must be on the yield surface). During the
return mapping procedure, a reasonable
assumption for the deformation path must be
imposed. A return mapping procedure was first
introduced in the paper of Wilkins (Ref 52).
The works of Ortiz and Pinsky (Ref 53) and
Ortiz et al. (Ref 54) apply the closet point-pro-
jection method to perform the procedure in
plane-stress conditions. Later, Ortiz and Simo
(Ref 55) developed a new class of integration
algorithms based on the cutting-plane approach.
However, this approach has no clear physical
meaning in the deformation path viewpoint.
Yoon et al. (Ref 40) proposed the multistage
return mapping method based on incremental
deformation theory, which follows the mini-
mum plastic work path. In this work, it was
proven that, when the consistency condition
and normality rule (strain increment normal to
yield surface) are imposed, this new projection
during the current unknown step becomes the
closet point projection. The stress integration
procedure is briefly summarized as follows.
The increment of the Cauchy stresses is

given by applying the fourth-order elastic mod-
ulus tensor Ce to the incremental second-order
elastic strain tensor D«-D«p:

�s ¼ Ceð�«��«pÞ (Eq 33)

in which D« and D«p are the total and plastic
strain increments, respectively. In order to fol-
low the minimum plastic work path in the
incremental deformation theory, the logarithmic
plastic strain must remain normal to the yield
surface at the representative stress state, that is:

�«p ¼ ��«p
@�s
@s
¼ gm (Eq 34)

where m ¼ o
_
�s=@s is a symbolic notation that

represents the tensor of component

mij ¼ o
_
�s=@ij. The condition stipulating that

the updated stress stays on the strain-hardening
curve provides the following equation:

FðlÞ ¼ �sðsn þ�sÞ�hð�epn þ lÞ
¼ �s½sn þ Ceð�«�lmÞ��hð�epn þ lÞ ¼ 0

(Eq 35)

where the subscript “n” denote quantities at
step “n” in the simulation.
The predictor-corrector scheme based on the

Newton-Raphsonmethod is generally used to solve
the nonlinear system in Eq 35 for l��ep. However,
while amathematical solution to this equation does
exist, it can be difficult to obtain numerically if the
strain increment is not small enough. In the exam-
ples in the next section, a multistage return
mapping procedure based on the control of the
residual suggested by Yoon et al. (Ref 40) was
employed. The proposed method is applicable to
nonquadratic yield functions and general strain-
hardening laws without a line search algorithm,
even for a relatively large strain increment (10%).
At the end of the step, when Eq 35 is solved, all
kinematic variables and stresses are updated.
In order to consider the rotation of the aniso-

tropic axes, a co-rotational coordinate system
(constructed at each integration point), is
defined and initially coincides with the material
symmetry axes. In sheet forming, it is assumed
that the orthogonality of the anisotropy axes is
preserved during sheet forming under the iso-
tropic hardening assumption. This assumption
is generally considered as appropriate in sheet-
forming process simulations. From the polar
decomposition theorem, the deformation of a
material element represented by the deforma-
tion gradient tensor, F, is the combination of a
pure rotation, R, and a pure stretch, U (F =
RU). The rotation of the anisotropy axes is
updated incrementally at every step by the rota-
tion amount (R) obtained from the polar
decomposition (Fig. 13). For instance, if at the

Fig. 13 Rotation of anisotropic axes during deformation. F, deformation gradient tensor; R, pure rotation; U, pure
stretch; �m, unit vector for transverse direction; �l, unit vector for rolling direction
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first step ol and om are the unit vectors coincid-
ing with the rolling and transverse directions,
respectively, the updated axes are given by:

l ¼ R�l
m¼ R�m

(Eq 36)

Crystal-Plasticity Models. These models
account for the deformation of a material by
crystallographic slip and for the reorientation
of the crystal lattice. The influence of crystal
symmetry on elastic constants can be included,
and the strain-hardening and cross-hardening
effects between the slip systems can be
incorporated through the use of state variables.
Furthermore, a rate-dependent approach is also
typically employed to relate the shear stresses
and shear strains on the different slip systems.
The kinematics of the model were summarized
by Dao and Asaro (Ref 56). The deformation
gradient, F, is decomposed into a plastic defor-
mation, Fp, which is the summation of the shear
strain for each slip system, and a combination
of elastic deformation and rigid body motion
of the crystal lattice, Fe, as shown in Fig. 14,
that is:

F ¼ FeFp (Eq 37)

Because plasticity occurs by dislocation slip,
the plastic deformation rate, Lp, is determined
by the summation of the shear strain contribu-
tion over all of the slip system (Ref 56):

Lp ¼
X
ðsÞ

_gðsÞbðsÞnðsÞ (Eq 38)

Here, (s) denotes a slip system, n(s) is the
normal of the slip plane, and b(s) is the vector
in the slip direction. Both vectors are orthogo-
nal, that is, n(s) � b(s) = 0, and are assumed
to rotate with the elastic spin of the lattice.

In general, these vectors are not unit vectors
like in a phenomenological model because they
are allowed to stretch. Using Eq 38, the sym-
metric and skew symmetric parts of Lp, the rate
of deformation tensor Dp, and plastic spin Wp,
respectively, can be written as:

Dp ¼ 1=2 Lp þ LpT
� 	 ¼X

sð Þ
_g sð Þ1=2 b sð Þn sð Þ þ n sð Þb sð Þ

� �
or Dp ¼

X
sð Þ

_g sð ÞP sð Þ ðEq 39Þ

Wp ¼ 1=2 Lp þ LpT
� 	 ¼X

sð Þ
_g sð Þ1=2 b sð Þn sð Þ � n sð Þb sð Þ

� �
or Wp ¼

X
sð Þ

_g sð ÞW sð Þ ðEq 40Þ

where the tensors P(s) and W(s) have been intro-
duced for notational convenience.
Usually, the Cauchy or true stress, s, is

employed for the stress integration. However,
in this section, the Kirchhoff stress, t, is consid-
ered. By ignoring the elastic volume change,
the Cauchy stress is related to the Kirchhoff
stress, t, through the relationship t = Js, where
J is the determinant of Fe. Writing the rate of
deformation tensor as the sum of elastic and
plastic parts, an objective stress rate, t, can be
expressed as:

t
^ ¼K : D�

X
sð Þ

_g sð Þ K : P sð Þ þW sð Þ � t� t �W sð Þ
� 	

¼K : D�
X
sð Þ

_g sð ÞR sð Þ

(Eq 41)

where K is the fourth-order elastic modulus
tensor, and D is the rate of deformation tensor.
Then, the resolved shear stress at the end of the
time step becomes:

t
sð Þ
tþ�t ¼ t

sð Þ
t þ�t _t sð Þ ¼ t

sð Þ
t þ�tR sð Þ : D��t

�
X
að Þ

_g að ÞR sð Þ : P að Þ

(Eq 42)

where R(s) = K : R(s) + W(s) � t - t � W(s).
The resolved shear stress, t(s), also follows

the rate-dependent hardening rule:

t sð Þ ¼ go
_g sð Þ�� ��
_go

 !m

sign _g sð Þ
� �

(Eq 43)

where go is the shear yield stress on a slip
system.
Finally, the resolved shear stress defined by

Eq 42 and 43 must have the same value at
t + Dt:

Es _g sð Þ
� �

¼ t sð Þ
t þ�tRs : D��t

�
X
að Þ

_g að ÞR sð Þ � Pa�go
_g sð Þ�� ��
_go

 !m

sign _g sð Þ
� �

¼ 0

(Eq 44)

Equation 44 is a nonlinear equation. It is solved
with the Newton-Raphson method after lineari-
zation (Ref 57), that is:

Es _g sð Þ
� �

þ
X
að Þ

dEs

d _g að Þ d _g
að Þ ¼ 0 (Eq 45)

Bulk Working

The FEM has become a widely used tool in
materials forming industries. Some of the com-
mon metal-forming problems that are solved by
FEM software are insufficient die fill, poor
shape control, poor flow of materials, prediction
of cracks and voids that lead to fracture, and
poor final part properties. Finite-element analy-
sis has many advantages over the typical
closed-form solutions. It provides greater
insights into the behavior of the product and
the process, gives a good understanding of the
performance of the product before the actual
usage, is useful in product and process optimi-
zation, is a powerful and mature design and
analysis tool, and, most importantly, gives solu-
tions to irregular shapes, variable material prop-
erties, and irregular boundary conditions.

Historical Overview (Ref 58)

Since the 1970s, continuous improvement in
finite-element software and computing technol-
ogy have evolved rapidly in the analysis of 3-D
metal flow as well as heat transfer and stress
and strain distributions in metals forming. In
the 1980s and 1990s, many advances were
made in the modeling of metal-forming pro-
cesses using rigid-viscoplastic FEM in model-
ing of complex 3-D deformation.
The rigid-plastic FEM is formulated on the

basis of plasticity theory. Lee and Kobayashi
first introduced the rigid-plastic formulation inFig. 14 Multiplicative decomposition of deformation gradient. See text for description
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the 1970s (Ref 59). This formulation neglects
the elastic response of deformation calcula-
tions. In the late 1970s and early 1980s, a pro-
cessing science program (Ref 60) funded by
the United States Air Force was performed at
the Battelle Memorial Institute Columbus
Laboratories to develop a process model for
the forging of dual-property titanium engine
disks. These disks are required to have excel-
lent creep and high stress-rupture properties in
the rim and high fatigue strength in the bore
region. An FEM-based code, ALPID (Ref 61),
was developed under this program.
Thermoviscoplastic FEM analyses (Ref 62)

were also performed to investigate the tempera-
ture variation during hot-die disk-forging pro-
cesses. The flow stress of thermo-rigid-
viscoplastic material is a function of tempera-
ture, strain, and strain rate. Approximately five
aerospace manufacturers pioneered the use of
the code. Based on the same foundation,
DEFORM was developed for 2-D applications
in 1986. Due to the large deformation in the
metal-forming application, the updated
Lagrangian method always suffers from mesh
distortion and consequently requires many
remeshings to complete one simulation.
Two-dimensional metal-forming procedures

became practical for industrial use when auto-
mated remeshing became available in 1990
(Ref 63). In the beginning of the 1980s, the
PDP11 and the CDC/IBM mainframe compu-
ters were used. In the mid-1980s, the VAX
workstation became the dominant machine for
running the simulations. In the late 1980s,
UNIX workstations became the primary com-
puting facility.
Unfortunately, the majority of the metal-

working processes are 3-D, where a 2-D
approach cannot approximate reality satisfacto-
rily. The initial 3-D code development began in
the mid-1980s (Ref 64). One simulation with
backward extrusion in a square container was
reported to take 152 central processing unit
hours on a VAX-11/750. In addition to the need
for remeshing, a more complicated process was
estimated to take several weeks. Due to the lack
of computing speed in the 1980s for 3-D appli-
cations, the actual development was delayed
until the 1990s (Ref 65).
Adoption of computer simulation for bulk

deformation processing has been brought about
by the great increases in computer power that
occurred in the 1990s and the development of
FEM software with automated mesh generation
(AMG) capability (Ref 66). The development
of AMG has eliminated the time-consuming
and error-prone process of generating a new
mesh on a highly deformed body by interpolat-
ing the data from the old mesh. AMG is cur-
rently available in software specifically
designed for bulk deformation processing, such
as DEFORM 2D and DEFORM 3D, as well as
on other commercially available FEM codes
such as MARC and MacNeal-Schwendler that
have forging packages. With reasonably fast
computers, simulation of 2-D problems, such

as axisymmetric and plane-strain geometries,
can be done in minutes or hours, but 3-D simu-
lations may not always be cost-effective,
depending on the required engineering and
computer time.
Since then, many ideas to develop a practical

3-D numerical tool have been evaluated and
tested. The successful ones were finally imple-
mented. After the mid-1990s, significant com-
puting speed improvement was seen in personal
computer (PC) technology, coupled with a lower
price as compared to UNIX-based machines. For
this reason, the PC has become the dominant
computing platform. Due to the competition for
better product quality at a lower production cost,
process modeling gradually became a necessity
rather than a research and development tool in
the production environment.
Although FEM programs were initially

developed for metalworking processes, it was
soon realized that metalworking is just one of
the many operations before the part is finally
installed. Prior to forging, the billet is made
by primary forming processes, such as cogging
or bar rolling from a cast ingot. After forging,
the part is heat treated, rough machined, and
finish machined. The microstructure of the part
continuously evolves together with the shape.
The residual stress within the part and the asso-
ciated distortion are also changing with time.
To really understand product behavior during
the service, it is essential to connect all the
missing links, not only the metalworking.
In the mid-1990s, a small business innovative

research program was awarded by the U.S. Air
Force and the U.S. Navy to develop a capability
for heat treatment and machining (Ref 67). To
track the residual-stress distribution, elastoplastic
and elastoviscoplastic formulations were used.

Microstructural evolution, including phase trans-
formation and grain-size evolution, was imple-
mented. Distortion during heat treatment and
material removal during machining processes
can thus be predicted.
During the 1990s, most efforts were focused

on the development of the FEM for computer-
aided engineering applications. However, the
engineer’s experience still plays a major role
in achieving a solution to either solving a pro-
duction problem or reaching a better process
design. The FEM solution-convergence speed
depends highly on the engineer’s experience,
and the interpretation of the results requires
complete understanding of the process. As the
computing power continues to improve, optimi-
zation using systematic search becomes more
and more attractive (Ref 68).

Methodologies

To account for the complicated thermome-
chanical responses to the manufacturing pro-
cess, four FEM modules, as shown in Fig. 15,
are loosely coupled. They are the deformation
model, the heat-transfer model, the microstruc-
tural model, and, in the case of steel, a car-
bon-diffusion model.
Deformation Model. For metalworking

applications, the formulation must take into
account the large plastic deformation, incom-
pressibility, material-tool contact, and (when
necessary) temperature coupling. To avoid
deformation locking under material incompres-
sibility, the penalty method and selective inte-
gration method are usually used for the 2-D
quadrilateral element and 3-D brick element,
while the mixed formulation for the 3-D tetra-
hedral element is employed. It is generally

Fig. 15 View of the various coupled phenomena within metalforming
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agreed that the quadrilateral element and brick
element are preferred in FEM applications.
Due to the difficulty in both remeshing and (fre-
quently) the initial meshing with a brick mesh
in most forming applications, a tetrahedral
mesh is generally used.
Due to its simplicity and fast convergence,

the rigid-plastic and rigid-viscoplastic formula-
tions are used primarily for processes when
residual stress is negligible. The elastoplastic
and elastoviscoplastic formulations are impor-
tant for calculating residual stress, such as in
heat treatment and machining applications.
However, it is very difficult to accurately char-
acterize residual-stress evolution for forming at
an elevated temperature, especially when there
is significant microstructural changes, including
phase transformation, precipitation, recrystalli-
zation, texture changes, and so on.
Because metal-forming processes are transient,

the updated Lagrangian method has been the pri-
mary FEM method for metal-forming applica-
tions. Using this method for certain steady-state
processes such as extrusion, shape rolling, and
rotary tube piercing, however, may not be compu-
tationally efficient. In these special applications,
the arbitrary Lagrangian Eulerianmethod recently
has been used with great success.
Heat-Transfer Model. The heat-transfer

model solves the energy balance equation. The
three major modes of heat transfer are conduc-
tion, convection, and radiation. Conduction is
the transfer of heat through a solid material or
from one material to another by direct contact.
Generally speaking, below 540 �C (1000 �F),
convection has a much more pronounced effect
than radiation. Above 1090 �C (2000 �F), how-
ever, radiation becomes the dominant mode of
heat transfer, and convection can essentially
be considered a second-order effect. Between
these temperatures, both convection and radia-
tion play an important role.
In order to predict the temperature evolution

accurately during metalworking processes, sev-
eral important thermal-boundary conditions
must be considered:

� Radiation heat with view factor to the sur-
rounding environment

� Convection heat to/from the surrounding
environment, including the tool contact, free
air, fan cool, water or oil quench

� Friction heat between two contacting bodies.
It is also noted that friction heating is the
primary heat source in the friction-stir weld-
ing process.

� Deformation, latent heat, and eddy current
are the primary volume heat sources. Defor-
mation heat is important for large, localized
deformation and fast processes, because the
adiabatic heat will increase the local temper-
ature quickly, and material is likely to
behave differently at elevated temperatures.
It plays an important role in metalworking,
inertial welding, translational friction weld-
ing, and the cutting process. The latent heat
comes from the phase transformation or

phase change, and eddy-current heat is gen-
erated by electromagnetic fields.

Microstructural Model. Grain size is an
important microstructural feature that affects
mechanical properties. For example, a fine grain
size is desirable to resist crack initiation, while a
larger grain size is preferred for creep resistance.
To obtain optimal mechanical properties, precise
control of the grain size is crucial. In order to
achieve a desirable microstructural distribution,
as-cast materials usually undergo multiple stages
of forming, such as billet conversion and closed-
die forging, and multiple heat treatment steps,
such as solution heat treating and aging.
During thermomechanical processing, a dis-

location substructure is developed as deforma-
tion is imposed. The stored energy can
provide the driving force for various restorative
processes, such as dynamic recovery or recrys-
tallization. On the completion of recrystalliza-
tion, the energy can be further reduced by
grain growth, in which grain-boundary area is
reduced. The kinetics of recrystallization and
grain-growth processes are complex. In order
to predict the grain-size distribution in finished
components, a basic understanding of the evo-
lution of microstructural evolution during com-
plex manufacturing sequences, including the
primary working processes (ingot breakdown,
rolling, or extrusion), final forging, and heat
treatment, must be obtained. Hence, the devel-
opment of microstructural evolution models
has received considerable attention in recent
years. Recrystallization behavior can be classi-
fied into three broad categories: static, metady-
namic, and dynamic recrystallization (Ref 69).
The description of each recrystallization mode

as well as static grain growth is well documented
(Ref 70). Sellars’ model has been used for static
and metadynamic recrystallization, and the
Yamada model has been used for dynamic
recrystallization. Microstructural evolution in
superalloys is complicated by the precipitation
of g0, g00, and d phases (Ref 67). However, the
present phenomenological approach neglects
the specific effect that such phases have on the
mechanisms of microstructural evolution.
Phase transformation is also another important

aspect for material modeling (Ref 71). It is not
only critical to achieve desirable mechanical
properties but also to better understand the resid-
ual stress and the associated distortion. Phase
transformation can be classified into two cate-
gories: diffusional and martensitic. Using carbon
steel as an example, the austenite-ferrite and aus-
tenite-pearlite structure transformations are gov-
erned by diffusional-type transformations. The
transformation is driven by a diffusion process
depending on the temperature, stress history,
and carbon content and is often represented by
the Johnson-Mehl equation:

� ¼ 1� expð�btnÞ

where F is the fraction transformed as a func-
tion of time, t, and b and n are material

coefficients. The diffusionless transformation
from austenite to martensite usually depends
on temperature, stress, and carbon content.

Defect Prediction

Simulation of metal flow in dies has
advanced to the stage where it can anticipate
the formation of defects, such as the fold defect
shown in Fig. 16. Another example is the pre-
diction of the suck-in defect found in extrusion
(Ref 73). This defect occurs when oxide on the
face of the billet is transferred by plastic defor-
mation into the interior of the extruded part.

Fig. 16 Example of use of finite-element modeling
software for predicting the formation of a

fold defect. Source: Ref 72
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Note in Fig. 17(a) the two points “x” and “x”
on the top face of the billet. As extrusion pro-
ceeds, these points move closer together, and
at (d) they are “sucked-in” to both lie on the
centerline of the extrusion.
Predicting Onset of Ductile Fracture. An

important goal of FEM software for bulk defor-
mation processing is to predict the onset of
ductile fracture. The DEFORM software incor-
porates a subroutine for calculating the likeli-
hood of fracture using the Cockcroft-Latham
criteria. The damage value C in Eq 10 was
determined from the true stress-true strain curve
measured in both compression and with a
notched tension test, and then the criterion
was used successfully to predict failure in mul-
tipass cold extrusion and cold compression of a
cylinder with a midheight collar (Ref 75). Other
studies (Ref 76) have shown that the Cockcroft-
Latham criteria and the Oyane criteria (Ref 77)
are equally capable of predicting the site of
fracture initiation and the critical value of dam-
age. While the Cockcroft-Latham criteria has
the advantage of mathematical simplicity, it is
sometimes criticized as not having a physical
basis and of not being sensitive to the hydro-
static state of stress. The Oyane criteria, while
being more complex, is based on a void growth
model of failure and contains a term for sm.

Forging

Commercially available FEM software tools
are used extensively by major forging suppliers
because of their accuracy, speed, versatility,
and ability to dramatically reduce forging pro-
cess and die development cost. The FEM soft-
ware tools are widely used to accurately
determine press loads and die stresses, to simu-
late metal flow in dies, and to a lesser extent,
to determine workability limits (Ref 74).
Advanced applications are concerned with

prediction of microstructure and properties and
determination of elastic recovery and residual
stresses.
The dies for a hot-die or isothermally forged

part can be designed today (2009) using FEA
for a fraction of the cost and cycle time it took
just a decade ago using trial-and-error or empir-
ically based design rules. Finite-element analy-
sis tools enable a designer to perform die stress
analysis to ensure the forge process will not
plastically deform the dies, which is especially
important when considering the cost of die
materials for these processes. In addition, these
analytical tools enable the designer to optimize
the forging shape and process to get the nearest
net part shape possible without introducing
forge defects such as cracks, lack of fill, or laps
by ensuring the forge temperature and strain

rates stay within the optimal forge process
window.
Preform Design. An important area in simu-

lation is to design the series of intermediate
shapes (preforms) to go from an initial forging
billet to the final shape (Ref 72). Figure 18
shows an example of the TEUBA (Tetrahedral
Element Upper Bound Analysis) simulation
software, a fast preform design package
(Ref 78). This provides a reverse simulation,
in which the final forging is shown at (a), and
the dies are forced apart, creating a series of
possible intermediate shapes. As shown in
Fig. 18, the forging blank (i) would be placed
in the first die impression (f) that would pro-
duce the shape (d). This would be transferred
to the next die (c) that would produce the final
part (a).

Fig. 17 Use of finite-element modeling software to
predict the formation of a suck-in defect in

extrusion. Source: Ref 74

Fig. 18 Example of the use of the TEUBA software for determining forging preforms by reverse simulation. Source:
Ref 72
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Forging Die Design with FEM. Figure 19
shows the effective strain predictions for an iso-
thermally forged IN 100 turbine disk. Shown
are the effective strains by location once the
die is completely filled. Strain and strain(�)
rate predictions are useful for predicting and
controlling microstructural response (Ref 79,
80) and possible defect orientations and loca-
tions. Figure 20 shows predictions of strain rate
for the same part at a time step of peak strain
rate, which are useful in determining whether
or not the strain rates fall within the optimal
process window. Successful application of
FEA tools typically requires knowledge of the
thermophysical properties of the die and mate-
rial, flow stress as a function of temperature
and strain rate, target process parameters, and
friction coefficient between the part and die.
Based on successful application of these ana-

lytical tools to forging process design and
development, their capability has been broad-
ened to include microstructural evolution dur-
ing the forge process (Ref 81), heat transfer
during subsequent heat treatment operations,
the evolution of microstructure, mechanical
properties, residual stress, and distortion due
to heat treatment or subsequent machining.
Figures 21 and 22 show examples of g0 size
and yield-strength predictions following a post-
forge heat treat operation for the same IN 100
turbine disk shown in the previous figures.
The analytical tool used for this work enables
the user to integrate regression-based or first-
principle-based equations for prediction of
microstructure, mechanical properties, or creep
relaxation for residual-stress prediction.

Shape Rolling

The analysis of 3-D metal flow, heat transfer,
and stress and strain distributions during shape

rolling is done by FEM software using the
rigid-viscoplastic FEM. In modeling of com-
plex 3-D shape rolling, the workpiece is divided
into elements having simple 3-D shapes (eight-
node hexahedral elements have been used most
commonly for rolling problems). Most FEMs
for multipass shape rolling adopt a steady-state
approach (also referred to as the Eulerian
approach). In the steady-state approach,
stream lines and flow stress distributions are
iteratively updated until numerical convergence
is attained. The computation time using the
steady-state approach is significantly shorter
than that using the non-steady-state approach.
The rigid-plastic FEM is formulated on the

basis of plasticity theory. More information
about various finite-element formulations for
modeling rolling is available in published liter-
ature (Ref 82–85). Figure 23 shows the struc-
ture of a finite-element program, ROLPAS-M,
developed for shape rolling (Ref 86). The pro-
gram, in addition to modeling metal flow, also
models heat transfer in the roll bite as well as
in the interstand region. Figure 24 shows the
shape of the workpiece as predicted by ROL-
PAS-M in the roll bites of an eight-pass square
to round bar rolling sequence. Such FEMs are
capable of predicting the metal flow, rolling
loads, and torques as well as stresses, strains,
and temperatures at the nodal locations in the
workpiece fairly accurately. Finite-element
analysis has been used widely not only for ana-
lyzing new and existing roll pass designs but
also for optimizing them (Ref 87, 88). A study
(Ref 89) used FEA in combination with Tagu-
chi Analysis to develop roll pass design guide-
lines for optimizing robustness of the rolling
process (in other words, to make it least sensi-
tive to process variation). More recently, FEA
has been used for the simulation of microstruc-
tural evolution during hot rolling with good
success (Ref 86, 90–95).

Modeling of Microstructure Evolution in
Hot Rolling. Traditionally, rolling process
designers have been primarily concerned with
ensuring correct metal flow during the rolling
process. In doing so, they normally made use
of their experience as well as empirical and ana-
lytical guidelines that had been established over
the years. Recently, there has been a growing
emphasis on rolled product structure and proper-
ties. New grades of microalloyed steel that have
been developed for cold and warm forging appli-
cations call for precise control over the product
microstructure. Control over microstructure
requires a good understanding of the effect of
rolling mill variables on the resulting micro-
structure. Variables such as preheating time and
temperature, rolling deformation, deformation
rate, interstand cooling, and postrolling con-
trolled cooling affect the grain size distribution,
recrystallization, and phase-transformation kinet-
ics that ultimately determine the final micro-
structure and mechanical properties in the
rolled product. Microstructural changes occur-
ring at different stages in the rolling process
affect the final microstructure and properties of
the rolled product. A typical thermomechanical
cycle and microstructural evolution during the
rolling process is shown in Fig. 25.
Controlled rolling to obtain desired micro-

structure and properties is generally known as
thermomechanical control processing (TMCP).
In recent years, TMCP has been effectively
used in the hot rolling of plates. More recently,
this technique has been applied for the hot roll-
ing of bars, rods, and shapes using an integrated
approach (Ref 86, 95).
In TMCP, history of temperature, strain, and

strain rates at various locations in the work-
piece obtained using FEA or other analytical
methods are used in conjunction with micro-
structure evolution models to model micro-
structural changes during rolling—specifically,

Fig. 19 Contour map of predicted effective strain for an isothermally forged turbine disk
Fig. 20 Contour map of predicted strain rate for an isothermally forged turbine

disk at a time point where strain rates peak at critical locations
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static and dynamic recrystallization, grain
growth, and phase transformation. Because of
the complexity of the physical model as well
as the large number of computations involved,
such analyses are typically carried out using
specially developed computer programs. One
such program, ROLPAS-M (Ref 86), uses an
approach illustrated in Fig. 26. The program
consists of three main modules:

� The central feature of the integrated system
is a 3-D finite-element program, ROLPAS,
for simulating multipass shape rolling. The
nonisothermal deformation analysis in ROL-
PAS is based on rigid-viscoplastic assump-
tion of the material behavior and uses
eight-node isoparametric hexahedral ele-
ments. Deformation within the roll gap is
assumed to be kinematically steady.

� Next is a microstructure evolution module,
MICON, which was developed and integrated
into ROLPAS to enable modeling of austenite
evolution.MICONuses the thermomechanical

history computed by the FEM model in con-
junction with microstructure evolution mod-
els to model the evolution of austenite
during hot rolling. The microstructural
changes occurring in bar rolling are primarily
due to static recrystallization and grain
growth that occur in the interstand region.
In cases where accumulated strain is large
enough to nucleate dynamic recrystallization,
metadynamic recrystallization is modeled in
the interstand region following the approach
used by Sellars (Ref 93, 94). The microstruc-
tural changes in the interstand are used in

computing the retained strain and the grain
sizes of the recrystallized and unrecrystallized
fractions and used to compute the flow stress
during the next pass.

� Last in the system is a module for modeling
phase transformation, called AUSTRANS. It
uses the temperature history after rolling
(computed by ROLPAS) and isothermal
transformation curves to model the transfor-
mation of austenite to ferrite, pearlite, bainite,
and martensite. This model also uses struc-
ture-property relationships to predict the
mechanical properties of the rolled product.

Fig. 23 Structure of program for steady-state finite-element analysis of hot rolling. Source: Ref 86

Fig. 21 Prediction of gamma prime size (angstroms)
based on cooling rate from postforge

solution heat treat temperature. Predicted size versus
measured size

Fig. 22 Prediction of yield strength (ksi) based on
predicted gamma prime size
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A recent study (Ref 96) has reported work on
development of a system that combines a phys-
ical metallurgy model with an artificial neural
network to determine microstructure and
mechanical properties of hot-rolled steel in real
time. Such advances are expected to yield sub-
stantial improvements in the quality and pro-
ductivity of rolled products.
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Computational Fluid Dynamics Modeling*

COMPUTATIONAL FLUID DYNAMICS
(CFD) is a discipline of computer-aided
engineering (CAE) together with computer-
aided design (CAD) and computer-aided
manufacturing (CAM). In this overview, CFD
is described in terms of:

� Scope of CFD and its utility for engineering
� Basic technical foundation for CFD
� How CFD is incorporated into engineering

product and process design

Background and History

Computational fluid dynamics has as its
objective the numerical solution of fluid-flow
equations. The calculus problem of solving a
coupled system of nonlinear partial differential
equations (PDEs) for the variables of interest
(e.g., velocity, pressure, and temperature) is
transformed into an algebra problem of solving
a large system of simultaneous linear equations
for discrete unknowns that represent the state
of a thermal-fluids system; the latter is amena-
ble to numerical solution on a digital computer.
This is a somewhat abstract description of

CFD, but it is necessary to speak in general terms
when introducing a subject that encompasses such
a wide variety of solution techniques. This over-
view discusses finite-difference, finite-volume,
finite-element, spectral, and some computational
particle methods. The emphasis is on the first
three, because these are the methods that are pri-
marily used in contemporary CFD codes for engi-
neering design.
In this article, the terminology “computa-

tional fluid dynamics” is reserved for computa-
tionally intensive three-dimensional simulations
of thermal-fluids systems where nonlinear
momentum transport plays an important role.
It does not encompass all branches of numerical
analysis as applied to fluid-dynamics problems.
In particular, consideration of zero- or quasi-
dimensional analysis of fluids systems (Ref 1, 2)
and linear heat conduction or potential flow pro-
blems (Ref 3, 4) has been excluded.
The practice of CFD began with the advent

of computers; indeed, the first computer was
developed, in part, to solve fluid-flow

equations. It was recognized by the developers
of the atomic bomb at Los Alamos National
Laboratory that many fluid-dynamics problems
were impossible to solve by analytic means.
What was needed was a machine that could per-
form the massive number of calculations neces-
sary to solve the flow equations by simple
finite-difference methods. The ENIAC com-
puter began operating shortly after World War
II, and its first calculations were to test various
configurations for a hydrogen bomb (Ref 5).
Ensuring the safety and reliability of modern
nuclear weapons remains a major impetus for
the development of more powerful computers
and more efficient numerical techniques for
solving the fluid-flow equations (Ref 6).
Initially, most numerical solutions were lim-

ited to flows that could be approximated as spa-
tially one- or two-dimensional; the time and
expense of performing three-dimensional cal-
culations remained prohibitive. Over the last
30 years, however, CFD calculations of three-
dimensional flows have become more common.
This has heightened enormously the interest in
CFD among engineers, because most real flows
are three dimensional. In fact, most fluid-flow
problems encountered in industry are so com-
plex that the only method of analysis to which
they are amenable is CFD. Thus, although
use of CFD began only 60 years ago, it is
difficult to find problems in fluid dynamics to
which computer solution has not been brought
to bear.
The capability to perform three-dimensional

CFD has resulted primarily from the availabil-
ity of faster computers with larger memories
(Fig. 1) (Ref 7). The development of parallel
and massively parallel computers promises to
further improve the speed and extend the appli-
cability of CFD. A recent simulation of the
oceans (Ref 8, 9) serves to illustrate the prob-
lem size and computational requirements that
have been realized in modern applications. This
problem was run on a 512-node massively par-
allel computer, requiring ten gigabytes of mem-
ory (giga = billion, one byte = eight bits). It ran
at a computational speed of four gigaflops
(“flops” = floating point operations per second)
and required 80 days of computer time. A plot
of ocean surface temperature obtained in this
simulation is shown in Fig. 2. Computers with

maximum performance at one teraflop (tera =
trillion) are now available, and petaflop compu-
ters (peta = 1000 trillion) are being planned
(Ref 10).
At the same time, improved numerical meth-

ods have yielded higher computational effi-
ciency, that is, fewer operations and/or less
memory for a given accuracy. Among the most
important of these advances has been the devel-
opment of faster methods for solving implicit
difference approximations (see the following
section). A third enabler for three-dimensional
CFD has been the formation of improved
finite-volume and finite-element methods that
better accommodate the complex geometrical
boundaries that characterize engineering flows.
Examples of engineering applications are given
later in this article.
The advent of three-dimensional calculations

has increased the engineering relevance of
CFD, but many obstacles remain to be over-
come before CFD realizes its full potential as
an engineering design tool. Foremost among
these is spatial resolution. Most flows of practi-
cal interest have features whose relevant spatial
and temporal scales span many orders of mag-
nitude. For example, in an automotive four-
stroke-cycle spark-ignited internal-combustion
engine operating at 2000 rev/min, hydrody-
namic scales range from 0.01 mm (0.0004 in.)
(the turbulence microscale) to 100 mm (4 in.)
(the bore diameter); flame thickness (stoichio-
metric, undiluted reactants) is in the range of
0.01 to 0.10 mm (0.0004 to 0.004 in.); and
spray droplets issuing from a typical port-fuel
injector have diameters as small as 0.10 mm
(0.004 in.) (Ref 11). Computers do not exist,
and will not exist in the foreseeable future, that
can store all the numbers required to fully
resolve these phenomena. Thus, the effects of
small-scale, unresolvable features on the large-
scale, average flow features of interest are “mod-
eled” through modifications to the governing
PDEs. Examples of models include turbulence
models, combustion models, and multiphase
flow models. All models necessarily introduce
imprecision, and an ongoing goal of research is
to improve the accuracy of these models.
Other issues for three-dimensional engineer-

ing CFD include geometry acquisition and grid
generation, numerical accuracy, and diagnostics

*Adapted from article by P.J. O’Rourke, D.C. Haworth, and R. Ranganathan, Computational Fluid Dynamics, Materials Selection and Design, Volume 20, ASM Handbook, ASM International,
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to extract the physical information of interest
from the computations. Modeling and other
issues are discussed further in subsequent
sections.

Governing Equations

The governing equations of fluid dynamics
and an introduction to the CFD techniques for
their solution are given in this section. Also,
basic terminology used by practitioners of
CFD is introduced. Readers who are not inter-
ested in the technical foundation of CFD can
proceed to the section “Computational Fluid
Dynamics for Engineering Design” in this
article.

The equations of fluid dynamics can be
derived from kinetic theory or continuum
points of view (Ref 12–14), each of which com-
plements the other. Kinetic theory regards the
fluid as made up of molecules subject to colli-
sions and intermolecular forces. Kinetic theory
derivations are valid only for dilute gases but
give detailed information about how such trans-
port phenomena as stresses and heat fluxes arise
from molecular fluctuations, which in turn are
related to the average molecular properties for
which the fluid equations solve. Continuum
derivations regard the fluid as a continuous
medium and show the applicability of the fluid
equations to a much broader class of media than
dilute gases but do not give detailed informa-
tion about transport phenomena.
The Equations of Continuous, Compress-

ible Media. Three basic physical principles,
applicable to any continuous medium, are used
in continuum derivations:

� Conservation of mass
� Newton’s second law that force equals mass

times acceleration
� The first law of thermodynamics, which

states that total energy, in all its forms, must
be conserved

These three principles lead to the following
three equations of motion: the mass, or continu-
ity, equation:

@r
@t
þ @rui

@xi
¼ 0 (Eq 1)

the momentum equation:

@rui
@t
þ @ðruiujÞ

@xj
¼ @�ij

@xj
þ rFi (Eq 2)

the total energy equation:

@rE
@t
þ @ðrEujÞ

@xj
¼ @ð�ijujÞ

@xi
� @Qj

@xj
þ rFiui (Eq 3)

These equations are written in Cartesian tensor
notation (Ref 15), according to which the
subscripts i and j take the values 1, 2, or 3
corresponding to the three Cartesian coordinate
directions. A subscript that appears just once in
a term takes on one of the three values 1, 2, or
3; repeated subscripts in a term denote a summa-
tion of that term over all three coordinate direc-
tions. The other notation in Eq 1 to 3 is defined
in Table 1.
The total energy E is the sum of the local

flow kinetic energy and its internal energy e:

E ¼ eþ 1

2
u2i (Eq 4)

Alternative energy equations for e and for
enthalpy h = e + p / r, where p is the pressure,
can easily be derived using Eq 1 to 3. Compu-
tational fluid dynamics codes often solve inter-
nal energy or enthalpy equations, in place of
Eq 3, when calculating compressible flows.
The previous equations are expressed in

Eulerian form; that is, the time derivative is taken
at a fixed point in space. This contrasts with the
Lagrangian form, in which the time derivative
is taken following a fluid element (Ref 14).
Although the Eulerian form of the equations is
most often used in CFD, there are CFD methods
that approximate the Lagrangian equations.
When completed with constitutive relations

appropriate for fluids, these are the basic equa-
tions of compressible fluid dynamics. In prac-
tice, one often encounters applications in
which extensions of these equations are neces-
sary. Among the most common are extensions
to multicomponent and chemically reactive

Fig. 1 Growth in computer hardware performance,
1970 to 1995. (a) Memory chip capacity

doubles every 1.5 years. (b) Clock rate. (c) Peak single-
process megaflops. Source: Ref 7

Table 1 Computational fluid dynamics
nomenclature

Symbol Definition

Cp Specific heat at constant pressure
Cv Specific heat at constant volume
e Internal energy
E Total energy
F Body force per unit mass
h Enthalpy
K Turbulent kinetic energy
P Pressure
Q Heat flux
R Universal gas constant
S Rate of deformation
t Time
T Temperature
u Velocity
W Molecular weight
x Spatial location
d Kronecker delta function
e Dissipation rate of turbulent kinetic energy
k Heat conductivity
l Second coefficient of viscosity
l0 Bulk viscosity
m First coefficient of viscosity
r Mass density
S Stress

Fig. 2 Ocean surface temperatures from a recent
computational fluid dynamics simulation of

the North Atlantic Ocean. Source: Ref 8
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flows (Ref 16), to magnetohydrodynamic flows
(Ref 17), and to flows with radiative heat trans-
fer (Ref 18). It is beyond the scope of this over-
view of CFD to give these extended equations,
and the reader is referred to the aforementioned
references for this information.
Constitutive Relations of Fluid Flow. To

complete these equations, the stress Sij and heat
flux Qi need to be expressed in terms of known
fluid variables and their derivatives. These
expressions are known as constitutive relations.
A fluid is a medium for which the nonhydro-
static part of its stress depends only on its rate
of deformation Sij. The quantity Sij is given by:

Sij ¼ 1

2

@ui
@xj
þ @uj

@xi

� �
(Eq 5)

Thus, a fluid has no memory of its previous
configurations. This fact, together with the
assumption of an isotropic medium in terms of
its microstructure, allow the expression
(Ref 14) of the full stress as:

�ij ¼ 2mSij þ lSkkdij � pdij (Eq 6)

where dij is the Kronecker delta function
(Ref 15). Fluids with this form of stress tensor
are called Newtonian fluids. The thermody-
namic pressure p and the first and second coef-
ficients of viscosity m and l, depend only on the
local thermodynamic state of the fluid. Often,
the second coefficient of viscosity in Eq 6 is
replaced by the bulk viscosity l0, defined by:

l0 ¼ lþ 2

3
m (Eq 7)

The heat flux Qi depends on gradients in
temperature, again assuming an isotropic fluid
Qi can be written:

Qi ¼ �� @T

@xi
(Eq 8)

This is Fourier’s heat conduction law, and k
is called the heat-conduction coefficient or sim-
ply the heat conductivity. Its value depends on
the local thermodynamic state of the gas. When
one substitutes Eq 6 for the stress tensor and Eq
8 for the heat-flux vector into Eq 1 to 3, the
resulting equations are called the compressible
Navier-Stokes equations.
The fluid equations are completed by the

specification of the quantities p, e, m, l, and k
in terms of the local fluid temperature T and
density r. The equations specifying p and
e are referred to as thermal and caloric equa-
tions of state, respectively. For a so-called ideal
gas, these are given by:

p ¼ r
R

W
T (Eq 9)

and

e ¼
ðT

CvðT 0Þ dT 0 (Eq 10)

where the specific heat at constant volume Cv is
a function of temperature. Alternatively, the
enthalpy h is given by:

h ¼
ðT

CpðT 0Þ dT 0 (Eq 11)

where, from the definition of h and the thermal
equation of state Eq 9, the specific heat at con-
stant pressure Cp is given by:

Cp ¼ C� þ R

W
(Eq 12)

Values of Cv and Cp versus temperature are
given in Ref 19 and 20.
The quantities m, l, and k are called transport

coefficients. How they are related to the local
thermodynamic state of the fluid and its molec-
ular properties are given in Ref 21. Given an
expression for the viscosity m, the heat conduc-
tivity k can frequently be approximated by:

� ¼ mCp

Pr
(Eq 13)

where Pr is the Prandtl number, whose value is
nearly constant and often of order unity.
Simplifications of the Fluid-Flow Equa-

tions. For certain flow situations, considerable
computer time can be saved by solving simpli-
fied forms of the compressible flow equations.
In this section, the steady-state, inviscid, and
incompressible approximations are introduced,
and the circumstances under which they may
be used are described.
The steady-state approximation is obtained

simply by dropping the time-derivative terms
in Eq 1 to 3. While solving the steady-state
equations can often save computer time, some-
times CFD-solution techniques for the steady-
state equations have what are called conver-
gence difficulties, and steady-fluid-flow solu-
tions are more reliably obtained by calculating
the long-time limits of solutions to the unsteady
equations (Ref 22).
The inviscid, or Euler, equations are obtained

by neglecting the viscosity and heat-conduction
terms in the preceding equations. A necessary
condition for the applicability of the Euler
equations is that the Reynolds number Re be
much greater than one, where Re is defined by:

Re ¼ ruL
m

(Eq 14)

In Eq 14 r, u, and m are characteristic values of
the density, velocity, and visocity, respectively,
of the fluid, and L is a characteristic distance
over which the velocity changes appreciably,
also called a gradient length. In a flow to which
the Euler equations apply, L is typically the
dimension of the apparatus that bounds the
flow. The Reynolds number is approximately
the ratio of the magnitude of the advective terms
to that of the viscous terms in the fluid momen-
tum equation, Eq 2. Thus, when Re is large, the
viscous terms may sometimes be neglected.

When fluid Prandtl numbers are of order unity,
smallness of the viscous terms also implies
smallness of the heat-conduction terms relative
to the advection terms in the energy equation.
There are many high Reynolds number flows,

however, where neglect of the viscous and heat-
conduction terms is not justified. Sometimes,
fluid flows have broad regions over which the
inviscid equations apply, coupled with thin
regions (e.g., boundary layers and shocks) in
which the viscous and heat-conduction terms
are important. In addition, as Re is increased,
many flows become turbulent, and the velocity
then varies over a range of length scales L. At
the smallest of these length scales, Re is of
order unity, and viscosity is important because
it is responsible for the dissipation of turbulent
kinetic energy into heat. (See the section on
turbulence that follows.)
An incompressible flow is one in which the

divergence of the velocity field is identically
equal to zero:

@ui
@xi
¼ Sii ¼ 0 (Eq 15)

A necessary, but not sufficient (see Ref 14),
condition that a flow be incompressible is that
the Mach number M be much less than one,
where M is defined by:

M ¼ u
c (Eq 16)

In Eq 16, u and c are characteristic values of the
velocity and sound speed of the fluid.
In combination with the continuity equation,

Eq 1, Eq 15 implies that:

Dr
Dt
¼ @r

@t
þ ui

@r
@xi
¼ 0 (Eq 17)

D/Dt is the time derivative following a fluid
element, and Eq 17 states that the density of
each element of fluid remains a constant along
its trajectory. Usually, a more restrictive
assumption is made that the density of the
whole fluid is equal to a constant r0. In this
case, the momentum equation, Eq 2, becomes:

@ui
@t
þ @ðuiujÞ

@xj
¼ 1

r0

@�ij

@xj
þ Fi (Eq 18)

The great simplification of incompressible flow
equations is that the energy equation is
decoupled from the momentum equation and
need not be solved. This is the so-called primi-
tive-variable form of the incompressible
flow equations. Another formulation that is
used in CFD calculations of two-dimensional,
incompressible flows is the stream function
and vorticity formulation, which can be found
in Ref 3.
Turbulence and Other Models.As has been

stated earlier, there are many flow situations in
which flows have changes in their properties,
such as their velocities, with superimposed size
scales or time scales that differ by many orders
of magnitude. Examples are the seemingly
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chaotic motions in a turbulent flow or in a mul-
tiphase flow such as a liquid spraying into a
gas. Classical theories of turbulence predict that
the ratios of the largest to the smallest fluctua-
tion length scales of turbulent flows are approx-
imately equal to Re0.75, where, in this case,
Re is based on the velocity and size scales of
the largest turbulent eddies (Ref 23). Even a
low value of Re = 10,000 gives fluctuation
length scales varying over 3 orders of magni-
tude. For such cases, it is impossible to resolve
the detailed flow fluctuations with CFD
methods, and fortunately one usually is not
concerned with these detailed fluctuations. The
average flow behavior is of interest, however,
and it is important to account for the effects
of the fluctuations on average flow variables.
There are many ways to define averaged, or

filtered, flow variables. In general, space- and
time-averages can be defined using a filter func-
tion K (xi, t) whose integral over all space and
time is unity. In terms of K, the average of a
fluid variable q, denoted by �q; is defined by:

�qðxi; tÞ ¼
ð ð ð ð

q yi; t
0ð ÞK yi � xi; t

0 � tð Þdyi dt0

(Eq 19)

For example, for pure time averaging, one can
take K (xi, t) = d(xi) CT (t)/T, where:

	T ðtÞ ¼ 1 if jtj<T=2
0 otherwise


(Eq 20)

and d (xi) is the Dirac delta function. Then, the
average q is defined by:

�qðxi; tÞ ¼ 1

T

ðiþT=2
i�T=2

q xi; t
0ð Þ dt0 (Eq 21)

and the filter size is said to be T. In addition to
space- or time-averaging, one can also use ensem-
ble averaging. This is defined by averaging over
an imagined large set of realizations of a fluid
experiment. Sometimes, ensemble-averaging is
combined with space- or time-averaging. In any
case, the fluctuation of quantity q from its mean
value is denoted by q0:

q0ðxi; tÞ ¼ qðxi; tÞ � �qðxi; tÞ (Eq 22)

There are two approaches to calculating
average flow fields. In the first, called Reynolds
averaging because it was first proposed by O.
Reynolds (Ref 24), one is interested in predict-
ing the average flow field and uses ensemble
averaging or a filter size that is large compared
to the scales of fluctuations. Thus, the average
of the fluctuating part of q is zero:

q0ð Þ ¼ 0 ðReynolds averagingÞ (Eq 23)

In contrast, subgrid-scale turbulence models
use filters with as small a size as possible, typi-
cally comparable to the grid size in the CFD
calculation. Thus, one attempts to calculate
flow fluctuations with scales larger than the

filter, or grid, size and to model only subgrid-
scale fluctuations. In a subgrid-scale model,
the average of the fluctuation part of q is, in
general, nonzero:

ðq0Þ 6¼ 0 ðsubgrid model filteringÞ (Eq 24)

Once the method of averaging is chosen, then
equations for the averaged flow variables can
be obtained by averaging the equations of the
preceding sections, or simplified forms of these.
In deriving the averaged equations, one finds that
the rates of change of average flow variables
depend on averages of the products of two
fluctuating quantities, also called second-order
correlations. The values of these are unknown,
and if one tries to close the system of equations
by deriving transport equations for the second-
order correlations, it is found that these depend
on third-order correlations, or averages of three
fluctuating quantities. Continuing in this way,
one finds that it is impossible to obtain a closed
system of equations using either Reynolds-aver-
aging or subgrid-scale-averaging (Ref 25). By
using physical and dimensional reasoning and
empirical information, the unknown correlation
must be expressed (the wordmodeled is also used
here) in terms of average flow variables that are
known.
A very important example of a second-order

correlation and its modeling arises when aver-
aging the incompressible flow momentum
equation (Eq 18). The Reynolds-averaged form
of this equation is:

r0
@�ui
@t
þ @�ui�uj

@xj

� �
¼ @ ��ij

@xj
� @

@xj
r0u

0
iu
0
j

� �
þ r0 �Fi

(Eq 25)

The second-order correlation �r0u0iu0j on
the right side of this equation is called the
Reynolds stress. The most popular turbulence
models in engineering design calculations are
the so-called two-equation models, in which
the Reynolds stress is, with some theoretical
justification (Ref 25, 26), taken to have the
form:

�r0u0iu0j ¼ 2mT �Sij � 2

3
r0Kdij (Eq 26)

In this expression, mT is the turbulent viscosity,
and K is the turbulent kinetic energy:

K ¼ 1

2
u0i
� 	2

(Eq 27)

By substituting Eq 26 into Eq 25, one finds that
the momentum equation for turbulent flow
closely resembles the momentum equation for
laminar, or nonturbulent, flow. This is also the
case for other averaged fluid equations, and this
resemblance allows the same numerical techni-
ques for CFD to be applied to both laminar and
turbulent flows.
In two-equation turbulence models, transport

equations are solved for the turbulent kinetic
energy K and one other scalar that gives a local

length or time scale of the turbulence. A popu-
lar choice for this second turbulence quantity is
the turbulence kinetic energy dissipation rate e.
In terms of K and e, the turbulent viscosity is
given by:

mT ¼ cmr0
K2

e
(Eq 28)

where cm is a dimensionless constant. The K-e
turbulence model is described in more detail
in Ref 26, which also describes the use of wall
functions to calculate wall heat and momentum
losses in conjunction with the K-e model.
Descriptions of many two-equation turbulence
models, and their relative advantages, can be
found in Ref 27.

Numerical Solution of the
Fluid-Flow Equations

This section introduces some common tech-
niques for discretizing the fluid-flow equations
and methods for solving the discrete equations.

Discretization of the Fluid Equations

In the process of discretization, a continu-
ously varying fluid flowfield, which has an infi-
nite number of degrees of freedom, is
represented by a finite set of data. This section
introduces the discretization techniques used
by finite-difference, finite-volume, finite-ele-
ment, spectral, and some particle methods, and
associated concepts of numerical stability and
accuracy. The discrete equations of the finite-
difference, finite-volume, and finite-element
techniques all look similar and are referred to
generically as “difference approximations.”
This introduction to CFD can only scratch the
surface of each method. For more in-depth
information, the reader should consult Ref 3
and 28 to 32.
Finite-Difference Methods (FDMs). In

FDMs, the entire fluid region of interest is
divided into nonoverlapping cells, and approxi-
mate values of the fluid variables are stored in
each cell. This subdivision is called a grid or a
mesh. Derivatives are approximated by taking
differences between the variable values in neigh-
boring cells, using the idea of a Taylor-series
expansion. Consider the simple one-dimensional
example of finite-difference solution of the linear
advection equation:

@q

@t
þ u

@q

@x
¼ 0 (Eq 29)

in the spatial interval a � x � b. This interval is
subdivided into cells of equal size Dx = (b � a)/
N, where N is the total number of cells, and qi

n

denotes the approximate value of q at the center
of cell i, which lies at the location, or grid
point, xi = a + (i � 1/2)Dx, at time t = nDt,
where Dt is the computational timestep. (In this
section, the subscript i represents a cell number,
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rather than a coordinate direction.) All the
values of qni ; 1 � i � N , for a particular time
t = nDt are stored in computer memory, and
values can be computed at time t = (n + 1)D
t by using a finite-difference approximation
to Eq 29.
To approximate the spatial derivative in Eq

29, qni is considered to be the value at xi of a
differentiable function q(x, t) that can be
expanded in a Taylor series about any grid
point. Thus, the value of q at a neighboring grid
point can be expressed in terms of the value of
q and its derivatives at grid point i by:

qniþk ¼ qni

þ @q

@x

� �n

i

k�xþ @2q

@x2

� �n

i

ðk�xÞ2
2

þOð�x3Þ
(Eq 30)

where O(Dxm) represents the fact that the
remaining terms in this expansion have as their
lowest-order term one in which Dx is raised to
the power m. Now the value of the spatial
derivative in Eq 29 can be approximated by
any finite combination that satisfies:

X
k

akq
n
iþk ¼

@q

@x

� �n

i

þ Oð�xmÞ (Eq 31)

when one substitutes from Eq 30 for the qi+k,
where ak are coefficients that depend on Dx.
In the approximation Eq 31, m is said to be
the order of accuracy of the approximation,
and all terms containing Dx to some power are
said to be truncation errors. As long as m > 0,
the approximation is said to be consistent.
Examples of consistent approximations are the
centered-difference approximation:

qniþ1 � qni�1
2�x

¼ @q

@x

� �n

i

þ Oð�x2Þ (Eq 32)

which is second-order accurate, and the one-
sided approximations:

qni � qni�1
�x

¼ @q

@x

� �n

i

þ Oð�xÞ (Eq 33a)

and

qniþ1 � qni
�x

¼ @q

@xi

� �n

i

þ Oð�xÞ (Eq 33b)

which are first-order accurate. If the advection
speed u in Eq 29 is positive, then the approxi-
mation Eq 33(a) is called an upwind
approximation and Eq 33(b) a downwind
approximation.
Order of accuracy is one measure of the

accuracy of an FDM. To test the accuracy of a
finite-difference solution, one can refine the
grid by reducing the cell size Dx. When Dx is
reduced by a factor of 2, numerical errors will
be reduced approximately by a factor of 4 when
using a second-order method, but only by a fac-
tor of 2 with a first-order method. It may thus
seem to be desirable to use only methods with

a very high order of accuracy. In practice, how-
ever, it is difficult to define high-order methods
near boundaries, and often numerical solutions
using high-order methods have oscillations in
regions of steep gradients. Because of these dif-
ficulties, most modern FDMs have second- to
fourth-order accuracy and sometimes drop to
first-order accuracy in regions of steep
gradients.
Returning to the example of the linear advec-

tion equation, the time derivative can be
approximated in much the same way as the spa-
tial derivative. Because one usually only stores
the value of qi at a single time-level in order to
save computer storage, the time derivative is
most often approximated by the one-sided
finite-difference formula:

qnþ1i � qni
�t

¼ @q

@t

� �n

i

þ Oð�tÞ (Eq 34)

When Eq 34 and one of the finite-difference
formulas Eq 32, 33(a), or 33(b) is used to
approximate the time- and space-derivatives in
Eq 29, one obtains a consistent approximation
to the linear advection equation that is first-
order accurate in time.
When these finite-difference equations are

used to advance the numerical solution for q
in time, one finds that, in contrast to solutions
to the differential equation, solutions to the
finite-difference equations using Eq 32 or the
downwind approximation Eq 33(b) are subject
to catastrophic numerical instabilities, and solu-
tions using Eq 33(a) are only stable if a certain
condition is met. This condition, the so-called
Courant condition, is that the Courant number
C = (uDt)/Dx be less than one. The origin of
these numerical instabilities was first discov-
ered by J. von Neumann (Ref 33), who devised
a method for analyzing the stability of linear
finite-difference equations based on examining
the behavior of each Fourier component of the
solution.
The finite-difference approximations pre-

sented so far are explicit in the sense that the
solution for qnþ1i can be explicitly found by
solving only the finite-difference equation at
grid point i. All explicit methods, if they are
stable, are subject to Courant conditions to
ensure their numerical stability. Intuitively, this
condition arises because when using an explicit
method, information can only propagate at a
speed proportional to Dx/Dt. In order for the
numerical solution to approximate the physical
solution, the numerical propagation speed must
be at least as great as the physical speed. For
the simple advection Eq 29, the only physical
propagation speed is u. For the fluid equations,
there are several physical, or characteristic,
speeds. The largest of these is u + c, where c
is the fluid speed of sound, and the Courant
condition in explicit CFD calculations is based
on the speed u + c. To overcome the Courant
condition, one uses implicit FDMs, in which
solution for the value of qnþ1i is implicitly cou-
pled to the solution for qn+1 at other grid points.

An example of an implicit finite-difference
approximation to the linear advection Eq 29 is:

qnþ1i � qni
�t

¼ �u q
nþ1
iþ1 � qnþ1i�1

2�x
(Eq 35)

which can be shown to be unconditionally sta-
ble. The disadvantage of implicit methods is
that they usually require costly iterative solu-
tion. Some iterative solution techniques for
implicit equations are introduced as follows.
Finite-Volume Methods (FVMs). As in

FDMs, FVMs subdivide the computational
region into a mesh of cells, but finite-volume
cells can be arbitrary quadrilaterals in two
dimensions, hexahedra in three dimensions, or
indeed any shape enclosed by a set of corner
points. In contrast, FDMs are defined on grids
that are obtained using orthogonal curvilinear
coordinate systems. Thus, FVMs have much
more geometric flexibility than FDMs.
Finite-volume methods approximate forms of

the fluid equations that are integrated over these
cells, which are also called control volumes. An
example is the finite-volume approximation of
the integrated form of the mass equation,
Eq 1. After integrating Eq 1 over control vol-
ume V and applying the Reynolds transport
and divergence theorems (Ref 14) one obtains:

d

dt

ð ð ð
V

r d� þ
ð ð

S

ruinida ¼ 0 (Eq 36)

The quantity ruini is the mass flux (mass per
unit area and time) through surface S with unit
normal ni, and Eq 36 is a statement that the
time-rate-of-change of the total mass in volume
V is equal to the sum of the fluxes, times the
areas, through the surface S of the volume.
Thus, mass is conserved in the sense that there
are no internal mass sources. Commonly, the
time derivative term in Eq 36 is approximated
by:

d

dt

ð ð ð
V

r d� ¼ V�
rnþ1� � rn�

�t
(Eq 37)

where n is the index of finite-volume cell, and
Vn is its volume, and the surface integral is
approximated by:

ð ð
S

ruinida ¼
X
a

raðuiÞaðniÞaAa (Eq 38)

where the sum is over all faces a of control vol-
ume n; ra and (ui)a are approximations to r and
ui, respectively, on face a; (ni)a is an average
unit normal vector to face a pointing out of vol-
ume V; and Aa is the area of face a.
Using finite-volume methods, one can easily

construct discrete approximations that have the
conservative property; that is, the discrete
approximations can mimic the physical laws
from which the fluid equations were derived
by conserving properties such as computed
mass, momentum, and energy. To be more
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precise, consider the approximation to the
aforementioned mass equation. A conservative
approximation has the property that if n and m
are two cells that share face a, then when one
sums the finite-volume approximations to the
change of mass in cells n and m, the contribu-
tions due to fluxes through common face a can-
cel each other. This will be true if ra and (ui)a
are defined the same way in the finite-volume
approximations at nodes n and m, because the
unit outward normal to face a relative to cell
n is minus the outward normal relative to
cell m. Conservative difference approximations
have many desirable accuracy properties. For
example, it can be shown that difference
approximations that conserve mass, momen-
tum, and energy will calculate the correct jump
conditions across shocks without having to
resolve shock structure (Ref 3).
A problem with FVMs is that it is difficult to

formulate higher-order FVMs. When a FVM is
specialized to a finite-difference grid, the differ-
ence approximations look very much like finite-
difference approximations, and one can perform
Taylor-series expansions and determine the
order of accuracy of the method. When more
general meshes are used, however, it is unclear
whether the same accuracy can be expected.
Finite-element methods (FEMs) (Ref 28)

use a consistent spatial interpolation when eval-
uating all the spatial derivative terms in the
fluid dynamics equations. These methods have
long been popular in stress-analysis problems
and have recently been gaining popularity in
CFD problems because of advances in the
methodology. As in FVMs, the computational
domain is subdivided into nonoverlapping cells
that in three dimensions are either arbitrary
hexahedra or tetrahedra (Fig. 3, 4). Finite-ele-
ment terminology is different, however, in that
the cells are called elements, and the vertices
of the cells are called nodes. A function q(xi,t)
is represented by an expansion of the form:

qðxi; tÞ ¼
X
v

qvðtÞbvðxiÞ (Eq 39)

where the sum is over all the nodes n in the
computational domain. The bn (xi) are called
basis functions and have finite support, mean-
ing that they vanish outside of some neighbor-
hood of the node n location (xi)n. They also
have the properties that:

bvððxiÞmÞ ¼ dvm (Eq 40)

where dnm is the Kronecker delta function, and:

X
v

bvðxiÞ ¼ 1 (Eq 41)

for all xi. Linear (for tetrahedra) or trilinear (for
hexahedra) basis functions give rise to second-
order numerical methods in the following
sense: When the finite-element grid is refined
in such a way that the dimensions of elements
are reduced by a factor of 2, then the difference

Fig. 3 Examples of grids used in computational fluid dynamics calculations. Two-dimensional examples are
shown for clarity. (a) Structured grid. (b) Block-structured grid. (c) Unstructured hexahedral (quadrilateral)

grid. (d) Unstructured tetrahedral (triangular) grid. (e) Local mesh refinement via a transition region on an
unstructured hexahedral grid. (f) Local mesh refinement via cell splitting on an unstructured hexahedral grid.
(g) Chimera grid
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between the computed and exact solutions, as
measured by a global integral of this difference,
is reduced by a factor of 4. Higher-order FEMs
can be constructed by adding midside nodes to
the elements and using nonlinear basis func-
tions that have properties Eq 40 and 41
(Ref 28). Because of Eq 40, the coefficient
qn(t) is the value of q at location (xi)n at time t.
Although there are many possibilities for

determining qn(t), the most common method is
that of the Galerkin finite-element method
(GFEM). In GFEM, one substitutes expansions
of the form Eq 39 for each function in the fluid
equations. To obtain the discrete equations
associated with node n, one multiplies the
resulting expanded equations by basis function
bn (xi) and integrates over the entire computa-
tional domain. This gives rise to a coupled sys-
tem of ordinary differential equations for the
functions qn(t). Standard numerical methods
for ordinary differential equations can then be
used to solve for the qn(t). These ordinary differ-
ential equations involve coefficients that are inte-
grals of products of the basis functions and their
derivatives. Evaluating these coefficients can be
a costly step in obtaining a GFEM solution.
Spectral Methods. Like FEMs, spectral

methods (Ref 28) represent a function q(xi, t)
by a finite sum:

qðxi; tÞ ¼
X
n

cnðtÞ bn ðxiÞ (Eq 42)

but unlike FEMs, the basis functions bn (xi) are
typically orthogonal functions with respect to
some weight functions W(xi); that is:ð ð ð

bnðxiÞ bmðxiÞWðxiÞdxi ¼ dnm (Eq 43)

There is no grid in a spectral method. The cn(t)
are no longer the values of q at nodes but sim-
ply the coefficients of the function q in an
orthogonal function expansion. Ordinary differ-
ential equations for the cn(t) are obtained by a
method that is similar to that of GFEM: one
substitutes the expansion Eq 42 into the fluid
equations and then multiplies the resulting
expanded equation by bn (xi) W (xi) and inte-
grates over the computational domain.
Spectral methods are most often used in

situations where suitable basis functions can
be found that satisfy the boundary conditions
of a problem. When this is the case, spectral
methods are very efficient for solving fluid-
dynamics problems. For example, direct simu-
lations of turbulence with periodic boundary
conditions invariably use Fourier series expan-
sions (Ref 34) because of their high accuracy.
Because of the difficulty of finding suitable
basis functions that satisfy boundary conditions
in complex geometries, spectral methods are
usually used only for simple geometries.
Computational Particle Methods. Compu-

tational particles have long been used for many
purposes in CFD calculations (Ref 35). At the
simplest level, they are used to follow the
motion of Lagrangian fluid elements for flow-
visualization purposes. At the other extreme,
in some particle methods the fluid is completely
represented by particles, each of which is
endowed with a certain amount of mass,
momentum, and energy. This is the case for
particle-in-cell (PIC) methods (Ref 36, 37) and
for the newer smoothed-particle-hydrodynam-
ics (SPH) methods (Ref 38). The great
advantage of the latter two methods is their
Lagrangian nature. Because the Lagrangian
equations are solved, numerical truncation
errors are avoided that arise from finite-differ-
ence approximations to the advection terms.
These are often the largest errors in approxima-
tions of the Eulerian equations. When carefully
formulated, PIC and SPH method solutions can
also be Galilean invariant and conserve angular
momentum (Ref 37).
A disadvantage of particle methods lies in

the difficulty of calculating interactions among
fluid particles—which give rise, for example,
to the pressure gradient terms in the momentum
equation. This difficulty manifests itself, partic-
ularly in low Mach number calculations, in
particle bunching and consequent fluctuations
in advective transport. Possibly because of this
difficulty, very few commercially available
CFD codes use particle methods. An exception
is a class of commonly used fluid/particle meth-
ods for calculating dispersed, two-phase flows
(Ref 39, 40), such as occur when a liquid sprays
into a gas. In these methods, computational

particles represent the dispersed phase entities
and only interact with each other weakly, if
they do so at all.

Solution of Implicit Equations

When solving difference approximations to
the steady fluid equations or when solving
implicit approximations to the unsteady equa-
tions, one must solve a large number of coupled
algebraic equations for the unknown values of
the fluid variables. When the equations are
linear, an equation corresponding to the ith cell
or node can be written in the form:

X
j

aijqj ¼ si (Eq 44)

where aij are constant coefficients, and si is a
known source term. The qj are the unknowns
to be solved for, in an unsteady problem
qj¼qnþ1i . For example, for the implicit approxi-
mation Eq 35 to the one-dimensional
linear advection equation, one can take aii = 1.0,
aii+1 = uDt/(2Dx),aii�1 = �uDt/(2Dx), and
si¼ qni . Equation 44 is usually written:

Aq ¼ s (Eq 45)

where A = (aij) is an N � N matrix of coeffi-
cients, N being the number of unknowns; s =
(si) is a known source vector; and q = (qj) is
the vector of unknowns. Because the difference
approximation in cell i only depends on the
values of q in cell i and a small number of
neighbors of cell i, only a small number of ele-
ments of the ith row of matrix A will be
nonzero, and for this reason A is referred to as
a sparse matrix. The basic problem of implicit
fluid dynamics is to solve Eq 45 for the vector
of unknowns, given a sparse matrix A and
source vector s.
Only for problems with smallN can the matrix

problem Eq 45 be solved directly by Gaussian
elimination. This is because although the matrix
A is sparse, and therefore does not require much
computer storage for its nonzero elements, when
Gaussian elimination is used to solve Eq 45, one
finds that it is generally necessary to store in
computer memory approximately N2 nonzero
coefficients, which is impossible in problems
with a large number of cells.
Thus, interative methods are usually used to

solve the matrix problem, Eq 45. Iterative solu-
tion methods calculate a sequence of approxi-
mations q

k that converge to the solution q.
The exact solution is not obtained, but one
stops calculating qk when either the difference
between successive iterates q

k+1�qk, or the
residual Aqk�s, is acceptably small. In the past,
popular iterative methods have been point-suc-
cessive relaxation, line-successive relaxation,
and methods based on approximate decomposi-
tion of matrix A into a product of lower and
upper triangular matrices that can each be eas-
ily inverted (Ref 30). These methods have
largely been supplanted by two methods that

Fig. 4 Principal cell or element types for computational
fluid dynamics. (a) Tetrahedron: there are four

vertices or nodes, four faces, and six edges for each
element. (b) Hexahedron: there are eight vertices or
nodes, six faces, and twelve edges for each element.
Hexahedral elements generally must remain convex
(angles formed by edge and face intersections must
remain smaller than 180�). (c) A sampling of possible
edge and/or face degeneracies for hexahedral elements
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have greatly reduced the computer time to solve
implicit equations and thereby have made
implicit methods more attractive. These meth-
ods are conjugate-gradient methods (Ref 41)
and multigrid methods (Ref 42).
When nonlinear finite-difference equations

are solved, the aforementioned iterative meth-
ods can be used in conjunction with Newton’s
method (Ref 43). A nonlinear difference
approximation can be written:

FðqÞ ¼ O (Eq 46)

where F is a vector-valued function of the vec-
tor of unknowns q. If qk is the approximation to
the solution q after k Newton-iteration steps,
then q

k+1 = q
k + dq is obtained by solving the

matrix equation:

@F

@q
dq ¼ �FðqkÞ (Eq 47)

The matrix @F/@q is called the Jacobian matrix.
Equation 47 is of the form of Eq 45 and can be
solved by one of the iterative methods for linear
equations. Thus, solution for q involves using
an iteration within an iteration. As in the solu-
tion of nonlinear equations for single variables,
convergence is sometimes accelerated by
under-relaxation; that is, one takes qk+1 = q

k +
ldq where dq is the solution to Eq 47 and l
is an underrelaxation factor whose value lies
between zero and one.
Newton’s method is sometimes used to

solve systems of coupled difference equations
arising in CFD (Ref 44), but it is often more
economical for this purpose to use the simple-
implicit method for pressure-linked equations
(SIMPLE) method (Ref 45). In the SIMPLE
method, a system of coupled implicit equations
is solved by associating with each equation an
independent solution variable and solving
implicitly for the value of the associated solu-
tion variable that satisfies the equation, while
keeping the other solution variables fixed. As
is implied by the acronym SIMPLE, pressure
is chosen as an independent variable, and spe-
cial treatment is used to solve for pressure
(Ref 45). The equations are solved sequentially,
and repeatedly, until convergence of all the
equations is obtained. The SIMPLE method is
more efficient if the difference equations are
loosely coupled, or if some independent linear
combinations of the equations can be found that
have little coupling.

Grid Generation for Complex
Geometries

Before applying most of the CFD methods
outlined previously, a computational grid must
be generated that fills the flow domain and con-
forms to its boundaries. For complex domains
with curved or moving boundaries, or with
embedded subregions that require higher

resolution than the remainder of the flowfield,
grid generation can be a formidable task requir-
ing more time than the flow solution itself.
Two general approaches are available to deal
with complex geometries: use of unstructured
grids and use of special differencing methods
on structured grids.
Unstructured Meshes. Figure 3 shows

examples (in two dimensions) of several possi-
ble grid arrangements for CFD. In a structured
three-dimensional grid (Fig. 3a), one can asso-
ciate with each computational cell an ordered
triple of indices (i, j, k), where each index var-
ies over a fixed range, independently of the
values of the other indices, and where neighbor-
ing cells have associated indices that differ by
þ�1. Thus, if Ni, Nj, and Nk are the number of
cells in the i-, j-, and k-index directions, respec-
tively, then the number of cells in the entire
mesh is Ni Nj Nk. Additionally, it is seen that
each interior vertex in a structured grid is a ver-
tex of exactly eight neighboring cells.
In an unstructured grid (Fig. 3c and d), on the

other hand, a vertex is shared by an arbitrary
number of cells. Unstructured grids are further
classified according to the allowed cell or ele-
ment shapes (Fig. 4). In the case of FVMs in
particular, an unstructured CFD code may
require a mesh of strictly hexahedral cells
(Fig. 4b), hexahedral cells with degeneracies
(Fig. 4c), strictly tetrahedral cells (Fig. 4a), or
may allow for multiple cell types. In any case,
the cells cannot be associated with an ordered
triple of indices as in a structured mesh.
Intermediate between structured and unstruc-

tured meshes are block-structured meshes
(Fig. 3b), in which “blocks” of structured grid
are pieced together to fill the computational
domain.
There are three advantages of unstructured

meshes over structured and block-structured
meshes. First, unstructured meshes do not
require that the computational domain or sub-
domains be topologically cubic. This flexibility
allows one to construct unstructured grids in
which the cells are less distorted, and therefore
give rise to less numerical inaccuracy, com-
pared to a structured grid. Second, local adap-
tive mesh refinement (AMR) is naturally
accommodated in unstructured meshes by sub-
dividing cells in flow regions where more
numerical resolution is required (Fig. 3e, f).
Such subdivisions cannot be performed in
structured meshes without destroying the logical
(i, j, k) indexing. Third, in some cases, particu-
larly when the cells are tetrahedra, unstructured
grid generation can be automated with little or
no user intervention (Ref 46). Thus, generating
unstructured grids can bemuch faster than gener-
ating block-structured grids.
On the other hand, unstructured-mesh CFD

codes generally demand higher computational
resources. Additional memory is needed to
store cell-to-cell and vertex-to-cell pointers on
unstructured meshes, while this information is
implicit for structured meshes. And, the implied
connectivity of structured meshes reduces the

number of numerical operations and memory
accesses needed to implement a given solution
algorithm compared to the indirect addressing
required with unstructured meshes.
The relative advantages of hexahedral versus

tetrahedral element shapes remain subjects of
debate in the CFD community. Tetrahedra have
an advantage in grid generation, because any
arbitrary three-dimensional domain can be filled
with tetrahedra using well-established methodol-
ogies (Ref 46). By contrast, it mathematically
is not possible to tessellate an arbitrary three-
dimensional domain with nondegenerate six-
faced convex volume elements. Thus, each of
the various automatic hexahedral grid-generation
approaches that have been proposed (e.g., Ref
47, 48) either yields occasional degeneracies or
shifts the location of boundary nodes, thus
compromising the geometry.
Specialized Differencing Techniques. In a

second general approach to computing flows in
complex geometric configurations, the onus of
work is shifted from complexity in grid genera-
tion to complexity in the differencing scheme
(Ref 49–51). Structured and block-structured
grids are used, but one of three numerical strate-
gies is used to extend the applicability of these
grids. The first strategy is to use so-called chi-
mera grids (Ref 49) that can overlap in a fairly
arbitrary manner (Fig. 3g). Solutions on the mul-
tiple grids are coupled by interpolating the solu-
tion from each grid to provide the boundary
conditions for the grid that overlaps it. This is a
very powerful strategy that handles naturally
problems in which two flow regions meet at a
boundary with a complicated shape or where
one object moves relative to another. The second
numerical strategy is to use so-called embedded
boundaries (Ref 50). Again, structured meshes
are used, but the complicated boundary of the
computational domain is allowed to cut through
computational cells. Special numerical methods
are then used in the partial cells that are inter-
sected by the boundary. In the third strategy,
local AMR is allowed by using a nested hierar-
chy of grids (Ref 51). The different grids in the
hierarchy are structured and have different cell
sizes, but the cells in the more finely resolved
grids must subdivide those of the coarser grids.
Although the second general approach

affords simplicity in grid generation, it gener-
ally is less mature than the various unstruc-
tured-mesh approaches. Much development
remains before these specialized differencing
techniques have the robustness, generality, and
efficiency to deal with the variety of problems
presented in engineering applications. For the
near future, then, the use of various unstruc-
tured-mesh approaches is expected to dominate
in engineering applications of CFD.

Computational Fluid Dynamics for
Engineering Design

Computational fluid dynamics is one of the
tools available to the engineer to understand
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and predict the performance of thermal-fluids
systems. It is used to provide insight into ther-
mal-fluids processes, to interpret experimental
measurements, to identify controlling para-
meters, and to optimize product and process
designs. It is the use of CFD as a design tool
that is the principal focus here. In the course
of a design program, an engineer may perform
multiple CFD computations to explore the
influence of geometry (hardware shape),
operating conditions (initial and boundary con-
ditions), and fluid properties. For CFD to be
fully integrated into the design process, it must
satisfy ever-tightening demands for functional-
ity, accuracy, robustness, speed, and cost.
Most engineering CFD programs can be

characterized as having high geometric com-
plexity (domain boundaries as complex three-
dimensional surfaces) and moderate physical
complexity. The majority of flows considered
are steady, incompressible, single-phase, and
nonreacting. A common physical complexity
encountered in engineering situations is
turbulence, because engineering flows typically
are characterized by high Reynolds number.
Turbulence is modeled using a two-equation
model (standard K-e or variants, Ref 27) in
most cases. Applications to transient flows with
additional physical complexity and/or more
sophisticated models (e.g., compressibility,
multiphase, reacting, higher-order turbulence
models) are increasing.

The CFD Process

An idealized component design process is
shown schematically in Fig. 5. There, the left
side of the flowchart depicts a hardware-based
design process, while the right side represents
an analysis- or math-based process. Although
CFD is the single analysis tool under consider-
ation here, the right side applies equally well to
other mathematical/computational tools (e.g.,
finite-element structural analysis) that together
fall under the heading of CAE.
Both the hardware- and analysis-based pro-

cesses require the generation or acquisition of
geometric data and the specification of design
requirements. Here, it is assumed that a three-
dimensional CAD geometry model is the pre-
ferred method for geometric representation. A
hardware approach then proceeds with fabrica-
tion of prototypes, followed by testing of proto-
types, and evaluation of test results. Design
iterations are accomplished either by direct
changes to the hardware or by modification of
the CAD data set and refabrication, until the
design requirements are satisfied. At that point,
the original CAD data must be updated (in the
case of direct hardware iterations), and the
design proceeds to the next component or sys-
tem level, where a similar process is repeated.
Analysis-based design (here, CFD) is not

fundamentally different. Mesh generation
replaces hardware fabrication, computer simula-
tion substitutes for experimental measurement,

and postprocessing diagnostics are needed to
extract relevant physical information from the
vast quantity of numerical data. To the extent
that relatively simple design criteria are available
and the component lends itself to a parametric
representation, the design-iteration loop can be
automated using numerical optimization techni-
ques (Ref 52). Automated computer optimization
with three-dimensional CFD remains a subject of
research; in most engineering applications, deter-
mination of the next design iteration remains
largely a subjective, experience-based exercise.
Analysis-based design can be faster and less

costly compared to hardware build-and-test. If
this is not yet the case in a particular applica-
tion, it most likely will be true at some point
in the future. Thus, analysis affords the oppor-
tunity to explore more design possibilities
within specified time and budget constraints.
Advances in rapid prototyping systems (Ref
53) and other fabrication technology mitigate
this advantage to some extent.
A second advantage of analysis is that more

extensive information can be extracted com-
pared to experimental measurements. Computa-
tional fluid dynamics yields values of the
computed dependent variables (e.g., velocity,
pressure, temperature) at literally thousands or
even millions of discrete points in space and
(in time-dependent problems) in time. From
this high density of information can be
extracted qualitative and quantitative pictures
of flow streamlines and three-dimensional iso-
pleths of any computed dependent variable.
For time-dependent problems, animation or

“movies” reveal the time evolution of physical
processes. Application-specific “figures of
merit” including total drag force, wall heat flux,
or overall pressure drop or rise can be com-
puted. Experimental measurements, on the
other hand, traditionally have been limited to
global quantities or to values of flow variables
at a small number of points in space and/or
time. Thus, in principal, much more complete
information is available from CFD to guide
the next design iteration. An important caveat
is that this additional information is useful only
to the extent that it accurately and reliably
represents the actual hardware under the desired
operation conditions. In most applications of
CFD today (2009), there are sufficient sources
of uncertainty that abandonment of experimen-
tation is unwarranted. Progress in two- and
three-dimensional experimental diagnostics
(e.g., particle-image velocimetry for velocity
fields, Ref 54; laser-induced fluorescence for
species concentrations, Ref 55) is enabling
higher spatial and/or temporal measurement
densities in many applications.
In Fig. 6, the CFD process is modeled as a

four-step procedure: (1) geometry acquisition,
(2) grid generation and problem specification,
(3) flow solution, and (4) postprocessing and
synthesis. Depending on the level of integration
in the software selected, four (or more) distinct
codes may be needed to accomplish these tasks.
Some vendors offer fully integrated systems.
For the purpose of exposition, each is treated
separately.
Geometry Acquisition (CAD). The princi-

pal role of CAD software in the CFD process
is to provide geometric definition of the bound-
ing surfaces of the three-dimensional computa-
tional domain. The computational domain of
interest in CFD generally is everything external
to the solid material; this conveniently may be
thought of as the negative of a finite-element
structural solid model. Codes are designed
primarily with the design and fabrication of
three-dimensional solids in mind and have

Fig. 5 Engineering component design processes. Left
side depicts a hardware-based approach; right

side is an analysis-(computational fluid dynamics, or
CFD-) based approach. CAD, computer-aided design Fig. 6 The computational fluid dynamics process.
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considerable functionality that is not of direct
relevance for CFD (Ref 56).
The various CAD packages use different

internal representations for curves (one-dimen-
sional objects), surfaces (two-dimensional
objects), and solids (three-dimensional objects).
The surfaces needed for CFD, for example,
may be represented using one of several ten-
sor-product polynomial or spline representa-
tions in a two-dimensional parametric space
(Ref 57, 58). Any of these representations
generally suffice for CFD; most FDM, FVM,
and FEM solution methodologies in current
engineering CFD codes require at most linear
interpolation between the discrete points (nodes
or vertices) representing the surface. However,
spectral-element methods (Ref 59) and some
other high-order orthogonal-basis function
expansions require a level of surface definition
that generally is not available from current
commercial CAD systems; this limits the appli-
cation of such methods to simple geometric
configurations at present.
The need to move geometry models among

different CAD systems having different internal
representations led to the establishment of stan-
dards for external geometric data exchange. An
early standard supported by most CAD soft-
ware is the initial graphics exchange specifica-
tion (IGES, Ref 60). Most CAD-to-CFD
interfaces operate by extracting the outer sur-
faces and writing an IGES file of “trimmed”
B-spline surfaces. Newer standards such as
standard for the exchange of products model
data (STEP) are merging with IGES and sup-
planting it; existing standards are evolving rap-
idly, and new standards are developed as
needed. Other external data formats commonly
used in the CAD/CAE arena include stereo-
lithography, where surfaces are processed into
a set of triangular facets, cloud-of points (a set
of random points in three-dimensional space),
and DES (a set of piecewise linear curves
describing a surface).
The set of raw surfaces extracted from the

CAD model usually requires additional proces-
sing before it is suitable for CFD grid genera-
tion. The extracted surfaces may not define a
closed three-dimensional domain (gaps), there
may be more than one surface at a physical
location (overlaps), and there simply may be
too much geometric detail to be practical for
CFD. Modern CAD and grid-generation sys-
tems provide fault tolerance and a variety of
tools to “clean up” the extracted surfaces prior
to grid generation. This cleanup step is labor-
intensive and often is the single most time-con-
suming element of the CFD process.
Grid Generation and Problem Specifica-

tion. The second step in the CFD process is to
generate a computational mesh. This may be
accomplished using the same software as for
geometry acquisition, or a separate code. The
grid must satisfy three general requirements:

� It must be compatible with the selected flow
solver.

� It must be sufficiently fine to satisfy accu-
racy requirements.

� It must be sufficiently coarse to satisfy
computational resource limitations.

For an unstructured mesh, the minimum
information that must be provided from the
grid-generation step is the location of each node
or vertex and a description of connectivity
among the vertices. In addition, a complete
problem prescription for CFD requires the spec-
ification of initial and boundary conditions for
all flow variables (e.g., velocity, pressure, tem-
perature), fluid properties, and any model and
numerical parameters. Other code- and applica-
tion-specific information also may be needed.
Because both geometry and grid information
are available at the grid-generation stage, this
is the most natural time to tag volumes for ini-
tial conditions and material properties and sur-
faces for boundary conditions (e.g., specify
which surfaces represent walls, inflow bound-
aries, etc.). Specific initial values for each
dependent variable at each interior cell or ver-
tex, boundary values for each boundary element
face or vertex, and fluid properties may be set
either in the grid-generation software itself or
in a separate “preprocessor” provided for the
specific CFD code. For present purposes, the
preprocessor is considered to be part of the flow
solver. Model constants and numerical para-
meters are specified to the flow solver directly.
Fully automatic tetrahedral-mesh generation

is available in a number of commercial and
public-domain codes (Ref 46). Early genera-
tions of automated hexahedral, hexahedral-
with-degeneracies, and hybrid hexahedral/tetra-
hedral strategies (requiring varying levels of
manual intervention) also are available (Ref
47, 48). However, a high level of manual inter-
vention still is required to generate high-quality
meshes for CFD. This is particularly true in the
case of tetrahedral meshes in the vicinity of
solid walls. A “high-quality” mesh is defined
here as one that yields high numerical accuracy
for low computational effort (memory and cen-
tral processing unit time). This is quantified by
performing multiple computations of a single
flow configuration using different meshes and
computing the error in each with respect to a
benchmark numerical or experimental solution.
Discussions of modern mesh-generation techni-
ques for CFD can be found in Ref 32 and 61.
Regardless of the specific methodology used

to generate the mesh, it is important that any
grid-generation software for CFD maintain sep-
arate data structures for geometry definition and
for the computational mesh. This ensures that
design changes (modifications to CAD sur-
faces) can be made without redoing the domain
decomposition, that boundary conditions can be
reset without regenerating the grid, and that
mesh density and distribution can be changed
independently of the geometry.
Flow Solution. Most contemporary CFD

solvers available to the industrial design engi-
neer use either finite-volume or finite-element

discretization, with SIMPLE-like iterative
pressure-based implicit solution algorithms.
Unstructured meshes of primarily hexahedral
elements (with limited degeneracies) have been
prevalent in most finite-volume formulations to
date, although the grid-generation advantages
of tetrahedra are leading to an increase in the
usage of that element type.
Default or recommended values of numerical

parameters are provided by each flow solver.
New and/or unusual applications often require
experimentation in selecting values of numerical
parameters to obtain a stable, converged solu-
tion. For the solution methodologies commonly
used today (2009), parameters include choice of
advection scheme (e.g., the degree of upwind-
ing), convergence criteria for linear equation sol-
vers and pressure iterations, time-step control
(for transient problems), mesh adaptation (where
available), and other method-specific controls.
For this reason, the CFD practitioner must have
a working knowledge of the information covered
in the “Governing Equations” section of this
article. With these caveats, flow solution is the
step requiring the least manual intervention.
The engineer can monitor the solution as it
progresses using the available diagnostics, which
are discussed next.
Postprocessing and Synthesis. Viewing and

making sense of the vast quantities of three-
dimensional data that are generated in CFD is
a challenging task. Many software packages
have been developed for this purpose, both for
structured and unstructured meshes. All provide
considerable flexibility in setting model orienta-
tion, in passing cutting planes and/or lines
through the computed solution, and in display-
ing the computed vector and scalar fields. Post-
processors have varying levels of “calculator”
capability for computing quantities not supplied
directly from the CFD solution, such as vorticity
or total pressure. Many allow transient animation
to accommodate time-dependent data. Most
modern packages provide both a graphics-user
interface and a save file/read file capability, the
latter to allow the user to replicate a particular
view of interest for multiple data sets.
Such direct inspection of the computed fields

provides detailed insight into flow structure in
the same sense as a high-resolution flow visual-
ization experiment. In this respect and others, it
had been argued that CFD is more akin to
experiment than to theory. Features such as an
undesirable flow separation, for example, may
provide the engineer with sufficient information
to guide a modification to the device geometry
for the next design iteration. The connection
between device performance or design require-
ments and the full three-dimensional flow field
often is not obvious, however, considerable
effort may be required to extract meaningful
figures-of-merit from the numerical solution.
Judicious development of diagnostics is nec-

essary to advance CFD from a sophisticated
flow-visualization tool to a scientifically based
design tool. Quantitative information of direct
relevance to the designer is needed to drive
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design changes toward satisfaction of the
design requirements. Such diagnostics are
application-specific and have received rela-
tively little attention by CFD researchers and
code developers. Examples of diagnostics to
extract physical insight and to assess numerical
accuracy can be found in Ref 62.
CFD of Manufacturing Processes. Applica-

tion areas that have been particularly active in
their use of CFD include aircraft and ship
design, geophysical fluid flows, and flows in
industrial devices that involve energy conver-
sion and utilization. A comprehensive list of
the applications of CFD would be difficult to
compile, and no attempt to do so is made here.
Instead, the focus here is to just briefly review
CFD in casting (Ref 63–77).
In manufacturing processes such as casting,

injection molding, welding, and crystal growth,
heat conduction in the solid is coupled to con-
vective heat transfer in the fluid. The solid-liq-
uid interface moves with time, and its location
needs to be tracked as a propagating three-
dimensional surface in the CFD solution. Also,
fluid properties may be highly temperature
dependent and non-Newtonian including phase
changes.
Metal casting is a key example of such an

application. Casting is a process in which parts
are produced by pouring molten metal into a
cavity having the shape of the desired product.
Figure 7(a) is a schematic of a typical sand-
casting configuration. Once the two halves of
the mold have been made, they are carefully
aligned, one over the other, with the aid of pins
and bushings in the sides of the molding boxes,
to create the complete mold. Aside from the
casting cavity itself, other features are also
incorporated into the finished mold, such as
the pouring basin, downsprue, runners, and
ingates that conduct the molten metal into the
casting cavity. Risers, or reservoirs of molten
metal that remain molten longer than the cast-
ing, are needed with most metals and alloys that
undergo liquid shrinkage as the casting solidi-
fies. These are placed at critical locations in
the mold, generally at heavier sections and
areas remote from the ingates. Once the casting
has been poured and allowed to cool, and after
it has been withdrawn from the sand mold,
these appendages are removed before the cast-
ing undergoes various finishing operations.
Fluid flow plays two important roles in the

casting process. First, and most obviously, the
flow of molten metal is necessary to fill the
mold. Second, and less obvious, are the effect
of convective fluid flow during solidification
of the casting. It is the task of the foundry engi-
neer to design grating and riser systems (Fig.
7a) that ensure proper filling and solidification,
and CFD is playing an increasingly important
role in this field. Proper designs result in lower
scrap and less casting repair at the foundry. An
example of a computational mesh and com-
puted solidification times is given in Fig. 7(b)
and (c). One CFD package that has been devel-
oped specifically for the modeling of flow and

Fig. 7 Metal casting simulation. (a) Typical sand-casting configuration. (b) Automatically generated mesh (five
million elements) for casting and cooling channels (Ref 78). (c) Computed local solidification times, which

range from 1 to 3000 s (Ref 78)
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thermal phenomena in casting applications is
Magmasoft (Ref 79). References from the liter-
ature give ample evidence of the vast amount of
CFD activity that is taking place in this area
(Ref 78, 80).

Issues and Directions for
Engineering CFD

Geometric fidelity between hardware and
the computational mesh is crucial to obtaining
accurate results. It is characteristic of the highly
nonlinear flow equations that small geometric
perturbations can result in large changes to
the flow-field. One example is shown in Fig. 8

(Ref 81). There, significantly different flow
structure and mixing result when the fraction-
of-a-millimeter gap between piston and cylin-
der liner (the “top-ring-land crevice”) is
included in the mesh compared to when it is
ignored. With a top-ring-land crevice, the flow
entering the cylinder attaches to the cylinder
wall and flows parallel to the wall for an
extended time; in the absence of a top-ring-land
crevice, the entering flow quickly adopts the
port angle on entering the cylinder. This high-
lights the importance of maintaining a consis-
tent three-dimensional representation of the
hardware at all stages of design, analysis, and
fabrication. The CFD practitioner should be
wary of compromising the geometry in favor
of grid-generation expediency, particularly in

applications where he or she has little previous
experience.
Numerical Inaccuracy. Meshes of hundreds

of thousands of computational cells are com-
mon in transient engineering applications of
CFD today (2009), and several millions of cells
are being used in steady-state computations.
Even so, numerical inaccuracy remains an issue
for three-dimensional CFD. A mesh of 1 mil-
lion cells corresponds to just 100 nodes in each
coordinate direction in a three-dimensional cal-
culation. With the low-order numerics that
characterize engineering CFD, this is sufficient
to resolve a dynamic range of approximately 1
order of magnitude (a factor of 10) in flow
scales.
Rapid progress is being made both in discre-

tization schemes for tetrahedral meshes and in
automated grid generation for (primarily) hexa-
hedral meshes; it is unclear at this time which
will become dominant in engineering CFD.
The physical models used to represent

turbulence, combustion, sprays, and other
unresolvable phenomena are a third source of
uncertainty in CFD. Turbulence modeling, in
particular, is an issue that affects nearly all
engineering applications. Research toward
improved models continues. Much new physi-
cal insight into turbulence is itself being
derived from large-scale numerical simulations
(Ref 82).
In many high-Reynolds-number engineering

applications where the instantaneous flow is
highly transient and three-dimensional, turbu-
lence models can be used to reduce the problem
to one of steady flow, provided that the mean
quantities of interest are time independent. This
reduces the computational requirements consid-
erably and provides results of acceptable accu-
racy in many cases. However, as engineering
design requirements tighten, there is an increas-
ing number of problems that demand a full
three-dimensional transient treatment. Models
still are needed to account for scales smaller
than those that can be resolved numerically,
but subgrid-scale turbulence models are used
instead of Reynolds-averaged models. The
resulting three-dimensional time-dependent
simulations in this case are referred to as
large-eddy simulations (LES) (Ref 83). The
use of LES in engineering design is expected
to proliferate rapidly. Examples of current
applications of interest include acoustics and
aerodynamic noise (Ref 84) and in-cylinder
flows in engines (Ref 85).
Each of these three sources of uncertainty

can, in principle, be isolated and quantified in
simple configurations where a second source
of data (e.g., experimental measurements) is
available. It is more difficult in engineering
applications of CFD to isolate and to quantify
these errors to obtain meaningful estimates of
error bounds. Early in the history of three-
dimensional CFD, discrepancies between CFD
and experiments generally were attributed to
the turbulence model. The importance of the
other sources of uncertainty and numerical

Fig. 8 Computed and measured ensemble-mean velocity fields on two-dimensional cutting planes at 125� after
piston top-dead-center for a ported two-stroke-cycle engine. Computational results with and without a

top-ring-land crevice are shown. (a) Measured. (b) Computational fluid dynamics (CFD) with top-ring-land crevice.
(c) CFD without top-ring-land crevice
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inaccuracy, in particular, has been more widely
acknowledged recently (Ref 62, 86, 87). In
the authors’ experience, most discrepancies
between computations and measurements for
single-phase nonreacting flows in complex con-
figurations are traced to geometric infidelity or
to inadequate mesh resolution (in cases where
they have been traced at all).
User Expertise. Computational fluid dynam-

ics codes generally require more experience on
the part of the user than other, more mature,
CAE tools (e.g., linear FEM structural analy-
sis). “General-purpose” CFD software provides
a large number of numerical parameters and
problem-specification options. In steady-flow
problems, results should be independent of the
choice of initial conditions, but different initial
conditions may lead to different steady solu-
tions when time-marching to the steady state.
The choice of computational domain and speci-
fication of boundary conditions always are
important, both for steady and time-dependent
flows. Minimal user experience may suffice to
obtain a reliable solution for steady incompress-
ible flow in a benign geometric configuration,
but considerable expertise is needed in problem
specification and in results interpretation for
complex flows.
CFD and Experimental Measurements.

The engineering and scientific community typi-
cally accepts measurements from experiments
as being more reliable than similar information
generated by a CFD calculation. This is the rea-
son for the strong emphasis placed by the pro-
fession on “validating” CFD results. While it
is true that there are many sources of uncer-
tainty in CFD, the same is true of experiments,
particularly for complex systems (e.g., the in-
cylinder flow in the last example). When com-
paring CFD results with measurements for such
complex engineering problems, it is more
appropriate to approach the exercise as a “rec-
onciliation” rather than a “validation,” because
the latter implies that the experiment provides
the “correct” value.
Interdisciplinary Analysis. In this overview,

CFD has been considered as an isolated analy-
sis tool. This is satisfactory only to the extent
that one can reasonably prescribe boundary
conditions that are independent of the flow
solution itself.
For example, a coolant-flow analysis of tem-

perature boundary conditions may be prescribed
from a separate finite-element structural analysis,
but the temperature field in the solid depends on
the coolant flow itself. One can alternate through
a sequence of CFD and thermal structural ana-
lyses, taking the most recent boundary condi-
tions available at each step, to obtain a solution
that effectively is coupled. A single direct com-
putation of the coupled solution would be more
satisfactory, however. In this case, a coupled
fluid/heat conduction analysis is feasible because
many CFD codes provide conjugate heat transfer
capability.
More difficult are cases where fluids and

solids interact in a manner that changes the

shape of the flow domain. Flow/structure inter-
actions including deformations are important,
for example, in some aircraft design problems
or in applications where there is significant
thermal distortion. Interdisciplinary analysis
tools are becoming available for these problems
and will see more widespread use in the future.
Future of Engineering CFD. Most contem-

porary commercial CFD codes start from a dis-
cretization of the continuum equations of fluid
mechanics and require a computational mesh
of discrete cells or elements. An alternative is
to approach CFD from a kinetic theory point
of view. In Ref 88, for example, an (essentially)
grid-free Lagrangian-particle method has been
developed and implemented. It is too early, at
the time of this writing, to speculate on the
future of this approach for engineering design.
Computations have been reported for configura-
tions including external flow over simplified
and realistic vehicles.
Research areas for CFD have included auto-

mated mesh generation, numerical algorithms
for parallel computer architectures, linear equa-
tion solvers, more accurate and stable discreti-
zation schemes, automatic numerical error
assessment and correction, improved solution
algorithms for coupled nonlinear systems, new
and enhanced physical models, more sophisti-
cated diagnostics, interdisciplinary coupled
structures/fluids analysis, optimization algo-
rithms, and coupling of three-dimensional
CFD into systems-level models.
In the ideal math-based design process, CFD is

one part of a multidisciplinary CAE approach,
and the full system (versus isolated component)
is considered. Grid generation is fully automated
to ensure a high-quality (initial) mesh. The flow
solver selects all numerical parameters and pro-
vides automated solution-adaptive mesh refine-
ment to a specified level of error or allowable
computational resource (time or cost). Solution
diagnostics provide information of direct rele-
vance to the design requirements. Automated
design optimization through modifications to
the geometry and/or operating conditions pro-
ceeds until design requirements are met.
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Transport Phenomena during
Solidification
Jonathan A. Dantzig, University of Illinois at Urbana-Champaign

Fundamentals

Some of the most important tools that materi-
als scientists use regularly are equilibrium
phase diagrams. These diagrams, derived from
thermodynamics, define the phases present and
their relative amounts in equilibrium as a func-
tion of overall alloy composition, C, and tem-
perature, T. However, there is no information
in the diagram about how a system evolves in
space, x, and time, t. Transport phenomena is
the generic name used to describe the dynami-
cal and spatial aspects of the system behavior.
There are more specific names. The study of
energy transport, embodied in the temperature
field T(x,t), is called heat transfer. The transport
of solute, given by C(x,t), is called mass
transfer. In fluid systems, it is also necessary
to consider the velocity field v(x,t), the study
of which is called momentum transport or,
more commonly, fluid dynamics. Clearly, these
subjects are much deeper and broader than the
scope of a Handbook article. Therefore, the
focus here is on an introduction to the topic,
all given in the context of solidification.
Onebeginswith thebalance equations formass,

energy, and solute and the necessary boundary
conditions for solving problems of interest in cast-
ing and solidification.Thephenomena cover a vast
range of length and time scales—from atomic
dimensions up to macroscopic casting size, and
from nanoseconds for interface attachment kinet-
ics to hours for casting solidification. It is essential
to understand how todeterminewhich phenomena
are most important at the particular length and
time scale of interest for the problem at hand.
Methods for doing so are described in the section
“Scaling” in this article. Finally, several examples
are given of the application of transport phenom-
ena in solidification, focusing in particular on
microstructure formation.

Balance Equations

The derivation of the general forms of the bal-
ance equations is given in Ref 1 and 2. Instead, a
shorter form is presented here that begins with

the general balance equations and then specializes
them using common models for materials behav-
ior appropriate for metal systems. Since the sub-
ject of interest is solidification, it is necessary to
examine more closely how these equations are
applied when there is a moving solidification
front. This should becomemore clear as each bal-
ance equation is developed.
Mass Balance. The mass balance for a fluid

of density r moving at velocity v is given by:

@r
@t
þr�ðrvÞ ¼ 0 (Eq 1)

This is written in the so-called conservative
form, which is quite useful if one decides to inte-
grate over a control volume. Doing so, and choos-
ing a fixedcontrol volumeVwith surfaceS, yields:

@

@t

ð
V

rdV þ
ð
S

rv�ndS ¼ 0 (Eq 2)

where the divergence theorem has been applied
to convert the second term to a surface integral.
The surface normal vector is n. The interpreta-
tion of Eq 2 is clear: The time rate of change of
total mass in the volume, represented by the
first term, is balanced by the total mass leaving
the volume through the surface.
Now consider the control volume shown Fig. 1,

which encloses a portion of the solid-liquid inter-
face. The interface, solid, and liquid are moving
at velocities v*, vs, and vL, respectively, and the
interface normal vector is n*. (The subscripts “s”
and “L” are used throughout to refer to the solid
and liquid, respectively, and the superscript “*”
indicates quantities on the liquid-solid interface.)
Now evaluate Eq 2 as the thickness of the control
volume goes to zero. The first term vanishes, and
the second term then consists of four parts:

rsðvs�n
 � v
�n
Þ
þ rLðv
�n
 � vL�n
Þ ¼ 0 (Eq 3)

The physical meaning of Eq 3 is made more
clear by assuming that the solid is not moving
(vs = 0) and by rearranging terms to obtain:

vL�n
 ¼ �rs � rL
rL

v
�n
 ¼ �bv
�n
 (Eq 4)

where b is called the solidification shrinkage.
Equation 4 states that there is a net flow of liquid
into the interface in order to balance the density
difference between the liquid and solid phases.
This flow is the underlying cause of porosity and
hot tearing in castings. It is less important for the
other balances. Therefore, the shrinkage flow is
omitted from the development of the momentum,
energy, and solute balances that follow.
Momentum Balance. The balance of linear

momentum is the continuum form of Newton’s
second law of motion, that is, that the sum of the
forces on a body is balanced by the time rate of
changeof linearmomentum. In conservative form:

@rv
@t
þr�ðrvvÞ ¼ r�sþ rb (Eq 5)

wheres is the stress tensor, and b is a body force
such as gravity. The dyadic product vv is a tensor
with components vivj. Integrating over a control
volume as for the mass balance shows more
clearly the relation to Newton’s second law:

@

@t

ð
v

rvdV þ
ð
S

rvv�ndS
¼
ð
S

f�ndS þ ð
v

rbdV
(Eq 6)

where f = s � n is the external traction force
applied on the surface of the control volume.
It is often convenient to separate the stress into

n∗

v∗

vs

vL

Solid

Liquid

Interface

Fig. 1 Schematic of a control volume including the
liquid-solid interface

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 70-74

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



hydrostatic pressure, p, and the “extra” stress
tensor, t, leading to the form s = �pI + t. Fol-
lowing a procedure similar to the one followed
to develop the interface form of the mass bal-
ance leads to balance equations for the normal
and tangential components of the force at the
interface:

ðpL � psÞ � ðts � tLÞ : ðn
n
Þ ¼ 2g�k (Eq 7)

ðts � tLÞ : ðn
t
Þ ¼ rsurfg�t
 ¼ 0 (Eq 8)

where g is the surface energy of the liquid-solid
interface, and �k is the mean curvature. The nota-
tion “:” implies a double-dot product, and rsurf

indicates the gradient within the surface. This
term captures the so-called Marangoni effect,
where gradients in temperature or composition
along the surface create tangential forces that
can drive a flow in the liquid. These forces are
very important for welding, where there is a
free surface, but less so for liquids and solids.
Equation 7 provides the well-known relation
that the surface tension is balanced by a pres-
sure difference across the curved interface.
Energy Balance. The energy balance is one

of the most important balances for solidification
problems. The most convenient thermodynamic
variables are temperature, T, and pressure, p.
The energy balance is written in terms of the
enthalpy density, H, as:

@rH
@t
þr�ðrHvÞ
¼ r�ðkrT Þ � pr�vþ t : Dþ _Q

(Eq 9)

where D is the rate of deformation tensor, 2D =
rv + (rv)T, and t:D is thework done by the shear
stress, also called the viscous dissipation. For
most solidification problems, the pressure effects,
viscous dissipation, and internal heat generation,
_Q, usually can be neglected, leaving the form:

@rH
@t
þr�ðrHvÞ ¼ r�ðKrT Þ (Eq 10)

Integrating over the control volume shows
that the time rate of change of enthalpy in the
control volume is balanced by that advected
and conducted through the surface:

@

@t

ð
V

rhdV þ
ð
S

rhv�ndS ¼ ð
S

KrT�ndS
¼ �

ð
S

q�ndS (Eq 11)

where Fourier’s law for the conductive heat
flux, q = �KrT, has been applied. The interfa-
cial balance, neglecting the shrinkage flow, is:

rLHL � rsHs ¼ KsrTs�n
 �KLrTL�n
 (Eq 12)

The left side of Eq 12 is the difference in
enthalpy between the liquid and solid phases,
the latent heat of fusion, DH; the right side is
the net heat conduction away from the interface.

Inserting DH gives the Stefan condition:

rs�H ¼ KsrTs�n
 �KLrTL�n
 (Eq 13)

Often, the ratio Ks/KL � 1.
Solute Balance. The solute balance is devel-

oped in a similar way to the energy balance. For
the sake of brevity, the treatment here is
restricted to binary alloys (A and B) with no
chemical reactions. In analogy with Fourier’s
law for conduction, Fick’s law for diffusion is
adopted, which gives the diffusive flux of spe-
cies B as proportional to the composition gradi-
ent, J = Dr(rC). The composition is given as a
mass fraction, that is, grams B divided by total
grams, the units of the diffusivity D are m2/s,
and thus, the flux has units grams B per unit
area per unit time. Note that there are numerous
subtleties associated with whether the mass
appears inside or outside the gradient operator
when the density is not constant, but these
issues are beyond the scope of this article.
The solute balance is given by:

@rC
@t
þr�ðrCvÞ ¼ r�ðDrrCÞ (Eq 14)

and the interfacial balance for solute is also
analogous to the interfacial balance for energy:

ðrLCL � rsCsÞv
�n
 ¼ DsrðrsCsÞ�n

�DLrðrLCLÞ�n
 (Eq 15)

As opposed to heat conduction, where Ks �
KL, usually Ds � DL, and the first term on the
right side of Eq 15 is often neglected. The left
side is usually modeled by assuming local ther-
modynamic equilibrium at the interface, and
therefore the compositions CS and CL are given
by the equilibrium phase diagram. In that case,
the segregation coefficient, k, is introduced,
such that rsCs = krLCL. Introducing both of
these simplifications in Eq 15 gives:

rLCLð1� kÞv
 �n
 ¼ �DLrðrLCLÞ�n
 (Eq 16)

Scaling

The governing equations, while necessary, are
only the beginning. The geometry, boundary and
initial conditions, and material properties also
must be specified. When all of these data are
gathered, one can, in principle, evolve the appro-
priate equations in time and find a solution to the
problem at hand. This is usually done numeri-
cally, perhaps using one of the many available
commercial codes. However, that is usually
much more work than is either necessary or even
possible, because the range of length and time
scales involved with solidification processes is
vast—from atomic-scale kinetic processes that
take place over picoseconds to macroscopic heat
flow at the size of the casting, extending over as
much as an hour for large parts. Practical simula-
tions can cover atmost 3 to 4 orders of magnitude
in both space and time, and this means that some
phenomena must be omitted from the problem.
But which ones should be kept and which ones

neglected (or are better to include via an analyti-
cal model)? Clearly, the important scales should
be included, but how can one decide which those
are? That is the subject of this section.
The decision about which length and time

scales are important is done by scaling the gov-
erning equations. This provides a systematic
means for ensuring that the important terms
are kept while the negligible terms are dis-
carded. First, the procedure is described, then
a simple example is given. Scaling begins by
choosing characteristic scales for variables such
as length, temperature, and so on that usually
come from the problem geometry and boundary
conditions. Some characteristic values are
unknown and are defined by the governing
equations. The characteristic values are used
to define dimensionless variables that are order
one. For example, suppose that the temperature,
T, is known (e.g., from initial and boundary
conditions) to lie in the interval T1 � T � T0.
A dimensionless temperature is defined, y = (T
� T1)/(T0 � T1) E [0,1]. Unknown characteris-
tics are just given a symbol and carried along.
When the dimensionless variables are defined,
they are substituted into the governing equa-
tions. Each term in the equation then has a
(dimensional) coefficient multiplying a scaled
(dimensionless) term. The equation is then
divided by the coefficient of a term that is
expected to be important. This requires some
engineering judgment, but it is expected that
something about the problem at hand is known!
The unknown characteristics are then evaluated
by setting the value of the coefficient where
they appear to 1. Now that all of the terms in
the equation are order 1 or less, terms whose
coefficients are small compared to 1 can be
safely neglected and the remaining problem
solved.
A concrete example makes the scaling pro-

cess seem much less mysterious. Consider a
thin, circular rod of length L and radius R �
L, initially at temperature T0, quenched into a
large bath at temperature T1. Some simplifying
assumptions are made in order to focus on the
scaling process. Assume that the bath tempera-
ture stays at T1, unaffected by the quench, and
that the heat transfer from the surface of the
rod to the bath can be characterized by a con-
stant heat transfer coefficient, h. All of the
material properties will be assumed to be con-
stant, and the temperature distribution is axi-
symmetric. The problem is solved in polar
coordinates. Finally, the rod is solid (v = 0),
and there is no internal heat generation
( _Q ¼ 0). The energy equation for the rod (0 �
r � R; � L/2 � z � L/2) is then:

@T

@t
¼ a

1

r

@

@r
r
@T

@r

� �
þ @2T

@z2

� �
(Eq 17)

and the initial and boundary conditions are:

T ¼ T0 t ¼ 0 (Eq 18)

�K @T

@r
¼ hðT � T0Þ r ¼ R (Eq 19)
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þ�K
@T

@z
¼ hðT � T0Þ z ¼ L=2 (Eq 20)

where a = K/rcp is the thermal diffusivity. Now
the problem specification is used to define the
following dimensionless variables:

~r ¼ r

R
; z ¼ zþ L=2

L
; y ¼ T � T1

T0 � T1

(Eq 21)

Time must also be scaled, but the characteris-
tic value tc is not yet known. Therefore, ~t ¼ t=tc
is defined, and guidance is awaited. The scaled
variables are now inserted into Eq 17, and the
entire equation is divided by a(T0 � T1)/R

2,
the coefficient of the term associated with
conduction in the radial direction. The result is:

R2

atc

@y
@~t
¼ 1

~r

@

@~r
~r
@y
@~r

� �
þR2

L2

@2y
@�2

� �
(Eq 22)

Setting the dimensionless group on the left
side to 1 gives the characteristic time tc = R2/a,
and the ratio at/R2 is called the Fourier number.
It can be seen that the geometry of the problem,
where R � L, indicates that axial conduction,
associated with the term @2y/@z2, is negligible
in comparison to radial conduction. This makes
the problem effectively one-dimensional, a great
simplification. The initial condition is simply
y = 1 at ~t ¼ 0. The scaled form of the boundary
conditions becomes:

� @y
@~r
¼ hR

K
y ~r ¼ 1 (Eq 23)

þ�
@y
@�
¼ hR

K

L

R
y z ¼ 0;1 (Eq 24)

The dimensionless parameter hR/K is called
the Biot number, Bi. Notice that information
about the problem geometry is retained in the
aspect ratio L/R, which now appears in the
boundary condition.
To review concepts of the scaling: The charac-

teristic time for conduction is R2/a, conduction
in the axial conduction can be neglected with
respect to radial conduction for R/L, and the
important parameter that determines the rate of
heat loss to the environment is the Biot number,
hR/K. The remaining one-dimensional problem
can be solved, for example, using Fourier series

methods (Ref 3). The simplification to a one-
dimensional problem came at a price, however.
Since the derivatives with respect to z were
eliminated from the differential equation, the
end conditions in Eq 24 cannot be satisfied. It
is expected that there will be a small region near
the boundary, called a boundary layer, where the
solution is two-dimensional. In this region, the
axial and radial conduction terms must be com-
parable, and scaling should make it obvious that
this layer extends a few R from each end. Figure
2 shows temperature solutions for a problem
where Bi = 10 and L/R = 20, at several values
of ~t. Notice that the temperature is nearly
uniform at T1 at ~t = 0.7—this shows the signifi-
cance of the characteristic time.

Transport and Microstructure

Using the fundamentals presented in the pre-
ceding sections, solidification problems now
can be discussed. Perhaps the most important
thing to understand is that for most materials,
Ds � DL � aL � as, and these large differ-
ences produce a separation of characteristic
time and length scales. Because the thermal
diffusivity is much larger than the chemical
diffusivities, the solidification rate is controlled
by heat flow, and chemical diffusion tries to
follow. This eventually leads to the formation
of microstructure, such as that shown in Fig. 3
(Ref 4). Several aspects of the solidification
process are now considered as well as how
transport phenomena are expressed in the
development of microstructure.

Planar Front Growth

As discussed in other articles in this Hand-
book, the two processing variables that are used
to correlate microstructures are the temperature
gradient in the liquid at the interface, GL, and

the solidification front speed, vn*. For this reason,
a common method for either assessing micro-
structural features experimentally or actually
controlling them in practice is directional solidi-
fication. In a simplified version of the experi-
ment, a thin layer of alloy is encapsulated
between microscope slides that are then placed
atop controlled hot and cold blocks. The blocks
are maintained at predetermined temperatures
and at a fixed distance, in order to establish a
desired temperature gradient, GL. The slide
assembly is then pulled at constant speed vn*
through the gradient. The experiment is often
done with a transparent organic alloy, and the
solidification morphology is observed using a
microscope. (Recently, similar experiments
have been performed in metallic systems using
synchrotron radiation to observe the microstruc-
ture (Ref 5). Next, a model of the system is built
with the goal of finding out how the important
parameters interact to produce the observed
microstructural features shown in Fig. 3.
It is observed that if the pulling speed is slow

enough, the interface remains flat. In this case,
after a brief transient at the beginning of the
experiment, the process reaches a quasi-steady
state where the microstructure is constant in
time. It is convenient to analyze the process in
a frame that is fixed on the interface (z = 0)
and to assume that in this frame the transport
is independent of time. The material moves
through the interface at velocity �vn*. It is
assumed that the material properties are all con-
stant (thus there is no shrinkage flow) and, for
convenience, that the thermal diffusivities of
the solid and liquid are equal. Finally, varia-
tions in all fields perpendicular to the pulling
direction are ignored, making the problem
one-dimensional. Note that all these assump-
tions are not essential to the analysis, and either
everything could be included or the assump-
tions could be justified through a scaling analy-
sis similar to that given for the quenched rod.
For the sake of brevity, they are simply taken

Fig. 3 Micrographs from directional solidification of a succinonitrile-acetone alloy. Left: initial planar interface with
small perturbations; right: developing dendrites, with primary and secondary arms indicated. Source: Ref 4

t = 0.05

t = 0.25

t = 0.70

0.8

0.2

0.4

0.6

Fig. 2 Temperature distributions through the midplane
of a quenched rod for several values of the

dimensionless time
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as given. The transport equations for heat and
solute now reduce to:

�v
n
@T

@z
¼ a

@2T

@z2
�1 < z <1 (Eq 25)

�v
n
@CL

@z
¼ DL

@2CL

@z2
0 � z (Eq 26)

�v
n
@Cs

@z
¼ Ds

@2Cs

@z2
z � 0 (Eq 27)

Looking at the micrograph in Fig. 3, it seems
that the system chooses a length scale l1, the
primary dendrite arm spacing. These equations
are partially scaled by defining z = z/l1,
with the result:

� v
nl1
a

� �
@T

@z
¼ @2T

@z2
(Eq 28)

� v
nl1
DL

� �
@CL

@z
¼ @2CL

@z2
(Eq 29)

� v
nl1
DS

� �
@CS

@z
¼ @2CS

@z2
(Eq 30)

Each equation has as a prefactor a variation
of a dimensionless group called the Péclet num-
ber, corresponding to the ratio of advective to
diffusive transport of heat or solute, depending
on the equation. Actual values can be taken
from the experiments for the material proper-
ties, vn* and l1, to evaluate the Péclet numbers:

v
nl1
a
� 10�2;

v
nl1
DL
� 1;

v
nl1
Ds
� 104 (Eq 31)

Substituting these results into Eq 28 to 30
allows terms to be dropped that have coeffi-
cients that are much less than 1. It is also con-
venient to then redimensionalize the equations
so that boundary conditions can be applied.
The result is:

@2T

@z2
� 0 (Eq 32)

�v
n
@CL

@z
¼ DL

@2CL

@x2
(Eq 33)

� @CS

@x
� 0 (Eq 34)

The solution to Eq 32 is a simple linear pro-
file. Applying the boundary conditions T = Tcold
at z = zcold and T = Thot at z = zhot gives:

T ¼ Tcold þ Thot � Tcold

zhot � zcold
ðz� zcoldÞ (Eq 35)

The solution clearly shows how the apparatus
selects the temperature gradient. The result that
the temperature field is linear and undisturbed
by the moving interface is sometimes called
the frozen temperature approximation, but it is
really a result of scaling.
The solution for the composition field in the

liquid can be found after applying the boundary

condition given in Eq 16 at z = 0 and setting
CL = C0 for z ! 1:

CL ¼ C0 þ C0

1� k

k

� �
e�v



nz=DL (Eq 36)

Thus, there is a solute boundary layer ahead
of the interface of thickness roughly 3DL/vn*.
The solution to Eq 33 is just Cs is constant.
Examination of Eq 36 shows that CL = C0/k at
z = 0, and this permits evaluation of the con-
stant, so that:

Cs ¼ C0 (Eq 37)

This example, although rather simple, indi-
cates how the transport phenomena naturally
separate into different length scales due to the
disparity in the rate of transport of energy and
solute. This is very important for understanding
the origin of microstructure during solidification.
It is beyond the scope of this article to pursue the
analysis much further, but it is important to
understand that there is one other important
aspect. On considering the stability of the planar
front growth morphology, it is found that for
small values of the ratio GL/vn*, the interface
becomes unstable to perturbations and breaks
down first into cells and then into dendrites. In
the stability analysis, a length scale associated
with the surface energy of the liquid-solid inter-
face enters the problem through a material prop-
erty called the capillary length, d0 = Gk/mLC0(1
� k), where G is the Gibbs-Thomson coefficient,
andmL is the slope of the liquidus line. The char-
acteristic length selected by the dendritic arms
can be correlated to the geometric mean of the
two length scales, that is:

l � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0ðDL=vnÞ

p

Microsegregation

After the initially flat interface becomes unsta-
ble, it evolves into the dendritic pattern shown in
themicrograph inFig.3.Thestructure ischaracter-
ized by the primary (l1) and secondary (l2) den-
drite arm spacings. In the previous analysis of
transport,l1 is chosenas the length scale.Atafiner
scale, such as in the interdendritic region between
secondary arms, l2 would be the appropriate
length scale. Figure 4 illustrates the geometry.
The fundamental concepts of scaling can be

applied to this new problem. As illustrated,
the array of secondary arms is approximately
periodic, and a control volume can be chosen
as shown, with dimensions l2 � L and the
expectation that l2 � L. This time, there is
no velocity, because the control volume is fixed
in the dendrite array. Writing the governing
equations for energy and solute within this
volume yields:

@T

@t
¼ a

@2T

@x2
þ @T

@z

� �
(Eq 38)

@CL

@t
¼ DL

@2CL

@x2
þ @CL

@z

� �
(Eq 39)

@Cs

@t
¼ Ds

@2Cs

@x2
þ @Cs

@z

� �
(Eq 40)

Next, some scaled variables are defined:

x ¼ x

l2=2
; z ¼ z

L
; t ¼ t

tf
;

y ¼ T � Tsol

Tliq � Tsol

(Eq 41)

where tf is the local freezing time, that is, the
time it takes to go from the liquidus tempera-
ture, Tliq, to the solidus, Tsol. Substituting these
scaled variables into the governing equations
and invoking the assumption that l2� L gives:

@y
@t
¼ 4atf

l22

@2y

@x2
(Eq 42)

@CL

@t
¼ 4DLtf

l22

@2CL

@x2
(Eq 43)

@Cs

@t
¼ 4Dstf

l22

@2Cs

@x2
(Eq 44)

Metallurgists often use measured correlations
between l2 and tf, which show that for alumi-
num alloys (Ref 6):

l2 � 10�5m=s1=3
� �

t
1=3
f (Eq 45)

For these same alloys, a � 10�6 m2/s, DL �
10�10 m2/s, and Ds � 10�14 m2/s. Combining
these data with Eq 45, one finds that for solidi-
fication times between approximately 10 s and
1 day, Eq 42 to 44 reduce to:

@2y

@x2
� 0 (Eq 46)

@2CL

@x2
� 0 (Eq 47)

@Cs

@t
� 0 (Eq 48)

The dendritic array is periodic, so the deriva-
tives @y/@x and @CL/@x must be zero at both

λ2

L

Z

X

Fig. 4 Schematic drawing of the local geometry of
secondary dendrite arms
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x = 0 and x = 1. From this, it is concluded that
both the temperature and the composition in the
liquid are constant, and that the composition in
the solid does not change with time. However,
the composition at the liquid-solid interface
must adjust to maintain local equilibrium.
Applying the solute balance at the interface
from Eq 16 gives a relation between the compo-
sition of the solid, Cs, and the solid fraction, fs,
known as the Scheil equation:

Cs ¼ kC0ð1� fsÞk�1 (Eq 49)

(This is probably not completely obvious from
what has been presented here—see Ref 1 or 7
for a more thorough derivation.) Equation 49
can be recast in terms of temperature using
the phase diagram, with the result:

fs ¼ 1� T � Tf

Tliq � Tf

� �1=ðk�1Þ
(Eq 50)

This equation is very important, because it
provides a very good estimate for the microse-
gregation in cast alloys.

Homogenization

The microsegregation described in the previ-
ous section is inevitable in normal casting prac-
tices. This is often undesirable, and many
castings are heat treated to reduce the segrega-
tion. A detailed analysis of the problem could
be done, but it really is not necessary to do so
if one wishes only to estimate the proper homog-
enization time. It is known that the segregation
is more or less periodic on the length scale of
the secondary dendrite arm spacing. Based on
scaling, then, the estimated time needed to
homogenize the structure is simply l22=Ds. A
conservative approach would be to homogenize
the structure for two to three times this value.

This implies that the microstructure, in the
form of l2, is known. From where does that
come? It is correlated with the local solidifica-
tion time, as in Eq 45, but how does one obtain
tf? This comes from solving the transport equa-
tion for heat at the macroscopic scale, for
example, using a commercial casting solidifica-
tion analysis package. Note that there is also a
connection between the microsegregation and
heat flow in the code, because the user usually
must specify the enthalpy as a function of tem-
perature, which is obtained from Eq 50 from
the definition:

HðT Þ ¼
ðT
298

cpdT þ�Hð1� fsÞ (Eq 51)

The integral begins at 298 K (77 �F), where
enthalpy is taken to be zero by convention.

Summary

The governing equations for transport based
on balance of mass, momentum, energy, and
solute were written. Equations for these bal-
ances were developed for a moving solidifica-
tion front. It was found that the differences in
density, enthalpy, and composition between
the liquid and solid are very important for the
understanding of solidification processes. Con-
siderable effort was spent to understand how
material properties and geometry can be ana-
lyzed in the context of the governing equations,
a process called scaling.
Several example problems were considered

to show how the hierarchy of time and length
scales associated with transport leads to impor-
tant features of cast microstructures. An analy-
sis of planar front growth revealed the
important length scale associated with diffusion
DL/vn*. On the scale of secondary dendrite arms,

the limited transport of solute in the solid, com-
bined with rapid transport in the liquid, leads to
the Scheil equation for microsegregation.
Finally, the principles of transport and scaling
are applied to homogenization processes to
ameliorate the undesirable segregation pattern.

Acknowledgment

This article originally appeared as “Transport
Phenomena During Solidification,” by J.A.
Dantzitg, Casting, Vol 15, ASM Handbook,
ASM International, 2008, p 288–292.

REFERENCES

1. J.A. Dantzig and C.L. Tucker III, Modeling
in Materials Processing, Cambridge
University Press, New York, 2001

2. R.B. Bird, W.E. Stewart, and E.N. Lightfoot,
Transport Phenomena, 2nd ed., Wiley, New
York, 2002

3. H.S. Carslaw and J.C. Jaeger, Conduction of
Heat in Solids, 2nd ed., Oxford University
Press, London, 1959

4. R. Trivedi and K. Somboonsuk, Constrained
Dendritic Growth and Spacing, Mater. Sci.
Eng., Vol 65, 1984, p 65–74

5. R. Mathiesen and L. Arnberg, X-Ray Moni-
toring of Solidification Phenomena in Al-Cu
Alloys, Mater. Sci. Forum, Vol 508, 2006,
p 69–75

6. T.F. Bower, H.D. Brody, and M.C. Flem-
ings, Measurements of Solute Redistribution
in Dendritic Solidification, Trans. AIME,
Vol 236, 1966, p 624

7. W.F. Kurz and D.J. Fisher, Fundamentals of
Solidification, Trans-Tech, Aedermannsdorf,
1984

74 / Fundamentals of Process Modeling

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Modeling of Vapor-Phase Processes
Alain Dollet, Processes, Materials and Solar Energy Laboratory (PROMES) CNRS, France

VAPOR-PHASE PROCESSES (VPP)
involve the building of a solid material (usually
a coating) from elementary growth units that
are transported by gaseous molecules or atoms
onto a bulk substrate. Today (2009), VPP are
widely used in industry for preparing semicon-
ducting, insulating, or metallic solid films
for microelectronic or photovoltaic devices,
for protection of bulk materials against corro-
sion or wear, or in optical applications
(e.g., spectrally selective coatings); powders
and nanostructures can also be prepared. Vapor
deposition processes are traditionally divided
into physical vapor deposition and chemical
vapor deposition processes, as further discussed
in this article. Early vapor deposition equip-
ment has been set up and optimized after long
trial-and-error procedures or by using empirical
approaches, but significant progress has been
made in the design and optimization of vapor
deposition processes during the last 25 years
by using numerical models.
The goal of this article is twofold: First, it

introduces the underlying physics and the basics
of VPP modeling, with a special emphasis
on transport phenomena; second, examples of
vapor-phase models, from pioneer to state-of-
the-art models, are illustrated through represen-
tative works. The article mainly focuses on
phenomena and modeling approaches that are
specific to VPP; however, most of the comple-
mentary information needed on general or
specialized topics of interest (nucleation, micro-
structure evolution, Monte Carlo methods, etc.)
is found in the cited references or in other
articles in this Handbook.

Vapor-Phase Processes for the
Synthesis of Materials

Vapor-phase processes are versatile pro-
cesses that can be used for preparing a wide
number of materials, such as metallic (tungsten,
copper, aluminum, gold, platinum, etc.),
semiconducting (silicon, germanium, diamond
carbon, GaAs, CdTe, etc.), dielectric (SiO2,
Si3N4, etc.), and hard or refractory (SiC, ZrO2,
Al2O3, ZrO2, etc.) films. Complex materials
such as ternary or quaternary alloys (AlGaAs,

InAlGaN, etc.) and even metastable materials
(nonstoichiometric, amorphous) can be pre-
pared from the vapor phase. Various substrates
have been used for growing materials, for
example, single-crystal or polycrystalline
wafers, fibers, porous materials, particles, and
so on. Sometimes, solid particles can even be
grown in the gas phase without solid substrates
(homogeneous nucleation). Growth is usually
performed under vacuum conditions and in
open systems, although a small number of
deposition processes operate at or slightly
above atmospheric pressure and sometimes in
closed systems. The gaseous precursor mole-
cules are provided either directly from high-
pressure cylinders or from liquid tanks by
evaporation or from solid sources by sublima-
tion, physical ablation, and so on. Depending
on the phenomena governing the production
and transport of growth units to the substrate,
distinction is made between chemical vapor
deposition (CVD) and physical vapor deposi-
tion (PVD). Physical vapor deposition refers
to processes producing coatings from pure con-
densation onto a substrate, whereas CVD refers
to processes producing coatings from chemical
reactions (Ref 1). Several processes derived
from PVD involve chemical reactions as well;
they are sometimes referred to as hybrid
vapor-phase processes.
Obtaining uniform coatings with controlled

composition and thickness, in a reproducible
way, at the highest deposition rate and at the
lowest possible cost is one of the most impor-
tant objectives when using industrial VPP for
commercial applications. Several CVD or
PVD methods may be selected for addressing
this issue, and the results obtained often differ
markedly depending on the exact nature of the
desired material. Modeling and simulation are
powerful tools that can be used for better design
and optimization of the selected CVD or PVD
equipment.

Chemical Vapor Deposition and
Related Processes

In a typical thermal CVD process, gaseous
reactants are introduced in the reaction cham-
ber, where thermal energy initiates gas phase

and surface reactions. If thermodynamic condi-
tions are favorable (see section “Physical Vapor
Deposition and Related Processes” in this arti-
cle), chemical reactions lead to the formation
of a stable solid film on a heated substrate.
Reaction products and nonconverted reactants
are pumped outward from the reactor. By accu-
rately controlling and monitoring the deposition
conditions, it is possible to grow solid films
with the desired composition, structure, and
thickness. In addition to accurate control of
the deposition parameters, the design of the
reactor is also of major importance in CVD,
because its geometry strongly influences vapor
transport and film growth.
Although its principle is quite simple, CVD

involves many complex phenomena that are
often strongly coupled. Depicted in Fig. 1 is a
schematic representation of the elementary
steps typically involved in CVD, which has
been quite well accepted for approximately 40
years. The gas phase usually undergoes signifi-
cant physical and chemical changes because of
homogeneous and heterogeneous reactions.
These changes are also strongly dependent

on momentum and heat-transfer phenomena,
which are themselves strongly coupled to mass
transport. Numerous surface processes take
place at the gas-solid interface, where gaseous
species are transported and adsorbed. Adsorbed
species may diffuse to the highest energy sites
at the surface or join existing nuclei before
being incorporated into the growing film.
By-products or nonreacting adsorbed molecules
desorb from the film surface before being trans-
ported away from the reactor with other by-
products formed in the gas phase. Interdiffusion
of atoms between film and substrate is usually
negligible at low or moderate temperature but
may become very important at high tempera-
ture. As illustrated in Fig. 1, CVD involves so
many complex coupled phenomena that it is
almost impossible to have a comprehensive
view of the influence of each phenomenon on
deposition without using a predictive simula-
tion model in addition to experimental
measurements.
Variants of CVD Processes. Many variants

of conventional thermal CVD processes have
been proposed and are often used in industry
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for producing various types of films. Some-
times, the only difference arises from the
operating pressure range; some authors refer
to atmospheric-pressure CVD (APCVD), low-
pressure CVD (LPCVD), or ultrahigh-vacuum
CVD (UHVCVD), although these processes
remain basically conventional CVD. In some
cases, the processes only differ from the con-
ventional one by the nature of reactants or sub-
strates. For example, MOCVD refers to a
CVD process using organometallic precursors.
Chemical vapor infiltration (CVI) consists of
performing deposition inside porous preforms
or foams. Fluidized-bed CVD (FB-CVD) is a
special case of deposition on particles forming
a bed that expands when swept by a gas mix-
ture. These modified CVD processes are often
referred to as assisted CVD processes. In most
cases, thermal energy is replaced by another
activation source in order to initiate chemical
reactions, or another activation process is added
to thermal activation. Among the most famous
assisted CVD processes are plasma-enhanced
chemical vapor deposition (PECVD) or
plasma-assisted CVD, where activation is done
through an electrical discharge in the gas),
photo-assisted CVD (chemical reactions are
initiated by photons), flame-assisted CVD
(chemical precursors, often in a liquid state,
are injected into a flame, where chemical reac-
tions or combustion occurs), aerosol-assisted
CVD (precursors are atomized into submicrom-
eter liquid droplets), and atomic layer deposi-
tion (deposition is performed by sequentially
saturating surface conditions to form only one
monolayer per reaction sequence).

Physical Vapor Deposition and
Related Processes

In most PVD processes, film growth units are
single atoms or ions emitted from a solid source
or target that is simply sublimated by heating or
sputtered by energetic ion beam (liquid sources

can also be used and evaporated by heating).
For deposition of binary, ternary, and so on
alloys, several solid sources may be used at
the same time in the deposition chamber, or
alternatively, a single crucible of specific com-
position can be prepared; in both cases, control
of film composition often turns out to be diffi-
cult because the evaporation or sputtering rates
are not equal for the various elements. The tem-
perature of solid sources as well as the energy
and flux of ions must be accurately controlled
because energetic ions may release important
amounts of energy, displace bulk atoms, or
cause ablation of substrate surface atoms,
which may affect film composition and proper-
ties. Conversely, substrate heating is usually not
mandatory for deposition. Collisions in the gas
phase are usually negligible in PVD systems
operating under ultrahigh vacuum but not
completely in systems operating in the pressure
range of 0.1 to 1 Pa, in the transition regime
(see the section “Continuous versus Rarefied
Gas Flows” in this article). At very low pres-
sure, the exact geometry of the chamber is not
usually a crucial point, except for the position
of the substrate respective to the solid crucibles,
because the flux of depositing species is usually
highly directional.
Most of the elementary steps depicted in

Fig. 1 for CVD are involved in PVD, except
that there is usually no thermal activation of
the vapor phase, that is, no gas-phase reactions
and no (or few) chemically driven desorption or
adsorption steps at the film surface. Hence,
growth is mainly driven by a pure condensation
process rather than by reactions.
Main Types of PVD Processes. Evaporation

is one of the most widely used PVD processes.
Source materials are simply vaporized by resis-
tance, radiation, or electron-beam heating in an
ultrahigh vacuum (UHV) chamber; then, the
evaporated particles impinge the growing film
surface with a rather low energy. A special case
of evaporation is molecular beam epitaxy
(MBE), in which a collision-less beam obtained

by evaporation or sublimation of a source in a
UHV chamber is used to grow a high-purity
epitaxial film on a single-crystal substrate.
In sputtering processes, a solid crucible is bom-

barded by energetic ions of a few hundreds eV to a
few keV (1 eV� 1.6� 10�19 J) that transfer part
of their energy by a cascade of collisions inside
the crucible material to atoms of the very first
upper layers, which can then be ejected. In planar
diode sputtering, ions (usually Ar+) are formed in
a direct current (dc) plasma discharge between the
target electrode and a biased substrate. The atoms
ejected from the target surface (with typical
energy of a few eV to several tens of eV) move
toward the substrate but lose a large part of their
energy in collisions with gaseous molecules,
because the pressure is typically of a few Pa. Ioni-
zation efficiency is not very good in dc sputtering
systems, and the resulting deposition rate is usu-
ally rather low.Moreover, sputtering of insulating
materials cannot be performed in dc systems, and
radio-frequency plasmasmust be generated in this
case. To overcome the limitations of dc systems,
magnetron sputtering processes have been devel-
oped that consist of superimposing a magnetic
field to the electric field so that electrons are con-
strained to follow the magnetic field lines (spir-
als). Much higher ion densities are obtained in
magnetron sputtering, then higher deposition
rates, as compared to dc sputtering.
Ion-assisted deposition processes are also

used, such as ion plating, which combines elec-
tron-beam evaporation of the coating material
and a plasma discharge at a pressure of approx-
imately 0.1 to 1 Pa. Ions generated from the
sputtered atoms also participate in the growth
process but release energy at the film surface,
which is usually beneficial to adhesion and
other film properties.
Laser ablation is a quite complicated but

efficient process that can be advantageously
used for depositing alloys. A pulsed laser beam
is used in this case to extract atoms from a solid
target; a plasma plume forms, and the deposit-
ing atoms move toward the substrate, where
film growth occurs.
Several hybrid processes combining CVD and

PVD features have also been developed, such as
ion-beam-induced chemical vapor deposition,
where the main role of the ion beam is to dissoci-
ate a gaseous precursor molecule (usually an
organometallic compound). A well-known and
widely used hybrid CVD-PVD process is reac-
tive magnetron sputtering. In this case, some of
the film components, such as metals, are sput-
tered from a solid target, whereas a reactive gas
mixture (e.g., O2, N2, CH4) is used to provide
the other chemical elements. A large variety of
ceramic materials, such as carbides, oxides, or
nitrides, have been prepared using reactive mag-
netron sputtering. In the hybrid gas-source MBE
process, reactive gases are used in addition to
solid sources, providing, for example, a more
precise control of the dopant incorporation com-
pared to conventional MBE.

Fig. 1 Elementary steps involved in chemical vapor deposition
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PVD versus CVD

It is not relevant to claim that CVD is supe-
rior to PVD or vice versa; both families of the
process have advantages and drawbacks, and it
is difficult to find a rule of thumb to perform
a choice. The main drawbacks and limitations
of PVD compared to CVD are:

� PVD processes require high-vacuum equip-
ment and often expensive power supplies.

� Controlling film stoichiometry is often diffi-
cult (except with laser ablation).

� Obtaining uniform coatings on complex-
shaped substrate is usually problematic with
line-of-sight PVD processes.

Conversely, the limitations and drawbacks of
CVD are:

� Hazardous (toxic or flammable) chemical
precursors are sometimes used.

� Complex chemistry and coupled transport
phenomena may lead to difficulty in
controlling or understanding the key steps
of the process.

� Deposition on thermally sensitive substrates is
sometimes impossible (except with PECVD,
photo-CVD, and sometimes MOCVD).

It is out of the scope of this article, dedicated
to modeling and simulation, to further describe
technical aspects of CVD, PVD, and related
processes. The reader may refer to several
excellent books or reviews on these topics, for
example, in Ref 2 to 6. However, prior to
addressing the modeling of VPP, it is of funda-
mental importance to know and understand the
underlying physics. The two subsequent sec-
tions introduce most of the basic notions of
importance for modeling transport phenomena
as well as reactions and surface processes.

Transport Regimes and
Transport Equations

Transport phenomena in gases are of major
importance for VPP modeling. This section
reviews some basic notions of molecular colli-
sions and gas flows, and presents the transport
equations in gases.

Basics of Molecular Collisions

In a sample of pure gas, two moving mole-
cules, approximated by hard spheres of diame-
ter d, approaching each other collide when the
distance between their centers decreases to d.
A total collision cross section (sT) is defined
for the colliding pair of molecules as:

sT ¼ pd2 (Eq 1)

Let n be the number of gas molecules per unit
volume, so that the mean molecular spacing is

ffi n�1/3. For a dilute gas, this spacing is >>d;
hence, most collisions are binary collisions.
For collisions between molecules of species i
and molecules of species j in a mixture, Eq 1
becomes:

sTij
¼ pd2ij; with dij ¼ ðdi þ djÞ

2
(Eq 2)

The relative velocity (cr) between two mole-
cules of mass m1 and m2 traveling, respectively,
at velocity c1 and c2 before colliding is:

cr ¼ c1 � c2 (Eq 3)

After collision, these molecules have new velo-
cities, c1* and c2*, and relative velocity, cr*:

c
r ¼ c
1 � c
2 (Eq 4)

In case of elastic collisions, momentum and
energy are conserved, and it can be shown that
cr* = cr. It is almost straightforward to establish
that the mean collision rate (n), that is, the
collision frequency in the gas phase, is:

n ¼ nsTcr (Eq 5)

For the special case of hard spheres, Eq 5
becomes:

n ¼ npd2cr (Eq 6)

and for molecular collisions between species
i and j in a mixture:

ni;j ¼ njsTi;j
cri;j (Eq 7)

The mean collision rate, ni, for molecules i is
first obtained by summing over all collision
partners j, then the mean collision rate, n, for
the mixture is obtained by averaging over all
species i:

ni ¼
X
j

njsTi;j
cri;j (Eq 8a)

n ¼
X
i

ni

n

� �
ni (Eq 8b)

The frequency of molecular bombardment per
unit area (z) on one side of any stationary
surface in an equilibrium gas is (Ref 7):

z ¼ 1

4
nc0 (Eq 9)

The mean free path, l, is the average distance
traveled by a molecule between successive
collisions. It is equal to the mean thermal
speed, c0 (Eq 21), divided by the collision
frequency:

l ¼ c0

n
(Eq 10)

For a simple gas at equilibrium, it can be shown
that (Ref 7):

c0 ¼ crffiffiffi
2
p (Eq 11)

Hence, in the simplest case where gas mole-
cules are approximated by hard spheres of
diameter d and for an equilibrium gas:

l ¼ 1ffiffiffi
2
p

pd2n
(Eq 12)

Expressions of l in other cases can be found in
molecular theories of gases (Ref 7, 8). Equation
12 can easily be generalized to gas mixtures.
The molecular mean free path for species i is:

li ¼ 1P
j

njsTi;j
ci;j

c0
i

(Eq 13)

and the mean free path for the mixture
becomes:

l ¼
X
i

ni

n

� �
li (Eq 14)

The hard sphere model is a useful but oversim-
plified molecular model for defining the inter-
action force (or potential) between particles.
There is only a repulsive term, which is equal
to zero for distances r > d and equal to 1 for
r = d. Of course, more sophisticated and realis-
tic models have been developed, often includ-
ing both a repulsive and an attractive term, for
example, Lennard-Jones potentials:

�L�J ¼ K1

ra1
þ K2

ra2
(Eq 15)

The 6-12 Lennard-Jones potentials (a1 = 6,
a2 = 12) have been widely used.
In the general case, energy transfers must

be considered in molecular collisions that no
longer can be considered as elastic. This is
especially true for high-energy particles or
reacting molecules that usually exchange large
amounts of energy in collisional processes.

Continuous versus Rarefied Gas Flows

The different flow regimes in gases are con-
ventionally classified into three categories
(Fig. 2) according to the value of the Knudsen
number (Kn), a dimensionless number defined
as the ratio of the mean free path of molecules
in the gas phase (l) to a characteristic system
dimension (D):

Kn ¼ l=D (Eq 16)

For an equilibrium gas composed of hard
spheres of diameter d, l is given by Eq 12.

At sufficiently high operating pressure and
for rather large characteristic dimensions (reac-
tor length, wafer diameter or spacing, etc.), Kn
is small (<0.01) and the gas behaves as a con-
tinuous medium. Conversely, at very low pres-
sure and for very short characteristic
dimensions, Kn is large (>10), which means
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that the gas phase is collision-less or in free
molecular regime (wall collisions are much
more frequent than gas-phase collisions).
Between these two extreme regions, that is,
for 0.01 < Kn < 10, a transition region exists
where the flow is neither continuous nor colli-
sion-less.
Many CVD processes operate at pressures

greater than 101 to 102 Pa; hence, they can be
modeled by using a continuum formulation.
However, simulation of low- and very-low-
pressure processes (LPCVD and UHVCVD) as
well as simulation of growth on micrometer-
sized features (very small D) must be based
on noncontinuum equations. In fact, the last
section of this article shows that a full modeling
of CVD processes requires combining several
models simulating different length scales
(i.e., continuum and noncontinuum models).
Unlike CVD processes, most PVD processes
operate in the transition regime or in the free
molecular regime; thus, PVD models are almost
never based on continuum equations, at least
for describing mass transport.

Transport Equations in Gases

Molecular Velocities and Velocity
Distribution Functions. Consider a sample of
gas in physical space containing n molecules
per unit volume. A typical molecule has a
velocity, c, with components (u,v,w) in a Carte-
sian coordinate system (x,y,z). The fraction of
molecules within a velocity space element dc
= dudvdw is:

dn

n
¼ fðcÞdc; with

ðþ1
�1

fdc ¼ 1 (Eq 17)

where f(c) is the single particle distribution
function in velocity space. In case of a pure
equilibrium gas at T > 0 with no macroscopic
motion (average mass velocity v = �c = 0), a
thermal (or peculiar) molecular motion exists
at the microscopic scale: Molecules move in

random directions with a thermal speed c’,
and c = c’ in this particular case.
Macroscopic properties can be derived by

calculating moments of the distribution func-
tion. The average value of a given molecular
quantity, Q, is:

�Q ¼
ðþ1
�1

QfðcÞdc (Eq 18)

For example, for Q = c:

�c ¼
ðþ1
�1

cfðcÞdc (Eq 19)

From the Boltzmann equation presented in
the following section, an expression of the equi-
librium distribution function (f0) for a nonmov-
ing equilibrium gas can be established (Ref 7):

f0ðc0Þ ¼ m

2pkBT

� �3=2

exp � mc02

2kBT

� �
(Eq 20)

with kB the Boltzmann constant and m the
molecular weight. Starting from Eq 20, the
average thermal speed (�c0) can be derived
(Ref 7):

�c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
8kBT

pm

r
(Eq 21)

The thermal velocity c’ is more generally defined
as the velocity, c, of amolecule relative to themac-
roscopic gas velocity, v (i.e., c’ = c� v). Because
�c ¼ v, the mean value of c’ in a pure gas is:

�c0 ¼ �c� v ¼ 0 (Eq 22)

Note that Eq 22 holds for �c0, which is a vector
(bold character), but not for its modulus,
�c0, which is a scalar quantity defined in (Eq
21). In the case of a mixture containing s species,
the mass average velocity, v, is obtained from a
weighted mean accounting for the different
masses of the s species. The mean thermal
velocity of a particular species i is then given by:

c0 i ¼ ci � v (Eq 23)

where c0i is called the diffusion velocity of
species i in the mixture.
The Boltzmann Equation. This well-known

equation derived by Boltzmann establishes the
relationships between the distribution functions
and their related variables. For a simple dilute
gas, the equation is written:

@

@t
ðnfÞ þ c� @@r ðnfÞ þ F� @@c ðnfÞ
¼
ðþ1
�1

ð4p
0

n2ðf
f
1 � f f1Þcrsd�dc1 (Eq 24)

In this equation, binary collisions of molecules of
class c with molecules of class c1 are considered.

cr denotes the relative velocity of colliding parti-
cles (cr = c� c1), and f1 is the value of f at c1. Post-
collision quantities are identified by asterisks
symbols (*).sdO is the differential collision cross
section. The first term of the left part of Eq 24 is
the total rate of change of the number of mole-
cules per unit volume; the second term is the con-
vection flow of molecules of class c across the
surface of volume dr due to the velocity c; the
third term is the convection flow of molecules
across the surface dc, due to the external force
per unit mass, F. The right part of the equation is
the collision term, that is, the total rate of increase
of molecules of class c as a result of collisions.
In the case of a gas mixture containing s spe-

cies, the Boltzmann equation for a given spe-
cies p is:

@

@t
ðnpfpÞ þ cp� @@r ðnpfpÞ þ F� @@c ðnpfpÞ

¼
Xs
q¼1

ðþ1
�1

ð4p
0

npnqðf
pf
1q � fpf1q Þcrpqspqd�dc1q

(Eq 25)

In this equation, distribution functions are
defined for each species. More general forms
of the Boltzmann equation can be derived in
order to account for the presence of internal
degrees of freedom, which have not been con-
sidered in the previous equations.
It is rather straightforward to see that the main

difficulty associated with the resolution of the
Boltzmann equation is the collision term, even
in the assumption of molecular chaos.
A particular case of interest is, of course, the
one for which collisions can be neglected; that
is, when Kn >> 10, because the right-side term
simply drops out of the equation. Approximate
solutions of the collision term have been pro-
posed, such as in the BGK equation (Ref 7)
where the collision term of Eq 24 is replaced by:

nnðf0 � fÞ (Eq 26)

where n is a collision frequency.
Even if the problem of the collision term can

be circumvented, analytical solutions of the
Boltzmann equations remain difficult to obtain
for problems involving complex geometries,
and direct numerical solutions are also very
complicated to obtain for multidimensional
flows (see the section “Direct Boltzmann
Method in CFD” in this article). For a restricted
set of problems in which the distribution func-
tion is perturbed by only a small amount from
equilibrium, the Chapman-Enskog theory pro-
vides a solution of the Boltzmann equation. This
theory is particularly used for the calculation of
some transport parameters in ideal gases, such
as viscosity, heat conductivity, or diffusion coef-
ficients, as seen in the section “Some Important
Macroscopic Properties of Vapors from the
Molecular Model” in this article.
Macroscopic Conservation Equations in

Pure Gases. Moles are usually used instead of
molecules at the macroscopic scale. Molar

Fig. 2 Flow regimes in physical vapor deposition
(PVD) and chemical vapor deposition (CVD)

versus Knudsen number (Kn). FB-CVD, fluidized-bed
CVD; LPCVD, low-pressure CVD; UHVCVD, ultrahigh-
vacuum CVD; MBE, molecular beam epitaxy
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quantities are related to their molecular
counterparts by the Avogadro’s number
Nðffi 6:022� 1023Þ, including the universal
ideal gas constant, R, which is simply related
to the Boltzmann constant by R ¼ kBN . There-
fore, the product (nm), which is defined as the
gas density (r) at the molecular level, can also
be expressed as the product of the molar con-
centration (C) and the molar weight (M) of the
gas. In most situations encountered in VPP,
gases can be considered as ideal; thus, the
following equation of state can be used for r:

r ¼ PM

RT
(Eq 27)

A moment of the Boltzmann equation can be
obtained as for a moment of the distribution
function (Eq 18), by multiplying the equation
by the quantity Q(c) and integrating over all
velocity space. By doing so, the transfer equa-
tion (also referred to as the equation of change)
is obtained for Q:
@

@t
ðn�QÞ þ r�ðnc�QÞ � nF� @ �Q@c ¼ �½�Q� (Eq 28)

where the right-side term, called the collision
integral, has replaced the collision term in
Eq 24. It can be shown (Ref 7) that for Q = m,
mc and 1=2 mc2, the collision integral is zero;
mass, momentum, and energy of a molecule
are collisional invariants. Replacing Q by these
terms in Eq 28 leads to the conservation equa-
tions of gas dynamics. The first one is the
conservation of mass, or continuity equation:

@r
@t
þr�ðrvÞ ¼ 0 (Eq 29)

in which �c has simply been replaced by the
average mass velocity, v. Introducing the sub-
stantial derivative, that is, the time derivative
for a path following the fluid motion:

D

Dt
¼ @

@t
þ v�r (Eq 30)

Equation 30 may be rewritten as:

Dr
Dt
¼ �rðr�vÞ ¼ 0 (Eq 31)

The second equation of gas dynamics, which is
a vector equation, is the conservation of
momentum:

@

@t
ðrvÞ þ r�ðrvvÞ ¼ r

Dv

Dt
¼ �rP �r�tþ rg

(Eq 32)

where P is the scalar pressure, and t is the vis-
cous stress tensor. In Eq 32, gravity (g) has
been considered as the sole external force (F).
In the particular case of a Newtonian fluid
(i.e., for most low-density gases), the viscous
stress tensor in Eq 32 becomes:

t ¼ �mðrvþ ðrvÞT � 2

3
dr�vÞ (Eq 33)

where m is the fluid viscosity, and d is the unit
tensor (i.e., a tensor whose components are

unity for the diagonal elements and zero for
the others). The superscript “T” is for the trans-
pose of a tensor (or a dyadic product). For
constant r and m, Eq 32 becomes the famous
Navier-Stokes equation:

r
Dv

Dt
¼ �rP þ mr2vþ rg (Eq 34)

The third equation of gas dynamics is the con-
servation of energy:

r
DðÛþ K̂Þ

Dt
¼ �r�q�r�ðp�vÞ þ rðv�gÞ

(Eq 35)

where Û and K̂ are, respectively, the internal
energy and the kinetic energy of the fluid per
unit mass. p is the pressure tensor, defined as:

p ¼ tþ dP (Eq 36)

For a nonmoving gas or for a coordinate system
moving with the gas, heat is transferred by con-
duction according to Fourier’s law:

q ¼ �krT (Eq 37)

where q is the heat flux, and k is the thermal
conductivity of the fluid.
Equation 35 is often rewritten in terms of the

absolute temperature and the heat capacity at
constant pressure per unit mass (Ĉp) by using
the following thermodynamic relation:

dÛ ¼ ĈpdT � PdV � T
@ð1=rÞ
@T

� �
P

dP (Eq 38)

to give:

rĈp

DT

Dt
¼ �r�q� t : rvþ @ lnð1=rÞ

@ lnT

� �
P

DP

Dt

(Eq 39)

For ideal gases, the right-side term of Eq 39
reduces to DP/Dt, and the double-dot product,
t:▽v, which represents the heat dissipation
due to viscous forces, is generally negligible.
For a monoatomic ideal gas, Ĉp is simply equal
to 5R/2M.
Note that neither radiant energy transfer nor

heat sources (electrical or nuclear) have been
considered in Eq 35 and 39. In most CVD and
PVD problems, the gas may be assumed transpar-
ent to infrared radiation; hence, only radiation
heat transfer between solid walls must be
considered (through boundary conditions; see
the section “Boundary Conditions” in this article),
which in turn affects gas temperature and velocity
fields.
Conservation Equations in Multicompo-

nent Gaseous Mixtures. Themass and momen-
tum conservation equations given by Eq 29 and
32 are valid for pure substances aswell as formix-
tures; in the latter case, however, an additional
conservation equation must be considered for

each of the N species that may be involved in
NR gas-phase reactions. For species i:

@

@t
ðroiÞ ¼ �r�ðrvoiÞ � r�ji þMi

XNR

k ¼ 1

nikR
g
k

(Eq 40)

In this equation, nik is the net stoichiometric
coefficient of species i in gas-phase reaction k,
the net molar reaction rate of which is Rg

k.
The mass fraction (oi) and the mole fraction
(xi) of species i in the mixture are defined as:

oi ¼ ri
r (Eq 41a)

xi ¼ Ci

C
(Eq 41b)

For a mixture, the mean molar mass, M, used in
Eq 27 can be simply obtained from:

1

M
¼
XN
i¼1

oi

Mi
¼ 1PN

i¼1
xiMi

(Eq 42)

Only N � 1 balance equations (Eq 40) are
required (e.g., no equation needed for the dom-
inant gas), because mass fractions and mole
fractions satisfy:

XN
i¼1

oi ¼ 1 and
XN
i¼1

xi ¼ 1 (Eq 43)

The diffusive mass flux of species i (ji) is the
sum of several contributions associated with dif-
ferent driving forces (concentration, pressure,
and thermal gradients as well as forced diffu-
sion). In most VPP, pressure diffusion is negligi-
ble, and forced diffusionmust be considered only
for charged species in the presence of an electric
field (e.g., in gas discharges). Two contributions
usually remain: ordinary (or concentration-
driven) diffusion, jCi , and thermal (or tempera-
ture-driven) diffusion, jTi , which obey:

ji ¼ jCi þ jTi ðwith
XN
i¼1

jCi ¼ 0Þ (Eq 44)

The total mass flux of species i (ni) is related to
the diffusion mass flux by the following relation:

ni ¼ rivi ¼ rivþ ji (Eq 45)

For ideal gas mixtures, mass (or mole) fractions
are related to species fluxes by the Stefan-Max-
well relation (Ref 8):

roi þ oi
rM
M
¼M

r

XN
j¼1
j6¼i

oijj � ojji

MjDij

� �
(Eq 46)

In Eq 46, a binary diffusion coefficient, Dij,
independent of the mixture composition, is
used instead of the generalized composition-
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dependent diffusion coefficient, Dij. From Eq
46, the ordinary diffusion flux, jCi , is written as:

jCi ¼ �rDeff
i roi � roiDeff

i

rM
M

þMoiDeff
i

XN
j¼1
j6¼i

jCi
MjDij

with Deff
i ¼

1PN
j¼1
j6¼i

xi
Dij

0
BBBBB@

1
CCCCCA

(Eq 47)

The thermodiffusion flux is expressed as:

jTi ¼ �DT
i

rT
T

; with DT
i ¼

XN
j¼1
j6¼i

C2

r
MiMjDijk

T
i

(Eq 48)

where DT
i is the thermodiffusion coefficient,

and kTi is the thermodiffusion ratio. In the par-
ticular case where species are present in small
amounts relative to a carrier gas (dilute mix-
tures), simplified expressions can be used for
ordinary and thermal diffusion fluxes:

ji ¼ �rDimðrxi þ kTimr lnT Þ (Eq 49)

where Dim and kTim are, respectively, the binary
coefficient and the thermodiffusion coefficient
of species i in the mixture. Expressions for
Dim are given in the section “Some Important
Macroscopic Properties of Vapors from the
Molecular Model” in this article.
Finally, the energy equation for a gas mixture

becomes (Ref 10):

rĈp

DT

Dt
¼ �r�q� t:rvþ @lnð1=rÞ

@ lnT

� �
P

DP

Dt

þ
XN
i¼1

XNR

k¼1
�HinikR

g
k

(Eq 50)

where the energy flux, q, relative to the
mass average velocity has three different
contributions:

q ¼ �krT þ
XN
i¼1

�Hi
ji
Mi
�r�RTXN

i¼1

DT
i

Mi

rxi
xi

(Eq 51)

The second term of Eq 51 comprising �Hi

(the partial molar enthalpy of the ith species)
is the heat flux caused by interdiffusion of spe-
cies, and the third term is the Dufour effect or
diffusion-thermo effect, which is most often
negligible. The right-side term in Eq 50 is the
heat flux due to chemical reactions.
Laminar and Turbulent Flows. The macro-

scopic differential equations of change pre-
sented previously are valid for laminar flows.
The laminar regime is a stable regime charac-
terized by regular streamlines and the absence
of time fluctuations of local fluid velocities

when the flow is established. When the flow
becomes turbulent, some important time fluc-
tuations of local velocities (instabilities) are
observed around their mean value, although
the flow seems macroscopically established.
Several dimensionless numbers are used for

identifying the flow regime, such as the Rey-
nolds (Re), Grashof (Gr), and Rayleigh (Ra)
numbers, defined as:

Re ¼ rLv
m

(Eq 52a)

Gr ¼ L3r2 gb�T

m2
(Eq 52b)

Ra ¼ GrPr with Pr ¼ Cpm
k

� �
(Eq 52c)

where L is a characteristic length, and b is the
coefficient of volume expansion (b = 1/T for
an ideal gas). The transport equations pre-
sented in the previous sections “Macroscopic
Conservation Equations in Pure Gases” and
“Conservation Equations in Multicomponent
Gaseous Mixtures” are often rewritten in
dimensionless form by introducing such
numbers.
Laminar flows are typically observed for Re

< 2000 and Gr or Ra < 108 to 109. The Rey-
nolds number corresponds to the ratio of iner-
tial forces to viscous forces (or momentum
flux by convection to momentum flux by diffu-
sion). The Grashof and Rayleigh numbers cor-
respond to the ratios of buoyancy forces to
viscous forces; they are used in free thermal
convection problems.
Because the mean free path of the fluid

remains low compared to the average size of
the turbulent eddies, the conservation equations
presented in the preceding sections are still
valid in turbulent regime; in this case, however,
the velocity components remain time-depen-
dent and cannot be simplified. Time-smoothed
equations of change are usually used to
describe variables such as velocity, pressure,
and so on in turbulent flows. These equations
are similar to those used for laminar flows but
contain both laminar and turbulent components,
the latter being generally obtained from empiri-
cal formulae. Reynolds-averaged Navier-Stokes
(RANS) formulations have been developed
accordingly for modeling turbulent flows, such
as k-e models (Ref 9) in which additional bal-
ance equations are used for the turbulent kinetic
energy (k) and viscous dissipation (e). More
sophisticated approaches, such as large-eddy
simulations (LES) and direct numerical
simulations (DNS), are also used for obtaining
more accurate solutions of turbulent flow pro-
blems, but they usually require large or even
huge computational resources. With a few
exceptions, most flows encountered in VPP
remain laminar; hence, the modeling of turbu-
lent flows is not further discussed in this

section. There is abundant literature on turbu-
lence modeling; the reader may see Ref 9 for
an introduction.
Some Important Macroscopic Properties

of Vapors from the Molecular Model. In con-
tinuum transport equations, the main flow vari-
ables (such as v) and gas properties are
macroscopic statistical quantities averaged over
a large number of colliding molecules (ensem-
ble average) and time much longer than the
mean time between successive collisions (time
average). Any kind of average can be used for
describing an ergodic molecular motion. An
important result from the analysis of molecular
motions is the total flux of some quantity, Q
(constant, scalar, or vector), across a small ele-
ment of area (DS) in the gas:

Total flux across �S ¼ nQ�cn0 (Eq 53)

where c is the molecular velocity, and n0 is the
outwardly directed normal unit vector. By
setting Q = m, the flux vector related to mass
transport is obtained:

Flux of mass transport ¼ nm �c ¼ r�c (Eq 54)

The gas density, r, has already been defined
at the molecular level as:

r ¼ nm (Eq 55)

Flux vectors can also be defined for thermal
velocities by replacing c by c0 in Eq 54, that is,
by using a coordinate system moving at velocity
c with the fluid. Setting Q = mc0 gives the flux of
momentum transport by peculiar (thermal)
motion, that is, the pressure tensor (p):

p ¼ nm cc0 ¼ rcc0 (Eq 56)

The scalar pressure (P) is then defined as:

P ¼ 1

3
rc02 (Eq 57)

and the components tij of the viscous stress
tensor (t) in rectangular coordinates (x,y,z
coordinates are identified with i or j = 1, 2,
and 3):

tij ¼ �pij þ dijP ¼ �ðrc0ic0j � dijP Þ (Eq 58)

where dij is the Kronecker delta.
In a gas mixture containing N species (i),

Eq 55 and 57 must simply be replaced by:

r ¼
XN
i¼1

mini ¼
XN
i¼1

ri ¼ n �m (Eq 59)

P ¼
XN
i¼1

1

3
mini c

02
i ¼

1

3
nmc02 (Eq 60)

Finally, the heat flux vector, q, is obtained by
setting Q = molecular energy = 1=2mc02 þ eint:
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q ¼ 1

2
rc02c0 þ neintc0 (Eq 61)

where eint ¼ eint=m, with eint the internal
energy of a molecule.
The macroscopic temperature, T, used in the

macroscopic equations of change is also defined
from a molecular level; for a molecule with
thermal speed c0, the translational kinetic tem-
perature, Ttr, is:

3

2
kBTtr ¼ 1

2
c02 (Eq 62)

Ttr is also the macroscopic temperature for a
monoatomic gas or an ideal dilute gas. In case
of a polyatomic molecule with s internal
degrees of freedom and internal energy eint, a
temperature Tint is also defined for the internal
modes, as in Eq 62 (replacing 3Ttr by sTint and
½c02 by eint). As a consequence, an overall
kinetic temperature (Tov) may be defined as
the weighted mean of Tint and Ttr, according to:

Tov ¼ ð3Ttr þ sTintÞ
3þ s

(Eq 63)

with Ttr = Tint = T for an equilibrium gas. Equation
63 could also be extended to include rotational
degrees of freedom in polyatomic molecules.
However, note that the ideal gas equation of state
does not apply to Eq 63 in a nonequilibrium situa-
tion, but Eq 62 can be used in this case.
Themacroscopic transport coefficients used in

the conservation equations can also be derived
frommolecular-level analysis. From the simplest
case of a mixture composed of hard spheres of
identical mass and diameter (Ref 10), the follow-
ing expressions for m, k, and Dij are obtained:

m ¼ 1

3
nml c0 (Eq 64a)

k ¼ 1

2
nkBl c0 (Eq 64b)

Dij ¼ 1

3
l c0 (Eq 64c)

with c0 given by Eq 21.
Rather simple expressions have also been

established for more realistic situations involving
spheres of different mass and diameter, although
the derivation becomes more complex, but more
accurate estimates are usually preferred. The
Chapman-Enskog theory provides a solution of
the Boltzmann equation for the particular case
where the distribution function, f, is slightly per-
turbed from its equilibrium value (f0) (Ref 7).
To express f in the form of a power series:

f ¼ f0ð1þ �1 þ �2 þ �3 þ . . .Þ (Eq 65)

The Chapman-Enskog solution of the Boltz-
mann equation has been obtained for the sec-
ond-order development of the distribution
function, and the following expressions of the

transport coefficients have been derived, which
are widely used for low-density gases:

m ¼ 2:6693 10�6
ffiffiffiffiffiffiffiffiffi
MT
p

s2Om
(Eq 66a)

k ¼ 8:3228 10�2
ffiffiffiffiffiffiffiffiffiffiffi
M=T

p
s2Ok

(Eq 66b)

Dij ¼ 1:8583 10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 3 1

Mi
þ 1

Mj

� �r
Ps2

ijODij
(Eq 66c)

where s is the Lennard-Jones collision diameter
of the species considered, and O is the collision
integral (Om ¼ Ok 6¼ ODij), which is a slowly
varying function of the dimensionless tempera-
ture kBT/e, where e is the energy of interaction
in the 6–12 Lennard-Jones potential, j:

fðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
(Eq 67)

with r the intermolecular distance. The
Lennard-Jones parameters (s, e), which are
either measured or estimated from critical prop-
erties (Ref 10), are available for a large number
of gases. Values of O can be found in tables
(Ref 8, 10) or calculated from correlations as
a function of kBT/e (Ref 11). The Lennard-
Jones parameters for a colliding pair of mole-
cules (i,j) are simply obtained from:

sij ¼ 1

2
ðsi þ sjÞ (Eq 68a)

eij ¼ ðeiejÞ1=2 (Eq 68b)

Transport coefficients in Eq 66(a-c) are in SI
units, that is in Po, W/m�1� K�1, and m2 � s�1
for m, k, and Dij, respectively. T is in K, but
M is in g� mol�1, s is in Å, and P is in atm.
Although derived for monoatomic gases, these
equations turn out to be very good for poly-
atomic gases as well. They can also be extended
to N-component gas mixtures. For m and k, the
Wilke semiempirical formula is used:

m ¼
XN
i¼1

ximiPN
j¼1

xj�ij

(Eq 69a)

k ¼
XN
i¼1

kimiPN
j¼1

xj�ij

(Eq 69b)

with

�ij ¼ 1ffiffiffi
8
p 1þMi

Mj

� ��1=2
1þ mi

mj

 !1=2
Mj

Mi

� �1=4
2
4

3
52

For the binary diffusion coefficient of i in the
mixture ðDimÞ, the following expressions can
be used, respectively, for very low and low

concentrations of components i = 1,. . .N �1 in
dominant species N:

Dim ¼ DiN (Eq 70a)

Dim ¼ ð1� xiÞPN
j¼1
j6¼i

xi
Dij

(Eq 70b)

Thermal diffusion coefficients in gaseous mix-
tures are temperature- and composition-depen-
dent parameters that can be derived from
Lennard-Jones parameters and transport collision
integrals defined in the Chapman-Enskog theory
(Ref 8, 12). For ideal gas mixtures, the following
formula can be used, for instance:

DT
i ¼ �2:5910�7T 0:659 M0:511

i xiP
j

M0:511
j xj

� oi

0
B@

1
CA

P
j

M0:511
j xjP

j

M0:489
j xj

0
B@

1
CA

(Eq 71)

where DT
i is in SI units (kg � m�1 � s�1), T is in

K, and Mi and Mj are in g � mol�1.
The physical and chemical properties of pure

substances can usually be found in handbooks
or in databases such as CHEMKIN (Ref 13)
or the National Institute of Standards and Tech-
nology (NIST) (Ref 14), although transport prop-
erty data are available only for a restricted set of
compounds. Additional data and estimationmeth-
ods can be found in reference books, for example,
by Hirshfelder et al. (Ref 8) and Prausnitz et al.
(Ref 15). Routines for the estimation of transport
properties in mixtures are included in most of
today’s (2009) commercial simulation software.

Modeling of Surface Interactions
with the Vapor Phase

As illustrated in Fig. 1, modeling of VPP
involves not only transport processes but also
surface processes and gas-phase reactions. This
section describes the modeling of vapor-surface
interactions and kinetics of hetereogeneous
(gas-surface) processes. The next section, “Gas-
Phase Reactions in CVD,” covers the modeling
and kinetics of homogenous reactions.
Simulating surface processes requires an accu-

rate model of the surface interacting with the
vapor. A simple microscopic representation of a
perfect crystal, according to Kossel (Ref 16),
considers terraces (T), ledges (L). and kink (K)
sites at the surface (Fig. 3), depending on the
number of first-nearest neighbors of the atomic
site considered. Ideal crystal surfaces have vari-
ous densities of steps, depending on their Miller
indices (hkl). Some surfaces with low Miller
indices theoretically have no steps below the so-
called roughening temperature (Ref 17); they
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are called singular faces and are flat on the atomic
scale. Other faces offer a more-or-less important
density of steps; they are called nonsingular faces
and have a rough structure at the atomic scale. As
a rule of thumb, the higher the density of steps,
the stronger the surface reactivity.
Earlier simulation models of crystal growth

considered these simple but useful representa-
tions of surfaces, but they have been encom-
passed by modern atomistic simulation models
(see the section “Modeling and Computation
of Particle-Surface Interactions” in this article),
which use very accurate representations of sur-
faces. Most of today’s (2009) commercial
atomistic simulation software, for example,
Materials Studio (Ref 18), have powerful
graphical utilities for displaying surface struc-
tures of perfect crystals from crystallographic
data; however, real surfaces are more complex
than ideal ones because of crystallographic
defects (stacking faults, dislocations, vacancies,
etc.), reconstructions, or external contamination
(water, oxygen, etc.). Modeling the real sur-
faces of growing films remains a difficult task
in VPP simulation.

Particle-Surface Interactions

Accurate description of these interactions is
crucial for the simulation of vapor deposition
(or etching). The main surface processes in
vapor deposition from a near-equilibrium gas
are reflection or adsorption of gaseous particles,
surface diffusion of adsorbed species, adsorbate
incorporation into the film, and adsorbate
desorption (Fig. 1). Chemical reactions of
adsorbed species may lead to surface-atom
removal instead of incorporation in the case of
chemical etching processes.
Incoming Flux and Particle Reflection at a

Surface. For a near-equilibrium gas of mean
molecular weight M at temperature T and par-
tial pressure P interacting with a solid surface,

the macroscopic flux of particles impinging
the surface is simply derived from gas kinetic
theory, according to Eq 9:

F ¼ P

ð2pMRT Þ0:5 (Eq 72)

For a given species (i) in a gaseous mixture, the
flux (Fi) is simply obtained by replacing P with
the partial pressure Pi and M with Mi.
The thermal accommodation coefficient (ac)

is defined as:

ac ¼ qi � qr
qi � qs

� Ti � Tr

Ti � Ts

(Eq 73)

where indexes i, r, and s denote, respectively, the
incident particle, the reflected particle, and the
solid surface; q and T denote the energy flux
and the temperature. According to the value of
ac, the gaseous species incoming at the surface
with an angle yi from the normal to the surface
can be simply reflected without exchanging
energy (specular elastic reflection: ac = 0, Tr =
Ti, and yr = �yi) or being partly (inelastic reflec-
tion: 0 < ac < 1, Tr 6¼ Ti, and yr 6¼ �yi) or
completely thermalized (diffuse reflection: ac =

1, Tr = Ts, and cosine law for the space
distribution of particles emitted from the sur-
face, which is independent of yi). These various
reflection modes are schematically illustrated in
Fig. 4.
According to Maxwell, the distribution func-

tion of a gas in equilibrium with a solid surface
remains a Maxwellian distribution either for
specular or for diffuse reflection.
Some nonequilibrium processes, such as ion-

beam-assisted deposition or ion beam etching
(IBE), also involve energetic beams of particles
that bombard the solid surfaces. For such line-
of-sight nonequilibrium processes, the flux (F)
of particles emitted from a source of area, S1,
is calculated by integration of dnc�ds1 over
the phase space domain, for example, from:

F ¼
ð1

c ¼ 0

ðp
y ¼ 0

ð2p
j ¼ 0

nc�ds1fðc; yÞc2 sin ydydjdc
(Eq 74)

where f(c,y) is the particle distribution function
in phase space, n is the particle density, and y is
the angle between the particle velocity and the

Fig. 4 Various possible reflection modes for a particle striking a surface

Fig. 3 Models of growing surface structures. (a) Conventional atomistic model. (b) Kossel model
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surface. f(c,y) must be normalized to fulfill the
condition:

ð1
c ¼ 0

ðp
y ¼ 0

ð2p
j ¼ 0

fðc; yÞc2 sin ydydjdc¼ 1 (Eq 75)

In the case of IBE, for example, monoenergetic
ion beams with narrow Gaussian angular distri-
bution are usually considered:

fðc; yÞ ¼ dðc� c0ÞgðyÞ
¼ dðc� c0Þ 1

sy
ffiffiffiffiffiffi
2p
p exp � y2

2sy

� �
(Eq 76)

where d is the Dirac delta function, c0 is the
velocity of incident particles, and sy is the
angular divergence, which has a typical value
of 5 to 10� for IBE.
Adsorption, Desorption, and Surface Diffu-

sion.When its kinetic energy is well redistribu-
ted inside the solid, a particle impinging the
surface can be temporarily captured as a result
of van der Waals interactions. This process,
leading to a weakly bounded adsorbed particle,
is referred to as physisorption. The heat
released in the physisorption process is Qads.
The adsorbate-surface energy function, jads-surf,
can be written as a sum of Lennard-Jones
potentials over the n surface atoms interacting
with the adsorbate at a distance r

i
:

jads-surf ¼
Xn
i¼1

4e
s
ri

� �12

� s
ri

� �6
" #

(Eq 77)

The molar rate of physisorption, Rji, of spe-
cies i is proportional to the capture coefficient
(bi), which represents the fraction of incoming
species flux (Fi) adsorbed:

Rji ¼ biFi ¼
Pi

ð2pMiRT Þ0:5 (Eq 78)

Contrary to physisorption, chimisorption
cannot occur in multiple layers. This adsorption
process leads to formation of strong chemical
bonds between the adatom or admolecule and
the surface atoms; hence, Qads is much higher
for chemisorption than for physisorption.
Chimisorption may occur at monoatomic or
polyatomic sites, sometimes with dissociation
of the adsorbate. The adsorbate-surface interac-
tions can be described by a sum of simple
Morse potentials or more complex potentials.
The molar rate of chimisorption, Rwi, of i is
related to the sticking coefficient, si, by:

Rwi ¼
si

1� si=2
Fi ¼ si

1� si=2

Pi

ð2pMiRT Þ0:5
(Eq 79)

In the physisorbed state, a molecule moves
almost freely at the surface (mobile diffusion),
whereas in the chemisorbed state, it moves by
jumping from one surface site to another neigh-
bor surface site, breaking chemical bonds with
the surface and forming new ones. Surface

diffusion is a thermally activated process that
proceeds with an activation energy of typically
0.1 to 0.3 Qads. Desorption is the reverse
process of adsorption. An adsorbed molecule
may desorb if its kinetic energy is greater
than Qads.
The sticking coefficient defined in Eq 79 is a

statistical average that represents the probabil-
ity for a gaseous molecule to be adsorbed at a
given surface. In the most general case, it
depends on the particle and surface tempera-
tures, on the surface structure, and also on the
fraction of surface, y, already covered by adsor-
bates. In the simplest situation, where adsorp-
tion of a given species A occurs on a single
surface site, S, without dissociation, and
neglecting adsorbate-adsorbate interactions,
the rate of adsorption is ka[A](1 � yA), and
the reverse rate of desorption is k�ayA, where
ka and k�a are the adsorption and desorption
rate constants, respectively. At equilibrium,
both rates are equal, and y can be simply
related to the adsorption equilibrium constant,
KA (= ka/k�a), by the following equation:

yA ¼ KA½A�
1þKA½A� (Eq 80)

Equation 80 can be generalized to the case of
adsorption of A in the presence of a nonreacting
substance (poison or inhibitor, I) by simply
adding KI[I] to the denominator. Expressions
of the surface coverage can also be simply
derived for dissociative adsorption or com-
petitive adsorption of species A and B at the
surface. In the last case, writing the rate equa-
tions and the equilibrium condition leads to
(Ref 19):

yA ¼ KA½A�
1þKA½A� þKB½B� (Eq 81a)

yB ¼ KB½B�
1þKA½A� þKB½B� (Eq 81b)

Reactions. Gaseous or adsorbed species may
eventually find favorable sites for reacting with
the substrate surface (growth or etching). As
discussed previously and illustrated in Fig. 3, real
surfaces exhibit various types of sites with differ-
ent reactivity. The global reaction rate of a given
reactant species A at a surface can then be written
as a sum of Arrhenius rate expressions:

v ¼ ½A�
X
i

Aie
�Ei=RT (Eq 82)

where the Ai are the pre-exponential factors
for the reaction of A at sites of type i (whose
concentration is proportional to Ai), and the
Ei are the corresponding activation energy.
Activation energies are lower on those sites
with higher activity; hence, assuming that the
Ai have the same order of magnitude, and
E1<<E2<<. . .Ei<<. . .<< En, the global rate
of reaction reduces to:

v � A1e
�E1=RT ½A� (Eq 83)

Unimolecular and bimolecular reactions
involving gaseous species (G) adsorbed at sur-
face sites (S) are usually encountered. Unimole-
cular reactions simply involve a single gaseous
molecule that first adsorbs at a monoatomic
surface site:

Gþ S !ðG� SÞz ! Products (Eq 84)

The symbol { indicates that the adsorbate state
is a transition state in the reaction. The
corresponding rate equation is:

v ¼ ky ¼ kKA½A�
1þKA½A� (Eq 85)

When present in significant concentration in the
gas phase, the reaction products (P) may behave
as a poison and must also be considered in Eq 85
by adding KP[P] in the denominator (Ref 19).
Bimolecular reactions involve either two gas-
eous molecules adsorbing at two adjacent sur-
face sites (Langmuir-Hinshelwood mechanism):

G1 þ G2 þ�S� S� !
G1 G2

�S� S�
� �þþ

! Products

(Eq 86)

with the following reaction rate:

v ¼ kyG1
yG2
¼ kKG1

KG2
½G1�½G2�

ð1þKG1
½G1� þKG2

½G2�Þ2
(Eq 87)

or a gaseous molecule adsorbing at a single
surface site (Langmuir-Rideal mechanism):

G1þG2þ� S !ðG1�Sþ G2Þþþ ! Products

(Eq 88)

with the following reaction rate:

v ¼ kyG1
½G2� ¼ kKG1

½G1�½G2�
1þKG1

½G1� þKG2
½G2� (Eq 89)

The reaction rate coefficients and reaction
orders are usually identified from experimental
data. As an illustrative example, the following
expression of the deposition rate (RSi) of silicon
from gaseous silane (SiH4) has been empirically
derived:

RSi ¼ kPSiH4

1þ k1P
a
H2 þ k2PSiH4

(Eq 90)

Equation 90 corresponds to a unimolecular dis-
sociation reaction of SiH4 with inhibition by
hydrogen:

SiH4ðgÞ ! SiðsÞ þ 2H2ðgÞ (Eq 91)

Various values of rate coefficients have been
proposed for the heterogeneous decomposition
of silane (Ref 20, 21). Alternatively, sticking
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coefficient values have been proposed for this
reaction (Ref 22) that do not account for the
possible adsorption of H2. Both kinds of rate
equations have been used for modeling CVD
of silicon from silane.
Interactions Involving Energetic Ions. As

an energetic ion (e.g., in an ion beam) hits a
solid surface, its energy in excess of the lattice
binding energy may be transferred to an atom
in the solid, which is removed from its original
site; this atom can also transfer energy to other
lattice atoms, giving rise to a so-called collision
cascade. Some atoms can be ejected out from
the lattice (sputtering), whereas the projectile is
either adsorbed in the solid or reflected at
the surface. This phenomenon is characterized
by the sputtering yield, that is, the average
number of atoms ejected from the solid per inci-
dent ion, which depends on the nature, energy,
and angle of incidence of the incoming ion and
on the solid target characteristics as well
(composition, structure). The energy and
angular distributions of sputtered atoms also
depend on these parameters (Ref 23). Other
effects, such as defect creation, may also result
from the interaction of energetic particles with
surfaces.

Growth and Etching from the
Vapor Phase

Driving Force for Growth and Evapora-
tion in Chemical Vapor Processes. At ther-
modynamic equilibrium, the chemical
potentials of the gas phase and solid phase must
be equal, which is written:

mG ¼ mS (Eq 92)

In practical situations, mG and mS have different
values, and the gas-solid system evolves for
minimizing its energy; that is, it tends to move
toward thermodynamic equilibrium. The chemi-
cal driving force for crystal growth from the
vapor is the chemical potential excess in
the gas phase (Dm= mG � mS). For deposition to
be observed, Dm must be positive; however,
the supersaturation ratio, S, and the relative
supersaturation, s, are generally used instead
of Dm in thermodynamic studies of gas-solid
systems:

s ¼ S� 1 ¼ e�m=RT � 1 (Eq 93)

The value of s at thermodynamic equilib-
rium is zero. Solid deposition occurs for s >
0, whereas solid evaporation is observed for s
< 0, for example, in chemical etching pro-
cesses. Consider a very simple situation, for
example, deposition of silicon from SiH4:

SiðsÞ þ 2H2�! �SiH4ðgÞ (Eq 94)

with equilibrium constant K1. The chemical
potential excess in the gas phase is:

�m ¼ mSiH4 ðgÞ � mSiðsÞ � 2mH2ðgÞ

¼ m�SiH4 ðgÞ � m�SiðsÞ � 2m�H2 ðgÞ þRT ln
PSiH4ðgÞ
P 2
H2ðgÞ

 !

(Eq 95)

where m� is the standard chemical potential. At
thermodynamic equilibrium, Dm = 0 and PSiH4

=
P�SiH4

and PH2
= P�H2

; the supersaturation ratio
of the gas phase with respect to the silicon solid
phase is:

SSi ¼ PSiH4

P 2
H2
K1

(Eq 96)

Because supersaturation strongly influences
film growth, several previous studies of CVD pro-
cesses have tried to correlate the value of s and
the resulting film microstructure (see Ref 5 and
the references therein). However, obtaining a pre-
cise value of supersaturation in reacting multi-
component systems often turns out to be a
difficult task, because many species and reactions
must be considered in this case (Ref 5, 24, 25).
Growth Mechanism. The Kossel model has

been widely used in earlier simulations of crystal
growth because it is particularly helpful for study-
ing surface processes and growth phenomena.
The species to be incorporated on aKossel surface
adsorb first on a terrace and then diffuse toward
ledges and finally to kink sites. Kinks are the most
energetically favorable sites for reactions (forma-
tion of amaximumnumber of bondswith the first-
nearest neighbor atoms); hence, those surfaces
with the highest density of steps and kinks are
the most reactive. Nevertheless, growth also
occurs on atomically flat surfaces; the source of
repeatable steps and kinks can be either nucleated
islands or screw dislocations (Ref 26) in this case.
Distinction is made between the very first

stages of growth (heterogeneous nucleation)
involving gas-substrate interactions and the
subsequent steps involving interactions between
the gas and the growing solid film. The final
deposit structure mainly results from the starting
substrate surface structure and from the compet-
ing surface interactions at the surface: interac-
tions between adsorbed species and interactions
between adsorbates and substrate atoms.
Depending on the relative importance of the
aforementioned interactions and on the film-sub-
strate lattice mismatch, either two-dimensional
(2-D) layer-by-layer growth (Frank-Van der
Merwe mechanism) (Ref 27, 28) or three-dimen-
sional (3-D) growth (Volmer-Weber mecha-
nism) (Ref 29) is obtained. When the substrate-
adsorbate interactions are stronger and the sub-
strate film-mismatch is low, the substrate may
impose its crystallographic structure to the
layer-by-layer growing film. This process, which
is referred to as epitaxial growth, occurs when
the vapor is supersaturated with respect to the
2-D solid phase but remains undersaturated with
respect to the 3-D phase. The 3-D nucleation or
Volmer-Weber mechanism is favored when the
free energy of interface formation is high, which

requires a large supersaturation to overcome the
nucleation barrier. In this case, some adsorbed
species diffusing on the surface are temporarily
trapped in potential wells, where they may cap-
ture other moving adsorbates and form solid
embryos (nuclei) that become stable beyond a
critical size. Diffusing adsorbates attach to the
growing clusters, which finally coalesce to form
a continuous film. A third growth mode
(Stranski-Krastanov mechanism) (Ref 30) is also
observed when internal strains due to film-sub-
strate lattice mismatch become too large; in this
case, layer-by-layer growth stops and is followed
by growth of 3-D islands. The aforementioned
growth modes, however, were initially proposed
for PVD, and these are not strictly valid for
CVD,which is also characterized by an incubation
time for nucleation. Kajikawa and Noda (Ref 31)
discussed the growthmodeduring the initial stages
ofCVD,whichwere found to depend on the differ-
ences between precursor sticking coefficients.
After the birth stage of the solid film,

subsequent growth will determine its final micro-
structure. At low or moderate temperature, super-
saturation is generally high, but most adsorbates
cannot overcome the energy barriers of the vari-
ous surface processes. Because adsorbates only
move over very short distances in this case, they
have a low probability of finding the most favor-
able surface sites for incorporation, and nonequi-
librium amorphous solid phases are usually
obtained. At higher temperature, monocrystalline
films may result from layer-by-layer epitaxial
growth on a single-crystal substrate. In contrast,
polycrystalline film microstructures may be
grown from individual crystalline nuclei; when
tiny crystals with different crystallographic orien-
tations are obtained at the nucleation stage, the
final film microstructure may result from an evo-
lutionary selection process (Ref 32). During the
selection process, the differently oriented crystals
compete to survive. The crystals that are less
favorably oriented are gradually buried by those
having their fastest direction of growth nearly per-
pendicular to the substrate. As a result, the grain
size and orientation sharpness of the film
increases with increasing film thickness.
Deposition and Etch Rates. Consider the

case of CVD or etching of a polyatomic solid
film, f, of density rf. Let Nk be the number of
chemical elements contained in the film and Ns

the number of surface reactions with molar
reaction rate Rs, and N the total number of gas-
eous species. Rs is negative for etching and
positive for deposition reactions. The local net
deposition rate (GR) or etch rate (ER) can be cal-
culated from:

GR or ERðkg�m�2s�1Þ ¼XNk

k¼1

XN
i¼1

XNs

j¼1
nk

i
nijRsjMk

ðkg�m�2s�1Þ
(Eq 97)

where nk
i is the number of atoms of kth element

deposited or etched from species i, and nij is
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the stoichiometric coefficient of species i in
reaction j. Dividing Eq 97 by rf gives GR or
ER in m � s�1.
Maintaining polyatomic film stoichiometry is

often desirable for modeling; in this case, the Ns

surface reaction terms used in Eq 97must explic-
itly include the density and coverage of the Nk

types of surface sites, and additional balance
equations must then be solved for these sites.
More complex expressions of the deposition or

surface reaction rates must be considered when
energy transfer between film surface and imping-
ing atoms is large. Indeed, previous studies have
shown that deposition rate or nucleation rate can
be enhanced by ion bombardment (Ref 33). Ener-
getic ion bombardment is also used for increas-
ing the etch rate due to chemical reactions in
reactive ion etching (RIE) processes.

Gas-Phase Reactions in CVD

Gas-phase reactions are of major importance
in CVD or hybrid CVD- PVD processes.
During their transport from the reactor inlet to
the substrate, the precursor molecules undergo
chemical transformations that may drastically
change the composition of the gas phase. As a
rule of thumb, the higher the pressure and
temperature, the higher the importance of
homogeneous reactions. To perform reliable
simulations of CVD processes, a chemical
scheme must be included in the coupled transfer
model, which at least captures the key gas-phase
reactions with the corresponding rates.

Gas-Phase Reaction Categories

In conventional thermal VPP, homogeneous
chemical transformations mainly result from
the internal redistribution of the vibrational
energy gained by molecules in collisions, which
may lead to bond breaking and/or molecular
rearrangement. A chemical reaction of known
stoichiometry is usually written as:

n1R1 þ n2R2 þ . . .�! �m1P1 þm2P2 þ . . .

(Eq 98)

A single equation such as Eq 98 could be used
to perform an overall balance over the chemical
species present, but detailed mechanisms involv-
ing a succession of elementary reactions (that is,
with a single mechanistic step) are used in
today’s (2009) CVD models. Distinction is usu-
ally made between two or three types of gas-
phase reactions: unimolecular, bimolecular, and
termolecular reactions, involving, respectively,
one, two, or three reacting species plus eventu-
ally a third body, as further explained later.
Depending on the degrees of freedom participat-
ing in the reaction and on the internal rearrange-
ment in the reacting molecule, different types of
unimolecular reactions are found, which also
involve a third-body molecule. Dissociation
reactions (e.g., SiH4 ! SiH3 + H) imply the
breaking of a single bond in the reactant and
proceed with a negligible energy barrier, con-
trary to elimination (e.g., Si2H4 ! Si2H2 + H2)
and isomerization reactions (e.g., H3SiSiH !
H2SiSiH2) that involve internal rearrangement
of the reacting molecule with and without bond
breaking, as illustrated in Fig. 5.
Among bimolecular reactions, distinction is

made between metathesis reactions, in which
an atom or a group of atoms is transferred from
one reactant to the other (e.g., SiH4 + H !
SiH3 + H2); displacement reactions (e.g.,
Si2H6 + H ! SiH4 + SiH3); addition reactions
(e.g., SiH4 + SiH ! Si2H5); and recombination
reactions (e.g., SiH3 + H ! SiH4), which are
the reverse of unimolecular dissociation reac-
tions. Termolecular reactions sometimes occur
but are less frequent because they involve three
reactant molecules plus a third body. They are
not further discussed here.
Reaction schemes may become even more

complex in VPP containing charged species
and energetic particles. For instance, ion-ion
and ion-neutral reactions are very important in
ionized vapor phases such as plasma discharges
(Ref 35). Reactions between ions of opposed
charge usually lead to neutralization with or
without bond formation/breaking (e.g.,
Si2H

�
5 þ SiHþ3 ! Si3H6 + 2H or, alternatively,

Si2H5 + SiH3), whereas ion-neutral reactions
produce a neutral and a charged species (e.g.,

SiH� + SiH4! H3SiSi
� + H2, or, alternatively,

Si2H5 + e�). Vibrationally or electronically
excited products carrying an excess of energy
are sometimes produced in highly exothermic
reactions. Energetic ions or metastable species
from discharge gas mixtures containing rare
gases may dissociate molecules (e.g., Ar+ +
SiH4 ! SiH3 + H + Ar, and Ar(3P2) + SiH4 !
SiH2 + 2H + Ar). Electrons and photons also
play key roles in ionized vapor-phase chemistry.
Depending on their initial kinetic energy and
reaction cross section, electron-molecule colli-
sions may lead to excitation, ionization, neutral
fragmentation, or dissociative ionization of
molecules (e.g., e� + SiH4! SiH3 + H + e� or
SiH�3 + H). Electrons may recombine with posi-
tive ions to give a neutral species, with the
excessof energy releasedby emission of radiation,
or attach to gasmolecules with or without dissoci-
ation (e.g., SiH3 + e� ! SiH�2 + H or SiH�3 ).
Depending on their energy, photons may also dis-
sociate molecules (e.g., SiH4 + hn (147 nm) !
SiH3 + H and SiH2 + H2) (Ref 36). Either direct
photolysis or mercury-photosensitized decompo-
sition of reactants is used to prepare thin films in
photo-CVD processes.

Gas-Phase Reaction Rates

One of the most difficult tasks in CVD mod-
eling is to find accurate values of the rate con-
stants for each elementary reaction considered,
either from the information available in the lit-
erature (experimental or calculated data) or
from estimates.
Estimation of Rate Coefficients. Consider

the following gas-phase reaction (R1), WF5 + F
⇄ WF6, that is involved in tungsten deposition
fromWF6. At very high pressure, the reaction rate
(RG1) of the direct association reaction is written:

RG1 ¼ @½WF6�
@t

¼ � @½WF5�
@t

¼ � @½F�
@t

¼ kRG1
½WF5�1½F�1 (Eq 99)

According to Vant Hoff’s law, the reaction order
with respect to the reactants is equal to the stoi-
chiometric coefficient of the reactants in the
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Fig. 5 Potential energy along reaction coordinate for dissociation, elimination, and isomerization reactions. Source: Ref 34
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reaction; hence, in the present case, the exponent
is unity for both WF5 and F concentrations. kRG1

is the reaction rate coefficient of reaction R1. If
RG1 is expressed in SI units (mol � m�3s�1),
kRG1

is then in units of mol�1m3s�1.
For the reverse dissociation reaction (R�1),

the rate is:

RG�1 ¼ � @½WF6�
@t

¼ @½WF5�
@t

¼ @½F�
@t
¼ kRG�1 ½WF6�

(Eq 100)

and kRG�1 has units of s
�1 in this case.

RG1 and RG2 are equal at equilibrium, hence:

kRG1

kRG�1
¼ ½WF6�
½WF5�½F� ¼ Kc1 ¼ KP1

Patm

RT

� ��n

(Eq 101)

In this equation, the constants of the forward
and reverse reactions are related to each other
through the equilibrium constant, Kc1, in
concentration units. Patm is the reference atmo-
spheric pressure (= 1 in atm units), and Dn is
the variation of the total number of moles dur-
ing the reaction (Dn = �1 in the present exam-
ple). The thermodynamic properties of gaseous
species are related to the equilibrium constant
in pressure units (Kp1) through the following
thermodynamic relation:

KP1 ¼ exp
�S�1
R
��H�1

RT

� �
(Eq 102)

where DS1� and DH1
�are, respectively, the

molar entropy change and the molar enthalpy
change resulting from reaction R1. It means that
the rate constant of a given reversible reaction
can be simply obtained from the reverse rate
constant and thermodynamic properties of the
compounds involved in the reaction.
The rate coefficients of reactions are usually

assumed to have Arrhenius temperature
dependence:

kR1
¼ A1T

b1 exp �E1

R

� �
(Eq 103)

with A1 the pre-exponential factor, b1 the tem-
perature exponent, and E1 the activation energy.
Energy barriers of reactions are generally
obtained from either experimental measure-
ments or quantum mechanical calculations.
As illustrated in Fig. 5, recombination reactions
(reverse process of dissociation) usually pro-
ceed with no barrier and hence activation ener-
gies. Pre-exponential factors of reactions (and
temperature exponents) are most often obtained
from experimental measurements; however,
simple considerations and formula can be used
to obtain at least rough estimates in the absence
of experimental data. Only simple methods for
estimating upper bounds or orders of magnitude
of rate coefficients are included as follows. The
reader may refer to several books, in particular,
a famous book by S. Benson (Ref 37), for

further insight into estimation methods in
chemical kinetics.
Neglecting possible dipole contributions, an

upper bound of the bimolecular reaction rate coef-
ficient between thermalized neutral species i and j
is given by the Lennard-Jones collision rate:

kLJ ¼
ffiffiffiffiffiffiffiffiffiffiffi
8kBT

pmij

s
ps2

ijODij (Eq 104)

The order of magnitude of kLJ is approximately
108 m3mol�1s�1.
The Langevin theory gives the following

equation for estimating the rate coefficient of
ion-molecule reactions involving nonpolar
molecules:

kL ¼ 2pð4pe0Þ�1=2 aq2

mr

� �1=2

(Eq 105)

In this expression, a is the polarizability of the
neutral molecule, q is the electrical charge of
the ion, mr is the reduced mass of the colliding
pair, and e0 is the vacuum dielectric permittiv-
ity. The order of magnitude of kL is 108 to
1010 m3mol�1s�1, but the rate coefficients
derived from the Langevin theory are usually
higher than the experimental ones, often by 1
order of magnitude. Corrections to Eq 104 and
105 can easily be made for polar-neutral mole-
cules (Ref 36).
As explained in the section “Gas-Phase Reac-

tion Categories” in this article, electron-mole-
cule interactions give rise to a large panel of
processes (dissociation, ionization, etc.), depend-
ing on the electron-molecule collision cross sec-
tions and the kinetic energy of the electrons.
Electron energy-dependent cross sections (sei)
are available for a variety of molecules or atoms,
which can be used to compute the electron rate
constants kei for a given collision process (i):

kei ¼
ð1
0

seiðEÞ E

2me

� �1=2

fðEÞdE; with

ð1
0

fðEÞdE ¼ 1

(Eq 106)

where me is the electron mass. The electron
energy distribution function f(E) in gas dis-
charges is known either from experimental
measurements or from numerical modeling.
Note that in most cold plasma discharges, f(E)
is not exactly a Maxwellian distribution.
Pressure Dependence of Rate Coeffi-

cients. Unimolecular and bimolecular reactions,
except metathesis and displacement reactions,
depend not only on temperature but also strongly
on pressure (Ref 34). The origin of this pressure
dependence can be understood from the
Lindemann-Christiansen theory (Ref 38, 39) for
unimolecular decomposition reactions AB !
A + B, which involve the following steps:

1. Collisional energy transfer (activation and
deactivation steps) between AB and a third-

body molecule (M): AB + M ! AB* + M,
rate constant k1; AB* + M ! AB +M, rate
constant k�1

2. Intramolecular rearrangement of AB* lead-
ing to dissociation (reaction step): AB
 !
Aþ B; rate constant k2

Collisional energy transfers and intramolecu-
lar rearrangements proceed on different time-
scales (10�13 and 10�9 s, respectively) but
may compete in a given pressure range, which
results in a bath-gas pressure dependence of
the rate coefficient kuni for the overall reaction
AB ! A + B. The quasi-steady-state approxi-
mation applied to AB* leads to the following
expression of the unimolecular rate constant:

kuni ¼ k1½M� k2
k2 þ k�1½M�
� �

(Eq 107)

At very high pressure (say at infinite pres-
sure), gas-phase collisions between the reactant
and third-body molecules are so frequent that
the energy and angular momentum of particles
retain their equilibrium distributions. As a con-
sequence, the reaction step is rate determining,
and kuni does not depend on pressure (kuni =
Cte= k1 = k1k2/k�1). Conversely, at very low
pressure (P ! 0), the population of molecules
having enough energy for reaction is strongly
depleted, because collisions are no longer suffi-
ciently frequent to maintain the equilibrium
distribution. The result is that collisional pro-
cesses become rate-limiting, and kuni is propor-
tional to pressure in the low-pressure limit (kuni
= k1[M]). In the intermediate range of pressure,
also referred to as the fall-off region, the pres-
sure dependence of the unimolecular rate con-
stant is no longer linear because the reaction
step competes with collisional processes. This
behavior is exemplified in Fig. 6(a), which
shows the pressure dependence of the SiH4 !
SiH2 + H2 decomposition reaction
A similar analysis can be performed for

isomerization and bimolecular association reac-
tions, leading to a more-or-less similar pressure
behavior (Ref 40). Bimolecular reactions (such
as SiH3 + H ! Products) may have a chemical
activation-energy distribution different from the
thermal energy distribution because of the energy
released by making the new bond. As seen in
Fig. 6, the pressure dependence of the rate coeffi-
cient is similar for both the bimolecular recom-
bination and unimolecular decomposition
channels, in agreement with Eq 101. However,
the bimolecular channel leading to dissociation
of the complex into new products has a reverse
pressure dependence as compared to association
(Fig. 6b). Bimolecular or unimolecular reactions
involving multiple isomerization may have a
much more complex pressure dependence (Ref
41), but this case is not further discussed here.
Although explaining the pressure dependence

for the rate constant of elementary gas-phase reac-
tions, the Lindemann-Christiansen theory does
not provide a very accurate representation of the
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rate constant. The Lindemann theory was first
improved by Hinshelwood (Ref 42), who derived
an expression of the energy dependence of k1, but
more sophisticated theories were derived by Rice
and Ramsperger (Ref 43) and independently by
Kassel (Ref 44, 45), which are today (2009)
referred to as RRK theories. Even more sophisti-
cated treatments were proposed later by Marcus
and Rice for unimolecular reactions in the so-
called RRKM theory (Ref 46, 47). The quantum
version of RRK theory (QRRK), proposed by
Kassel for unimolecular reactions, was later
extended to bimolecular reactions by Dean (Ref
48). Currently, both QRRK and RRKM theories
are widely used to derive pressure-dependent rate
coefficients for the simulation of combustion or
vapor deposition processes (Ref 40, 41, 48–50).
The QRRK calculations are less sophisticated
than RRKM, but they require less input data and
can be conducted more rapidly (Ref 41).
Analytical expressions of the rate constant

k (T, P) must finally be derived for each homo-
geneous reaction and used as input data for the
CVD process model. Several parameterization
methods have been proposed for reproducing
the shape of the curve over the whole pressure
range, based on the Lindemann-Hinshelwood
formalism. For unimolecular reactions:

kuni ¼ k1FLH ¼ k1
Pr

1þ Pr

(Eq 108)

The FLH is the so-called Lindemann-Hinshel-
wood factor, and Pr is the reduced pressure,
defined as:

Pr ¼ k0 M½ �
k1

(Eq 109)

The center of the fall-off domain is the pressure
that corresponds to k1 ¼ k0 M½ �, that is, to
P = Pc when Pr = 1. The broadening of the real
fall-off curve as compared to the Lindemann-
Hinshelwood fitting can be simply taken into
account by introducing a correction factor, F:

kuni ¼ k1FLHF (Eq 110)

Troe (Ref 51) proposed the following optimized
expression of the broadening factor:

log F ¼ log Fcent

1þ logPrþc
N�d logPrþcð Þ
h i2 (Eq 111)

with

c ¼ �0:4� 0:67 log Fcent;

N ¼ 0:75� 1:27 log Fcent and d ¼ 0:14
(Eq 112)

and

Fcent ¼ 1� að Þ exp � T

T 




� �
þ a exp � T

T 


� �
þ exp �T 



T

� �
(Eq 113)

A total of ten parameters must be identified for
each reaction rate constant when using the Troe
formalism: a, T*, T**, T***, A1, b1, Ea1, A0,
b0, and Ea0. The first four parameters are char-
acteristic of the reactant and bath gas mole-
cules. They are identified by fitting k(T,P) at
various temperatures for P = Pc (Pr = 1)
(Ref 40). The last six parameters are simply
those used in the Arrhenius expressions of k1
and k0. It is important to note that negative
values can be found for the activation energies
of gas-phase reactions in the low-pressure limit.
A different expression has been proposed

by Larson (Ref 52), referred to as SRI or the
Stewart expression, and improved by Kee et
al. (Ref 53). A third approach has been pro-
posed by Oref (Ref 54) for fitting pressure-
dependent unimolecular rate constants, which
is not based on the Lindemann-Hinshelwood
formalism, but the Troe and SRI approaches
have usually been preferred. Both methods
remain valid for chemically activated bimolec-
ular reactions, but in this case, the following

expressions must be used for the rate constant
(Ref 40):

kdec ¼ k0
1

1þ Pr

F (Eq 114)

They can also be extended to reactions involv-
ing multiple isomerizations (Ref 41).

Construction, Analysis, and Reduction
of Gas-Phase Reaction Mechanisms

Construction. Building a chemical reaction
mechanism for VPP models requires three steps:
identify the species involved, find out accurate
thermodynamic data for these species, and
gather the rate constants of all elementary reac-
tions with their temperature and pressure depen-
dence (from measurements or calculations).
An exhaustive analysis of the literature is usually
required for the construction step. Thermody-
namic data are now available for several chemi-
cal systems of interest for vapor deposition, for
example, for Si-H (Ref 55, 56), Si-N-H (Ref
57), Si-C-H (Ref 58), Si-O-H (Ref 59), and so
on, which have most often been derived from
ab initio calculations. Some selected temp-
erature-dependent thermodynamic data can cur-
rently be found in databases included in
simulation software, for example, in CHEMKIN
(Ref 13), or simply provided as tables (Ref 60).
When not available, thermodynamic data can
usually be estimated by simple methods, as
explained by Benson (Ref 37). Chemical kinetic
databases are also available, such as NIST (Ref
61), which provide compilations of previously
published data for a large number of reactions.
Most full chemical mechanisms, often

involving hundreds of reactions, have been dev-
eloped for combustion problems (e.g., Ref 49,
62–64). Early models of CVD processes used
rudimentary chemical schemes, often including
only a single overall heterogeneous reaction
whose rate constant was simply estimated

Fig. 6 Quantum Rice-Ramsperger-Kassel calculations showing the pressure dependence of unimolecular and bimolecular reactions involving silane. Source: Ref 40
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by fitting experimental growth rate profiles to
calculated profiles. Simulations performed
by using such models with no or very few
gas-phase reactions provided mitigated or even
poorly reliable results. These rudimentary
chemical schemes have now been encompassed
by more accurate models, especially for gas-
phase chemistry. One of the first detailed chem-
ical mechanisms used in CVD was developed
by Coltrin et al. (Ref 22) for silicon deposition
from silane. Twenty-six gas-phase reactions
involving 17 species were considered in this
mechanism, however, with few considerations
for the pressure dependence of the rate con-
stants. Ho et al. (Ref 65) have proposed a
chemical mechanism derived from previous
experimental measurements and RRKM calcu-
lations on SiH4 chemistry that includes a com-
plete paramerization of the pressure-dependent
rate coefficients. Subsequent reaction schemes
have considered additional reactions and
species (Ref 56), but very few have provided
in-depth investigations of the pressure depen-
dence of reactions (Ref 41). Other chemical
systems of interest for CVD have been investi-
gated over the past 15 years, and several gas-
phase reaction schemes are currently available
for modeling a variety of deposition processes.
With a few exceptions (e.g., Ref 66), most
of these schemes are simplified, including
those of interest for deposition of metallic
materials
Analysis. Analyzing very large reaction

mechanisms without numerical tools is almost
impossible. The analysis step consists of exam-
ining both the stoichiometric and the parametric
information provided by each reaction; the first
one depends on the chemical pathways, and the
second one depends on the thermodynamic and
kinetic parameters. Several types of analysis
can be conducted:

� The sensitivity analysis identifies the rate-
limiting steps (Ref 67, 68).

� The reaction flow analysis highlights the
chemical pathways (Ref 69).

� The rate-of-reaction analysis helps in under-
standing the mechanisms (Ref 67).

� The eigenvalue-eigenvector analysis identi-
fies the characteristic timescales and direc-
tions of the chemical reactions (Ref 69).

These methods, originally used for combustion
problems, have also been used to study vapor
deposition problems, for example, for TiC
(Ref 70) or SiC (Ref 71) deposition. The com-
puter package KINALC (Ref 72) has often been
used for performing kinetic analysis of reaction
mechanisms used in CVD problems.
Note that the time variations of the gas-

phase composition must be simulated prior to
analysis (and reduction) of a reaction mecha-
nism. This can be done by using a one-dimen-
sional plug-flow reactor model, because the
time coordinate in a closed system is equiva-
lent to the axial distance along a tube in an
open system (assuming a constant total num-
ber of moles). Such simulation models are
provided in chemical kinetics packages such
as CHEMKIN (Ref 13).
Reduction. Two kinds of methods can be

used for reducing chemical mechanisms: meth-
ods that involve time-scale analysis and meth-
ods that do not. Computational singular
perturbation (Ref 73) and intrinsic low-dimen-
sional manifold (Ref 74) methods rely on
time-scale and Jacobian analysis; slow and fast
processes are decoupled to reduce the stiffness
of the system. With a few exceptions (Ref
75), these methods have almost never been used
in vapor deposition problems. Among the meth-
ods that are not based on time-scale analysis,
Turanyi’s method (Ref 76) considers that all
species and reactions are not equally important
and reduces their number in the chemical
scheme. According to Turanyi (Ref 76), impor-
tant species are those for which the accurate
reproduction of the concentration profiles

follows directly from the aim of the investiga-
tion. The decision of which species and/or fea-
ture are considered important depends on the
objective of the modeling. Necessary species
are those for which realistic concentrations are
required to calculate accurate concentration
profiles for the important species or to repro-
duce important features. Redundant species
are those that may be omitted from the mecha-
nism without jeopardizing the aim of the mod-
eling. An important reaction is a reaction in
which both stoichiometric information and
parametric information are required. In a neces-
sary reaction, only stoichiometric information
is required. A redundant reaction can be elimi-
nated from the mechanism.
The first step of Turanyi’s method consists of

testing each species to know whether it is sig-
nificant or not under the selected conditions;
then, the redundant species are deleted. Redun-
dant species can be identified either by generat-
ing pseudoreduced models (one for each
potentially redundant species), in which all
reactions involving the species of interest have
been eliminated, or by the investigation of the
Jacobian. The first procedure is time-consuming
but more powerful. When all the redundant spe-
cies have been eliminated from the mechanism,
information provided by the remaining reac-
tions (involving important and necessary spe-
cies) is tested, and the nonsignificant reactions
are eventually eliminated. Classical analysis
methods, such as the principal component anal-
ysis of the rate-sensitivity matrix, rate-of-pro-
duction analysis, and so on, are used to test
reaction information. The reduced chemical
scheme obtained is equivalent to the full mech-
anism for the specific conditions considered,
but only for those conditions. Figure 7 presents
a comparison between time variations of mole
fractions before and after reduction of a large
chemical scheme of the CH system. The reduc-
tion was conducted for the following CVD con-
ditions: 1573 K, 5330 Pa, and a C3H8-H2 gas

Fig. 7 Calculated time variations of the mole fractions of hydrocarbon species in a C3H8-H2 mixture of (a) important species and (b) necessary species. Comparison between the
full (plain lines) and reduced (crosses) mechanisms. See text for conditions. Source: Ref 71
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mixture (Ref 71).The initial scheme, compris-
ing 305 reversible reactions involving 111 spe-
cies, has been reduced to 24 reversible reactions
involving 16 species.

Thermodynamic Modeling of CVD

Near-Equilibrium Approximation. The der-
ivation of accurate reaction schemes, including
gas-phase and surface reactions, remains a
tedious and difficult task when all the mecha-
nistic and kinetic information is not available.
If at least thermodynamic data are accessible,
thermodynamic equilibrium calculations can be
conducted for finding the final state of the gas-
solid system. This approach, which has been
widely used in CVD, may provide qualitative
information on the nature and composition
of the various phases and on the influence of
operating parameters when the system is not too
far from equilibrium (high temperature, long res-
idence times), that is, when supersaturation is
low. Equilibrium calculations are usually per-
formed for nonflowing, closed CVD systems
(e.g., Ref 77), thus neglecting transport phenom-
ena, although open systems have sometimes been
considered as well (Ref 78). Thermodynamic
calculations have also been conducted for esti-
mating the supersaturation of a given CVD sys-
tem (Ref 24). The gas-phase equilibrium is first
simulated, then the gas-solid equilibrium. The
concentrations of depositing species at homoge-
neous equilibrium are then considered as the con-
centrations of the supersaturated vapor, whereas
those calculated in heterogeneous equilibrium
conditions are the true equilibrium concentra-
tions. Although they provide valuable qualitative
information, thermodynamic calculations lead to
species concentrations that sometimes differ
markedly from real concentrations, especially
for radical species (Ref 77).
The preferred calculation method, which has

been used in most commercial programs,
consists of minimizing the Gibbs free energy
(G) of the system. For a closed system at
pressure P and temperature T, containing j
phases with Nk components per phase k, G can
be written as:

GðT;P Þ ¼
Xj
k¼1

XNk

i¼1
nk
i m

k
iðT;P Þ (Eq 115)

The chemical potential of species i in phase
k is:

mkiðT;PÞ ¼ m�
k

iðT;P Þ þ RT lnðaki Þ (Eq 116)

where aki is the activity of component i in phase
k (ai = 1, xi or xiP, respectively, for solids, ideal
solutions, or ideal gases). The equilibrium con-
dition is obtained by minimizing G:

dGðT;P Þ ¼ 0 (Eq 117)

with the constraint of conservation of the NE

elements present in the mixture:

bj ¼
Xj
k¼1

XNk

i¼1
nk
i c

k
ij ðj ¼ 1; . . . :NEÞ (Eq 118)

where bj is the total number of gram atoms of
element j in the mixture, and ckij is the number
of gram atoms of element j in species i and
phase k. This set of NE + 1 equations is usually
solved by the Lagrange multiplier method.
Today (2009), commercial packages such as
Thermo-calc (Ref 79), Gemini (Ref 80), and
FactSage (Ref 81) are routinely used for
performing equilibrium calculations of multi-
phase systems (Ref 82) such as CVD systems.
The CalPhad (Ref 83) approach (computer cou-
pling of phase diagrams and thermochemistry)
combines thermodynamic models, software,
and databases as well as interface models.

Modeling and Computation of
Transport Equations in Continuous
Media

This section describes the various stages of
developing models for numerical simulation of
the transport phenomena in VPP. The modeling
process involves thebasic steps of definingbound-
ary conditions and applying discrete numerical
methods (e.g., finite element) for solution.
Currently, powerful commercial simulation

packages capable of addressing complex multi-
physics problems tend to supplant user’s per-
sonal codes developed mainly in the 1980s for
the study of transport phenomena. Among the
most popular codes used for simulating VPP
are those based on finite-volume methods
such as FLUENT (Ref 84), PHOENICS-CVD
(Ref 85), CFD- ACE (Ref 86), CFX (Ref 87),
and those based on the finite-element method,
such as MP-SALSA (Ref 88) and COMSOL-
Multiphysics (Ref 89). Sometimes, CVD reactor
simulation modules have also been introduced in
thermochemistry simulation programs such as
in CHEMKIN (Ref 13).

Boundary Conditions

These conditions are usually specific to the
reactor configuration, but typical conditions
are listed as follows.
Nonreacting Solid Walls. For velocity, a

no-slip and no-penetration condition is usually
considered at walls (w):

v ¼ 0 (Eq 119)

For temperature, a prescribed temperature
profile is considered in simplest cases:

T ¼ Tw (Eq 120)

Alternative conditions are adiabatic wall:

n�rT ¼ 0 (Eq 121)

or constant heat flux:

n�rT ¼ hðT � TambÞ=k (Eq 122)

A detailed heat-transfer balance may also be
written for reactor walls in the so-called conju-
gate heat-transfer problem according to the
three following equations:

r�½kwrT � ¼ 0 Steady-state conduction in wall

(Eq 123)

kn�rT ¼ kwn�rT þ s
XNw

j¼1

ðFj�wejT 4
j � Fw�jewT 4

wÞ Interior wall

(Eq 124)

� kwn�rT ¼ hðTw � TambÞ
þ seambðT 4

w � T 4
ambÞ External wall

(Eq 125)

In these equations, n is the normal unit vector
to the surface, h is the heat-transfer coefficient
at the wall, Nw is the number of internal solid
walls, ej (respectively, eamb) is the tempera-
ture-dependent emissivity of wall j (respec-
tively of ambient), and Fj�w (respectively,
Fw�j) is the configuration factor for the jth wall
element to the reactor wall w considered
(respectively for wall w to the jth wall element).
s is the Stefan-Boltzmann constant. Formulas
are usually available for configuration factors
(Ref 90). Note that reflected radiation has not
been included in Eq 124, which is generally a
reasonable assumption for quartz walls.
For species:

ðroivþ jiÞ�n ¼ 0 ði ¼ 1; . . .N speciesÞ (Eq 126)

Reacting Solid Walls. For velocity:

rv�n ¼XN
i¼1

Mi

XNs

j¼1
nsijRsj

ðN species; Ns surface reactionsÞ
(Eq 127)

For temperature, prescribed temperature pro-
files can be considered such as for nonreacting
walls; otherwise, an additional source term:

XN
i¼1

XNs

j¼1
HjnsikRsj

 !

may be added on the right side of Eq 123 to 125
to account for the heat released by surface
reactions.
For species:

ðroivþ jiÞ�n ¼ Mi

XNs

j¼1
ns
ij
Rsj

ði ¼ 1; . . .N speciesÞ ðEq 128Þ

In this equation, it has been written that the
net mass flux of species i equals its total net
consumption rate. Equation 128 may easily be
generalized to establish that the sum of mass
fluxes of depositing species is equal to the
deposition rate, which may become limited
either by gas-phase transport or by surface reac-
tions. This is illustrated in Fig. 8 (Ref 91),
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showing a typical plot of the logarithm of the
deposition rate versus 1/T. In the lowest-
temperature region (high values of 1/T), deposi-
tion is limited by surface reactions and the
corresponding activation energy is high;
conversely, at sufficiently high temperature,
surface reactions are fast, and deposition
becomes limited by transport in the gas phase.
Reactor Inlet. For velocity, a prescribed

velocity profile is most often selected:

v ¼ v0 (Eq 129)

For temperature, a prescribed profile may be
used as well:

T ¼ T0 (Eq 130)

Otherwise, for convection-dominated flows:

n�rT ¼ 0 (Eq 131)

and for flows with nonnegligible back-conduc-
tion effects:

rCpðT0 � T Þv0�n=k ¼ �n�DT (Eq 132)

For species, mass fractions may be set to
feed values in convection-dominated flows:

oi ¼ oi0 ði ¼ 1; . . .NÞ (Eq 133)

or, alternatively, when back diffusion cannot be
neglected:

�Dimn�roi ¼ ðoi0 � oiÞðv0�nÞ (Eq 134)

Reactor Outlet. For velocity, as well as for
temperature and species, a zero axial gradient
in the direction normal to the outflow opening
is usually adequate:

n�ðrrvÞ ¼ 0 (Eq 135a)

n�rT ¼ 0 (Eq 135b)

n�roi ¼ 0ði ¼ 1; . . .NÞ (Eq 135c)

Methods for the Discretization
of Transport Equations

The complete transport model consists of a set
of nonlinear partial differential equations
(PDEs), defined in the previous sections “Macro-
scopic Conservation Equations in Pure Gases”
and “Conservation Equations in Multicompo-
nent Gaseous Mixtures,” that are closed by
boundary conditions (see the section “Boundary
Conditions” in this article). These PDEs have
the general form of a convection-diffusion equa-
tion for the transported variable f:

@

@t
ðrfÞ ¼ r�ðrvfÞ þ r�ð�frfÞ þ Sf (Eq 136)

where Gf and Sf are the generalized diffusion
coefficient and generalized source term, respec-
tively. Analytical solutions can be found only
for very simple reactor geometries when numer-
ous and strong simplifying assumptions are for-
mulated. Although these approaches provided
interesting qualitative results, they have been
encompassed for at least 25 years by more and
more accurate numerical treatments. Three main
classes of numerical methods are used in
computational fluid dynamics (CFD) for the
discretization of transport equations:

� The finite-difference (FD) method can be
used in quite simple situations, for example,
2-D axisymmetric and/or isothermal reactors
(Ref 22, 92, 93). The derivatives in the

differential equations are simply approxi-
mated by a truncated Taylor-series develop-
ment. The values of the variable (f) are
calculated at grid points, implicitly assuming
a polynomial variation of f with the
coordinates.

� The finite-volume (FV) method is based on
an FD approach, but it uses a conservative
formulation of the transport equations. The
FV or control-volume method, which can
also be regarded as a simple variant of the
weighted-residual method (Ref 94), has been
widely used for solving coupled transfer pro-
blems, including vapor deposition (Ref 95–
97), and is subsequently presented in more
detail.

� The finite-element (FE) method is based on
the transformation of the original transport
equations into an equivalent integral formula-
tion using a variational principle, then
performing a functional minimization. Piece-
wise profiles are used for interpolating the
variable between grid nodes defined by the
intersections of small volume elements. The
Galerkin weighted-residual method is gener-
ally used for minimizing the equation residual
(that is, the difference between the exact solu-
tion and its approximation). The FE method
has been especially used for modeling com-
plex CVD problems (Ref 98–101).

This article gives a very brief description of
the control-volume method. The goal is not to
present numerical methods for solving PDEs
or other numerical methods in detail; the reader
will find many excellent books addressing that
topic (Ref 9, 94, 102).

The Finite-Volume (FV) Method

The FV method, or control-volume FD
method, which has been described in detail in
a famous book by Patankar (Ref 94) or in Ref
9, has been widely used for solving coupled
transfer problems.
Derivation of Linear Algebraic Equations.

As explained previously, the FV method is
based on an FD formulation, but the PDEs are
integrated over nonoverlapping control volumes
using piecewise profiles expressing the varia-
tion of f between the grid points. All the scalar
variables (T, P, o1, . . .on, fluid properties) are
calculated at grid points, “P,” each of them
being surrounded by small cells (control
volumes). Vector quantities (v and j) are calcu-
lated using a staggered grid, in points located
halfway between the scalar grid points, that is,
at the cell walls in the scalar grid (Fig. 9).
In the original form of the FV method, only

regular grids were considered, and it was not
possible to use triangular or more complex
forms for the cells, as in the FE method; how-
ever, control-volume-based approaches have
been developed that allow irregular grid geo-
metries such as triangular grids (Ref 84, 94).
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Fig. 8 Plot of log (deposition rate) versus 1/T in the case of deposition of SiC from CH3SiCl3/H2 at various pressures.
Source: Ref 91
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After discretization of Eq 136 and integration
over the control volume surrounding “P,” as
shown in Fig. 9 (which is a particular case), a
linearized equation is obtained:

aPfP ¼ aEfE þ aWfW þ aNfN þ aSfS þ b

(Eq 137)

where the discretization coefficients aP, aE, aW,
aN, and aS depend on the interpolation formula
stemming from the profile assumed for f
between grid points. Different interpolation
schemes can be used: upwind, power law, expo-
nential, and so on, as described in Ref 94. The
source term has been linearized in f:

S ¼ Sc þ SpfP (Eq 138)

A fully implicit discretization leads to the follow-
ing relationships for thediscretization coefficients:

aP ¼ aE þ aW þ aN þ aS þ a�P � Sp (Eq 139)

b ¼ Sc þ aoPf
o
P with aoP ¼

roP
�t

(Eq 140)

where Dt is the discretized time step. Exponent
(�) refers to known values at time t, while
unknown values calculated at t + Dt have no
exponent.
Numerical Considerations. The discretized

transport equations obtained are usually solved
iteratively in a segregated way, that is, by
sequentially solving the governing equation
for each variable at each iteration step; how-
ever, a coupled nonsegregated approach with
an appropriate linearization of the source term
is sometimes preferred when stiff equations
must be handled, for example, for species-con-
servation equations with source terms including
fast reactions, to avoid a huge number of itera-
tions to reach steady state. A nonsegregated
approach can then be used in regions where
chemical reactions prevail, in combination with
a segregated approach in regions where convec-
tion and diffusion dominate (Ref 103). The
pressure field is not known a priori, and a pres-
sure-correction equation must be added to
ensure that the calculated velocity field always
satisfies the continuity equation. A Semi
Implicit Method for Pressure Linked Equations

(SIMPLE algorithm) has accordingly been pro-
posed by Patankar for solving the momentum
and continuity equations. Iterations start from
guessed values of the variables at each grid
point. At any given iteration step, each point
of the grid must be visited to calculate the
new values of the considered variable. The
well-known Gauss-Seidel point-by-point
method (Ref 9, 102) can be used for this pur-
pose, but its convergence is slow because the
boundary-condition information is transmitted
at a rate of only one grid point per iteration.
Faster line-by-line algorithms, such as alternat-
ing direction implicit or the Thomas algorithm
of tridiagonal-matrix algorithm (Ref 9) are
most often preferred (Ref 94). When necessary,
underrelaxation coefficients (a) can be used to
stabilize the iterative procedure:

f ¼ afnew þ ð1� aÞfold (Eq 141)

The solution of a steady-state problem can also
be obtained by iterating over time, starting from
the known initial f-values. In this case, the time
step will be limited by stability criteria and not by
accuracy; this false time stepmayevenbe different
from one grid point to another or for each variable.
The accuracy of the solution is closely related to
the number of grid points, which depends on both
the geometry and the nature of the problem. As a
rule of thumb, the steeper the gradients in a given
zone, the higher the number of grid points and
the lower the value of grid spacing in this zone.
However, the number of grid points should always
be kept as low as possible to avoid the use of huge
computational resources and prevent prohibitive
calculation times. A variety of numerical methods
are currently available to increase the computation
speed, such as multigrid algorithms or paralleliza-
tion strategies (Ref 9, 84, 102).
Finally, criteria must be used to check the

convergence of the iterative procedure; this
can be done by calculating the value of the
scaled residual for each variable, f (occasion-
ally or at each iteration), and comparing it to
an accepted maximum value, ef, for example:

Rf ¼
P
P

aEfE þ aWfW þ aNfN þ aSfS þ b� aPfPj jP
P

aPfPj j � ef

(Eq 142)

Other criteria may also be considered, for
example, chemical balances over the chemical
elements, relative change of variables at key
points, and so on.

Modeling and Computation of
Transport Equations in Transition
Regime Flows

As for transport equations in continuous
media, analytical solutions of the Boltzmann
equation may sometimes be obtained for

Fig. 9 Location of a control volume (light gray) for scalar variables around point “P” in a two-dimensional
rectangular grid. A particular grid point “P” has four neighbor grid points (“W,” “E,” “N,” “S”), and the

control volume intercepts the scalar grid at points (“w,” “e,” “n,” “s”). Control volumes for the x (dark gray) and y
(medium gray) components of fluid velocity are staggered.
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rarefied transport problems in very simple situa-
tions, when strong assumptions are considered,
but numerical methods are better suited for the
simulation of real cases.
Direct Boltzmann CFD Method. One

approach that seems straightforward is to dis-
cretize the Boltzmann equation by using the
FV or FE methods introduced in the section
“Modeling and Computation of Transport
Equations in Continuous Media” in this article.
Although this can be done in very simple situa-
tions (monoatomic gas, simple geometry, etc.),
this direct approach becomes intractable when
the geometry becomes more complex and the
number of particles becomes important. Indeed,
the evaluation of the collision term involves a
huge number of operations in this case, and
when the number of grid intervals exceeds a
rather modest value in each dimension, the size
of the required matrix becomes immediately
prohibitive (Ref 7). Consider an unsteady 3-D
flow with only 100 grid intervals in each of
the 7 dimensions of the phase space; the grid
has 1014 points! For these reasons, physically
based simulation methods, as explained subse-
quently, are usually preferred to the direct
Boltzmann CFD method.
Molecular Dynamics Simulations. Molecu-

lar dynamics (MD) is a deterministic, direct
simulation method. The real gas is represented
by a sufficiently large number of simulated
molecules (a few hundreds to 108 to 109 or even
more). Starting from a selected initial configu-
ration of the system at t = 0 (for positions and
velocities), molecules are allowed to move
and interact with their counterparts and with
the system boundaries. The positions, veloci-
ties, and internal state of the individual
simulated molecules are stored and modified
after each time step (typically only 10�14 to
10�15 s, corresponding to short molecular dis-
placements that do not significantly affect the
molecular interaction potential). Classical MD
simulations do not consider quantum effects;
in the simplest case, molecular movements are
governed by Newton’s equations of motion:

mi
@ci
@t
¼ mi

@2ri

@t2
¼ Fi ¼ @Eðr1; . . . :rNÞ

@ri

ði ¼ 1; . . .NÞ
(Eq 143)

where Fi is the force exerted on particle i by the
N � 1 other particles at a distance rij = ri � rj

�� ��.
The corresponding potential E can usually be
calculated by summing classical atomic pair
potentials, cij:

E ¼ 1

2

XN
i¼16¼j

XN
j¼16¼i

cijðrijÞ (Eq 144)

The simplest pair potential without any cohesive
interaction is given by the hard sphere model:

cijðrijÞ ¼
¼ 1 for rij � r0
¼ 0 for rij > r0


(Eq 145)

Another simple but more realistic potential that
can be used for van der Walls interactions is the
L-J potential defined in Eq 15.
The N equations of motion defined in Eq 143

are usually solved by using an FD algorithm,
such as the popular Verlet or Gear predictor-
corrector algorithms (Ref 104). Due to the large
computational power required for calculating
the force field and the very small time steps
used in the iterative procedure, most MD simu-
lations cover time periods less than 1 ns. More-
over, for flow in gases, a minimum number of
molecules in a cubic mean free path must be
considered, which is proportional to l�1/3 (Ref
7). As a consequence, MD simulations are usu-
ally restricted to high-density gases; hence, they
are not well suited for solving transport pro-
blems in dilute or rarefied flows.
Monte Carlo Simulations. The basic idea of

the test particle Monte Carlo (MC) method is to
generate a large number of molecular trajec-
tories from an initially estimated configuration
of the system. A corresponding distribution
function is selected and stored at each point in
the phase space. From the assumed distribution,
a large number of test trajectories and molecu-
lar collisions are computed on a statistical
basis, and an updated distribution is obtained
that is used to perform another series of test tra-
jectory calculations, and so on. The process is
repeated until the distribution no longer evolves
between calculations. However, there is no real
time variable in this iterative process.
Conversely, as in MD simulations, the real-

time displacements of a large number of
simulated molecules are tracked in the direct-
simulation Monte Carlo (DSMC) method,
which uses probabilistic procedures derived
for the dilute gas assumption only. The DSMC
method described in the reference book by Bird
(Ref 7) is based on the approximation that the
molecular motion and the intermolecular colli-
sions can be decoupled over a small time step.
As in MD simulations, particles are moved over
small distances over a time step that must itself
be kept very small compared to the mean colli-
sion time, and representative molecular colli-
sions are calculated that involve near
neighbors. Cells in physical space are required
for selecting the collision partners and sampling
flow properties, and the simulation domain
must be meshed similar to CFD simulations.
Superparticles or pseudoparticles representing
a fixed number (FN) of averaged real molecules
can be used when the number of real molecules
becomes too large. The representative colli-
sions are selected on a probabilistic basis
by using relations derived for the kinetic theory
of gases (Ref 7), which was briefly introduced
in the section “Transport Regimes and
Transport Equations” in this article. For
instance, in a homogeneous gas, the probability
(P) of collision between two molecules
over the time interval Dt can be calculated as
(Ref 7):

P ¼ FNsT cr�t=Vc (Eq 146)

In other words, P is equal to the ratio of the
volume swept out by their total cross section
moving at relative speed, cr, to the volume of
the cell (Vc).
The main limitations of the DSMC method are

the assumptions of molecular chaos and dilute
gas; furthermore, it cannot be used for the simula-
tion of long-range-interaction-dominated pro-
cesses such as highly ionized (hot) plasmas, but
it can be applied to weakly ionized (cold) plasmas
and to reacting gas mixtures as well.
Other simulation methods can be used for

the simulation of transition regime flows
(Ref 7), for example, the lattice gas cellular
automata method (Ref 104), that have computa-
tional efficiency higher than the DSMC method
but give a poor representation of the physical
reality.

Modeling and Computation of
Particle-Surface Interactions

This section very briefly introduces a large
family of methods used for molecular modeling
in computational materials science (CMS) (Ref
105). It is out of the scope of this article to dis-
cuss these methods in details; however, they are
increasingly introduced in simulation of VPP,
and this subsection may be helpful to the reader
who is not familiar with CMS. A list of popular
molecular modeling software can be found in
Ref 106. It is worth noting that a few commer-
cial packages are now becoming available for
the simulation of multiple problems in materi-
als science, such as Materials Studio (Ref 18),
which offers not only ab initio, semiempirical
calculation software and MD simulators but
also model builders and force fields as well as
powerful graphical postprocessing utilities for
displaying simulation results.
Ab Initio and Related Quantum Methods.

The fundamental equation to be solved for the
simulation of materials microstructure and
gas-surface interactions is the famous Schrödin-
ger wave equation. Exact solutions of this equa-
tion cannot be obtained for complex real
molecular systems such as gas-solid systems;
however, more-or-less approximate solutions
can be found using various methods. Ab initio
methods are the most sophisticated ones; they
use very few approximations but require a huge
computational power (calculations typically
scale with N4) and are restricted to the simula-
tion of very small-sized systems (typically, a
few tens to a few hundreds of molecules). Har-
tree-Fock (HF) or density functional theory
(DFT) methods based on electronic calculations
for a molecular system with heavy nuclei at
fixed positions are currently the most popular
ab initio methods. For example, they can be
used to calculate transition-state structures to
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find the most probable surface reaction path-
ways in CVD (Ref 107). Commercial packages
such as Gaussian 03 (Ref 108) can be used for
performing ab initio calculations, but many
other software programs are available. Semiem-
pirical methods are also based on quantum
mechanics but use stronger approximations for
the Hamiltonian and empirically derived para-
meters as well. They are less accurate than ab
initio methods but demand less computational
resource (typically scale with N3), and
medium-sized systems of a few hundreds to a
few thousands of atoms can be modeled.
The MOPAC (Molecular Orbital PACkage)
software (Ref 109) has also been used for
performing semiempirical calculations of inter-
est for CVD problems (Ref 110).
Molecular Mechanics and Molecular

Dynamics Simulations. Models based on
molecular mechanics (MM) use purely classical
potentials for describing atomic interactions
(Ref 111). The potential energy functions for
the series of atoms (treated as spheres) and the
related empirical parameters constitute a force
field (FF). A rather large number of FFs have
been developed (Ref 112) that are most often
used in MM for energy minimization but also
in MD, which aims at simulating molecular
motions (see the section “Molecular Dynamics
Simulations” in this article). Less accurate but
faster calculations (typically scale with N2)
can be conducted using such classical empirical
potentials, but semiempirical or ab initio poten-
tials can alternatively be considered for more
accurate MD simulations. Although not particu-
larly well suited for the simulation of gas flows,
MD methods have been widely used for the
simulation of gas-surface interaction dynamics.
Monte Carlo Simulations. The MC meth-

ods discussed in this section are slightly differ-
ent from the DSMC method introduced
previously in “Monte Carlo Simulations” in
the section “Modeling and Computation of
Transport Equations in Transition Regime
Flows.” They can often be used as alternatives
to energy minimization or MD methods. In the
first case, the new configurations of the system
containing N particles are sampled by impor-
tance; they are assigned a statistical weight,
and each new configuration is either accepted
or rejected after comparing it with a random
number, R, in the range [0,1[. For instance,
during system energy minimization, the new
configuration n + 1 can only be accepted if
its energy En+1 is lower than En and if the
selected random number satisfies:

exp ð ��E=kT Þ > R (Eq 147)

Using this kind of classical MC algorithm,
however, the evolution of the system is not
the true dynamic evolution as in MD simula-
tions. Kinetic Monte Carlo (KMC) methods
can be used for simulating the system dynam-
ics. In KMC simulations, a list of n possible
events with rate Ri (i = 1. . .n) is updated at each

time step, Dt, of which the total rate for the sys-
tem in configuration, C, at t is:

RT ðCÞ ¼
Xn
i¼1

Ri (Eq 148)

The probability for each event is then:

Pi ¼ Ri

RT ðCÞ ¼
RiPn

i¼1
Ri

ði ¼ 1; . . .nÞ (Eq 149)

One event is selected among the n possible
events after comparing its probability to a ran-
dom number in a uniform distribution in the
[0,1[ interval, and the time is also incremented
on a statistical basis after choosing a new ran-
dom number (x) in the [0,1[ interval:

�t ¼ � lnð�Þ
RT ðCÞ ¼ �

lnð�ÞPn
i¼1

Ri

(Eq 150)

The KMC are usually less accurate than MD
simulations, but calculations are faster and
much larger periods of time can be explored.

Simulation of CVD Processes

Significant progress has been accomplished
since the development of the first realistic
numerical simulations of transport phenomena
in CVD reactors in the 1980s (Ref 20, 113).
In the 1990s, the effects of the reactor geometry,
operating conditions, and so forth on the reactor
performance were investigated in depth, and
chemistry models were considered in reactor
simulations (Ref 103 and the references therein).
Complex coupled heat-transfer and fluid-flow
problems were solved, and detailed models of
CVD gas-phase and surface chemistry were
also developed. Nowadays, multidimensional

treatments of the coupled transport equations,
including detailed chemistry, are performed in
most reactor simulations. Figure 10 shows the
typical structure of a CVD simulation. It can be
seen that even if commercial software has now
become available (as explained in the section
“Modeling and Computation of Transport Equa-
tions in Continuous Media” in this article),
numerous input data, which are not always read-
ily available, must be gathered, which usually
remains a tedious and difficult task.
A few representative examples are now briefly

presented to illustrate the interest and capability of
CVD reactor modeling. Several very good review
articles on transport phenomena modeling in
CVD reactors are of great interest for further
reading on the subject (Ref 103, 114, and 115).

Fluid Flow and Heat Transfer in
Conventional CVD Reactors

Simple Models. The transport equations pre-
sented previously in the sections “Macroscopic
Conservation Equations in Pure Gases” and
“Conservation Equations in Multicomponent
Gaseous Mixtures” are usually strongly cou-
pled, and their resolution may become very
difficult if complex reactor geometries are con-
sidered. However, several situations are
encountered for which strong simplifying
assumptions can be made. Hot-wall CVD reac-
tors have often been considered as isothermal
(this is a reasonable assumption in the hot zone
of horizontal multiwafer low-pressure CVD
reactors) (Ref 116), and in this case, there is
no need to solve the energy equation. The axi-
symmetric flow approximation has often been
considered in vertical reactors also; further-
more, when reactants are highly diluted in a
carrier gas, species conservation and momen-
tum-transfer equations can be decoupled, which
considerably simplifies the numerical treatment.
Two-dimensional models based on the FV and

Fig. 10 Structure of a chemical vapor deposition (CVD) reactor simulation. PDE, partial differential equation
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FD methods have often been used to simulate
nonisothermal-axisymmetric flows (Ref 92,
95) and/or isothermal flows (Ref 93, 116). Even
simpler one-dimensional models have also been
considered in a few cases that usually consider
more detailed chemical schemes (Ref 114 and
references therein).
Effects of Reactor Geometry and

Operating Conditions in Mixed Convection
Problems. One of the key issues in CVD opera-
tions is to obtain films of desired composition
with a good uniformity and, if possible, at high
deposition rate. Operating conditions (T, P,
inlet flow composition and rates) and reactor
geometry both affect film characteristics, but
the latter cannot be modified, and it is highly
desirable to optimize both the reactor shape
and operating conditions prior to building the
reactor. Due to the strong coupling between
transport phenomena, it is difficult to draw uni-
versal conclusions on CVD process behavior;
most experimental or simulation results are spe-
cific to the selected operating conditions and
reactor geometry. To derive more universal
results and conclusions, the transport equations
are often scaled, and dimensionless variables
and groups (see the section “Laminar and Tur-
bulent Flows” in this article) can be considered
in numerical simulation studies (Ref 114, 115).
In a review article, Holstein (Ref 115) dis-
cussed the influence of the design of reactor
entrance regions as well as the effect of buoy-
ancy forces on the flow field and deposition rate
in various types of CVD reactors: horizontal,
barrel, and vertical reactors (chimney and rotat-
ing-disk reactors). The Rayleigh number (Ra)
and the Grashof/Reynolds numbers (Gr/Re2)
ratio (ratio of buoyancy to inertial forces) are
the critical dimensionless numbers in horizontal
reactors; the formation of longitudinal roll
waves and transverse roll waves are observed
at high values of Ra and Gr/Re2, respectively,
and even more complex or time-dependent
flows are predicted at very high Ra and Gr/Re2

(Ref 115 and references therein). Operating a
CVD reactor under such conditions is detrimen-
tal to growth-rate uniformity. In vertical chim-
ney reactors, the flow is determined by the
ratio of buoyancy to viscous forces, that is, by
the ratio Gr/Re. The same ratio governs flow
instabilities in barrel reactors, but in this case,
even more complex flows may result from the
susceptor rotation, for example, formation of
Taylor vortices at high rotation speed. In stag-
nation-point flow and rotating-disk reactors,
Ra and Gr/Re2 are the critical dimensionless
groups. Downward-forced flows are usually
employed for convenience, but inverted
upward-flow reactors do not exhibit strong
recirculation instabilities because forced and
natural convection have the same direction in
this case.
Fotiadis et al. (Ref 100, 117) have performed

an in-depth analysis of the effects of operating
conditions, reactor geometry, and heat-transfer
characteristics on growth-rate uniformity and
flow patterns in vertical nonisothermal

axisymmetric metal-organic CVD (MOCVD)
reactors used for GaAs deposition. They have
developed 2-D and 3-D models based on the
Galerkin FE method to simulate the complex
behavior of such reactors, in which forced and
natural convection effects often superimpose
in mixed convection flows. They have evi-
denced recirculation cells due either to natural
convection induced by large temperature gradi-
ents or to flow separation associated with sud-
den area expansions. These undesirable
effects, which are detrimental to uniformity,
can be reduced by increasing the inlet flow rate
(Fig. 11), rotating the susceptor, reducing the
pressure, inverting the reactor, shortening the
inlet-susceptor distance, introducing baffles,
and reshaping the reactor.
In their well-documented analysis, these

authors also evidenced flow-symmetry breaking
in axisymmetric geometries due to highly
nonlinear effects in mixed-flow problems
(Ref 118). In addition, time-varying or multiple
stable flow fields may exist for the same reactor
configuration and operating conditions in a
restricted range. These nonlinear effects were
further investigated in subsequent studies by
Van Santen et al. (Ref 119,120). They used a
3-D FV model to study the origin of symmetry
breaking in a cold-wall stagnation-flow CVD
reactor (Ref 119). For a reactor height-to-
diameter aspect ratio (H/D) larger than unity
and Rayleigh numbers between 2 � 103 and
105, multiple axisymmetric and nonaxisym-
metric flows (Fig. 12) were found. Symmetry
breaking can be suppressed by selecting low
inlet flow and low rotation speed of the suscep-
tor. In such configurations, however, it is diffi-
cult to know if a solution is unique or not. In
a subsequent paper (Ref 120), the same authors
implemented arc-length continuation techni-
ques to compute a solution branch as a function
of one selected operating parameter and to track

solutions through turning points. They have
shown that the nonlinear interaction between
the convection term in the energy equation and
the gravity term in the momentum equations
is responsible for turning-point instabilities
resulting in multiple stable flows.
Thermal instabilities in axisymmetric forced

radial flow between horizontal plates were also
studied by Van Santen et al. (Ref 96). In this
case, mixed convection leads to 3-D rolls in
conditions of low Reynolds (Re) and Prandtl
(Pr) numbers and high Rayleigh (Ra) numbers,
similar to the well-known Rayleigh-Bénard
problem of convection between two infinite
parallel plates at different temperatures. Of
course, such effects cannot be captured by 2-D
models using axisymmetry assumption; full
3-D numerical treatments are required. At suffi-
ciently high operating pressure and large reac-
tor size, buoyancy effects may become so
important that flow may turn turbulent. In
another paper (Ref 121), the same authors stud-
ied the effect of turbulence on the CVD process
in the same kind of stagnation-flow cold-wall
CVD reactor. They performed large-eddy simu-
lations (LES) rather than Reynolds-averaged
Navier-Stokes simulations because the latter
are not capable of correctly resolving the char-
acteristic features of such turbulent Rayleigh-
Bénard convection problems. They used a par-
allel algorithm to reduce the computation time
inherent to LES. The heat flux was increased
by turbulence but became nonuniform. Never-
theless, turbulent mixing provides good unifor-
mity conditions in a large part of the wafer
and therefore may favor higher and more
uniform growth rate.
Fotiadis et al. also underscored the impor-

tance of the heat-transfer treatment on the accu-
racy of model prediction, which must include
appropriate boundary conditions as well as radi-
ation heat transfer in cold-wall configurations

Fig. 11 Effect of the inlet flow rate on streamlines (right) and isotherms (left). (a) Inlet flow rate = 4 SLM (standard
liters per minute). (b) Inlet flow rate = 8 SLM. H2 pressure, 0.13 atm; Tsusceptor, �900 K. Source: Ref 100
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(Ref 100). Such a rigorous treatment is essential
to obtain an accurate solution of the so-called
“cold-finger” phenomenon experimentally evi-
denced in horizontal cold-wall CVD reactors
(Ref 122). The cold finger arises from radiative
heating of the reactor walls in front of the
heated susceptor and the subsequent heat trans-
fer from these walls to the inlet cold gas (Ref
123). Three-dimensional buoyancy-driven sec-
ondary flows in horizontal cold-wall MOCVD
reactors were first simulated by Moffat and Jen-
sen (Ref 124), who used a 3-D Galerkin FE
method to study the conditions leading to the
development of convection rolls (Fig. 13).
These authors considered various heat-transfer
conditions at reactor walls (adiabatic or cooled
walls), and they also showed that the flow struc-
tures are very sensitive to the reactor cross-sec-
tional aspect ratios and to the nature of carrier

gas as well. Convection rolls were found to be
detrimental to film thickness and composition
uniformity.
Complex Reacting Flows. Earlier simula-

tions of the CVD process considered only
lumped chemistry. In their 2-D simulation of
silicon deposition from silane, Coltrin et al.
(Ref 22, 125, 126) considered the first detailed
gas-phase chemical scheme, which involved
17 species and 27 elementary reactions. Tirto-
widjojo and Pollard (Ref 127) developed the
first detailed chemical scheme including both
surface and gas-phase reactions. They first con-
sidered 60 species and 232 gas-phase reactions,
together with 19 species and 115 processes at
the surface. This mechanism was used to simu-
late GaAs deposition from a Ga(CH3)3-AsH3

mixture in a MOCVD reactor. The most impor-
tant species and reactions were identified. The

rate constants of adsorption/desorption pro-
cesses and surface reactions were estimated
from statistical mechanism, transition-state the-
ory, and Benson’s method of bond-dissociation
enthalpies (Ref 19, 37) by considering different
surface sites (ledges, terraces) according to the
Kossel representation of the surface (see the
section “Modeling of Surface Interactions with
the Vapor Phase” in this article). Quantum
Rice-Ramsperger-Kassel (QRRK) calculations
(see the section “Pressure Dependence of Rate
Coefficients”) were performed to account for
the pressure dependence of homogeneous reac-
tions. The most important species and reactions
(7 gas-phase and 18 surface reactions) were
finally identified. After the two previously men-
tioned landmark papers, several chemical
mechanisms were developed, and more and
more simulations of CVD processes have
included detailed chemistries; however, most
works have focused on only two to three chem-
ical systems of interest, such as silicon deposi-
tion from silane and carbon deposition from
hydrocarbon species. In the latter case, many
kinetic data were available from combustion
works (as seen in the section “Construction”),
which allow considering very large reaction
mechanisms. Recently, Norinaga et al. (Ref
66) developed a 227 species, 827 reactions
mechanism. A reduced version of their mecha-
nism (Ref 128) has been considered for simu-
lating transport phenomena in chemical vapor
infiltration of pyrolytic carbon by using COM-
SOL (Ref 89), a FE method-based commercial
software.
However, except for systems of interest for

combustion and a few other systems, such as
Si-H (Ref 40, 41, 65), Si-C-Cl-H (Ref 129),
Ti-Cl (Ref 50), GaAs (Ref 127), and Si-O-H
(Ref 130, 131), and so on, most chemical
mechanisms developed so far do not account
for the pressure dependence of gas-phase reac-
tions. Furthermore, the handling of numerous
stiff chemical equations remains quite difficult
even today (2009) (Ref 132), and it is usually
desirable to reduce the chemical scheme to a
reasonable size by using the rigorous methods
presented in the section “Construction, Analy-
sis, and Reduction of Gas-Phase Reaction
Mechanisms” in this article. Another major
interest of using mechanisms of reasonable size
in complex CVD process simulations is that it
allows a better and easier identification of the
key deposition pathways (Ref 71, 133),
provided that the simplified mechanism has
been obtained from a rigorous reduction proce-
dure. As an illustration, Fig. 14(a) shows a
comparison between the calculated contribu-
tions of species using two simplified mechan-
isms for silicon-carbide deposition from C3H8/
SiH4/H2 mixtures (Ref 134). Predictions from
the oversimplified (10 species, 13 reactions)
mechanism, which do not include organo-sili-
con species (Ref 134 and references therein),
overestimate CH3 contribution to deposition
and do not capture the important participation
of the Si2C species. Furthermore, the simulated

Fig. 12 Transition from nonaxisymmetric to axisymmetric flow when increasing the inlet Reynolds number (Rein)
from 14 to 15. Rayleigh number = 10,000; Ga = 0.5 (Ga is the dimensionless Gay-Lussac number,

defined as (Twafer � Twall)/Tref); Prandtl number = 0.71; no susceptor rotation. Velocity and temperature fields in a
cross section are plotted on the left and right sides, respectively. Source: Ref 119
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and experimental deposition-rate profiles are
not in very good agreement when considering
the oversimplified chemistry (Fig. 14b).
The simulation of GaAs, carbon, or silicon-

containing film deposition received far more
attention, but several other chemical mechan-
isms have also been developed for the simula-
tion of metallic film CVD, for example, for
tungsten (Ref 136, 137), titanium (Ref 50),
and copper (Ref 138) deposition, which are
more or less detailed.
Beyond the difficulties inherent to the resolu-

tion of a large number of coupled stiff equa-
tions when considering large reaction
mechanisms, one additional difficulty arises
from the strong coupling between species con-
servation equations and momentum + energy
conservation equations. Most mixed-convection
problems have focused on thermally driven nat-
ural convection, but buoyancy effects resulting

from solutal convection must also be consid-
ered when large changes in gas-phase composi-
tion occur due to chemical reactions (Ref 114).
Particular attention must also be paid for
describing diffusion phenomena in complex
multicomponent mixtures (see the sections
“Conservation Equations in Multicomponent
Gaseous Mixtures” and “Some Important Mac-
roscopic Properties of Vapors from the Molecu-
lar Model” in this article). Compositional
uniformity of films may be affected by thermal
and ordinary diffusion factors in diffusion-lim-
ited situations, because deposition species with
the highest diffusion coefficients are trans-
ported faster to the substrate, and species with
the highest thermal diffusion factors are trans-
ported preferentially toward the colder walls
(Ref 115). This is particularly important in the
presence of large temperature and concentration
gradients and also when there are large

differences in molar masses and diffusion coef-
ficients. Kuijlaars et al. (Ref 139) have shown
that in this case, solving the Stefan-Maxwell
equations (Eq 46) is much better than simply
using an effective diffusivity (Eq 47 or 70b).
The Damköhler number (Da), which can be
defined as the ratio of reaction rate to transport
rate, can be used as an indicator of growth-rate
uniformity in some cases; when surface reac-
tions are fast compared to the diffusion of depo-
sition precursors, Da is low, which means that
depletion effects may induce large nonunifor-
mities in film thickness and composition along
the flow direction (Ref 114). Thermal diffusion
effects have also been found to have a nonne-
gligible influence on the deposition process
behavior in horizontal cold-wall reactors, in
particular by decreasing the deposition rate as
a result of decreasing the overall mass transfer
rate to the hot susceptor surface (Ref 99,134).

Fig. 13 Transverse velocities at three axial positions, illustrating the formation of convection rolls inside an adiabatic-wall horizontal metal-organic chemical vapor deposition
reactor. Source: Ref 124
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Finally, thermophoretic transport effects are
also of key importance in nonisothermal CVD
processes involving particle formation in the
gas phase, such as aerosol CVD (Ref 131).

Transport Phenomena at High
Knudsen Numbers

A large number of papers have been pub-
lished on simulation of transport phenomena
in CVD reactors; however, the literature dedi-
cated to simulation of transport in the transition
regime is less abundant.
Transport in Low-Pressure CVD Reactors.

Several previous works have used a continuum
approximation for modeling industrial multiwafer
low-pressure CVD (LPCVD) reactors (Ref 114,
140). However, these reactors operate at approxi-
mately 10 Pa, in the transition regime; hence, a
correct treatment of transport should be based on
the resolution of the Boltzmann equation (Ref
140). DSMC simulations were performed to sim-
ulate transition regime flows in a multiple-wafer
LPCVD reactor (Ref 140), which demonstrated
that important diffusion effects cannot be cap-
tured by continuum models. Coronell and Jensen
(Ref 141) used Monte Carlo techniques to model
both heat transfer and fluid flow in a multiwafer
ultrahigh-vacuum CVD reactor used for epitaxial
deposition of silicon or germanium. This reactor
is similar to a conventional industrial LPCVD
reactor but operates in the 0.1 to 1 Pa pressure
range. The heat-transfer calculations have been
separated from the flow simulations because the
gas is transparent to radiation at very lowpressure,
and experiments show that the wafer temperature
is independent of both gas flow rate and composi-
tion. Heat-transfer calculations include a

conventional FD treatment of heat conduction at
quartz walls and an MC treatment of radiation.
The 2-D MC simulation allows the inclusion of
detailed radiation properties for walls and wafers,
that is, depending on wavelength, direction, tem-
perature, and nature of materials used in the dif-
ferent reactor zones. The simulation method
consists of generating a large number of represen-
tative photons from each surface, which are then
tracked until they interact with another surface
of the reactor enclosure. Simulation is performed
by using unbiased probability distribution func-
tions for emission of photons from surfaces, as
well as probabilities for absorption, reflection, or
transmission of photons incoming on surfaces;
hence, it is a DSMC. The DSMC method (Ref
7), briefly described in “Monte Carlo Simula-
tions” in the section “Modeling and Computation
of Transport Equations in Transition Regime
Flows,” has been adapted to simulate the flow in
the UHV-CVD reactor in two dimensions. An
arbitrary initial state is specified for performing a

transient simulation that achieves a steady-state
flow after a sufficient number of time increments.
Gas-phase collisions are treated as explained in
“Monte Carlo Simulations” in the section “Mod-
eling and Computation of Transport Equations in
Transition Regime Flows,” and gas-phase reac-
tions are neglected. Molecules impinging upon
the surface are either reflected or incorporated
by selecting a random number in a uniform distri-
bution in the [0-1[ interval and comparing it to the
reactive sticking coefficient of the molecule. Dif-
fuse reflection is assumed at the surface, with
complete thermal accommodation to the surface
temperature. The theoretical partial pressure and
temperature profiles of species were calculated,
as well as the deposition rate profiles. Figure 15
shows a simulated trajectory plot for a SiH4 mole-
cule. Simulations revealed a longitudinal deple-
tion of the most reactive species and a strong
separation effect between species of different
molecular weight, due not only to thermal diffu-
sion but also to pressure diffusion (Ref 141).

Fig. 14 (a) Theoretical molar contributions of the most important reacting species to the deposition mechanism. Top: 10 species and 13 reactions (Source: Ref 135). Bottom: 18
species and 33 reactions. (b) Calculated deposition-rate profiles obtained from the two different reaction mechanisms using a stoichiometric constraint compared with the

experimental data. Source: Ref 134

Fig. 15 Typical SiH4 molecule trajectory plot for an ultrahigh-vacuum chemical vapor deposition gas flow. Source:
Ref 141
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Other examples of the use of the DSMC
method for CVD problems can be found in
Ref 142.
Transport on the Feature Scale. Some

CVD models have been specifically developed
for predicting deposition profiles in micro-
scopic trenches or via holes. Even if the main
flow inside the reactor is a continuous flow
(Kn < 0.01), transport becomes rarefied inside
features of microscopic size. Distinction can
be made between models that consider gas-
phase collisions and models that do not, the lat-
ter being more adapted for simulation of line-
of-sight processes, which are most often PVD
or etching processes. In a pioneer work by Ike-
gawa and Kobayashi (Ref 143), the DSMC
method was used to simulate deposition profiles
in small trenches, not only in atmospheric CVD
situations but also in collision-less plasma
(PACVD) and sputtering (PVD) deposition
conditions. They considered various values of
the surface-reactive coefficients of incoming
precursor molecules that were treated as hard
spheres of a simple gas, and distinction was
made between reactant molecules and products.
A Boltzmann distribution was assumed for
incoming molecules entering the domain. The
cell size in DSMC is a fraction of the mean free
path of molecules, and the time increment is
smaller than the mean collision time. A string
algorithm is used, and the moving film surface
is approximated by a series of nodes joined by
straight-line segments, which individually
move in proportion to their flux of incoming
molecules but in the opposite direction; hence,
cells are distorted during the simulation of
growth. Better step coverage is obtained for
the lower values of sticking coefficients, in
agreement with experimental results. In a
subsequent publication, Coronell and Jensen
(Ref 144) also used the DSMC method to sim-
ulate deposition in microscopic features, but a
pileup method was preferred to the string algo-
rithm used by Ikegawa and Kobayashi because
of its ability to capture microstructural details.

Beyond molecular collisions and species incor-
poration at surfaces, adsorption, desorption, dif-
fuse reflection, as well as surface diffusion were
considered. Two- and even 3-D simulations
were performed. Figures 16(a and b) show an
example of simulated profiles obtained for two
different sticking coefficients of the depositing
species, whereas Fig. 16(c) illustrates the devi-
ation of the velocity distribution function from
the Maxwellian distribution at the vicinity of
the growing surface, which is due to the rare-
faction of the gas. Continuum approaches have
also been proposed for the simulation of CVD
or PVD over topography at the feature scale
(Ref 145), which have interesting predicting
capabilities. More sophisticated models were
developed later that allow consideration of sev-
eral reacting species as well as multiscale
effects; these models are presented in the sec-
tion “Multiscale Modeling” in this article.

Simulation of PVD and Etching
Processes

As explained at the beginning of this article,
most PVD processes operate at low or very low
pressure; hence, transport phenomena are usu-
ally (although not always) of less importance
in PVD compared to CVD. Many PVD pro-
cesses are line-of-sight processes in which
gas-phase reactions can be ignored, but in turn,
as seen earlier in the section “Physical Vapor
Deposition and Related Processes,” they often
involve energetic particles in ionized media,
thus giving rise to various and complex physi-
cal phenomena. A large number of PVD techni-
ques are currently available, and more-or-less
sophisticated models, which are usually multi-
physics models, have been developed for simu-
lating these processes. Simulation of particle-
surface or beam-surface interactions is a key
issue in PVD modeling as well as modeling of
plasma discharges. In this section, examples
focusing on sputtering deposition and reactive

or ion beam etching are discussed. Other exam-
ples of PVD processes are discussed in the
section “Multiscale Modeling” in this article.

Reactive Sputtering Deposition

Berg (Ref 146, 147) proposed a simplified
but elegant approach to model reactive sputter-
ing (RS) processes. The derivation of Berg’s
model is based on strong assumptions (constant
ratio between the electron and ion currents,
uniform sputtering of the target, and uniform
collection of sputtered particles at the substrate,
etc.) and on several balances that lead to simple
expressions of the sputtering and deposition
rates. This simple model is capable of predict-
ing the hysteresis classically observed in RS
when plotting the sputtering rate of the target
versus the reactive-gas flow rate. The hysteresis
phenomenon, which is due to target poisoning,
is particularly important in titanium and TiN
RS deposition (Ref 4). Berg’s model can be
used to study the influence of target material,
reactive gas, target-to-substrate distance, and
so on and can be extended to simulate more
complicated configurations, such as co-sputter-
ing and sputtering from an alloy target or pro-
cessing with several reactive gases, pulsed dc,
and so on. Other authors have included this
very simple zero-dimensional model in more
sophisticated treatments, such as Kobayashi
(Ref 148), who developed a 2-D model of a
large-area TiN sputtering deposition system
based on Berg’s model and the DSMC method
to simulate rarefied gas transport. Four gaseous
neutral species were included in his analysis
(N2 and argon as inlet gases; titanium and TiN
as sputtered species that were tracked during
the simulation). The space was meshed for
DSMC, but the target and the walls were also
divided into cells, with boundary conditions
based on Berg’s model in each of these cells.
Simulations predicted a nonuniform composi-
tion of the TiN film resulting from depletion
of N2. Dynamic Monte Carlo simulations based
on the TRIDYN computer program (Ref 149)
were performed to study implantation and
ion bombardment effects that may decrease
the sputter erosion rate (target poisoning)
(Ref 150, 151). In TRIDYN, the target compo-
sition and the binding energies between the dif-
ferent elements of the target must be defined,
and particle transport inside the target
during ion bombardment can be dynamically
simulated. Various energies and incidence
angles can be considered for species in the
beam. Depth profiles of atomic species in the
target, as well as sputtering yields and re-emit-
ted amounts, can be predicted. It is worth not-
ing that plasma effects were not considered in
the aforementioned analyses. To account for
electron interactions, test-electron Monte Carlo
simulations were performed (Ref 152 and refer-
ences therein), but self-consistent simulations
of plasmas must be preferred. Clenet et al.
(Ref 153) developed a 2-D model of a circular

Fig. 16 (a, b) Simulated profiles at various stages of growth for an infinitely long trench, with Knudsen number = 1
and a sticking coefficient of (a) s = 1 and (b) s = 0.01. (c) Direct-simulation Monte Carlo-computed

perpendicular velocity distribution. l/3 (o) and 3l (+) above the growth surface and the Maxwellian distribution (�).
Source: Ref 144
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planar radio-frequency magnetron sputtering
system used for titanium-tungsten film deposi-
tion. The model is based on a particle-in-cell
Monte Carlo collision (PIC-MCC) approach
for simulating the transport of sputtered species
in the argon plasma. The SRIM code (Ref 23,
154), which is open access (Ref 155), was used
to calculate the sputtering yields of titanium
and tungsten target atoms. PIC-MCC models
as well as hybrid fluid/particle models have
been developed for more than 15 years to
simulate radio-frequency magnetron sputtering
discharges (Ref 156). Approaches based on
PIC-DSMC methods have been proposed to
self-consistently simulate plasma and neutral
gas as well as sputtering and deposition, as
explained in Ref 156. Magnetron sputtering
models are reviewed in Ref 152 and 156.
Some models have also been developed for

simulating film-growth dynamics and micro-
structure formation in magnetron sputtering pro-
cesses, either on flat surfaces or in microscopic
trenches (see the section “Modeling Line-of-
Sight Deposition or Etching over Topography”
in this article). Kinetic Monte Carlo (KMC)
models are most often used for this purpose, as
well as MD models. The KMC models require
detailed energies of the possible atomic config-
urations in order to calculate the corresponding
probabilities. Good interatomic potentials (Ref
157, 158) are currently available from first-prin-
ciples (ab initio) for a variety of materials, and
MD calculations can also provide data for
KMC simulations. A representative example of
KMC simulation of growth in a magnetron sput-
tering process can be found in a paper by Gilmer
et al. (Ref 159), who simulated the film mor-
phology of aluminum films obtained by magne-
tron sputtering. The MD simulations were first
performed to obtain the kinetic energies and
the angle of the sputtered atoms as well as the
potential energies of the surface atoms. Figure
17 shows KMC simulation results, illustrating
the competitive growth process leading to a
polycrystalline film structure.
These simulations provide considerable

insight into the growth mechanism and the influ-
ence of parameters and suggest possible routes
to improve the film structure. More sophisticated
multiscale models (see the section “Multiscale
Modeling” in this article) of magnetron sputter-
ing deposition have now been developed that

have the capability of simulating both plasma
generation and film deposition at different scales
(see Ref 160 and the references in Ref 152).

Modeling Line-of-Sight Deposition or
Etching over Topography

Ultralow-pressure PVD processes, such as
evaporation, molecular beam epitaxy, or ion
beam etching, typically involve no collisions
in the gas phase; hence, there is theoretically
no need for real transport modeling for those
processes, but usually, both the trajectories of
particles traveling from the source to the sub-
strate and the particle energy distribution func-
tions must be computed. Most simulations
performed to date aimed at predicting the
microstructure or the uniformity of deposited
films, not only on flat surfaces but also on
microscopic features. Line-of-sight models have
also been used for simulating magnetron sput-
tering processes, neglecting collisions in the
gas phase (Ref 159, 161). Simple ballistic
aggregation models were first proposed to simu-
late columnar microstructures and deposition
profiles in microscopic trenches (Ref 162–
164). The orientation angle (b) of the columns
with respect to a vector perpendicular to the
substrate surface differs from the incidence
angle (a) of incoming particles and obeys the
following experimentally verified relation:
2 tan (b) = tan (a) known as the tangent rule
(Ref 165). This is mainly due to a self-shadow-
ing effect. These simple but useful models were
mainly used to simulate deposition in micro-
scopic features. Integro-differential equations
can also be derived for describing free molecu-
lar flows in trenches (Ref 166). The difficulty
in this case arises from the multiple reflections
of particles inside the features, which compli-
cate the calculations of the shape or view factors
(Ref 166, 167). As discussed in Ref 159 and
161, continuum models can be very efficient in
simulating the step coverage and topographic
evolution for moving interfaces, either for depo-
sition or etching over topography. Approaches
based on the level-set method (Ref 168) have
been introduced as an alternative to front-track-
ing and segment-based methods (Ref 161).
Much more sophisticated models allowing

the prediction of both topographic evolution

and microstructure formation are based on
KMC methods and often make use of first-prin-
ciples calculations and MD simulations. Figure
19(c) shows the sputtered aluminum deposition
profile in a submicron-sized trench obtained
from KMC simulations performed in Ref 159.

Advanced Topics

Modeling of vapor processes includes
advanced methods, such as when additional
physical processes are coupled with the vapor
process. Examples of multiphysical simulation
models are given subsequently on vapor deposi-
tion processes coupled with cold plasma dis-
charges and fluidized beds. Another advanced
topic is the cross-disciplinary approach of mul-
tiscale modeling, which is illustrated through
several examples of vapor deposition (CVD
and PVD) over micron-sized features.

Modeling Complex/Multiphysics
Processes Involving Vapors

Example 1: Plasma-Enhanced CVD
(PECVD). Plasmas are often encountered in
PVD processes such as magnetron sputtering,
but they are also widely used in combination
with CVD in the so-called plasma-enhanced
(or plasma-assisted) CVD processes. In
plasma-assisted processes, reactions are
initiated by charged species formed in the cold
gas discharge (mainly electrons) rather than by
thermal activation of the reactant molecules.
The presence of charged species in an electric
field induces many new physical or chemical
phenomena (complex energy transfers between
particles, ion-molecule reactions, substrate
bombardment by ions, etc.), which are strongly
coupled, and seriously complicates the model-
ing task (Ref 169). One of the most fundamen-
tal steps in PECVD simulation is to model the
plasma discharge itself. Many review papers
have been published on plasma modeling (Ref
170), which is a wide field of research by itself.
Several types of models have been developed
for simulating plasmas: fluid models, which
are based on a continuum approximation and
are not valid in rarefied flow conditions, and
particulate models such as particle-in-cell
Monte Carlo collision (PIC-MCC) models,
which are more accurate (but require time-con-
suming calculations) and can also be used in
transition regime flows, and finally hybrid (par-
ticle-fluid) models (Ref 170). The development
of 3-D or even 2-D plasma models in complex
geometries remains a difficult task; further-
more, even if collision-impact cross sections
and transport parameters are available for sev-
eral simple gases (rare gases and some diatomic
gases) and a few polyatomic molecules of inter-
est for PECVD, such as SiH4 (Ref 35), data are
still lacking for many important reactant mole-
cules. When possible, for example, when reac-
tants are highly diluted in a carrier gas and/or

Fig. 17 Growth of aluminum onto a flat substrate (dark gray) with a cosine angular distribution for the impinging
aluminum atoms. (001) clusters (light gray) and (111) clusters (intermediate gray) are permitted to

nucleate and grow simultaneously using a multilattice model. Configurations from left to right correspond to film at
various times. Source: Ref 159
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when depletion effects are not important, the
plasma discharge and the CVD reactor models
can be decoupled. In this case, the rates of dis-
sociation of reactants by electron impact are
obtained from the electrical plasma discharge
model and used as input data to the CVD reac-
tor model (Ref 169, Ref 170, Ref 171); other-
wise, the transport of both charged and neutral
species must be simulated in a single but more
complicated model. In spite of these difficulties
and limitations, sophisticated 1- and 2-D
PECVD reactor models involving complex che-
mistries have been developed (Ref 172).
Example 2: Fluidized-Bed CVD (FB-CVD)

consists of depositing films over particles form-
ing a bed that expands when swept by a gas flow
above a critical value. The FB-CVD and related
processes, such as spouted-bed CVD, ensure
very good gas-solid contact due to particle circu-
lation (for a review of FB-CVD, see Ref 173).
However, the simulation of FB-CVD processes
is a very difficult task due to the complexity of
the coupled-transfer phenomena problem in a
two-phase unsteady medium. Simplified engi-
neering models were first developed for the sim-
ulation of FB-CVD or spouted-bed CVD that
consist of dividing the reactor in several regions
where plug-flow or perfectly mixed conditions
can be assumed and deriving simple mass and
energy balances for the calculation of transfer
rates (see the references in Ref 173). These mod-
els have now been encompassed by 2-D and 3-D
two-fluid Eulerian models and discrete-element
Lagrangian models. Simulations based on
Lagrangian models demand huge computational
resources and are most often restricted to the

study of unreactive flows. A two-fluid approach
that considers the two phases of the fluidized
bed as continuous and interpenetrating media
has been used for the simulation of silicon depo-
sition from silane (Ref 174, 175), using the open-
access software MFIX (Ref 176).
A few commercial CFD multiphysics soft-

ware, such as COMSOL (Ref 89), CFX (Ref
87), CFD-ACE (Ref 86), and FLUENT (Ref
84), have integrated modules for plasma simu-
lation or/and fluidized-bed reactor simulation.

Multiscale Modeling

Multiscale modeling is a very interesting
cross-disciplinary approach for the simulation
of VPP. This section briefly reviews the basic
ideas of multiscale simulation in materials sci-
ence before illustrating its application to VPP
through a few representative examples. Several
books or comprehensive review papers are cited
throughout this section for further reading on
the subject.
Basic Ideas of Multiscale Modeling. Tools

and methods are developed in computational
materials science that aim at understanding the
mechanisms underlying the formation of mate-
rials microstructure from various processes as
well as predicting and optimizing materials
properties. As discussed earlier in the section
“Modeling and Computation of Particle-Surface
Interactions,” a large panel of numerical models
is currently used in computational materials sci-
ence (Ref 104, 105) for the simulation of vari-
ous phenomena at different length and time
scales (Fig. 18). Ab initio methods such as

DFT that model electronic interactions between
a few hundreds of atoms or less are used to cal-
culate surface or transition-state structures as
well as reaction pathways (Ref 105). Ab initio
MD calculations can be used to simulate atomic
motions; they are restricted to a small number
of atoms and to very short time durations (typi-
cally less than a picosecond), but the use of
semiempirical or empirical potentials allows
consideration of 107 to 108 moving particles
over time scales of typically 1 ns. Dynamic
simulations based on KMC models also con-
sider up to 108 atoms or more; they are usually
lattice based and less accurate than MD simula-
tions, but atomic motions can be tracked over
much longer periods, up to 103 s, and they
cover both the atomic and microscopic scales.
Other models, such as cellular automata, level
set, geometrical models, and so on, aim at
simulating phenomena occurring at the micro-
scopic to mesoscopic scale, whereas continuous
models based on FE and FV methods are used
at the mesoscopic or macroscopic length scales,
for example, for the simulation of transport
phenomena in VPP.
As soon as a single type of model cannot

capture all the time and length scales required
for the simulation of a particular problem, a
multiscale approach must be considered. Multi-
scale methods should always be used for full
simulations of VPP processes, because the
length scales of interest range from 10�12 to
10�10 m for electronic and atomic interactions,
up to �10�6 m for film thickness or microstruc-
ture, and to approximately 1 m for the size
of the vessel. The time scales range from
10�15 to 10�12 s for atomic relaxations or
vibrations to several minutes or hours for com-
pletion of film growth.
Strategies for Multiscale Modeling. Theo-

retically, first-principles calculations based on
the resolution of the Schrödinger equation
could be performed to accurately simulate the
dynamics of materials characteristics in a given
elaboration process by considering the elec-
tronic interactions between all the atoms pres-
ent in the system and tracking the atomic
motions over the whole time scale of the pro-
cess. From a practical sense, of course, such a
simulation is totally intractable, but alterna-
tively, multiscale strategies that consist of
wisely combining several of the models pre-
sented in Fig. 18 can be considered. The devel-
opment of a multiscale model is based on very
few general guiding principles. In fact, there
are two main multiscale approaches:
Hierarchical (or sequential) modeling con-

sists of establishing a hierarchy of length and
time scales, defining the elementary objects
(atoms, clusters, etc.) to be handled on the
selected scales, and identifying the irreducible
and independent processes for these scales. Pro-
cesses and objects can be averaged at a given
scale to be transferred at the immediate upper
scale. A bottom-up approach consists of start-
ing simulation from the lowest scale and then
calculating and transferring averages

Fig. 18 Main simulation models used in materials science and related length and time scales. DFT, density
functional theory; MD, molecular dynamics; MC, Monte Carlo. Source: Ref 177
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sequentially to the upper scales. The reverse
process (from upper scales to lower scales) is
referred to as the top-down approach.
Concurrent analysis consists of using simula-

tion methods that allow consideration of several
scales simultaneously.
Except for the guiding principles summar-

ized previously, there is no concrete universal
method or algorithm available for performing
multiscale simulations. Several approaches
combining various models can often be used
for solving a particular problem.
Examples of Multiscale Simulations of

VPP. This section discusses a few examples of
multiscale simulations of CVD or PVD processes.
Several interesting papers have also addressed or
reviewed this topic (Ref 177–181). There is abun-
dant literature on the subject; examples can be
found (nonexhaustive list) for ionized PVD (Ref
182–185), pulsed-laser ablation (Ref 186, 187),
reactive magnetron sputtering (Ref 160), CVD
(references in Ref 177), PECVD (Ref 188), or
for related topics such as process engineering
(Ref 189), fluidized beds (Ref 190), and plasma
treatments (Ref 191). The examples discussed in
this article focus on deposition over microscopic
features; it is one of the most typical multiscale
problems and has already generated many inter-
esting multiscale simulation studies. As discussed
in Ref 192, several algorithms for flux distribution
and surface representation have been used for
simulating deposition in micron or submicron
features in 3-D:

� MC methods, visible solid angle, and ballis-
tic transport and reaction models for the flux
distribution algorithm

� Facet motion model, building-block model,
equi-volume rate model, cellular model and
level-set method

The earlier section “Transport on the Feature
Scale” discussed the simulation of deposition
inside submicron features based on ballistic or
DSMC models to account for rarefied transport
conditions. This section extends the discussion
and examples to simulations based on hybrid
models and to fully integrated simulations
capable of bridging the reactor scale, the fea-
ture scale, as well as the nanostructure scale.
PVD onMicron- or Submicron-Sized Features.

A sputtering process is referred to as ionized
PVD (IPVD) when the deposition flux consists
of more ions than neutrals. It is particularly
used to deposit metal layers and diffusion bar-
riers into micron trenches or vias of high aspect
ratio. Several papers on multiscale modeling of
IPVD inside features have already been pub-
lished (Ref 182–184).
Hansen et al. (Ref 182) used a multiscale

approach for simulating aluminum IPVD on
microscopic features, which includes a detailed
treatment of phenomena inside the feature but
no plasma model. The phase-space distribution
function of atoms and ions sputtered from the
target is simply approximated by superposing a
fraction of Thompson distribution (for ions)

and a fraction of Maxwellian distribution (for
atoms). The MD simulations using appropriate
potentials for aluminum-aluminum and argon-
aluminum interactions are performed for a large
number of trajectories to obtain good statistics
for processes occurring at the feature surface
(adsorption, reflection, surface sputtering). To
obtain the net deposition rate at various locations
on the surface, a first MD simulation based only
on incoming fluxes from the target is performed,
and the distributions of re-emitted particles at
different locations are derived. Iterations are
then performed to obtain the contribution of all
the particles re-emitted from the various surface
points to a particular location. Green functions
are used to ensure self-consistency of simula-
tions. Finally, a level-set method is used to move
the gas-solid interface and simulate trench fill-
ing. Simulations have confirmed the superiority
of IPVD compared to PVD for obtaining more
conformal coverage on micron features.
One of the most interesting examples was

presented by Arunachalam et al. (Ref 184),
who developed a fully integrated multiscale
model for IPVD of copper in submicron
trenches. A 2-D hybrid model of the plasma
region is used to compute the flux and energy
of species incoming in the feature zone, which
are passed to a 3-D MC model to simulate the
deposition inside the feature. Cu, Cu*, and
Cu+, are the copper species considered in addi-
tion to Ar, Ar*, and Ar+. The sputter yields are
derived from this model as well as the fluxes of
species. Ion energy and angular distributions
are obtained after postprocessing through a
plasma sheath model. The MC model accounts
for adsorption, sputtering, energy loss, reflec-
tion, and surface diffusion; the kinetic para-
meters for all of these surface processes
except the latter are obtained from MD simula-
tions. The influence of the process parameters
(substrate bias, coil and target powers, and
nature of buffer gas) has been carefully exam-
ined and provides considerable insight into the
complex deposition processes. For instance, it
has been shown that increasing the substrate
bias causes an increase in the mean ion energy
and the amount of sputtering inside the feature,
which finally results in both transferring mate-
rial from the bottom of the trench to the side-
walls and removing deposited material from
the upper corners of the trench. The analysis
described previously for the simulation of
IPVD over topography is rather similar to that
represented in Fig. 19(a) for TiN IPVD (Ref
185). A global plasma model is used to com-
pute the densities of species and sputtering
yield (Ref 193), then a second sheath model
allows the calculation of the angular and energy
distribution functions of incoming ions inside
the features, which are used as input data to a
third feature model that simulates film evolu-
tion inside the feature. Finally, a fourth MD-
type model can be used to simulate particle-sur-
face interactions. However, in the analysis pre-
sented in Ref 185, no MD simulation results
were reported, and a simple global plasma

model was used, whereas much more detailed
hybrid PIC-MCC 2-D models would have been
preferred, such as in Ref 160 or 184. Figure 19
(d) shows an example of a MD trench-filling
simulation in the case of copper IPVD (Ref
194).
CVD on Microscopic Features. In the hierar-

chical top-down multiscale approach depicted
in Fig. 19(a), information is simply transferred
sequentially from the reactor scale to the fea-
ture and nanostructure scales with no feedback
to upper scales. However, when the substrate
surface is not flat at the microscopic scale
(e.g., when the surface is rough or when the
density of submicron features is high), micro-
scopic effects that cannot be captured by mac-
roscopic models may drastically affect the
reactor behavior; hence, self-consistent
approaches are needed for performing accurate
simulations in such cases.
In a pioneer analysis of tungsten CVD from

WF6, Rodgers and Jensen (Ref 195) introduced
the concept of effective reactivity function (e)
for coupling a continuum CVD reactor model
to a feature-scale ballistic MC model. The e(x,
y,t) integrates the effects of surface microscopic
heterogeneity and microscale transport resis-
tance. The MC simulations are performed first;
particles are launched from a source point (S)
at a sufficient height above a particular feature
and undergo a sequence of events, such as mul-
tiple reflections at feature walls, reaction, etc.,
that are recorded over a large number of trajec-
tories to obtain a mean value of the effective
sticking coefficient, s0, which satisfies, for spe-
cies i:

s0i ¼ eiðS; tÞsi (Eq 151)

where si is the real sticking coefficient of spe-
cies i (i.e., on a flat surface). The process is
repeated for a large number of source points
to obtain ei(t) for the selected feature, then
these individual reactivity functions are linearly
superimposed to obtain the effective reactivity
map of the whole surface for species i, which
is used to formulate the surface-boundary con-
dition for the macroscopic reactor model. At
each time step, both models are sequentially
iterated until self-consistent results are
obtained; hence, long calculation times are
required for a complete transient simulation of
deposition. The concentration profiles calcu-
lated using this approach differ markedly from
those obtained when neglecting the effects of
microscopic heterogeneity.
Another multiscale approach was used by

Merchant et al. (Ref 196) for simulating silicon
dioxide deposition from tetraethoxysilane. They
coupled together a transient continuum reactor
model that solves the coupled transport equa-
tions at the macroscopic scale by using an FE
method, a deterministic ballistic transport and
reaction model at the feature scale, and a con-
tinuum model at the mesoscale (scale of a small
patterned area consisting of several features),
which is used to transfer information between
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the macroscopic reactor model and the feature-
scale model (Fig. 19b). A top-down procedure
is first used to pass information from the macro-
to the microscale. An initial guess of species
concentration over a given grid element of the
reactor model is interpolated onto the meso-
scale grid, then the guess concentrations are
transferred to the feature scale at each node of
the mesoscale grid at the surface boundary.
The feature model and the mesoscale models
are iteratively solved to ensure self-consistency,

and the net fluxes of species at each node of the
mesoscale model are fed back into the reactor
model. Information from nonpatterned areas
(Fig. 19b) is also fed back into the reactor
model. Both FE-based models (macro and
meso) are iteratively solved until convergence
is obtained, then the time is incremented and
the procedure is repeated. Six gas-phase species
were considered in these simulations, which
require less computation time than simulations
based on effective reactivity functions and MC

feature-scale models (Ref 195) but cannot cap-
ture microstructural details. Gobbert et al. (Ref
197) have extended the capability of the multi-
scale model described previously by replacing
their deterministic model of ballistic transport
at the feature scale by an FE-based model that
solves the transient Boltzmann equations inside
the feature by using a discontinuous Galerkin
method. The capability of this transport model
was further extended to a wide range of trans-
port regimes (from collision-less to transition
regime flows) and to multiple species in Ref
198 and 199.

Conclusions and Outlook

Early studies and optimization of VPP were
mainly conducted by experimental empirical
trial-and-error procedures, but the tremendous
increase in computing power at the beginning
of the 1980s allowed the development of more
and more sophisticated simulation models,
which were briefly introduced and discussed
in this article. These models provided consider-
able insight into the phenomena involved dur-
ing deposition and etching from various VPP.
The contribution of numerical modeling and
simulation was particularly important to eluci-
date the complex coupled-transport phenomena
involved in CVD reactors. In the 1990s, more
and more complex situations were considered;
full 3-D simulations of coupled transport phe-
nomena in CVD processes, including unsteady
flows and complex chemistries, were per-
formed, and complex PVD processes were also
simulated. Commercial CFD software are now
available, which allows the simulation of multi-
physics problems in complex geometries as
well as process optimization.
Nevertheless, there are still several important

limitations to VPP modeling. First, physical
data (which cannot always been measured) are
still lacking for many systems of interest in
vapor deposition or etching. This is particularly
true for thermochemical data, gas-phase, and
surface-reaction kinetics in CVD or electron-
molecule collision cross sections in ionized sys-
tems (PVD, PECVD). Second, although highly
desirable, the development of single simulation
models capable of predicting all the features of
VPP, from very small to very large length and
time scales, clearly remains an elusive goal.
Over the last decade, the ever-increasing power
of computers allowed a strong development of
first-principles calculations, which are used
more and more for providing fundamental data
to VPP simulators. However, despite their grow-
ing interest and increasing performance, accurate
simulation models based on quantum mechanics
cannot be used for simulating real-size vapor-
solid systems that include a huge number of par-
ticles. Alternatively, ab initio calculations can be
integrated into multiscale models.
Multiscale simulation has now become a cen-

tral problem in materials science and engineer-
ing as well as many other fields of modern

Fig. 19 Procedures and models used for the multiscale simulation of chemical vapor deposition (CVD) and physical
vapor deposition (PVD) over topography. (a) Sequence of models proposed for simulation of TiN ionized

PVD (IPVD) over topography. Source: Ref 185. (b) Multilength approach proposed for SiO2 CVD, combining a
macroscale finite-element model (FEM) and a ballistic transport and reaction model at the feature scale. A third FEM
mesoscale model is used to link both scales. Source: Ref 186. (c) Monte Carlo simulation of sputtered-aluminum
deposition on a 0.025 mm trench. Source: Ref 159. (d) Molecular dynamics (MD) simulation of trench filling in
copper IPVD. Source: Ref 194
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physics and chemistry. Some of the multiscale
VPP models developed to date have astonishing
predicting capabilities, but undoubtedly, even
more sophisticated multiscale models will be
developed in the future that will become invalu-
able tools for the study and optimization of VPP.
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and N. Darabiha, J. Electrochem. Soc.,
Vol 151 (No. 4), 2004, p 236–244

76. T. Turanyi, New J. Chem., Vol 14, 1990,
p 795–803

77. M.D. Allendorf, J. Electrochem. Soc., Vol
140 (No. 3), 1993, p 747–753

78. M. Pons, C. Bernard, E. Blanquet, and
R. Madar, Thin Solid Films, Vol 365,
2000, p 264–274

79. THERMOCALC, http://www.thermocalc.
com/

80. GEMINI, http://gmini.org/
81. FACTSAGE, http://www.factsage.com
82. B. Hallstedt and Z.-K. Liu, Calphad: Com-

puter Coupling of Phase Diagrams and
Thermochemistry, Vol 33, 2009, p 265

83. P. Shi, A. Engström, L. Höglund, Q.
Chen, B. Sundman, J. Agren, and M. Hil-
lert, J. Iron Steel Res. Int., Vol 14 (No. 5),
Suppl. 1, 2007, p 210–215

84. FLUENT, http://www.fluent.com/
85. PHOENICS-CVD, http://www.cham.co.

uk/
86. CFD ACE, http://www.esi-group.com/

products/Fluid-Dynamics/cfd-ace
87. CFX, http://www.ansys.com/products/

fluid-dynamics/cfx/
88. MPSALSA, http://www.cs.sandia.gov/

CRF/MPSalsa/
89. COMSOL Multiphysics, http://www.com-

sol.com/products/multiphysics/
90. J.R. Howell, A Catalog of Radiation

Configuration Factors, McGraw-Hill,
New York, 1982

91. F. Loumagne, F. Langlais, and R. Naslain,
J. Cryst. Growth, Vol 155, 1995, p 198–
204

92. H. Chehouani, B. Armas, S. Benet, and S.
Brunet, J. Phys., Coll., C5 (Suppl.)
(No. 5), 1989, p 47–56

93. A. Dollet, Y. Casaux, G. Chaix, and C.
Dupuy, Thin Solid Films, Vol 406 (No.
1–2), 2002, p 1–16

94. S.V. Patankar, Numerical Heat Transfer
and Fluid Flow, Computational Methods
in Mechanics and Thermal Sciences, Rou-
tledge, Taylor & Francis Group, New
York, 1980

95. Y.B. Wang, F. Teyssandier, J. Simon, and
R. Feurer, J. Electrochem. Soc., Vol 141,
1994, p 824–842

96. H. Van Santen, C.R. Kleijn, and H.E.A.
Van den Akker, Int. J. Heat Mass Transf.,
Vol 43, 2000, p 1523–1535

97. J. Ouazzani and F. Rosenberger, J. Cryst.
Growth, Vol 100, 1990, p 545–576

98. H. Moffat and K.F. Jensen, J. Cryst.
Growth, Vol 77, 1986, p 108–119

99. W.L. Holstein, J.L. Fitzjohn, E.J. Fahi, P.
W. Gilmour, and E.R. Schmelzer, J.
Cryst. Growth, Vol 94, 1989, p 131–144

100. D.I. Fotiadis, S. Kieada, and K.F. Jensen, J.
Cryst. Growth, Vol 102, 1990, p 441–470

101. A. Li, K. Norinaga, W. Zhang, and O.
Deutschmann, Compos. Sci. Technol.,
Vol 68, 2008, p 1097–1104

102. S.C. Chapra and R.P. Canale, Numerical
Methods for Engineers, 5th ed.,
McGraw-Hill Int. Ed., 2006

103. C.R. Kleijn, Thin Solid Films, Vol 365,
2000, p 294–306

104. D. Raabe, Computational Materials Sci-
ence, Wiley-Vch, Weinheim, Germany,
1998

105. K. Ohno, K. Esfarjani, and Y. Kawazoe,
Computational Materials Science,
Springer Series in Solid-State Sciences,
Springer-Verlag, Berlin, Germany, 1999

106. “Molecular Modelling,” Wikipedia, The
Free Encyclopedia, http://en.wikipedia.
org/wiki/Molecular_modelling

107. I. Zahi, H. Vergnes, B. Caussat, A.
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Determination of Heat Transfer
Coefficients for Thermal Modeling
D. Scott MacKenzie, Houghton International, Inc.
Andrew L. Banka, Airflow Sciences Corporation

HEAT TREATING AND QUENCHING are
a complex business. The configuration of parts
is endless, as is the types of furnaces available
for heat treating. Numerous variables in the
quenching process alone govern the ability of
a part to meet distortion requirements. Heat
treating is a constant balancing process. It is
important to balance the ability of the material
to achieve properties while at the same time
control distortion. Because of the complexity
of the heat treating process, it is rather difficult
to understand the interaction of fluid flow and
parts on part distortion and properties. Often,
understanding is achieved only by experience,
which comes from making mistakes and
learning from those mistakes. There is less tol-
erance for “trial and error,” and the emphasis
is on “doing it right the first time.” Unfortu-
nately, there are few design rules that dictate
the racking of a part in a given furnace. The
application of computer modeling allows these
mistakes to be made on the computer instead
of on the manufacturing shop floor.
During the quenching process, when a hot

component comes in contact with the liquid
quenchant, there are normally three stages of
quenching:

� Vapor stage (stage A or vapor blanket stage)
� Boiling stage (stage B or nucleate boiling

stage)
� Convection stage (stage C)

An example showing the three stages of
quenching is shown in Fig. 1.
The vapor stage is encountered when the hot

surface of the heated component first comes in
contact with the liquid quenchant. The compo-
nent becomes surrounded with a blanket of
vapor.
In this stage, heat transfer is very slow and

occurs primarily by radiation through the vapor
blanket. Some conduction also occurs through
the vapor phase. This blanket is very stable,
and its removal can only be enhanced by agita-
tion or speed-improving additives. This stage is
responsible for many of the surface soft spots

encountered in quenching. High-pressure sprays
and strong agitation eliminate this stage. If the
vapor phase is allowed to persist, undesirable
microconstituents can form.
The second stage encountered in quenching

is the boiling stage. This is where the vapor
stage starts to collapse, and all liquid in contact
with the component surface erupts into boiling
bubbles. This is the fastest stage of quenching.
The high heat extraction rates are due to carry-
ing away heat from the hot surface and transfer-
ring it further into the liquid quenchant, which
allows cooled liquid to replace it at the surface.
In many quenchants, additives have been added
to enhance the maximum cooling rates obtained
by a given fluid. The boiling stage stops when
the temperature of the component surface
reaches a temperature below the boiling point
of the liquid. For many distortion-prone compo-
nents, high-boiling-temperature oils or liquid
salts are used if the medium is fast enough to
harden the steel, but both of these quenchants
see relatively little use in induction hardening.
The final stage of quenching is the convec-

tion stage. This occurs when the component
has reached a point below that of the quenchant
boiling temperature. Heat is removed by

convection and is controlled by the quenchant
specific heat and thermal conductivity and the
temperature differential between the component
temperature and that of the quenchant. The con-
vection stage is usually the slowest of the three
stages. Typically, it is this stage where most
distortion occurs. Figure 2 shows the progres-
sion of the three phases of quenching during
the immersion of a solid cylinder.
Obtaining specified properties and low dis-

tortion is usually a balancing act. Often, opti-
mal properties are obtained at the expense of
high residual stresses or high distortion. Low
distortion or residual stresses are usually
obtained at a sacrifice in properties. Therefore,
the optimal quench rate is one where properties
are just met. This usually provides the mini-
mum distortion.

Sources of Distortion

From Fig. 3, it can be seen that there are
many sources of residual stress and distortion.
In quenching, the primary source of distortion
and residual stresses is differential temperatures
from the center of the part to the surface or

Fig. 1 Schematic of the three stages of quenching. A, vapor stage; B, nucleate boiling stage; and C, convection stage
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from different locations on the surface. By
reducing the thermal gradients and differential
temperatures, large reductions in residual stres-
ses and distortion can be achieved. The largest
factors that affect the creation of large thermal
gradients in parts during quenching are temper-
ature, agitation, parts racking, the quenchant
chosen, and contamination of the quenchant.
Temperature. Increasing the oil temperature

can reduce the distortion and residual stresses

in a heat treated component. As the temperature
of oil is increased, the temperature gradients in
the part are decreased. This is the basic princi-
ple of martempering. Using increased tempera-
ture can also reduce thermal gradients in cold
oils, up to the recommended use temperature
of cold oil (typically 180 to 200 �F). Interest-
ingly, increasing the temperature of the oil to
approximately 170 �F can increase the speed
of cold oil.

Agitation. Distortion occurs because of dif-
ferential temperature gradients, whether from
the center to the surface or from surface to sur-
face. As can be seen in Fig. 4, all three phases
of cooling can be present at the same time,
which means that some areas are cooled very
slowly, while other parts are cooled rapidly.
This has the effect of creating thermal gradients
on the surface of the part, which can cause dis-
tortion (Fig. 4). The purpose of agitation is to
minimize these surface gradients.
It can be seen that increasing the degree of

agitation reduces the stability of the vapor phase
and increases the maximum rate of cooling. This
also has the benefit of minimizing any vapor
pockets that can occur and ensuring that the part
has a more uniform heat transfer across the sur-
face of a part. Effective agitation is essential to
ensure that optimum properties are obtained, to
maintain circulation of the quenchant around
parts, and to obtain uniform temperature in the
bath.
Agitation can be provided by load oscilla-

tion, pumped circulation, or motor-driven pro-
pellers. Regardless if pumps or agitators are
used, baffle or manifold arrangements are nec-
essary to direct the flow of quenchant upward
around the parts.
While propeller agitation is easy to design,

install, and maintain, it is sometimes difficult
to add to an existing quench tank, due to space
limitations. In these circumstances, the intro-
duction of pumped circulation through mani-
folds may be necessary. The use of small,
submerged agitators may also be required.
Compressed air is not recommended under

any circumstances, because it introduces a non-
uniform quench and accelerates oxidation and
aging of quench oil. Further, it is likely to intro-
duce water contamination and substantially
increase fire hazards.
Gears are the workpiece in this discussion,

and oil is the quenchant, but the principles can
be generalized.
Quenching characteristics are influenced sig-

nificantly by the degree of agitation, as shown
in Fig. 5 for a normal-speed quench oil under
varying degrees of propeller agitation. It can
be seen that increasing the degree of agitation
reduces the stability of the vapor phase and
increases the maximum rate of cooling. This
also has the benefit of minimizing any vapor
pockets that can occur and ensuring that the
part has a more uniform heat transfer across
its surface.
Racking of gears is critical to minimize dis-

tortion. Parts must be located so that uniform
heat transfer will occur on all surfaces of the
gear. Uniformity of heat transfer will minimize
the formation of thermal gradients on the sur-
face of the parts. The parts must be located so
as not to create hot spots from adjacent parts
or create mechanical damage from part-to-part
interactions.
There are two primary methods for quench-

ing parts. The first method is the use of a press
quench (Fig. 6). This specialized technique

Fig. 2 Progression of the three phases of quenching during the immersion of a solid cylinder
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involves the physical restraint of distortion-
prone parts on close-tolerance fixtures during
the quenching operation. It minimizes distor-
tion and is used mainly during the quenching
of bearing rings and automotive transmission
ring gears. It is a manually intensive operation,
because each gear must be manually removed
from the furnace and placed on a quench fix-
ture. The press is actuated, and a large flow of
quenchant is passed through the fixture. Highly
accurate and low-distortion parts can be
achieved in this manner.
There are several disadvantages to this tech-

nique. As indicated previously, it is manually
intensive, although some robotized applications
have been implemented. Because hydraulic
fluids are used to actuate the dies, contamina-
tion of the quenchant is a problem. This can
cause a change in the cooling rate and quench-
ing characteristics of the quenchant, which can
cause cracking or fires. If fire-resistant hydrau-
lic fluids are used and leaking occurs, cracking
can occur on the part or the close-tolerance fix-
ture. The quenchant must be routinely checked
for contamination and water content. The
close-tolerance fixtures used in quench pressing
are expensive to manufacture and must be

designed for each gear configuration. Should
the gear dimensions change, it is necessary that
a new fixture be designed. Further, the life of
the dies is finite because of the thermal stresses
experienced by the fixture. Distortion and
cracking of the fixture can also cause premature
replacement of the fixture. As a general rule,
cold oils are used to harden the parts. This tech-
nique is generally limited to flat and symmetri-
cal parts, such as ring gears.
The second method of quenching gears is to

place them on a grid or fixture. Many gears
can be heat treated in this fashion, greatly
improving production rates. However, there
are many ways to rack a gear that often depend
on the type of furnace, quenchant, and the pref-
erence of the metallurgist.
Typically, ring rears are laid flat on a grid

and stacked several high (Fig. 7). They can be
offset or stacked directly on top of each other.
They are often hung, with supports under the
gear. Either method has benefits that depend
on the configuration of the gear.
If gears are laid flat, they will tend to bend, or

“potato chip,” with gears on the top and bottom
of the load most prone to this type of distortion.
This is due to differential cooling of the gears.

In this case, the thermal mass of the grid retains
heat, while the upper surface of the gear experi-
ences the full quenching effect of the oil. The
upper surface contracts due to rapid cooling,
while the lower surface cools slower and does
not experience as much thermal contraction. As
the upper surface cools to a point where the mar-
tensitic transformation occurs, a volume change
occurs, placing the upper surface in tension.
When the lower surface cools and the martensitic
transformation occurs, a stress reversal occurs,
placing the upper surface in tension and the lower
surface in compression. This is complicated by
the round shape of the part, so that some areas
bow up while other areas bow down, resulting in
the “potato-chip” shape. The degree of distortion
is often dependent on how stiff the section is
(polar moment of inertia). This can be overcome
by the proper design of racking fixtures. Figure
8 shows examples of properly racked parts to
minimize distortion during quenching and to
allow the parts to be evenly heated and cooled.
When parts are hung, the weight of the gear

often causes the gear to distort, with the gear
becoming the shape of an oval. The degree of
ovality often depends on the quality of support
and the weight of the part. Smaller parts, fully
supported, will tend to distort less. Properly
designed supports minimize distortion and pro-
vide for uniform heat transfer. One advantage
of hanging gears is that all sides will experience
similar heat transfer, assuming no hot spots or
proximity of other parts (creating hot oil spots).
Pinion gears are racked vertically. It is pre-

ferred that the heavy section is up and is the last
to quench. This is to prevent the shaft from
being in the wake of the head. Often, the
pinions are offset to allow uniform heat transfer
and the minimization of hot spots. Spacers are
usually used to maintain the pinions vertically
and to prevent movement of the parts.
Contamination and Oxidation. The condi-

tion of the quench oil can also contribute to dis-
tortion of gears. Contamination of quenching
oils with water must be avoided at all cost. As
little as 0.05% of water in quenching oil influ-
ences quenching characteristics significantly
and may cause soft spots, distortion, or crack-
ing (Fig. 9). At concentrations greater than
0.05% or more, foaming during quenching is
likely, and this can give rise to fires and explo-
sions. Other contaminants, such as hydraulic oil
and fire-resistant hydraulic fluids, can also alter
the quenching characteristics, resulting in
increased distortion and residual stresses.
The oxidation of quenching oil, measured by

the precipitation number or total acid number,
is an indication of the level of oxidation of the
quenching oil. As the oil oxidizes, it forms
organic acids. The formation of oxidized con-
stituents decreases the stability of the vapor
phase and increases the maximum cooling rate.
This increases the risk of distortion and crack-
ing. The use of stable, high-quality quench oils
will reduce the possibility of this occurring.
The life of quench oil is also dependent on

the level of oxidation. If the oxidation of the

Fig. 7 Examples of ring gears and pinions in a typical heat treating application

Fig. 8 Advanced racking fixture for proper distortion control
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oil is high, then the oil is prone to staining,
resulting in shortened quench oil life. The use
of a proactive maintenance program of monthly
or quarterly checks for contamination and oxi-
dation is necessary to reduce staining and pro-
long oil life. Regular filtration of the quench
oil is an effective method to reduce contamina-
tion, extend the life of the oil, and control the
formation of organic acids.

Determination of Heat-Transfer
Coefficients

Historical Perspective

Hardening steel by first austenitizing and
then quenching involves a process of
unsteady-state heat transfer in the steel and
removal of the heat from the part by the

quenchant. This is coupled with the phase trans-
formations from austenite to martensite or, in
the event of a slow quench, the transformation
of austenite to bainite and pearlite. The heat-
transfer problem has been studied, with investi-
gators making the same assumptions for ease of
calculation:

� The thermal conductivity of the steel, k, is a
constant over the range considered.

� The thermal diffusivity, a, of the metal is
considered to be constant over the tempera-
ture range considered.

� The quenching power, H, or the heat transfer
remains constant during the entire cooling
period.

Conductivity and Diffusivity. As can be
seen in Fig. 10 and 11, the thermal conductivity
and the thermal diffusivity show considerable
variation over the range typically found during
heat treatment. The curves for thermal conduc-
tivity and thermal diffusivity look very similar.
This is not surprising, because the thermal dif-
fusivity is defined as:

a ¼ k

Cpr
(Eq 1)

where k is the thermal conductivity, a is the
thermal diffusivity, Cp is the mass specific heat,
and r is the density. The symbols used in this
article are defined in Table 1.
The quenching power of the quenchant (and

agitation), H, is defined as:

H ¼ hs

2k
(Eq 2)

where hs is the heat-transfer coefficient at the
metal-quenchant interface, and k is the thermal
conductivity. Interestingly, this equation for
the hardening power of a quenchant is very
similar to the dimensionless Biot number, Bi,
described later in this text.
Grossmann, Asimov, and Urban (Ref 2)

placed all steels on a common basis for harden-
ability. They made the following assumptions:

� Thermal diffusivity was constant.
� The quenching power of the bath, H, was

constant.
� If the time to the half-temperature (halfway

from the quenching temperature and the
bulk temperature of the quenchant) was the
same in two different positions in two differ-
ent diameter bars of the same steel, the
microstructure would be the same, and
therefore, the hardness would be the same.

Diameters. Grossmann, Asimov, and Urban
(Ref 2) defined the term Du, which is the diam-
eter of the unhardened core, as the diameter
where the microstructure was 50% martensite.
The larger the bar diameter, D, the greater the
unhardened diameter, Du. This is shown sche-
matically in Fig. 12. The cross-hatched
areas represent the unhardened region of the

70

60

50

40

30

20

10

100 200 300 400 500 600

No Water

Temperature, °C

0.2% Water

700 800 900
0

A
rb

itr
ar

y 
un

its

Fig. 9 Effect of water content on the cooling curve of a cold quench oil

200
0.16

0.14

0.12

T
he

rm
al

 c
on

du
ct

iv
ity

 , 
ca

l 
 c

m
–1

 s
–1

 C
–1

T
he

rm
al

 c
on

du
ct

iv
ity

 , 
B

tu
 in

 .–1
  s

–1
° F

–1
x 

10
–4

0.10

0.08

0.06

0.04

0.02

0

400 600 800 1000

0 400
Temperature, C

Temperature, F

200 600 800 1000

1200

Ferrite (Low-metalloid alpha iron)

Austenitic 18–8 alloy

Pearlite
(0.83% C steel—annealed)

Martensite
(0.83% C steel—

quenched)

1400 1600

(Gamma
iron)

1800

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

°

°

·

Fig. 10 Thermal conductivity of various steels

110 / Fundamentals of Process Modeling

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158202
/knovel2/view_hotlink.jsp?hotlink_id=440158203


various-diameter bars. Using various quenching
media and different-sized rounds, the half-tem-
perature was calculated. The result is Fig. 13.
This chart is used for determining the H-

value of any quenching bath by quenching var-
ious-sized rounds of the same steel and deter-
mining Du for each bar. By placing a
transparent piece of paper over Fig. 13 and
plotting the various values of Du/D versus D,
a curve can be drawn through the points. The
tracing paper is then moved horizontally until
the curve matches one of the calculated curves.
This curve then represents the H-value � diam-
eter curve. Dividing each value of HD by D of
the corresponding bar results in a value for the
hardening power, H.
Grossmann et al. (Ref 2) also define a quan-

tity Dc as the critical diameter of a steel that,
when quenched in a bath of known H, would
harden to 50% martensite at its center. An ideal
diameter, DI was also defined as the diameter of
a steel that would harden to 50% martensite at
its center when quenched in a quenchant where
H = 1. In this case, H is the hypothetical
quench that reduces the surface temperature
of a part to the bulk bath temperature
instantaneously.
Grossmann et al. also constructed the chart

shown in Fig. 14 that makes it possible to trans-
late Dc with a given H-value into a DI for the
steel. It is also possible to determine the H-
value with a known DI and known Dc.
The variation of H with D for agitated water

and oil quenches, determined by Carney (Ref
4), is shown in Fig. 15 and 16. From these data,
it is seen that there cannot be a single H-value

for a given quenching bath. The size of the bars
quenched should be taken into account when
determining the H-value for a specific quench-
ant system.
Table 2 lists the severity of quench for vari-

ous quenching media. Note that the agitation
or circulation of the quenchant is vaguely
defined. This is a problem that is common in
the heat treating industry, and it is only with
the advent of modern computational fluid
dynamics that the agitation rates around parts
can be accurately defined.

Determination of Heat-Transfer
Coefficients—Analytical and
Empirical Results

Quenching is a complex heat-transfer mecha-
nism controlled by the agitation experienced by
the workpiece (Ref 6, Ref 7, Ref 8), the geom-
etry of the workpiece (Ref 9, 10), how the
workpiece is racked and immersed (Ref 11,
Ref 12, Ref 13, Ref 14), the design of the
quenching system (Ref 15, Ref 16, Ref 17,
Ref 18, Ref 19Ref 20), the workpiece thermal
properties, and fluid-specific properties. Most
investigations have concentrated empirically
on the motion of the quench medium in the
tank, with the assumption that if uniform flow
is obtained across the part being quenched, then
uniform quenching is obtained. Heat transfer is
not a steady-state condition. It requires the
determination of heat-transfer coefficients as a
function of fluid properties, geometry, surface
condition, and agitation. It is time- and loca-
tion-dependent.

Considering the previous transformational
and residual-stress discussions, it can be seen
that quenching is not path-independent. The
quenching process (and the heat-transfer coeffi-
cient) must follow a certain “route” if proper-
ties are to be maximized and distortion is to
be minimized. Anything that will affect the
cooling curve shape will impact the as-
quenched results.
From the previous discussion, it is seen that

there are three distinct regions of heat transfer
that occur during quenching: convection, nucle-
ate boiling, and film boiling, which were illu-
strated in previous figures. Within these
primary heat-transfer modes, there are subre-
gimes of heat transfer that must be adequately
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Table 1 Symbols

Symbol Definition

A Area
B Correction factor
Bi Biot number
c Heat capacity
Cp Mass specific heat
CpG Heat capacity gas
CSf

Coefficient liquid-surface combination.
See Table 3

D Diameter
Dc Critical diameter
DI Ideal critical size
D0 Initial diameter
Du Unhardened diameter
F(L0) Correction factor
g Acceleration due to gravity
h Heat-transfer coefficient
H Quenching power
hAl Heat-transfer coefficient, aluminum
hb Heat-transfer coefficient, boiling
hb Average film-boiling heat-transfer coefficient
hCu Heat-transfer coefficient, copper
hfG Heat-transfer coefficient at metal-film interface
hLG Heat-transfer coefficient at liquid-gas interface
hNi Heat-transfer coefficient, nickel
hs Heat-transfer coefficient at metal-quench interface
k Thermal conductivity
kg Thermal conductivity gas
kG Conductivity of gas
ks Thermal conductivity of solid
L Vertical height
L0 Characteristic length
Lcrit Critical length
LS Critical length (different than Lc)
PrSL Prandtl number
q/A Heat flux
qboil Heat flux, boiling
qconv Heat flux, convection
qnet Net heat flux
TS Surface temperature
Tsat Saturation temperature
TL Leidenfrost temperature
TW Wall temperature
DTx Excess temperature difference
V Velocity, volume
V1 Velocity at long distance away from object, m/s
a Thermal diffusivity
mG Viscosity of gas
mL Viscosity of liquid
n Kinematic viscosity
r Density
rg, rG Density gas
rL Density liquid
s* Surface tension of liquid-gas interface
sg Surface tension of the liquid-vapor interface
@T Partial differential of temperature
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explained if accurate prediction of quenched
properties and distortion are to be obtained.
Film Boiling. Because quenching occurs at

temperatures that are significantly above the
boiling temperature of the quenchant, the heat
transfer occurring during pool boiling provides
a convenient starting point. This heat-transfer
system has been extensively studied, and the
mechanisms are reasonably well understood.
However, it has not been possible to theoreti-
cally predict the heat-transfer coefficients dur-
ing boiling as accurately as single-phase

systems. In film boiling, the surface tempera-
ture is very high, vaporizing the quenchant. A
stable film is formed around the quenched part.
This vapor film is insulating, allowing very lit-
tle heat transfer across the film. In general, heat
transfer across this phase is constant and gov-
erned by the thermal conductivity of the vapor
phase. As the part cools, the temperature at
which stable film formation is no longer possi-
ble is called the Leidenfrost temperature, TL.
This temperature is influenced by many factors,
such as cooling medium, quenched material and
geometry, surface state, and agitation. Increas-
ing the Leidenfrost temperature shortens the
film boiling regime and increases the heat trans-
fer during nucleate and transition boiling.
As soon as the surface of the part reaches the
Leidenfrost temperature, the vapor barrier
collapses, and the transition boiling phase
begins. The transition boiling phase shares
characteristics of both the vapor barrier and
nucleate boiling heat-transfer regimes. In these
two stages, liquid is brought into contact with
the hot part and immediately becomes vapor-
ized. Bubbles form at the part surface and carry
increasingly large amounts of heat. The temper-
ature of maximum heat flux is called the burn-
out temperature, TBC.
Tensi, Stich, and Totten (Ref 21) indicted

that increasing the surface roughness and the
thermal diffusivity of the material results in an
increased heat-transfer coefficient. Increasing

sample diameter and oxidation decrease the
measured heat-transfer coefficient, while
increasing the quenching bath temperature
decreases the heat-transfer coefficient. Increas-
ing the agitation rate increases the Leidenfrost
temperature and decreases the stability of the
vapor phase.
The Leidenfrost temperature, indicating the

change from film boiling to nucleate boiling,
generates a clearly defined wetting front. In
cylindrical specimens, wetting starts at the bot-
tom of the cylinder and propagates upward in
an annular fashion. This wetting front influ-
ences the distribution of temperature and resul-
tant residual stresses. A moving wave front
would generate an axial heat flux in addition
to the radial heat flux. This rapidly moving
wave front decreases the opportunity for axial
heat flow and axial temperature gradients.
Using hydrodynamic instability of the liquid
vapor interface, the following equation for the
minimum heat flux for a flat horizontal surface
can be obtained (Ref 22):

q

A

� �
min
¼ chfGrg

sgg rL � rGð Þ
rL � rGð Þ2

" #
(Eq 3)

Stable film boiling has been studied by
Bromley (Ref 23), who arrived at an equation
describing the film boiling heat-transfer coeffi-
cient on a horizontal cylinder:

Fig. 12 Schematic representation of the hardening of
oil-quenched and water-quenched bars of

various diameters. The cross-hatched areas represent the
unhardened core. Source: Ref 3
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hb ¼ 0:62
k3GrGg rL � rGð Þ hfG þ 0:4CpG


 �
TW � Tsatð Þ

DmG TW � Tsatð Þ
� �1/4

(Eq 4)

To validate Eq 4, Bromley correlated film
boiling data for a variety of fluids on horizontal
carbon cylinders of various diameters over a
wide range of DT up to l400 �C. He found good
correlation except in the case of small-diameter
wires, where the agreement between experi-
ment and theory deviated by as much as 100%.
The effect of fluid flowing past the surface of

a tube, similar to quenchant flow across a series
of shafts, was suggested by Bromley (Ref 24):

hb ¼ 2:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1kgrgl

0

D0DTx

s
(Eq 5)

where:

l0 ¼ hLG 1þ 0:4CpGDTx

hLG

� �
(Eq 6)

for:

V1 > 2
ffiffiffiffiffiffiffiffiffi
gD0

p
(Eq 7)

At bulk velocities less than:

2
ffiffiffiffiffiffiffiffiffi
gD0

p
the flow is not fully developed, and the heat-
transfer coefficient can be evaluated according
to Eq 4. For vertical surfaces of height L, the fol-
lowing equation has been suggested (Ref 25):

hb ¼ 0:943
k3GrG rL � rGð ÞghfGgl

0

LmGDTs

� �
(Eq 8)

This equation is satisfactory as long as the
vapor film remains laminar. As the vapor rises,
there is a critical Reynolds number that is
reached at some critical point. This critical
length, Lcrit, can be estimated by (Ref 26):

Lcrit ¼ 100mGl
0

2kGDTx

200m2G
grG rL � rGð Þ
� �1/3

(Eq 9)

For surfaces that have a height greater than
the critical length, Bankoff (Ref 27) showed
that the equation:

hb ¼ 0:20rGCpG

g2LmG
rG

� �1/5 rL � rG
rG

� �2/5 CpGDTx

hfG

� �1/5

(Eq 10)

exhibits good correlation for predicting the
average heat-transfer coefficient. The validity
of Eq 10 is limited to vertical heights up to
6.5 in. Increasing agitation will facilitate the
rupture of the vapor blanket, subsequently
reducing the time for nucleate boiling forma-
tion. The role of cooling during both nucleate
boiling and convective heat transfer will
increase with increasing agitation.
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Fig. 14 Relationship between the actual critical size, Dc, the ideal critical size, DI, and the severity of quench, H

Fig. 15 Variation of H-value at half-temperature time
in round bars water quenched from 845 �C

(1550 �F)
Fig. 16 Variation of H-value at half-temperature time

in round bars oil quenched from 845 �C
(1550 �F)

Table 2 Severity of quench, H, for various quenching media

Agitation Air Oil Water Brine

No circulation 0.02 0.25–0.30 0.9–1.0 2
Mild circulation . . . 0.30–0.35 1.0–1.1 2.0–2.2
Moderate circulation . . . 0.35–0.40 1.2–1.3 . . .
Good circulation . . . 0.40–0.50 1.4–1.5 . . .
Strong circulation 0.05 0.5–0.8 1.6–2.0 . . .
Violent circulation . . . 0.8–1.1 4 5

Source: Ref 3, 5
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Nucleate Boiling Regime. The nucleate
boiling regime involves two separate processes:
the nucleation of bubbles on the surface, and
the growth and escape of these bubbles. The
heat transfer in this regime is affected by the
nucleation process, the distribution of nucle-
ation sites on the surface, and the growth and
escape of the bubbles. As the number of active
sites increases, the interaction of these bubbles
becomes important. In addition to these vari-
ables, the fluid properties, surface condition
(including mechanical and thermal properties),
and part geometry are also important.
There have been numerous investigations

into the process of nucleate boiling without
applied agitation. Discussion of the empirical
correlations between the heat flux, q, and the
difference in the surface temperature and bulk
fluid temperature, DT, are given in Ref 28 and
29. The most commonly used correlation of
the heat flux and DTx was developed by Rohse-
now (Ref 30):

q

A
¼ mLhfG

g rL � rGð Þ
gcs


� �1/2 CpL Tw � Tsatð Þ
Csf hfG Pr

S
L

" #3
(Eq 11)

In Eq 11, the coefficients S and Csf are
provided to adjust the correlation to satisfy the
liquid-surface combination. The coefficient S
should be taken as 1.0 for water and 1.7 for all
other liquids. Table 3 provides for values of Csf

to be used in Eq 11. A statistical correlation of
the published experimental data of water in the
nucleate boiling regime was conducted by Ste-
phon and Abdelsalam (Ref 31) and found to be
in excellent agreement with Eq 11. The values
of the surface-liquid tension can be found in
standard heat-transfer texts (Ref 32, 33).
The most important variables affecting the

empirical constant Csf are the surface roughness
of the part, which determines the number of
nucleation sites on the part at a given tempera-
ture (Ref 34), and the angle of contact between
the bubble and the heated surface, which is a
measure of the wettability of the surface and
the fluid. Because of the lack of definitive infor-
mation regarding surface condition, material,
and fluid combinations, the constant Csf must
be determined experimentally for each material,
surface, and fluid combination.
An advantage of the Rohsenow correlation is

that the performance of any liquid-surface com-
bination in nucleate boiling can be determined
with a single test. Only one value of the heat

flux (q/A) and the corresponding value of the
excess temperature difference, DTx, is neces-
sary to evaluate Csf, in Eq 11.
The geometrical shape of the heated surface

has been found to have little effect on the
nucleate boiling mechanism (Ref 35, 36). The
reason is that the action of bubbles is localized
to a region near the heated surface. However,
other investigators have found substantial sys-
tematic variation of the heat-transfer coefficient
in cylinders and rings. In the study by Seger-
berg and Bodin (Ref 37), the difference
between the upper and lower cylinder heat-
transfer coefficients was thought to be due to
natural convection currents carrying the hotter
quenchant up to the upper portion of the cylin-
der. If this were the case, then it would be
expected that the upper portion of the cylinder
would cool slower because of the decreased dif-
ference in temperature between the quenchant
and the quenched part. It is more likely that a
critical length was exceeded, and a transition
between laminar-to-turbulent heat transfer
occurred, resulting in increased heat transfer.
Flat rings were also quenched vertically, with

the resulting heat-transfer coefficients approxi-
mating the relative magnitude of the quenched
cylinders. In this case, the overall height was
less, minimizing the effects of the transition
from laminar to turbulent heat transfer. In this
case, the upper surface of the ring showed a
decrease in the heat-transfer coefficient, while
the lower surface showed a heat-transfer coeffi-
cient twice the size of the upper surface. In all
cases, the peak heat-transfer coefficient
occurred at approximately the same tempera-
ture. When a wide, flat ring was quenched hor-
izontally, the upper surface showed a heat-
transfer coefficient of approximately the same
magnitude as the cylinder, while the lower sur-
face displayed a significantly reduced (approxi-
mately 20% of the upper surface) heat-transfer
coefficient. This behavior was attributed to a
layer of film forming on the bottom surface of
the wide, flat ring, acting as an insulating layer.
The escape of bubbles from the underside was
more difficult, hence impeding heat transfer.
This could be explained quantitatively if the
differences in the net heat flux on the top and
bottom surfaces were the result of the additive
effects of natural convection and nucleate
boiling:

qnet ¼ qconv þ qboil (Eq 12)

In this case, the heat transfer due to convec-
tion is much larger on the upper surface than
on the bottom surface, resulting in the differ-
ences in the heat-transfer coefficient. When the
wide, flat ring was quenched vertically, the
measured heat-transfer coefficient was nearly
identical on each of the sides, giving further cre-
dence to the idea that the net heat flux is additive
between convection and boiling. In this experi-
ment, the heat-transfer coefficient of the inner
upper surface of the ring was also measured.
The relative magnitude was the same; however,

transition from film to nucleate boiling was at a
much higher temperature. This could be due to
separation of the vapor film at the inner edge
of the ring or to the corner contributing to a
much greater amount of turbulence, which, in
turn, increases the Leidenfrost temperature,
causing nucleate boiling to occur at a much
higher temperature. This has been qualitatively
confirmed by Maass and Jeschar (Ref 38). In this
investigation, the transition from film boiling to
nucleate boiling occurred at different tempera-
tures for spheres and cylinders. This was consis-
tent for all quenching temperatures investigated.
Cylinders reached the transition temperature
sooner than the spheres. Again, this is thought
to be due to the increased turbulence along the
length of the cylinder, with the edge of the cylin-
der acting as a “trip wire.”
Segerberg and Bodin (Ref 37) also quenched

similar-geometry, vertical cylinders of identical
lengths and material but of different diameters,
instrumented with thermocouples, near the sur-
face of the cylinder at the midpoint of the
length. Here, the measured heat-transfer coeffi-
cients were nearly identical, with very little
scatter throughout the quenching temperatures.
The peak flux and the peak heat-transfer coeffi-
cient were nearly identical in magnitude. While
Eq 11 describes the heat flux during nucleate
boiling, it does not predict the peak heat flux.
An expression was developed (Ref 39, 40) for
the peak heat flux based on the stability require-
ment of the liquid-vapor interface. This correla-
tion is of the form (Ref 41):

q

A

� �
max
¼ 0:131F L0ð Þr1/2

L hfG s
ggc rL � rGð Þ½ �1/4

(Eq 13)

where F L0ð Þ is a correction factor for heated
surface geometry and size. This factor depends
on the dimensionless characteristic length,
L0, of the heated surface:

L0 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g rL � rGð Þ

s


r
(Eq 14)

Recommended values of L0 are shown in
Table 4 for various surface geometries. These
relations are correlations for increases in heat
flux for liquids at the saturated temperature.
Subcooling, where the bulk fluid is at a much
lower temperature than the saturation tempera-
ture, will substantially increase the heat flux
and the rate of quenching (Ref 42–44).
McAdams et al. (Ref 45) investigated the effect
of subcooling the bulk fluid on the surface heat
flux. They found that increasing the amount of
subcooling increased the heat flux dramatically.
This also caused the excess temperature differ-
ence, DTx to increase with subcooling. This
would indicate that as the quenchant tempera-
ture is lowered, the maximum heat flux temper-
ature would move upward, increasing the
overall heat-transfer coefficient. When a
quenchant is subcooled, as is normally the case
in heat treating, the maximum heat flux due to

Table 3 Values of the coefficient Csf of Eq
11 for various liquid-surface combinations

Liquid-surface combination Csf

Water/copper 0.0130
Water/scored copper 0.0068
Water/emery-polished copper 0.0128
Water/chemically etched stainless steel 0.0133
Water/mechanically polished stainless steel 0.0132
Water/ground and polished stainless steel 0.0080

114 / Fundamentals of Process Modeling

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



subcooling can be estimated from the equation
(Ref 46):

q

A

� �
max
¼ q

A

� �
max sat

1þ 24

phfGrG

2kL Tsat � T1ð Þffiffiffiffiffiffiffiffiffiffi
paLt
p

� ��

r2L
s
g rL � rGð Þ
� �1/4

3
5

(Eq 15)

where

t ¼ p
3

ffiffiffiffiffiffi
2p
p s


g rL � rGð Þ
� �1/2 r2G

s
g rL � rGð Þ
� �1/4

(Eq 16)

The ratio of the critical heat flux for the sub-
cooled and saturated boiling can be expressed
as:

qsubcooled
qmax sat

¼ 1þB Tsat � T1ð Þ (Eq 17)

where Kutateladze (Ref 47) found an empirical
relationship for B:

B ¼ 0:065
CPG

hfG

rL
rG

� �0:8

(Eq 18)

In general, the heat-transfer coefficient
increases with the metal thermal conductivity.
Bamberger and Prinz (Ref 48) determined
heat-transfer coefficients for several materials
and found that the heat-transfer coefficient
changed with thermal conductivity (in the
nucleate boiling regime). While the resultant
slopes of the quenched materials were similar,
the absolute values at specific surface tempera-
tures could be ranked according to thermal
conductivity.
For copper, aluminum, and nickel, the heat-

transfer coefficient as a function of surface tem-
perature, Ts (

�C) is given (Ref 46) as:

Log hCuð Þ ¼ 4:9788� 0:0017TS

Log hAlð Þ ¼ 4:8574� 0:0020TS

Log hNið Þ ¼ 4:6023� 0:0017TS

(Eq 19)

This is not apparent from Eq 11, except in the
correction factor Csf.
McAdams et al. (Ref 45) also investigated

the effect of fluid agitation on the surface heat
flux, (q/A), and the excess temperature differ-
ence, DTx. They found that increasing the agita-
tion or velocity of the fluid increased the
surface heat flux and the excess temperature
difference at which the maximum heat flux

occurred. This has been confirmed by several
other investigators (Ref 49, Ref 50, Ref 51).
Kreith (Ref 33) stated that the total net heat flux
due to forced convection and pool boiling can
be summarized by:

q

A

� �
net
¼ q

A

� �
boil
þhc Ts � T1ð Þ (Eq 20)

where hc can be determined using standard
forced convection relationships found in many
heat-transfer texts. The boiling heat flux can
be evaluated using Eq 11.
These fundamental studies show that quench-

ants mediate heat transfer by the formation of
fluid films around the hot metal parts. Fluid flow
rates and turbulence (these are two components
of the general term agitation) enhance the rupture
of these films, thus accelerating cooling rates. In
addition to the mass flow rate of the quenchant
by the metal part, wetting kinematics may dra-
matically affect the uniformity of the cooling pro-
cess. Finally, anything that affects the cooling
profile on the surface of the metal part may poten-
tially affect the formation, or reduction, of ther-
mal and transformational stresses.
Based on the aforementioned relationships, it

should be possible to determine the net surface
heat flux or the heat-transfer coefficient during
quenching. The use of the additive relationships
found in Eq 12 and 20, the basic relationships
for film boiling in Eq 4, and the correlation
for nucleate boiling in Eq 11 will be of substan-
tial use in determining the boundary conditions
for modeling the distortion and residual stresses
in quenched structures.

Determination of Heat-Transfer
Coefficients—Application of
Cooling Curves

Probes, used to determine the cooling rate of
quenchants, have been produced in a large vari-
ety of sizes and shapes. These are generally
stand-alone systems used to determine either
the cooling curve of a quenchant for quality-
control purposes or the behavior of a part. The
probes have been made in a variety of sizes
and shapes, including cylinders, plates, and
rings (Ref 47, Ref 52–54). Various materials,
such as silver (Ref 55), gold (Ref 56), nickel-
base alloys (Ref 57), and stainless steel (Ref
58) have been used in the construction of
probes. There are generally two types of
probes: those that are Newtonian (lumped sys-
tem) and those that are non-Newtonian.
Because of a lack of phase transformations,
and latent heat from these phase

transformations, single-phase materials, such
as silver and nickel-base alloys, are preferred.
Latent heat generation during phase transforma-
tions generally complicates cooling-curve
behavior. Because of this, alloy steel probes
are generally not used except in specific cases.
Newtonian probes are sized in such a way that

the temperature gradients within the probe are
minimal. To determine if the temperature distri-
bution can be considered uniform within the solid
(and a lumped-system analysis appropriate), it is
first necessary to establish a critical length, Ls, as:

LS ¼ V

A
(Eq 21)

and the dimensionless quantity, the Biot num-
ber, Bi:

Bi ¼ hLS

ks
(Eq 22)

where ks is the thermal conductivity of the
solid. For solids in the shape of a cylinder or
sphere, the temperature distribution during tran-
sients within the solid is typically uniform, with
a temperature gradient of less than 5% if:

Bi ¼ hsLS

ks
� 0:1 (Eq 23)

The assumption of uniform temperature within
the solid is valid if the specific conductance of
the solid is much larger than the heat-transfer
coefficient.
Remember that for the aforementioned, the

quenching power of the quenchant (and agita-
tion), H, was defined as:

H ¼ hs

2k

The product HD is commonly used with
Fig. 13 to calculate the severity of quench, H,
with D being the diameter of a bar. Using the
definition of the Biot number, Bi, then:

H ¼ hs

2k

Bi ¼ hsLS

ks

Bi ¼ 2HD

(Eq 24)

This basic relationship can provide an
approximate value for the severity of quench,
H, which can be used to estimate steel proper-
ties and microstructure.
Calculation of the heat-transfer coefficient is

simple and requires the solution of the basic
equation:

�hcA T � T1ð Þ ¼ rVCp Tð Þ dT
dt

(Eq 25)

Rearranging this equation:

hc ¼ r
V

A
Cp Tð Þ dT

dt
T � T1ð Þ (Eq 26)

Table 4 Correction factor F(L0) for use in Eq 13

Part geometry F(L0) Remarks

Infinite flat plate, facing up 1.14 L0 � 2.7; L is part width or diameter
Horizontal cylinder 0:89þ 2:27e�3:44

ffiffiffiffi
L0
p

L0 � 0.15; L is the cylinder radius
Small sphere 1:734L0

�1=2
0.15 � L0 � 4.26; L is the sphere radius

Large sphere 0.84 L0 � 4.26; L is the sphere radius
Large finite body 0.90 L0 � 4; L = V/A
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This lumped-system analysis is only valid
when the Bi number is much less than 0.1.
One system, using the lumped-system

approach, is the Center for Heat Treating Excel-
lence (CHTE) probe (Ref 59). This system con-
sists of a computer-driven data-acquisition
device, pneumatic cylinder with air valve, a small
box furnace, 1 L container for the quenchant, and
the probe (Fig. 17).Thepneumatic cylindermoves
the probe up and down and provides for a consis-
tent and repeatable quench. One primary feature
of this device is the ability to quickly change the
probe tip. This enables probe tips to be fabricated
from anymaterial and to investigate different oxi-
des or surface roughnesses.
This probe is easy to use and is capable of

obtaining heat-transfer coefficients quickly.
However, because of its small size, the probe
does not have enough thermal mass to observe
a stable vapor phase that would be observed
on a part. This has the net effect of calculating
a heat-transfer coefficient that is significantly
faster than probes of larger size.
The cylindrical silver probe adopted for use

in Japan (Ref 56) has the advantages of
lumped-system analysis and direct determina-
tion of heat-transfer coefficients. It also has no
coupled phase transformations or issues with
surface oxidation. The Japanese Industrial Stan-
dards (JIS) probe is a solid cylinder of 10 mm
diameter and has a length of 30 mm (Fig. 18).
These probes are polished with 500-grit emery
paper prior to use. Several issues have pre-
vented its use in the United States. The cost of
silver is prohibitive, and the mechanical
strength of silver is low.
Other temperature probes used in the mea-

surement of cooling curves are of sufficient size
or of materials that have lower thermal conduc-
tivity; that is, the Bi > 0.1. In this case, signifi-
cant thermal gradients exist within the probe.
Determination of the heat-transfer coefficients
is much more difficult and requires more inten-
sive numerical methods.
One such probe is described in ISO 9950 and

ASTM 6200 (Fig. 19). It is a probe fabricated
from Inconel 600, 12.5 mm in diameter, and 60
mm long. Inconel 600 is a nickel-base superalloy
that is heat resistant, has high resistance to oxi-
dation, and does not have any coupled phase
transformations. Because of the relative low cost
of this probe and acceptance by international
standards organizations, the ISO probe is the
preferred quenchant characterization method.
Because of its relatively small size (but still
larger than the CHTE probe), ISO 9950 probes
are not directly applicable to predicting as-
quenched parts under industrial conditions. This
method provides a precise laboratory method
for the characterization of quenchants (Ref 37).
When modified to provide agitation (Ref 60,
61), different quenchants can be compared and
the data used in quenchant maintenance. Advan-
tages of the ISO 9950 probe include:

� Interlaboratory reproducibility, demon-
strated by round-robin studies (Ref 62)

� Thermal conductivity close to steel (much
closer to steel than silver)

� Uniform surface oxide that is stable through
the ranges of interest in steel heat treating

� Small probe size that is convenient for rou-
tine use in monitoring quenchants

� Small size of quenchant needed for testing
(approximately 2 L)

� No phase transformation in Inconel 600 dur-
ing quenching

Another larger probe that has a following is
the Liscic/NANMAC probe (Ref 63). This is a
cylindrical probe that is 200 mm long, 50 mm
in diameter, and made from AISI 304 stainless
steel. This probe contains three thermocouples,
all located in the same radial plane along the
geometrical center of the probe length. One
thermocouple is located on the surface of the
probe, using a proprietary thermocouple design
that is self-renewing. The length of the probe
allows the probe to be modeled as an infinite
cylinder, and to that end, effects can be
neglected. This symmetry of heat flow in only
the radial direction greatly simplifies calcula-
tions. It has been reported (Ref 64) that the
response time of the thermocouple is on the
order of 10�5 s, making it very sensitive to very
small surface heat-transfer conditions. This
probe is shown in Fig. 20.
Consider a probe with a thermocouple at the

center of the probe. The temperature of the

probe is recorded at a discrete time, depending
on the data-acquisition rate. It is desired to
determine the heat flux at the surface (x = L)
of the probe. The temperature, T, at any

Fig. 17 CHTE probe, Center for Heat Treating
Excellence

Fig. 18 JIS probe, Japanese Industrial Standards
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time, t, and position, x, is governed by the stan-
dard conduction equation:

rc
@T x; tð Þ

@t
¼ k

@2T x; tð Þ
@x2

for 0 < x < L and

0 < t < tmax

(Eq 27)

where L is the dimension perpendicular to the
quenched surface. To make things simple, the
temperature effects on density, r, thermal con-
ductivity, k, and specific heat, c, are considered
to remain constant. For a conventional heat

conduction problem, the previous equation
would be solved using the following boundary
conditions:

@T

@x
0; tð Þ ¼ 0 and� k

@T

@x
L; tð Þ ¼ q tð Þ (Eq 28)

where q(t) is the surface heat flux and the initial
condition T(x,0) = f(x) for 0 � x � L to deter-
mine the temperature field. In other words, the
surface-boundary conditions are known. In the
case of Bi < 0.1, the assumption is made that
the thermal gradients are negligible and that

the surface-boundary conditions will be nearly
identical.
For a probe where Bi > 0.1, the thermal gra-

dients cannot be ignored. In this case, the tem-
perature at one location is known at discrete
times, ti:,

T x0; tið Þ for i ¼ 1; 2; 3; � � � imax (Eq 29)

where the thermocouple is located at the center
of the probe, at x0. If the thermocouple were
located at x0 = L, then the heat-transfer coeffi-
cient and the heat flux could be determined
directly (Ref 65). If x0 = 0, then the data needed
and the measurements are on opposite surfaces.
This problem type is an example of an inverse
heat conduction problem (Ref 66).
In the inverse heat conduction problem, the

temperature as a function of time at some loca-
tion is known at some point within the part. The
problem is determining the boundary conditions
at the surface that produced the measured tem-
perature. In other words, T(x0,t) is known, and
it is desired to calculate the heat flux, q(t), that
produces T(x0,t). The calculation must take into
account that any surface heat flux variations
will be damped by the delay time before it
reaches the thermocouple. Many finite-element
software packages are capable of solving the
partial differential equations (PDEs) necessary
to determine the surface flux and heat-transfer
coefficient. The algorithms used to solve the
inverse conduction problem, specifically for
quenching, are shown in the literature (Ref 67,
Ref 68, Ref 69, Ref 70, Ref 71, Ref 72). These
PDEs can be solved using several numerical
techniques, such as finite element or finite dif-
ference. The probe supplier can direct the user
to the appropriate software to be used for their
probe. An example of the heat-transfer coeffi-
cient determined for the ISO 9950 probe is
shown in Fig. 21.
Cooling Curves. For the most part, the cool-

ing curve of an oil or polymer depends on the
bulk temperature of the oil and the agitation, or:

h � f T1; Vð Þ (Eq 30)

Figure 22 shows the changes in cooling-curve
behavior as a function of temperature on cold
oils. For convenience, most oils are tested with
no agitation. Agitation plays a key role in deter-
mining the heat-transfer coefficients but also
can control the residual stress and distortion.
The cooling-curve behavior is also depen-

dent on the condition of the oil. As oil is oxi-
dized, there is a buildup of organic acids and
soot. This contamination of the oil, measured
by the total acid number, creates shellac on
the surface of the part. This shellac changes
the surface condition of the part and has the
tendency of causing the vapor phase to
become more unstable, with boiling being
initiated earlier. This causes faster heat trans-
fer and increases the heat-transfer coefficient.
Figure 23 shows the effect of oxidation on
the cooling curves of oil.

30 mm 30 mm 6 mm
9.5 mm

13 mm

Not to be
center drilled

T/C

0.75 r

Probe details

30°

1.5mm tight push
fit “nominal”

(12.5 mm after
finish grinding)

Probe body
Details in (a)

Finish
grind

Support tube
Material = lnconel alloy 600
Tight fit on probe end with
30° angle weld allowance
Dimensions as (a)

12.5 0.01 mm+

160 mm min.

200 mm min.

End support
tube
Material = Stainless steel

Termination
Standard thermocouple
type ‘k’ (NiCr/NiAl)

Mineral insulated thermocouple
Type ‘k’ (NiCr/NiAl)
Sheath material=lnconel alloy 600
Diameter=1.5mm; Route length=
190mm min; Tails=25mm
Hot junction=insulated; cold seal=
epoxy resin

(a)

Fig. 19 ISO 9950 probe, International Organization for Standardization

Fig. 20 Liscic/NANMAC probe manufactured by NANMAC Corp.
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When modeling or determining the heat
transfer of oil or a quenchant, it is important
to perform sensitivity studies to determine the
effects of racking (the effect of parts located
nearby or the effects of the rack itself), the
effects of agitation, and the effects of the
quenchant condition.

Determination of Heat-Transfer
Coefficients via Computational
Fluid Dynamics

Computational fluid dynamics (CFD) is a
computational framework for simulating a wide

array of situations that involve fluid flow, heat
transfer, mass transfer, and species transport.
Applications to heat treating operations include
heating cycles in atmosphere and vacuum fur-
naces, carburizing, and quenching operations.
For quenching processes, CFD can be used to
develop improved quench system designs and
to determine the heat flux rates and heat-trans-
fer coefficients that will result when parts are
quenched in a specific quench system.
A brief overview is provided of CFD meth-

ods, followed by a discussion of three topics
that are important for simulation of quench

processes: turbulence, near-wall treatment, and
boiling heat transfer. The effectiveness of these
methods is then discussed, along with the use of
the resultant heat-transfer values in finite-ele-
ment analysis simulations. An example of
CFD as applied to a high-pressure gas quench
is provided.
Overview of CFD Methods. A brief over-

view of CFD methods follows. A more com-
plete treatment of this subject can be found in
Ref 73, while advanced algorithms and solution
techniques are discussed in Ref 74.
Flow, heat transfer, and species transport in

fluids are governed by the Navier-Stokes equa-
tions, a set of PDEs that cannot be solved
except for the simplest of scenarios (Ref 75,
76). The Navier-Stokes equations, named after
Claude Navier and George Stokes, apply New-
ton’s laws to fluid motion. CFD is a method
of obtaining solutions to these equations for
situations of practical interest through a series
of approximations, mathematical techniques,
and computer algorithms.
The Navier-Stokes equations are reduced to a

solvable form by:

� Ignoring terms that are not important for the
case of interest (e.g., compressibility)

� Selecting points of interest within the
domain (nodes) where the field values will
be calculated (i.e., applying a numerical grid
to the domain)

� Developing linearized versions of the PDEs
that are applied between nearby nodes (i.e.,
discretization)

Due to the nonlinear form of the Navier-Stokes
equations, the linearized forms of the equations
contain coefficients that are dependent on the cur-
rent values of the field variables (velocity, tem-
perature, etc.). These coefficients are treated
as constants for the purpose of solving the set of
linear equations. The coefficients are then
updated, and the linear equations are solved again.
For a properly constructed solution algorithm and
a well-posed case, these iterative solutions will
progress in an orderly fashion and will ultimately
converge on the final solution.
Several methods have been used to define the

relationship between the nodal values (discreti-
zation methods), including finite volume, finite
element, and finite difference. Many commer-
cial and research CFD codes use the finite-vol-
ume approach, while some codes use the finite-
element method.
Turbulence. Turbulent flow is characterized

by chaotic, stochastic variations in the flow that
result when the kinetic energy in the flow field
that leads to instabilities overwhelms the viscous
forces that tend to damp out those instabilities.
Extensive research has focused on understanding
the nature of turbulence and developing accurate
methods of representing turbulence in CFD
models. This is of prime importance, because
most flows of engineering interest are turbulent.
More complete discussions of turbulence can
be found elsewhere (Ref 77, 78).

Fig. 21 Heat-transfer coefficient (HTC) determined by the inverse conduction method for a typical cold oil and the
ISO 9950 probe

Fig. 22 Effect of temperature on the cooling-curve
behavior of a cold oil Fig. 23 Effect of oxidation on the cooling curve of a

cold oil
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Turbulent flow produces eddies of many
different length scales that are superimposed
on the bulk fluid motion. Directly simulating
all of these eddy scales (direct numerical simu-
lation of turbulence) requires an extremely fine
grid that is not practical for problems of engi-
neering interest. Direct numerical simulations
are largely used for research purposes for
the understanding of turbulence and the devel-
opment of improved turbulence models for
general-purpose CFD simulations.
Most practical turbulent flow methods

directly simulate the bulk fluid motion and
some of the larger eddy scales, while a “model”
is used to account for the energy contained in
the smaller-scale motions. An eddy viscosity
approach is typically used, in which the fluid
viscosity is augmented to account for the addi-
tional dissipative action of the modeled scales
of motion. Turbulence models used for engi-
neering applications include the k-E model, the
k-o model, and the Reynolds stress model.
Many variations exist for each of these turbu-
lence models.
Wall Treatment. The region where the fluid

flow is adjacent to the wall presents additional
difficulty for the simulation process. Gradients
of temperature, velocity, and other fields are
often very steep near the wall. Turbulence,
which is often isotropic in the bulk flow,
becomes anisotropic near the wall and then
rapidly dies out.
Historically, it was not possible to concen-

trate sufficient grid points near the wall to
resolve these flow-field changes and sharp gra-
dients. Instead, functions were developed that
represented the overall effect of the boundary-
layer region on the flow at the first near-wall
node, which was typically placed outside the
boundary layer. These “law of the wall” func-
tions were based on theoretical and experimen-
tal data for special cases that were not always
representative of the flow being simulated.
Extensive research has been devoted to

developing improved wall functions that
include the effect of pressure gradients, surface
curvature, impinging flow, wall roughness, heat
transfer, and so on. Many of the advanced wall
functions require that additional computational
nodes be placed within the boundary-layer
region.
Boiling heat transfer is difficult to predict

with CFD methods due to the presence of two
phases in the fluid domain and the small scale
of bubbles relative to the domain of interest.
Detailed CFD studies have been performed in
which the formations of individual bubbles are
predicted, but these studies are of little practical
interest to heat-transfer predictions for indus-
trial processes.
Other approaches have been used to repre-

sent boiling heat transfer on a macroscopic
scale. One approach is to divide the total wall
heat flux into convective and boiling compo-
nents. The convective component computed
by standard CFD techniques may be modified
to account for the presence of the bubbles.

Likewise, correlations used to predict the gen-
eration of vapor bubbles are affected by the
fluid velocity near the part. Lahey and Drew
(Ref 79) developed a four-field, two-fluid
model that has been applied to a wide range
of cases, with good success. Ho, Yeoh, and Tu
(Ref 80) used population balance techniques
to account for the presence of the bubbles on
the flow field.
Application of CFD to Quench Systems

and Determination of Heat-Transfer Coeffi-
cients. Gas quenching processes are dominated
by convective heat transfer, and the heat-trans-
fer coefficients predicted by CFD methods are
expected to be very good, provided that best
practices related to grid construction and wall
treatment are observed. Similarly, intensive
quenching operations, which exhibit very little
boiling due to the high liquid flow rates, are
dominated by convection and are expected to
be well represented by current CFD techniques.
For liquid quench tanks, the critical form of

heat transfer is boiling, including the effect of
film boiling during the early stages of the
quench process. While there is much current
work in this area, the methods available in com-
mercial CFD codes do not appear to be
advanced enough to properly predict the heat-
transfer coefficients for these processes. Given
the rapid rate of change in the CFD field, how-
ever, it is likely that this capability will soon be
available.
One advantage of determining the heat flux

rates and heat-transfer coefficients via CFD is
the amount of information that is provided.
While a well-thermocoupled part can yield
heat-transfer coefficients at a few dozen loca-
tions, a CFD simulation will provide flux rates
and coefficients at every wall node in the grid,
which will typically number in the thousands.
Application to Finite-Element Analyses.

One application of CFD-derived heat-transfer
coefficients is to the analysis of phase transfor-
mation, part distortion, and residual stress
through finite-element analysis (FEA) software.
Due to the different goals and analysis techni-
ques, the grid element size for FEA will typi-
cally be larger than the corresponding grid for
a well-resolved CFD simulation. In those cases,
a relatively simple technique may be used to
map the CFD results to the FEA boundary (e.
g., nearest node). In cases where the grids are
on the same length scale, or if the CFD cell size
is larger than the FEA element size, it may be
necessary to employ a more complex interpola-
tion scheme to achieve smooth results on the
FEA model boundary.
Due to changes in the fluid properties as the

part surface changes temperature, it cannot be
necessarily assumed that the heat-transfer coef-
ficient remains constant at a given point on a
part during the quench process. For best accu-
racy, a method is needed to represent the
changing heat flux rates throughout the quench
cycle (Ref 81).
Example of CFD Simulation of Gas

Quenching Operation. A CFD simulation

was made of a high-pressure gas quench pro-
cess applied to a production automotive ring
gear. The load consisted of two stacks of ten
fixtures each, with eight gears/fixture, for a total
of 160 gears. An overall model of the quench
cell was used to define the flow field in the
vicinity of one of the gears on the top rack.
A detailed model was then made for that gear.
The grid for the detailed model consisted of

13 million cells, with most of those cells con-
centrated in the region adjacent to the gear sur-
face. The distance between the wall and the first
near-wall node was 0.043 mm on average.
A view of the grid detail near the wall is shown
in Fig. 24 and 25.
The flow field for this model was simulated

with FLUENT 6 using the k-o SST model,
which uses the fine grid near the wall to provide
a better representation of the boundary-layer
region. Heat-transfer coefficients for this gear
are shown in Fig. 26. The average heat-transfer
coefficients predicted from this simulation are
in agreement with values derived from thermo-
couple tests. In those tests, only three thermo-
couples were used, such that much of the
detail shown in the CFD results was lost.
Example of CFD Simulation of Oil-

Quenched Automotive Pinions. A CFD simu-
lation (Ref 82) was made of an oil-quenched

Fig. 24 Overall grid detail near the wall of a large
gas-quenched ring gear

Fig. 25 Detail of grid close to the wall of a large gas-
quenched ring gear shown in Fig. 24
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process applied to automotive pinion gears. In
this instance, the customer was experiencing
distortion of the pinion shafts, causing exces-
sive rework and scrap. The customer was rack-
ing the parts pinion down, in a pyramid fashion.
It was recommended to rack the parts in a new
fixture, with the pinions spread out and racked
shaft down. The load consisted of 40 pinion
gears (Fig. 27) that were carburized in a pusher
furnace, then quenched at 121 �C (250 �F).
Computer-aided design three-dimensional

solid models of the quench tank and agitation
system were obtained. The result was a very
complicated model, with over 3000 entities.
This model had to be simplified for proper anal-
ysis and to eliminate any geometry mismatches
and any “leaks.” Entities exterior to the tank
were ignored, and only wetted surfaces were
considered. The entire computational domain
is shown in Fig. 28.
The parts were modeled as simple solids,

without teeth. This drastically simplified the
meshing and solution of the model. If the teeth

were included, the computation time would be
increased. The primary goal was to examine
the pinion shafts, because this was where most
distortion was occurring.
The agitators were not explicitly modeled.

Instead, the exit of the agitators and the inlet to
the tank was modeled as a velocity inlet. On that
face, an average speed was provided to yield the
net mass flow rate supplied by the agitator. The
inlet face of the agitator and outlet was repre-
sented by a pressure-outlet boundary condition.
The grid for the detailed model consisted of

7.3 million cells, with most of those cells con-
centrated in the region adjacent to the gear sur-
face. A view of the grid detail is shown in
Fig. 29. The resulting flow fields were deter-
mined and are shown in Fig. 30.
The oil flow rates around the pinions from

static CFD analysis were exported in a spread-
sheet that contained (x,y,z) positions of the cen-
troids of the CFD cells surrounding the pinions
and the magnitude of the oil velocity. The data
from the spreadsheet file were imported and

mapped into the DANTE model to calculate
the local heat-transfer coefficients for the pin-
ion surface element faces. The relationship
between oil flow rate and the heat-transfer coef-
ficient is described using Eq 31 and is shown in
Fig. 31:

hc ¼ hoil

vn (Eq 31)

where hc is the oil flow-rate-dependent heat-
transfer coefficient, hoil is the average oil heat-
transfer coefficient, v is the oil flow rate, and
the exponential n equals 0.466 in this study.
The heat-transfer coefficient hoil in Eq 31 is a
function of part surface temperature, which also
represents the vapor blanket, nucleate boiling,
and convection phenomena during oil quench-
ing. The heat-transfer coefficient hoil was deter-
mined from inverse calculation from cooling
curves of the martempering oil used in this
application. The results of the FEA model
(Ref 83) and distortion prediction were verified,
using 60 heat treated loads of 40 parts, for a
total of 2400 parts. The distortion of the shaft
was measured and tabulated. The results are
shown in Table 5.
Modeling tended to overpredict the distortion

but was the proper magnitude and direction.
Sources of error in this analysis were thought
to be due to mismatch between the CFD and
FEA meshes, with the CFD mesh being much
coarser than the FEA mesh. A finer CFD mesh
would have mapped better to the FEA mesh but
would have greatly increased computational
time. The correlation of hoil(v,T) only approxi-
mated real behavior. Because the vapour phase
was not modeled directly, the stability of the
vapor phase was not modeled accurately. The
results of applying CFD as boundary conditions
to an FEA model were shown to be sufficiently
accurate to solve practical industrial distortion
problems.

Determination of Heat-Transfer
Coefficients by Inverse Conduction
Calculation and Measurement
of Parts

In a manner similar to determining heat-trans-
fer coefficients from the cooling curves of instru-
mented probes of simple geometry, this method
uses parts instrumented with multiple thermo-
couples and then uses solutions to the inverse
conduction problem to determine the heat fluxes
at the surface of the parts. Because of the com-
plex geometry and large size of parts, a single
thermocouple is inadequate to determine the heat
flux at the surface of a part. Many thermocou-
ples are needed and provide additional resolu-
tion. However, the solution of the problem
requires even greater computation time as the
number of thermocouples increases, because of
the dramatically increased complexity.
Historically, this method is the prevalent

method for determining heat-transfer coeffi-
cients. This method sounds straightforward;
however, it requires extensive testing in the

Fig. 26 Heat-transfer coefficients determined using computational fluid dynamics for a large ring gear that was gas
quenched

Fig. 27 Comparison of existing and proposed racking of automotive pinions
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shop environment to provide valid results.
Excellent agreement is usually found between
thermocouple measurements and the fitted
inverse conduction solution. Planning the nec-
essary experiments requires a number of deci-
sions that can drastically impact the accuracy
and precision of the resulting heat flux results,
regardless of the quality of fit between the
measured and calculated results. To plan and
conduct such an experiment, the following
questions must be asked:

� What is the best way to discretize or break up
the surface of the part into small heat-transfer
coefficient zones? That is, over how large or
small of an area will the determined heat-
transfer coefficient be valid? Too large an
area, and the result is a bulk-average heat-
transfer coefficient. Too small an area, and
the dataset becomes too large and noisy and
requires a large number of thermocouples
and large computation time to determine the
heat transfer over such a small area.

� What is the best way to determine the heat-
transfer values from the center of each ther-
mocouple zone to the surface boundary?

� How many thermocouples are necessary to
determine the part thermal history and ade-
quately calculate the surface-boundary con-
ditions with necessary precision?

� Where should the thermocouples be located?
These thermocouples can be located close to
the surface or in the interior of the part. How
many should be at the surface (within
12 mm), and how many are located inside
the part?

� What is the best way to calculate the heat-
transfer coefficients? Should an inverse
method be used, and if so, which is the best
method (Beck’s second method, Ref 84;
function decomposition method, Ref 85; or
other method) to solve the inverse problem?

� What is the availability of the physical prop-
erty data (specific heat, thermal diffusivity,
phase transformation latent heats, etc.) as a
function of temperature? Are the data well
enough characterized to provide accurate
results?

� Are the generated data generic enough to be
applicable to entire classes of parts, or are
they only applicable to a specific part,
racked in a specific manner, in a specific
quench tank?

� Will the number and placement of the ther-
mocouples influence the conditions of flow
within the quench tank and act as a “trip
wire,” causing early nucleate boiling
initiation?

Many of these issues are practical ones, such
as the availability of a limited number of data-
acquisition channels or the difficulty of instru-
menting a part. It may also be limited by the
difficulty of loading the furnace with the ther-
mocoupled part and moving it into the quench
without losing data channels. Answers to other
questions may have to rely on the judgment of
the engineer regarding the flows in the quench
tank and the behavior of the quenchant. If the
quenchant flow is unknown or complex because
of part shape or agitator or quench tank design,
the number of thermocouples used may not
adequately capture the thermal history of the
part. In addition, the solution calculated may
provide a set of results that satisfy the thermal
data but is not the proper answer. Often, there
is no “reality check” on the calculated data,
and they are accepted without question. As a
general rule, most thermocouples are located
near the surface of the part, because these ther-
mocouples are the most influenced by the local
heat-transfer conditions. It will also provide
better accuracy of match between the calculated
and measured results.
The necessary constitutive equations govern-

ing the physical properties of an alloy are either
missing or sparse. Microstructural effects, such
as latent heat during transformation during
quenching, are often missing from the constitu-
tive equations. These effects and the various

Fig. 28 Entire computational domain used for the computational fluid dynamics model of the quench tank and
pinions

Fig. 29 Grid detail around the agitator system and parts
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phase mixtures can drastically impact the spe-
cific heat and thermal conductivity data.
Production variability can drastically influ-

ence the results. The location of parts
(Fig. 32) and the position of adjacent parts can
impact the resulting flows and heat transfer
(Fig. 33). Because of the cost and difficulty of
conducting experiments in a production envi-
ronment, it is extremely difficult to determine
a priori the sources of variability on the produc-
tion floor.

Example of Direct Measurement. Ramak-
rishnan (Ref 86) and Bass et al. (Ref 87) calcu-
lated the heat-transfer coefficients as a function
of surface location for a large turbine disk. The
superalloy parts were thermocoupled using 13
type-K thermocouples sheathed in AISI 304
stainless steel (Fig. 34). For the oil quench
experiment, the single disk was placed on a
special heat treatment tray, loaded in a rotary
furnace, and heated until the temperature in
the turbine disk stabilized at 1150 �C. When
the temperature in the part stabilized, the part
was removed from the furnace, placed on a ver-
tical elevator, and quenched into a cold-type oil
at 25 �C. The oil was kept agitated and main-
tained at temperature. The disk was quenched
horizontally into the quench tank. No details
about the amount or direction of the flows in
the quench tank were provided. Data acquisi-
tion rate was at 20 Hz, and the data were
recorded until the turbine disk maximum tem-
perature was below 100 �C.
An inversed heat conduction code,

QUENCH2D, developed at Michigan State
University, was used to process the data. This
code was developed to solve nonlinear, two-
dimensional inverse heat-transfer problems.
After examining the data, the disk was divided
into four distinct subsurfaces, that is, inner
diameter, top, outer diameter, and the bottom
surface. Using the temperature data from all
13 thermocouples, the heat fluxes were deter-
mined for each surface. The resulting heat-
transfer coefficients as a function of surface
temperature are shown in Fig. 35. The data
showed that there was a substantial difference
in the heat transfer on the top and bottom sur-
faces, likely caused by either the adjacent heat
treating tray or the possible trapping of the
vapor phase beneath the part. These results are
similar to those of Segerberg and Bodin
(Ref 37) when they quenched a small plate
specimen instrumented with thermocouples
(Fig. 36).
Determination of Heat-Transfer Coeffi-

cients for Die Blocks. In this example, Thu-
vander (Ref 88) thermocoupled small tool
steel die blocks to determine heat-transfer coef-
ficients to be used in FEA to estimate distor-
tion. Three different dies of different
configuration were used (Fig. 37). Because
these tool steel dies were quenched in a flui-
dized bed, it was assumed that the heat-transfer
coefficients would be uniform across each sur-
face. It was also assumed that the heat-transfer
coefficients would have no temperature depen-
dence. Inverse conduction calculation was done
using ABAQUS. While the author thought that
the results would be improved by incorporating
heat-transfer coefficients that varied with tem-
perature, excellent correspondence with
measured and calculated results was observed
(Fig. 38).
The calculations to determine distortion were

performed in three steps. The first step was to
calculate the thermal history of the part. Sec-
ond, the phase-transformation history was

Fig. 30 Flow field determined for pinions. Shown are the diagonal cuts and the resulting flow velocities in meters
per second.

Fig. 31 Heat-transfer coefficients as a function of velocity and wall temperature for typical martempering oil

Table 5 Predicted versus actual
distortion of pinion gears modeled
using computational fluid dynamics
and finite-element analysis

Position Predicted, mm

Actual, mm

Maximum Average Minimum

1 0.025 0.020 0.011 0.008
2 0.015 0.017 0.009 0.005

Source: Ref 83
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determined. Lastly, the mechanical property
response to the temperature changes and phase
transformations was performed. Only bainite
and martensite transformations were included
in this simulation. The mechanical properties
were based on a separate finite-element method
calculation that assumed that the properties
would be a linear sum of the contributions from
each phase present.
The calculated distortion of the dies is shown

in Fig. 39. The numerical calculations gave close
agreement between the calculated and measured
distortion. The calculated distortion was of the
same direction and magnitude as the actual parts.
The ring-shaped die exhibited conical distortion
on the inner surface of the bore, and the upper
surface showed a concave surface, with the outer
edge of the ring higher than the center. Some

out-of-roundness was exhibited. The box-shaped
dies showed excellent agreement between exper-
iment and calculations. The convex distortion of
the bottom surface was very well reproduced by
the simulations.

Conclusions

In the previous discussion, a review of the
analytical methods for determining heat-trans-
fer coefficients was discussed. Several methods

Fig. 32 Change in flow patterns and resultant heat-
transfer coefficients as a function of position

in a production quench tank

Fig. 33 Load density and number of parts affecting quenchant flow around parts in a production quench tank
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Fig. 34 Instrumented turbine disk showing locations
of thermocouples (T/C) used by

Ramakrishnan. Source: Ref 86

–18 104 227 349 471 593 716 838 960 1082 1204
Surface temperature, °C.

4.70

4.10

3.50

2.90

2.40

1.80

1.20

0.50

0.00

I.D. & O.D. surface
Top surface
Bottom surface

S
ur

fa
ce

 F
lu

x
  

10
6  W

/m
2

k

Fig. 35 Resultant heat-transfer coefficients showing
substantial difference in upper and lower

surfaces of a turbine disk quenching horizontally into an
oil quench. Part was heated to 1150 �C and quenched
into oil at 25 �C. No information was provided
regarding the oil type, speed of the oil, or the flow rates
and agitation in the quench tank. ID, inside diameter;
OD, outside diameter
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Fig. 36 Heat transfer showing differences in the top
and bottom surfaces of a thin plate

quenched horizontally in oil. Source: Ref 37
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of determining heat-transfer coefficients in an
industrial setting were reviewed with examples.
Each method has its advantages and drawbacks.
Each method relies on certain assumptions that
should be verified by experiment.
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Interface Effects for
Deformation Processes
M. Krzyzanowski, The University of Sheffield, United Kingdom
J.H. Beynon, Swinburne University of Technology, Australia

KNOWLEDGE OF FRICTION AND HEAT
TRANSFER is vital to the understanding and
operation of metal forming. Modeling and
numerical simulations are now extensively used
for optimization of the deformation during pro-
cessing of metallic materials. This article exam-
ines traditional deformation processes and gives
consideration to the effects introduced by scale
factors when microforming.
Whether it is modeling of turning or forging,

deep drawing or rolling, in cold or hot conditions,
realistic and precisely determined boundary con-
ditions are essential for prediction accuracy in
order to decrease costs and time-to-market. The
contact conditions in metal-forming processes
are, to a certain extent, specific to the particular
operation and certainly very diverse. The tool-
metal contact often involves large sliding lengths
on which high pressures, sliding speeds, and tem-
peratures may be maintained together with plastic
deformation. This plastic deformation, coupled
with lubrication, failure of oxide layers, creation
of nascent, very reactive metallic surfaces, and
the constant renewal of one of the partners of the
contact, the workpiece, is typical for metal form-
ing. Contact pressures can range from 1 to a few
MPa in sheet-forming processes to a few GPa in
hard metal rolling or wire drawing. Speeds vary
between a few mm/s (superplastic processing) to
tens of m/s (high-speed drawing, turning, or
thin-strip rolling). Surface temperatures are in
the range between 0 and 300 �C in cold forming,
due to self-heating by plastic deformation, and
up to 500, 1300, or even 2000 �C in hot forming,
depending on whether aluminum alloys, steels,
or refractory metals are considered (Ref 1). The
effect of these severe contact conditions is empha-
sizedwhen there are high values of the aspect ratio
of contact surface area to deformed volume (e.g.,
contact length/characteristic thickness in the roll-
ing of flat products). As a consequence, the usual
friction test methods, which are in great favor in
bearing and motor oil industries, are often
inappropriate for the metal-forming industries.
Instead, test methods adapted to each class of
forming operation are used, such as the ring

compression test (forging) (Ref 2), the plane-
drawing test or the drawing-under-bending test
(drawing) (Ref 3), and the plane-strain compres-
sion test (flat rolling) (Ref 4).

Process Parameters

There are many parameters and variables
affecting surface interactions (Ref 5). Process
parameters include the temperature, speed, reduc-
tion, stiffness, and dynamic response of the equip-
ment. In rolling, for instance, among the
parameters that influence the interactions are the
work roll and the back-up roll dimensions; their
hardness, magnitude, and direction of the surface
roughness; cooling systems; lubricant delivery;
and the location of nozzles. The mechanical prop-
erties of the rolls and the workpiece, including
their resistance to deformation, all contribute here.
The contributions of surface parameters, such as
the chemical reactivity, the tendency to adsorb
molecules from the environment, the adsorption
of water vapor and oxygen, as well as surface
energy, must be taken into consideration. The
nature of oxide scale formation and failure during
deformation, the chemical composition of the
scale and underlying metal, and the adhesion
between the scale and the metal surfaces in direct
contact must be taken into account. Lubrication
also significantly affects the interface interactions.
The chemical composition of the lubricant, the
additives and their concentration in the base oil,
and themolecular chain length, density, viscosity,
and its dependence on both temperature and pres-
sure should be precisely described. If emulsions
are used, the composition, the emulsifier, and the
droplet dimensions are important.

Boundary Conditions

Despite all this complexity in the behavior at
the interface, it is common to represent friction
and heat transfer as simple coefficients. This is
done because only a limited accuracy of

prediction is needed, or the calculation is not
overly sensitive to friction and heat transfer (e.g.,
because of a relatively small contact area or con-
tact time), or because the details of the interface
are not well understood, so more detailed infor-
mation is simply not available. However, there
are many circumstances where the success of a
mathematical model depends on the appropriate
formulation of the boundary conditions, which
could be as sophisticated as the model itself. If
the boundary conditions are expressed simply in
terms of coefficients of friction and heat transfer,
the inclusion of all of the mentioned complexities
into a single mathematical model describing
dependence of these two parameters is highly
impractical. Instead, relatively simple formulae
for friction and heat transfer are used for general
applications. Of course, reasonable choices are
necessary to achieve desirable precision; they
should take into consideration the most important
dependencies that affect the tribological system.
The most important process parameters are the
surface temperature, the relative velocity between
the tool and the workpiece, and the amount of
plastic deformation. The attributes of the
deformed material are normally limited to the
model that describes its resistance to deformation.
For example, a true stress/true strain relationship
is used in cold rolling, while in hot rolling, the true
stress is related to the strain, strain rate, tempera-
ture, and, sometimes, to ametallurgical parameter.
This parameter can be the activation energy for
plastic deformation or the carbon equivalent in
steels. The parameters of the contact surfaces can
include the strip and roll roughness and the thick-
ness of the oxide scale. When lubricants are used,
the viscosity and its dependence on the tempera-
ture and the pressure are taken into consideration.
The concentration of the oil in the water and the
droplet dimensions are considered when emul-
sions are applied, as in the cold rolling of steel
strips.
The following sections consider friction and

heat transfer in metal-forming operations,
providing guidance on the choice of simple coef-
ficients while also providing insight into how
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more sophisticated formulae for friction and heat
transfer can be developed where more accurate
representation of actual interface conditions is
needed.

Friction Coefficient

In 1997, Roberts commented that of all the
variables associated with rolling, none is more
important than friction in the roll bite (Ref 6).
Because the trend in modern strip rolling is to
produce thinner strips of higher-strength metals,
the control of friction in the roll bite is vitally
important (Ref 7). The coefficient of friction
arises from the fundamental definition of the
Coulomb-Amonton coefficient, m = t/p, as the
ratio of the interfacial shear stress, t, to the nor-
mal pressure, p. There is a view that the coeffi-
cient of friction may not be the best description
of interfacial phenomena between the roll and
the roll metal (Ref 8). For example, in the flat
rolling process, the normal pressure, p, may
increase significantly beyond the material flow
strength. The interfacial shear stress, t, may also
increase, but it cannot rise above the metal shear
yield strength. This problem is overcome by the
use of the Tresca friction factor instead. The fric-
tion factor, m, is defined as the ratio of the inter-
facial shear stress to the metal flow strength, k,
in pure shear, m = t/k. Nevertheless, the coeffi-
cient of friction is widely used and understood
by engineers in the metal-forming and the flat-
rolling industry and is also often used in mathe-
matical modeling of forming operations. Sym-
bols used in this article are found in Table 1.
Empirical Formulae for Coefficient of

Friction. There are different formulae for the
friction coefficient in hot rolling proposed at
different times by a variety of authors. Roberts
gives an increasing relationship between the
coefficient of friction and the temperature in
�F, TF (Ref 9):

m ¼ 2:7� 10�4TF � 0:08 (Eq 1)

which can be rewritten for temperature in �C as:

m ¼ 4:86� 10�4T � 0:07136 (Eq 2)

Roberts combined the data from experimental
2.1 and 3.4 m (84 and 132 in.) two-high hot strip
mills obtained for well-descaled strips. Geleji’s
formula indicates the opposite trend (Ref 10):

m ¼ 1:05� 0:0005T � 0:056n (Eq 3)

where T is the temperature in �C, and n is the roll-
ing velocity in m/s. The relationship was obtained
for steel rolls by applying the inverse method
matching the measured and calculated roll forces.
For doubled poured and cast rolls, the formula for
the friction coefficient is slightly different:

m ¼ 0:94� 0:0005T � 0:056n (Eq 4)

and is changed again for the ground steel rolls:

m ¼ 0:82� 0:0005T � 0:056n (Eq 5)

These relationships, indicating decreasing coeffi-
cient of friction with increasing temperature and
rolling speed, confirm the experimental results
obtained elsewhere (Ref 11):

m ¼ 0:84� 0:0004T (Eq 6)

Equation 6 was obtained for rolling steel at
temperatures above 700 �C. A comparison of
the friction coefficients obtained using Eq 1 to
6 indicates large differences for the different
rolling temperatures and thus may not be very
reliable. In other words, typical of empirical
formulae, their precision applies only to the
specific circumstances of their measurements;
different conditions will lead to variations. This
is commonly the case when attempting to trans-
fer results obtained in a laboratory to industrial
operations. The surfaces of tools and rolls in
laboratories are often not in as good condition
as those in industry, because laboratories often
use very different workpieces and lubrication
conditions, resulting in variable surface rough-
ness and a wide range of surface layers—often
a mix of oxide, lubricant traces, and debris—
unevenly distributed over the tool or roll.
Oxide Scale. In an attempt to provide a

more physically-based determination of fric-
tion, one should consider the evolution of sec-
ondary oxide scale and its failure during hot
rolling and interpass cooling with respect to
its thickness, composition, ductile/brittle behav-
ior, and thermal properties, all of which play a
significant role in the tribological behavior. In
1984, Felder characterized the oxide scale
behavior during hot rolling as highly influenced
by the temperature (Ref 12). He defined the
ratio H between the scale thickness, dox, and
the scale thickness thermally affected by the
contact with the tool, doxt, as:

H ¼ dox
doxt
¼ dox � 6ac�tð Þ�0:5 (Eq 7)

where ac is the thermal diffusivity of the oxide
scale, and Dt is the contact duration. According
to Felder, there are three different tribological
regimes related to the ratio. The first one is
for H > 2 when the oxide scale is insignifi-
cantly cooled by the cold roll surface. For this
regime, the scale can be characterized as duc-
tile, softer than the metal, and strongly adherent
to the metal surface. The friction is described
by the Tresca friction factor, which is not sensi-
tive to the pressure and the contact time. For
the second regime, when H < 0.05, the oxide
scale is considered to be significantly cooled
due to contact with the roll; it is harder than
the metal and can be considered quasi-rigid.
The scale is brittle, has a low adherence, and
can be considered abrasive. The Coulomb-type
friction coefficient, proportional to the shearing
and not very sensitive to the contact time, is
applied for this regime. In between those two
extreme cases, for 0.05 < H < 2, the friction

Table 1 List of symbols

Symbol Meaning

A Empirical constant
Aa Overall apparent contact area
Aox Apparent area occupied by the oxide scale
As Apparent area occupied by the extruded fresh

steel
a Negative empirical constant
ac Thermal diffusivity
atens Function of the front and back tension
B Empirical constant
Cb2 Heat-transfer coefficient for partial contact at the

“two-layer” zone
Ce Effective interface heat-transfer coefficient
Ce1 Heat-transfer coefficient for contact at

the “one-layer” zone
Ce2 Heat-transfer coefficient for contact at

the “two-layer” zone
Cox Heat-transfer coefficient through the

oxide scale
fNormal Contact force
H Ratio between the scale thickness and the scale

thickness thermally affected by contact with
the tool

Ho Strip entry thickness
Hsc Factor depending on the state of the secondary

scale at the roll gap
HV Vickers hardness of the contacting material
HVox Vickers hardness of the oxide scale
hexit Scale thickness at the exit from the roll gap
hmin Oil film thickness
ho Interface heat-transfer coefficient
ho slab Initial slab thickness
Dhslab Absolute reduction in the slab thickness
k Metal flow strength
k1, k2,

k3

Empirically established constants

kox Scale thermal conductivity
kshear Shear strength
m Friction factor
mc Empirical constant within the range of 0 to 1
p Normal pressure
pa Apparent contact pressure
q Heat flux per unit area across the interface
R Roll radius
Ra Surface roughness
Re Total thermal resistance over the entire

apparent contact area
Re1 Thermal resistance over the extruded

fresh steel
Re2 Thermal resistance over the oxide scale
S Modified Sommerfeld number
T Temperature in oC
T1, T2 Temperatures on either side of the interface
TF Temperature in oF
Toxs Surface temperature of the oxide scale
Dt Contact time
v Rolling velocity
vrel Relative velocity
as Area fraction of the gaps formed from the

through-thickness cracks at the interface
and filled with fresh metal

g Pressure viscosity coefficient
d Temperature viscosity coefficient
dox Scale thickness
doxt Scale thickness thermally affected by contact

with the tool
e Strain
eA Fraction of the total area that is

in direct contact
Z Viscosity coefficient
Zo Uncorrected viscosity coefficient
y Cross coefficient accounting for the interaction

between both the pressure and the
temperature viscosity coefficients

lh1 Harmonic mean of the thermal conductivity of
the roll material and the specimen material

ls Thermal conductivity of the specimen material
m Coefficient of friction
s* Combined roughness of the two surfaces
t Interface shear stress
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behavior can become a complex function of the
contact time and pressure.
In 1997, Munther and Lenard combined the

data from rolling samples in a laboratory rolling
mill with different scale thicknesses at various
temperatures (Ref 13). Experimentally measured
data, such as the roll-separating forces, torques,
and forward slip, coupled with finite-element
analysis led to the determination of the friction
coefficient. They found that the friction coeffi-
cient increases with increasing reduction and
decreasing temperature; it also increased with
decreasing velocity and decreasing oxide scale
thickness (Fig. 1). They put the experimental evi-
dence of the effect of scale thickness on the fric-
tion coefficient into the following formula:

m ¼ 0:369� 0:0006hexit (Eq 8)

where hexit is the scale thickness at the exit
from the roll gap.
Li and Sellars reported that forward slip in

the hot rolling of steel increases significantly
with oxide scale thickness for the same reduc-
tion (Ref 14). The forward slip was measured
for a relatively wide range of scale thickness,
20 to 670 mm. They attributed the change in
the forward slip to the variations of the scale
temperature and, as a result, to changes in the
roll/scale contact conditions. The real contact
area between the roll and the oxide scale will
be less for a thick scale than for a thin one
under similar contact pressure. This is because
the thicker oxide scale, being cooler on its outer
surface, is less able to fill the valleys of the roll
surface asperities during a rolling pass. A smal-
ler contact area means an easier relative move-
ment between the roll and the scale layer,
which, coupled with a lower oxide surface tem-
perature, should lead to a larger forward slip.
For a similar scale thickness, the measured for-
ward slip for the higher reduction was higher
than that measured for the lower reduction.
The lubrication behavior of the thin oxide

scales described previously is in agreement
with the load and torque measurements made
by El-Kalay and Sparling during hot rolling of
mild steels (Ref 15). The decrease of the fric-
tion coefficient in the roll gap followed by the
temperature increase was noticed by Ekelund
in 1933 during hot rolling of carbon steels
(Ref 11, 16). That effect can also be related to
the lubrication behavior of the soft oxide scale.

Determination of Friction
Coefficient

Because friction is highly sensitive to contact
parameters, friction measurements must be
gathered under conditions very similar to those
of the process under consideration. Pressure,
sliding speed and length, temperature, plastic
deformation pattern, lubricant and mode of
lubrication, tool and workpiece nature, structure
and texture, degree of work hardening, surface
chemistry, and roughness may all need to be
taken into account. The best similarity can be
achieved in the industrial process itself. How-
ever, such industrial tests are difficult and
expensive, so that simpler and smaller labora-
tory tests using experimental rigs are often pref-
erable. However, the further away from actual
conditions the laboratory test is, the more inter-
pretation is required to apply the laboratory
results to the industrial operation.
Laboratory Monitoring Methods. Direct

measurement of friction stresses requires embed-
ding transducers into the tools, measuring both
the normal and the tangential contact stresses.
These methods have been applied to measure
interfacial stresses in several bulk forming pro-
cesses (Ref 17–22). A strain-gaged cantilever
with its tip in the contact zone and its subsequent
refinements are described elsewhere (Ref 23–
25). An important concern with this method is
the possibility of some metal intruding into the
clearance between the pin and its housing, partic-
ularly if the metal is soft, such as when at high

temperature. It is therefore necessary to substan-
tiate the results by independent means (Ref 26).
An alternative to this localized determination of
friction conditions is to obtain an average fric-
tional shear stress and/or an average coefficient
of friction over the whole interface. Methods in
this group include plane-strain drawing (Ref 27)
and plane-strain compression (Ref 28). A twist
compression technique has been reported tomea-
sure the friction factor when deforming alumi-
num (Ref 29), and caustics have also been used
to evaluate the roll pressure distribution and thus
to obtain the coefficient of friction during flat
rolling (Ref 30, 31). These tests are very informa-
tive about interfacial conditions and can be con-
firmed by mechanical modeling followed by
numerical simulation. However, these techni-
ques are restricted to laboratory forming equip-
ment, where operating conditions may not be
quite the same as the industrial counterpart.
Indirect measurements of friction involve

either load or simple geometrical measure-
ments. A mechanical model is necessary to
extract the relevant tribological information
from such measurements, and any inaccuracy
in the model will result in a potentially large
error on the friction coefficient. For this reason,
very simple sample and tool geometry and
kinematics are often preferable for deriving
simple but relatively accurate models for the
friction coefficient, either as formulae (e.g.,
plane-strain compression test) or diagrams
(e.g., ring compression test). The methods based
on the deformation load measurement may be
applied to uniaxial compression (Ref 32), extru-
sion, drawing, and rolling (Ref 33). The methods
involving measurement of deformation include
uniaxial compression with a tapered punch
(Ref 34), measuring the forward slip or the bite
angle in rolling (Ref 35), monitoring the fold-
over in plane-strain compression (Ref 36), or
the extrusion forging test (Ref 37). The most
popular technique for forging conditions is the
ring compression test (Ref 38, 39). Concave
and convex shapes can be used in addition to
the cylindrical ones (Ref 40). The shear factor
in cold forward bar/backward cup extrusion
was obtained by the upper-bound method and
the measured extruded cup height (Ref 41, 42).
Simple Relationships for Coefficient of

Friction. Several simple formulae have been
published relating the coefficient of friction to
various parameters, some of which are men-
tioned in the previous section. In cold rolling,
for instance, those traditionally used most often
are due to Hill, Roberts, and Ekelund (Ref 9–
11). A comparison of the predicted coefficients
of friction is shown in Fig. 2. The plotted fric-
tion coefficients were calculated using data
obtained for cold rolling of the steel strips
lubricated with mineral seal oil (Ref 43). All
three formulae show the expected trend of
lower friction with increased speed. The coeffi-
cient also tends to decrease as the reduction
increases, demonstrating the combined result
of the increasing number of contact points, the
increasing temperature, and normal pressure.

Fig. 1 Influence of rolling temperature on coefficient
of friction for 25% reduction, 170 mm/s

rolling velocity, and different scale thicknesses of 1.59,
0.29, and 0.015 mm. Source: Ref 13

Fig. 2 Coefficient of friction according to the formulae
for cold rolling of carbon steel by Hill, Roberts,

and Ekelund. Source: Ref 43
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A simple relationship for the minimum coef-
ficient of friction in flat rolling, based on Bland
and Ford’s equations, has been reported in
terms of the strain, e, applied strip tension,
and the entry thickness, Ho:

m ¼ e� atensð Þ
Ho

(Eq 9)

where m is the friction coefficient, and atens is a
function of the front and back tension (Ref 44).
Inverse Method. An increasingly popular

means of calculation is the inverse method (Ref
45). In this technique, parameters of the process
are determined experimentally. A mathematical
model is used to calculate these parameters, and
the friction coefficient is adjusted until a desirable
level of accuracy is achieved inmatching themea-
surements and predictions. In the inverse method,
a finite-element simulation can be combined with
themeasurementsof overall parameters toachieve
better accuracy (Ref 46–48). A coefficient of fric-
tion has been obtained by examining the bulge on
a conical, hollow cylinder, compressed between
rigid platens. The emissivity is determined in the
first turn, followed by the coefficient of heat trans-
fer and the metal resistance to deformation, creat-
ing the bulge (Ref 49).
Some of the measured friction coefficients

are presented in Table 2.

Importance of an Appropriate
Model and Accurate
Mechanical Properties

Nowadays, significantly increasedperformance
and accuracy of numerical computations has
allowed accurate simulation of complex processes
to such an extent that indirectmeasurements using
the real process have become possible (Ref 50).
Computer-assisted tribology by trial-and-error or
automated inverse modeling of the operations
can provide accurate friction coefficients on the
basis of measured force, torque, and/or geometri-
cal workpiece evolution, taking into account that
all other process parameters are precisely known.
For instance, a pilot cold rolling mill and

associated mathematical model of the strip roll-
ing process was developed through the 1980s
(Ref 57, 58). The measurements recorded by a
computer include roll load and torque, front
and back tension forces, entry, roll and exit
speeds (from which the reduction and forward
slip are determined), and strip exit temperature.
The plane-strain compression test is part of the
procedure, being used both to measure the
mechanical properties of the strips to be rolled
and to obtain a first approximation of the tribo-
logical properties of the lubricants to be tested.
The mode of lubrication in the compression test
is quite different from the constant feeding of
lubricant into the roll bite, making the friction
coefficients obtained from the test unreliable
for the rolling. The rolling model couples a slab
method for strip deformation with an isotropic
elastic finite-element model for roll deformation.

An inverse version of this model minimizes a
quadratic error function, allowing the friction
coefficient to be obtained. The importance of
using a reliably accurate model in indirect meth-
ods is illustrated in Fig. 3, where the friction
coefficient is an increasing, roughly constant, or
strongly decreasing function of reduction,
depending on the chosen model. The first five
curves, Roberts I, Roberts II, Roberts III, Eke-
lund, and Ford, are based on formulae derived
from simplified models of rolling, while the last
three, Sims, Alexander (force) and Alexander
(torque), are based on more elaborate models
and give quite different friction coefficients.
The impact of the assumed mechanical proper-

ties on the computed friction coefficient must also
be taken into consideration. The rolled strip is
elastic-plastic, with some degree of strain-rate
sensitivity (viscoplasticity), depending on the
degree of work hardening. Moreover, it is aniso-
tropic, sometimes significantly so. Some simplifi-
cation can be assumed by using mechanical tests
that ensure a deformation pattern that is close to
that of the forming process. Friction and mechan-
ical properties should ideally be measured by one
and the same test, bearing a strong resemblance to

the rolling process, providing that enough inde-
pendent observables (preferably of different nat-
ures: force, geometry, kinematics) are made
available. Modern computation capabilities allow
this double identification to be performed on the
industrial process itself. These nonindependent
measurements are not completely sufficient,
unless the same constitutive equations provide a
good fit for a wide variety of tests performed on
a given metal composition.

Interface Heat-Transfer Coefficient

The complexity of the interface between tool
and stock makes measurements very difficult.
The direct measurement of friction and heat
transfer is impractical for most industrial hot
metal-forming operations, and even for many
conducted in the laboratory. The interface
heat-transfer coefficient (IHTC), ho, is used to
quantify the resistance of an interface to the
transfer of heat, usually from workpiece to tool.
It is commonly defined by the equation q = ho
(T2 – T1), in which T1 and T2 are the tempera-
tures on either side of the interface, and q is

Fig. 3 Application of various friction coefficient determination methods to five tests performed on an experimental
rolling mill: Al 5052-H19, emulsion lubrication, SAE 52100 roll steel grade, speed 1 m/s, and variable

reduction. Source: Ref 50

Table 2 Measured friction coefficients between workpiece and tool in metal forming

Metal Conditions Value(a) Reference

Aluminum Cold rolling and compression m = 0.05–0.41 50
Aluminum 1100 Cold rolling, unlubricated m = 0.025–0.053 51
Steel AISI 1010 Range of labs and techniques in round robin, lubricated m = 0.05–0.6 52
Steel Formulae for industrial rolling m = 0.1–0.4 43
Stainless steel 304 High-temperature lab compression, lubricated m = 0.2 53
Stainless steel 304 High-temperature lab compression, unlubricated m = 0.8 53
Ti-6AI-4V High-temperature lab compression, lubricated m = 0.2 53
Ti-6AI-4V High-temperature lab compression, unlubricated m = 0.8 53
General Microstrip drawing m = 0.08–0.49 54
General Microforming m = 0.02–0.4 55
General Microforming m = 0.15–0.85 56

(a) Coefficient of friction, m; friction factor, m. See text for definitions.
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the heat flux per unit area across the interface.
The difficulties of making laboratory measure-
ments, combined with the complexity of events
at the tool-stock interface, result in a wide
range of reported values for the IHTC (Table 3)
(Ref 59).
In the absence of detailed insight and a lack of

fundamental understanding about the mechanism
of heat transfer at a moving interface, most
modelers assume a simple description, or an
average value, of the heat-transfer coefficient.
The contacting points between two surfaces
serve as paths of lower resistance for heat flow
in comparison to adjacent regions where heat
transfer occurs by conduction through air gaps
(Ref 72). Thus, it has been assumed that the link
between friction and heat transfer at the interface
is the fraction of the total area, eA, the area that

is in direct contact. It has been postulated that
the real contact area depends on both the interfa-
cial pressure, p, and the shear strength, kshear, in
the real contact zone:

eA ¼ pm
mckshear

(Eq 10)

where mc is an empirical constant within the
range of 0 to 1, and m is the friction coefficient
at the interface (Ref 73). Based on experimental
results (Ref 74), it was pointed out that the var-
iation in IHTC with reduction, rolling speed,
and lubrication observed through pilot mill tests
on a 316L austenitic stainless steel could be
explained on the basis of the influence of these
rolling parameters on fractional contact area.
The observed increase in the IHTC during roll-
ing was related to the increase in pressure at the
roll-stock interface, leading to an increase in
the real area of contact between two surfaces.
The influence of other factors, such as rolling
reduction, rolling temperature, roll speed, roll
and workpiece mechanical properties, and sur-
face roughness, can be related to their effect
on roll pressure. It has been found that the mean
IHTC is linearly related to mean pressure
(Fig. 4) (Ref 75). This relationship can be used
to determine the magnitude of the IHTC in
industrial rolling from an estimate of the rolling
load. According to the estimation, the heat
losses to the work rolls during the early passes
in hot rolling can be more than 30% of the total.
This shows the importance of accurately
characterizing the IHTC in the roll bite.
Thermal Effect of Oxide Scale. The appli-

cation of lubricant or the presence of oxide
scale introduces an additional thermal

resistance between the roll surface and the
workpiece. During strip rolling, for example,
the oxide scale layer adhered to the surface of
the strip attempts to elongate in the rolling
direction with the deformation of the rolling
stock. In many cases, with large reduction and
low rolling temperature, the oxide will be
unable to deform plastically, and through-thick-
ness cracks will appear orientated mostly per-
pendicular to the rolling direction. These
cracks will allow extrusion of fresh hot metal
through the gaps within the scale under the
pressure in the roll gap. As a result, direct con-
tact between the relatively cold roll and the hot
metal extrusions can occur. This type of scale
behavior has been observed in the hot rolling
of both aluminum (Ref 76) and steel (Ref 77).
Based on the experimental observations of
oxide scale behavior, analysis of real contact
area and thermal resistance, combined with
experimentally derived IHTC values, a physical
model has been developed to represent heat
transfer during hot steel rolling (Ref 78).
According to the model assumptions, the

interface heat transfer within the roll gap con-
sists of two parallel heat-flow systems: through
the oxide scale, called a “two-layer” zone, and
directly between the roll/fresh metal interface,
called a “one-layer” zone. Thus, the total ther-
mal resistance over the entire apparent contact
area can be expressed from the following
equation:

Aa

Re

¼ As

Re1

þAox

Re2

(Eq 11)

where Aa, As, and Aox are the overall apparent
contact area and the apparent areas occupied
by the extruded fresh steel and by the oxide
scales in the roll gap, respectively. The effec-
tive IHTC, Ce, can be derived from Eq 11 as:

Ce ¼ Ce1as þ Ce2 1� asð Þ (Eq 12)

where Ce1 and Ce2 are the heat-transfer coeffi-
cients for the one-layer and two-layer zones,
correspondently. The term as is the area frac-
tion of the gaps formed from the through-thick-
ness cracks at the interface and filled with fresh
metal and is defined as as = As/Aa. To obtain the
effective IHTC for the entire rolling pass, it is
therefore necessary to obtain not only the
heat-transfer coefficient components for the
individual contact zones and thermal barriers
but also to know the mean area fraction of the
fresh steel in the roll gap. The mean area frac-
tion of the fresh steel extruded through the gaps
within the oxide scale can be estimated using:

as ¼ �hslab

2

3ho slab

þ 1

8R

� �
(Eq 13)

where Dhslab is the absolute reduction in the
thickness, ho slab is the initial slab thickness,
and R is the roll radius (Ref 78). The equation
for the effective IHTC (Eq 12) can be rewritten,
depending on heat-transfer coefficients for the
individual contact zones and thermal barriers, as:

Fig. 4 Influence of the mean roll pressure on the mean heat-transfer coefficient during hot rolling of low-carbon,
stainless, and microalloyed steels. Source: Ref 75

Table 3 Measured interface heat-transfer
coefficient (IHTC) between roll and stock
for the hot rolling of steel and aluminum

Material IHTC, kW/m2K Reference

Steel

10–50 60
15 61
15–20 62
19–22 63
100–350 64
200–450 65

Aluminum

2–20 66
5–50 67
10–260 68
18–38 69
23–81 70
200 71

Source: Ref 59
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Ce ¼ Ce1as þ CoxCb2

Cox þ Cb2
1� asð Þ (Eq 14)

where Cb2 is the heat-transfer coefficient for the
partial contact at the two-layer zone, usually
called contact conductance; and Cox is the
heat-transfer coefficient through the oxide
scale. The coefficient Cox can be approximately
obtained for the given oxide scale thickness,
dox, and the scale thermal conductivity, kox,
using:

Cox ¼ kox
dox

: (Eq 15)

No systematic analysis appears to have been
conducted for quantitative variations of the
contact conductance with surface, interface,
and deformation conditions during metal-form-
ing operations. However, it has been shown that
the contact conductance is related to the appar-
ent contact pressure, pa, and the Vickers hard-
ness of the softer contacting material, HV, in
addition to the surface roughness and thermal
conductivity of two contacting solids under nor-
mal static contact conditions (Ref 79–81).
Assuming this relationship and also the rela-
tionship between the degree of real contact
and the dimensionless contact pressure obtained
on the basis of experimental measurements and
mathematical analysis (Ref 82, 83), an expo-
nential relationship between the contact con-
ductance and the contact pressure during hot
rolling has been established (Ref 78). The same
contact and heat-transfer states at the scale
layer/tool interface were assumed for forging
and rolling. Accordingly, the contact conduc-
tance for a two-layer zone, Cb2, during hot steel
rolling can be calculated by using the following

same equation developed for hot forging of
steel:

Cb2 ¼ A
lh2
Ra

1� exp �0:3 pa
HVox

� �� �B
(Eq 16)

where A and B are empirical constants whose
values for plain carbon steel are 0.4 � 10�3

and 0.392, respectively; Ra is the roll surface
roughness, and lh2 is the harmonic mean of
the thermal conductivity of the oxide scale,
lox, and the steel roll, lr, and is determined by:

1

lh2
¼ 1

lr
þ 1

lox

� ��
2 (Eq 17)

The Vickers hardness of the oxide scale, HVox,
is considered to vary with the surface tempera-
ture of the oxide scale, Toxs, according to the
following equation developed on the basis of
available experimental data (Ref 84):

HVox ¼ 7075� 538Toxs 293K � Toxs � 1273Kð Þ
(Eq 18)

Equation 16 can be replaced by the following
simpler version for low pressure only:

Cb2 ¼ A
lh2
Ra

0:3
pa

HVox

� �B

(Eq 19)

For a one-layer zone and for the rolling con-
ditions where the initial rolling temperature is
approximately 1000 �C, the scale thickness is
within the 25 to 700 mm range, the rolling
reduction is between 10 and 50%, and the
corresponding average rolling pressure is
between 130 and 200 MPa, the contact conduc-
tance can be calculated using the same

equations (16 and 19) where the constants A
and B are set to 0.405 and 1.5, respectively,
and the parameter lh2 is replaced by lh1. The
parameter lh1 is the harmonic mean of the ther-
mal conductivity of the roll material, lr, and the
specimen material, ls, and is determined by 1/
lh1 = (1/lr + 1/ls)/2, while HVs is the Vickers
hardness of the fresh steel specimen.
Figure 5 illustrates changes of the IHTC

derived for the different scale thicknesses and
rolling reductions. As can be seen, the IHTC
decreases dramatically when the scale thickness
increases because of the relatively poor thermal
conductivity of the oxide scale. At the same
time, the IHTC increases rapidly with rolling
reduction. This is physically consistent with
the variation of the real contact area and the
high contact conductance in the fresh steel zone
that dominates the overall high values of heat-
transfer coefficient at the interface during steel
rolling, even though the area fraction of the
fresh steel zone is less than that of oxide scale
for rolling passes with reduction less than 50%.

Determination of Interface
Heat-Transfer Coefficient

There are many models of heat-transfer con-
ditions that have been reported (Ref 66, 85–90).
Verification of these models with experimental
work, wherever it is possible, is essential for
achieving reasonably accurate predictions. Nor-
mally, these techniques are based on tempera-
ture measurements around the tool-workpiece
interface, although they only give estimates of
interface temperatures and hence the contact
resistance. For the forging problem, for
instance, one of the reasons for the lack of

Fig. 5 Interfacial heat-transfer coefficient (IHTC) during steel hot rolling with initial temperature of approximately 1000 �C. (a) Derived for different scale thicknesses. Solid line
with open circles, reduction ~18.9%; broken line with open squares, reduction ~38.9%. (b) Derived for different rolling reductions. Solid line with open circles, scale

~30 mm; broken line with open squares, scale ~250 mm. Source: Ref 78
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accurate temperature measurement directly at
the die-billet interface is the severe conditions
both in the bulk metal and at the interface.
There is always an integrity problem with the
wire leads for thermocouples mounted within
the billet. Moreover, the tool-workpiece inter-
face conditions are never constant. To avoid
these difficulties, the variation of temperature
in the die and billet is recorded using thermo-
couples mounted away from the interface, and
the results are compared with an analytical or
numerical analysis in which both the lubricant
thickness and the value of conductivity are cho-
sen for the best fit to the obtained experimental
data (Ref 91).
The ring test applied for studying friction

conditions in hot metal forming can also be
used for measurement and analysis of the tem-
perature at the contact zone (Ref 89). A tech-
nique for evaluation of the heat-transfer
coefficient has been developed for a nonisother-
mal bulk-forming process based on both mea-
surements of the internal die temperatures for
two dies brought together under different pres-
sures and using a one-dimensional numerical
analysis. This technique was further developed
for use in a hot forging process to derive the
IHTCs (Ref 62, 92). To achieve better accu-
racy, the forging temperatures can be measured
directly and simultaneously at the billet surface,
the die surface, and also inside the die during
upsetting (Ref 93). The IHTC is then derived

by applying finite-element or inverse numerical
methods for analysis of the temperature jump
across the interface. This measurement tech-
nique was also successfully applied for hot roll-
ing purposes by measuring three rolling
temperatures simultaneously: at the billet sur-
face, the roll surface, and inside the roll (Ref
94). The IHTC was varied in the simulation
while other parameters, such as the friction fac-
tor obtained from a ring test, were assumed to
be constant. The value of IHTC obtained for
cold upsetting was close to 100 kW/m2K and
was 50 kW/m2K for the hot billet on a cold
die, both for unlubricated conditions.
Some of the IHTCs determined by different

authors are presented in Table 4.
Computer simulations have become widely

used in the development of the boundary-condi-
tion models for deformation processes. The
effect of the dynamically changing friction and
heat-transfer coefficients is essential for predic-
tion accuracy. In most commercially available
metal-forming analysis software, the coefficients
are implemented as constants, some allow for
implementation of varying coefficients, and sel-
dom, generating the changing values based on
contact conditions is possible. An important
ground for more sophisticated friction and inter-
face heat-transfer “coefficients” occurs in hot
forming when an oxide on the metal surface
plays a crucial role in interface behavior. The
next section considers this case.

Oxide Scale Mechanical Behavior

The behavior of oxide scale on the surface of
hot metal undergoing thermomechanical proces-
sing presents a rich variety of phenomena of
great technological importance. To break the pri-
mary scale in readiness for hot rolling of flat pro-
ducts, the slab is passed through a slab descaler.
However, a secondary scale is formed between
successive rolling passes, which has to be
removed by high-pressure water jets before the
subsequent passes during reversing rolling or
before the strip enters the tandem finishing mill.
This secondary scale grown after passing the
first slab descaler significantly influences the
chain of microscale events at the roll/workpiece
interface. Despite considerable complexity, a
combination of careful experiments and detailed
finite-element analysis has been successfully
applied to represent a wide range of the observed
physical phenomena (Ref 102). Although the
results presented as follows are mainly for car-
bon steels, the method can be applied to other
technologically important alloys, such as stain-
less steels and aluminum alloys.
The friction forces drawing the stock into the

roll gap exert a tensile pull that can deform and
even fracture the oxide scale. The simple uniax-
ial tensile test can thus provide much valuable
information on the behavior of oxide scale that
is relevant to thermomechanical processing
(Ref 103, 104). The tests reveal two types of
accommodation by the oxide scale of the defor-
mation of the underlying steel substrate. At
lower temperatures, the oxide scale fractures,
usually in a brittle manner, with the through-
thickness cracks triggering spallation of the
oxide scale from the steel surface. At higher
temperatures, the oxide scale does not fracture;
rather, it slides over the steel surface, eventu-
ally producing delamination of the scale. The
temperature of transition between these two
types of failure is sharp and sensitive to steel
chemical composition (Ref 105).
Because the oxide scale conducts heat at a

much lower rate than the underlying metal,
steep temperature gradients can be developed
across the oxide scale thickness. This leads to
thicker scales having a cooler outer surface than
thin scales. Thin scales can thus remain hot and
deform in a ductile manner along with the steel
substrate as the stock is drawn into the roll gap
(Ref 106). Thicker scales have cooler outer sur-
faces, where fracture can initiate more easily,
even well ahead of roll contact. Much thicker
scales can withstand higher forces and may
not crack until subject to the additional force
due to bending as the stock first meets the roll.
These observations are significant, because the
presence of cracks will affect subsequent inter-
face behavior, and furthermore, cracks that
have formed well ahead of roll contact will
have opened more than those appearing just as
the roll grips the surface of the stock.
An open gap in the oxide scale may enable

the steel underneath to extrude up under the roll

Table 4 Determined interface heat-transfer coefficients (IHTCs) between workpiece and
tool in metal forming

Metal Conditions IHTC, kW/m2K Reference

Steel General test, laboratory, no scale, no lubricant, direct measurement 29–35 70
General test, laboratory, no scale, water lubricant, direct measurement 23–81 70
General test, laboratory, no scale, oil lubricant, direct measurement 70–465 70
General test, laboratory, 10 mm scale, no lubricant, direct measurement 7–10.5 70
General test, laboratory, 10 mm scale, water lubricant, direct measurement 10.5 70
General test, laboratory, 10 mm scale, oil lubricant, direct measurement 5.8–10.5 70

Low-carbon steel Laboratory conditions 13 85
Laboratory conditions 10–20 86
Industry conditions 40–80 86
Industrial conditions, water cooled 38.7 95

Steel Industrial conditions, no lubrication 18–37.6 95
Industrial conditions, no lubrication 30 96
Laboratory conditions, no lubrication 17–57 74
Laboratory conditions, oil lubrication 17–31 74
Laboratory conditions, no lubrication 12–29 20
Compression, laboratory 10.7–41.7 87

Steel M40/EN8 Compression, laboratory 7.79 97
Steel Extrusion, laboratory 4–10 71
Steel Ma8 Laboratory compression 20–40 98
Stainless steel 304 Laboratory compression 20–40 53
Aluminum Laboratory conditions 30 85

15–30 86
Laboratory conditions 30 99
Laboratory conditions, emulsion lubricant 10–54 60
Upsetting, laboratory, slow test, no lubricant, direct measurement 7.5–10 62
Upsetting, laboratory, fast test, Renite 28 lubricant, direct measurement 15–20 62
General test, laboratory, no lubricant, direct measurement 20–40 100
General test, laboratory, MoS2 lubricant, direct measurement 20–80 100

Aluminum 6061 Laboratory compression 50 93
Ti-6Al-4V Laboratory compression 20–40 53
Steel Influence of oxide scale thickness, forging 1.1–11.6 101

Influence of oxide scale thickness, rolling 11.6–116.3 101
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contact pressure (Fig. 6) (Ref 107). When such
hot steel makes direct contact with the roll, the
local friction and heat-transfer conditions can
be expected to change dramatically.
Pickup on Roll. An important surface-qual-

ity defect stems from pickup by the roll of
oxide scale from the steel surface, usually in
small patches that can then come back around
on the roll surface and indent into the following
metal. This pickup can be replicated in a simple
compression experiment under controlled atmo-
spheric conditions. This experiment has been
successfully modeled using finite-element anal-
ysis and the appropriate material properties
transferred to the rolling model to demonstrate
pickup of oxide scale during rolling (Fig. 7)
(Ref 102, 108).
Descaling. A further surface defect may

arise when the oxide scale is removed after
hot rolling. If the scale had fractured and the
metal had extruded up through the gaps during
rolling, such extrusions become protrusions
when the oxide has been removed and will need
to be cold rolled to smooth the surface. Because
the oxide scale may be severely damaged by
rolling (Fig. 6), it is appropriate to consider
whether this damage makes subsequent descal-
ing easier or not. By including the effect of dif-
ferential thermal contraction under the
influence of water jets, as well as the impacting
force of those jets, the finite-element model has
been extended to demonstrate that, indeed, par-
tially detached oxide scale is the first to
be removed by hydraulic descaling (Fig. 8)
(Ref 109).
Mechanical descaling, by reverse bending, is

a popular if not always completely successful
method for removing the oxide scale at room
temperature. Under ambient conditions, the
scale is much more brittle than the underlying
steel and can be expected to be removed rela-
tively easily. Several types of oxide scale
failure have been observed in a parallel investi-
gation on the mechanical descaling of wire, and
the finite-element model was able to replicate
each of these failure modes (Ref 110).
During multipass hot rolling of long pro-

ducts, the magnitude of the coefficient of
friction within the roll bite varies due to the
complex pressure-slip variations. A new
Coulomb-Norton-type friction model for long
products and bar sections has been developed
(Ref 111). Among other assumptions, the
model takes into consideration some of the
complex interactions at the stock-roll interface
due to the presence of secondary oxide scale.
Hence, the different modes of scale failure,
such as the through-thickness cracking and the
sliding mode, depending on the temperature
and steel composition, have been implemented.
The friction force occurs either between the roll
surface and the stock oxide scale or between the
roll surface, the oxide scale fragments, and
eventually fresh steel extruded through the
scale gaps, depending on the relative magnitude
of the shear stresses inside the scale layer and at
the oxide scale/stock interface. The coefficient

of friction is calculated as a function of the con-
tact force, fNormal, the sliding velocity, vrel, the
stock temperature, T, the roll surface roughness,

Ra, and the factor Hsc, which depends on the
state of the secondary oxide scale at the roll
gap:

Fig. 7 Photographs illustrating the oxide scale (a) partly separated from the specimen and (b) transferred to the tool
after being in contact during compression test at 870 �C. (c) Oxide scale pattern predicted at exit from the roll

gap. Note the pick-up effect. Source: Ref 102

Fig. 6 Temperature and crack distribution at the oxidized stock/roll interface during hot rolling. Source: Ref 107
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m ¼ k1H
� log 1200

Tð Þ
sc a tan R

Tk3
1200

a

� �
log 1þ fNormalð Þ
log k2 þ nrelj jð Þ

(Eq 20)

where k1, k2, and k3 are constants established
experimentally. The factor Hsc is the following
function of the thickness of the secondary scale,
dox, the thermal diffusivity, ac, and the contact
time, Dt:

Hsc ¼ dox 6ac�tð Þ�0:5 (Eq 21)

The model has been implemented as a subrou-
tine in a commercial finite-element code and
used to represent the effect of each variable
on the coefficient of friction (Ref 112).
Rolling Aluminum with Lubrication. It has

been shown that surface bending and stretching,
similar to those observed during hot rolling of
steel, are also responsible for the fracture of the
surface oxide layer present on aluminum strip
in rolling. Fresh metal then extrudes through
the microcracks formed in the oxide layer (Ref
113). This cracking process is essential to allow
the boundary additive in the lubricant to react
with the exposed fresh metal surface and pro-
duce organometallic compounds. An innovative
technique based on the measurement of contact
electrical resistance in plane-strain compression
tests has been reported, looking at how metal-
to-metal contact is established, whether the oil
can enter the microcracks in the oxide film,
and how fast the transfer film develops (Ref
114, 115). It has been shown that metal-to-metal
contact is established after the oxide breaks and

metal extrudes through the oxide. More viscous
base oil inhibits the establishment of direct
metal-to-metal contact and the corresponding
fall of electrical resistance, perhaps due to oil
trapped in microcracks in the oxide layer. The
addition of lauric acid in a low-viscosity base
oil led to the development of a low-friction
transfer film, affecting the friction conditions in
the area, giving rise to metal-to-metal contact
at a smaller reduction and fluctuations in the
electrical resistance during the tests (Fig. 9).

Effect of Lubrication

The introduction of lubrication has several
objectives. Lubricants help to reduce the loads,
resulting in lower energy expenditure. They aid
in the production of high-quality surfaces,
resulting in a more valuable product by reduc-
ing the incidence of surface defects. These are
achieved by controlling the friction and heat
transfer. The nature of the lubrication in the
contact zone also affects the dimensional
consistency of the product.
Introducing lubricants into the contact zone

increases the complexity of the events at the
interface. The viscosity of the lubricant and its
pressure and temperature sensitivity will affect
the interactions as will the volume of lubricant
entering the contact zone. As the relative veloc-
ity is increased, more lubricant is dragged in to
coat the surfaces, and the coefficient of friction
decreases under most circumstances with most
lubricants. As the pressure increases, so does

the viscosity, and the coefficient of friction
falls. A power law relating the viscosity and
the coefficient of friction was suggested in the
mid-1980s (Ref 5):

m ¼ f Zað Þ (Eq 22)

where Z is the viscosity coefficient, and a is a
negative number in all cases, varying from
�0.2 to �0.5. Many authors have since reported
corrected relationships, some of which are sum-
marized elsewhere (Ref 43). The viscosity
depends on the process parameters and is
affected mostly by the temperature and the pres-
sure. A popular relationship, for instance, is:

Z ¼ Zo exp gp� #pT � dTð Þ (Eq 23)

where Zo is the uncorrected viscosity, g is the
pressure and d the temperature viscosity coeffi-
cients, while t is the cross coefficient account-
ing for the interaction between g and d (Ref
116). Correcting the viscosity for these effects
is a necessary but not easy step. A good collec-
tion of specific values of the pressure-viscosity
coefficient for some automotive lubricants is
presented elsewhere (Ref 117, 118). For min-
eral oils, the viscosity-pressure coefficient is
given as:

g � 0:6þ 0:965 log10 Zoð Þ � 10�8 (Eq 24)

where the viscosity at zero pressure, Zo, is in
centipoises, and the viscosity-pressure coeffi-
cient is in Pa�1 (Ref 119).
Emulsions. Use of an emulsion brings with it

further parameters. Emulsions are composed of
oil and water in which the droplets of oil, with
diameters ranging from 1 to 100 pm, are dis-
persed along with an emulsifier to prevent the
droplets from coalescing. Emulsifiers are com-
posed of a molecular structure with two distinct
ends. The hydrophilic end is made of polar
covalent bonds and is soluble in water. The
lipophilic end is soluble in oils. When the emul-
sion is formed, the hydrophilic groups orient
toward the water phase, and the lipophilic
hydrocarbon groups orient toward the oil phase.

Fig. 8 Equivalent total strain distribution at the homogeneous scale for the different time moments during subsequent
descaling. Note the peeling off of the partly spalled scale as first in the sequence. Source: Ref 109

Fig. 9 Effect of additives in S32 base oil on the
evolution of friction with test number. Solid

curves correspond to anodized samples, while dashed
curves represent as-received samples. Source: Ref 115
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The droplet size, its standard variation within
the spray, its concentration, and the emulsifier
and its concentration are all involved in the pro-
cess and determination of the nature of the
mechanisms. These mechanisms are the droplet
capture, which depends on the adhesion
between the droplets and the moving surfaces;
plate-out, which forms a uniform oil pool at
the entrance to the contact zone; and the
dynamic concentration theory. It has been
shown that an increase in oil concentration
leads to an increase of the film thickness and
that the lubrication mechanisms are very sensi-
tive to speed (Ref 120). The fundamental prob-
lem in the use of emulsions is the behavior of
the oil particles, the capture of which by the
entering strip or by the roll surfaces is not yet
fully understood (Ref 121).
Lubrication Regimes. Several lubrication

regimes are observed. In rolling, for instance,
it is possible to determine the nature of the
lubricating regime by comparing the thickness
of the oil film and the combined asperity
heights of the rolls and the rolled metal. Their
ratio can be defined as:

lratio ¼ hmin

s
 (Eq 25)

where hmin is the oil film thickness, and s* is
the combined roughness of the two surfaces
(Ref 122). When the oil-film-thickness-to-
surface-roughness ratio is less than unity,
boundary lubrication is present. When 1 �
lratio � 3, mixed lubrication prevails, while,
for a ratio over three, hydrodynamic condi-
tions and full separation of the contacting sur-
faces prevail.
The lubrication regimes may be illustrated by

making reference to the Stribeck curve, first
plotted for describing friction conditions in the
bearings of rail car wheels. In the Stribeck
curve, the coefficient of friction is plotted
against the modified Sommerfeld number, S,
defined as:

S ¼ Znrel
p

(Eq 26)

where Z is the dynamic viscosity, Dn is the rel-
ative velocity, and p is the pressure. A sche-
matic diagram of the Stribeck curve is shown
in Fig. 10, with the identified boundary, mixed,
and hydrodynamic mode of lubrication.
Boundary lubrication is characterized by sig-

nificant amounts of metal-to-metal contact and
some lubricating pockets. The local friction
and metal-to-metal contacts depend on the
quality of the molecular bonding to the surfaces
by the lubricant. This is temperature sensitive,
meaning that boundary lubrication is usually
ineffective in hot rolling, even for aluminum,
which is usually hot rolled in the 300 to
500 �C range. The thickness of the film is
low, and the asperities pierce through the lubri-
cant. As the viscosity and/or the relative veloc-
ity increase, a mixed mode of lubrication is
observed in which more lubricant pockets and

fewer asperity contacts are found. In these
regimes, the surface roughness of the resulting
product decreases as a consequence of the con-
tact and approaches that of the die. The hydro-
dynamic regime follows, with complete
separation of the surfaces. The lubricant film
is thicker than the combined surface roughness
of the die and plastically deformed workpiece.
Plastic deformation of the surface under a fluid
film causes roughening. Further subdivision
of the hydrodynamic regime is possible by
identifying elastohydrodynamic or plastohydro-
dynamic lubrication, depending on the defor-
mation of the asperities and their resistance to
deformation. The events in the contact zone
are largely influenced by entrainment of liquid
lubricants. In general, more lubricant is carried
into the roll gap as the relative speed increases
(Ref 123). Increasing viscosity results in hydro-
dynamic escape, joining increasing speed and
larger frictional resistance to increase the ten-
dency toward hydrostatic behavior (Ref 124).
When the lubricant is within the deformation
zone, its effect on the rolling process is depen-
dent on the directionality of the roll roughness.
Randomly oriented roughness leads to the
lowest loads on the rolling mill because less
lubricant leaks away (Ref 125). Lubricant com-
position has a significant impact on the tribo-
logical conditions; hence, different additives
are used for different materials. For instance,
mineral seal oil with appropriate additives is
useful when cold rolling aluminum. Palm oil
in an emulsion is used when steel is cold rolled.
Mineral seal oil in water emulsion may be used
when hot rolling aluminum. Synthetic oil in
water emulsion may be used when hot rolling
steel, although environmental concerns often
limit its use, and plain water is commonly used
instead. Emulsifiers and additives are used as
required (Ref 5, 117, 118, 126). Control of
lubrication is the main barrier to improving pro-
ductivity and surface quality (Ref 127).
Sheet metal forming of tribologically diffi-

cult materials, such as stainless steel, alumi-
num alloys and titanium alloys, or forming in
tribologically difficult operations, such as iron-
ing, punching, or deep drawing of thick plate,
often requires the use of environmentally haz-
ardous lubricants such as chlorinated paraffin
oils to avoid galling. A system of tests has
been developed for laboratory testing of fric-
tion and lubrication in sheet metal forming
that especially focuses on appropriate simula-
tion of the actual conditions in production
(Fig. 11) (Ref 128).
This test system has proven appropriate to

evaluate a large number of lubricants in a broad
variety of sheet-forming processes, thus allow-
ing a speedy selection of appropriate lubricants
for production. Production tests of the same
lubrication systems have been run in parallel
to prove that the laboratory tests work satisfac-
torily in simulating the production conditions.
This work resulted in more environmentally
friendly lubricants being found that could
replace the hazardous ones in sheet-forming

operations on mild steel as well as stainless
steel.
To create ultrafine-grained steels, hot rolling

with a high reduction and a high rolling force
is necessary, leading to the development of
innovative hot rolling oils. Data for the coeffi-
cient of friction under the wide range of tribo-
logical conditions have been obtained in order
to understand the lubrication mechanism in
hot rolling of these materials (Ref 129).

Effect of Process and Material
Parameters on Interfacial
Phenomena

Every tribological system in metal forming
involves a large number of parameters, the
interaction of which determines the success of
a deformation process. For instance, in flat roll-
ing the most important parameters are the
reduction, speed, temperature, oxide scaling,
and surface roughness, while the material para-
meters are the resistance to deformation, sur-
face hardness, and anisotropy. The effects of
some of these on the roll/strip interface phe-
nomena are considered next.
The coefficient of friction is dependent on

the loads acting normal to the surface. The
exact nature of that dependence is not clear
but is connected to the attributes of the contact-
ing materials, their elastic and plastic strength,
roughness, relative velocity, and so on. It is
the interaction of these parameters that will
determine the frictional behavior of the contact-
ing materials. In rolling, for instance, as the
reduction is increased, the loads on the rolled
metal and thus the roll pressures increase. As
a consequence, the asperities are flattened, and
the real area of contact approaches the apparent
area at a rate that depends on the elastic and
plastic strengths of the contacting metals. The
number of adhesive bonds formed between the
two surfaces also increases. The strength of
these bonds depends on the two materials,
including their chemical affinity for each other.

Fig. 10 Schematic representation of the Stribeck curve
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The frictional resistance is likely to be
increased for dry and clean surfaces. The
roughness of the rolled surface is reduced with
the roll surface imprinted on the metal. Introdu-
cing lubricants into the contact surface changes
the reaction of the rolled metal to the reduction,
and the number of operating mechanisms also
increases. These involve the composition of
the oil, the presence of antifriction and
extreme-pressure additives, the oil viscosity,
and its viscosity-pressure and viscosity-temper-
ature coefficients. The main mechanisms and
their potential interconnections are presented
in Fig. 12 (Ref 43).
The coefficient of friction drops as the velocity

increases under the boundary- and mixed-lubrica-
tion regimes, while frictional resistance increases
with speed under hydrodynamic lubrication
caused by the increasing frictional resistance
within the layer of oil separating the surfaces
(Ref 130). There are several mechanisms respon-
sible for the velocity dependence of frictional
resistance. The first is the increase of the metal
resistance to deformation when the strain rate is
increased. Another is related to the time available
for the adhesion of the contacting asperities. The
increase of oil volume, drawn into the deforma-
tion zone, also affects the frictional phenomena.
The roughness of the roll and its direction deter-
mine the amount of the oil entering the contact
zone and its distribution.
The effect on interface phenomena of the

temperature at the contacting surfaces is the

least researched area because of the difficulties
associated with its measurement. Temperature
measurement at the center of a rolled sample
using embedded thermocouples is the common
technique, and a mathematical model is then
required to estimate the temperature at the sur-
face. The model would also require an accurate
heat-transfer coefficient in the contact zone,
which introduces another level of complexity.
Comprehensive data are obtained using the ring
compression test for determining the friction
factor for a number of materials and bulk tem-
peratures (Ref 38). Care must be taken to dis-
tinguish the influence of varying heat-transfer
conditions on the ring deformation from the
effect of friction, because both are of similar
magnitude (Ref 131). The effect of the temper-
ature on the magnitude of the coefficient of
friction in hot rolling should not be separated
from other phenomena. Chemical composition,
scale breakers, time in the furnace, and so on
should be taken into account when the coeffi-
cient is chosen for modeling.
Although general tribology opinion is that,

except in the case of very low and very high
values, friction is independent of the surface
roughness (Ref 117, 132), in metal forming
the surface roughness has an effect on friction.
Evidence that the magnitude of the roughness
of the surface and especially its direction affect
frictional resistance is evident (Ref 125), with
Fig. 13 illustrating that the lowest roll forces
during Al-Mg-Cu strip rolling, lubricated with

a mineral oil, are obtained when the roughness
direction is random.
Adverse lubricating conditions were found

while cold rolling thin steel and aluminum
strips when the roughness direction was parallel
to the direction of rolling (Ref 133). There were
also observations that friction is defined by sur-
face conditions, and the load-carrying ability is
increased when the roughness decreases (Ref
134, 135). It was also found that increasing
the oil film thickness or decreasing the rough-
ness lead to lower friction (Ref 136).

Microforming and Size Effects
Related to the Tool-Workpiece
Interface

Microforming is an appropriate technology to
manufacture very small metal parts, in particular
for bulk production, because they are required in
many industrial products resulting from micro-
technology. The manufacture of microformed
metal parts always involves size effects. These
size effects make the downscaling of macroscale
processes evenmore difficult, because the produc-
tion parameters cannot simply be changed accord-
ing to the rules of similarity. The sources of the
size effects can be divided into physical and struc-
tural sources (Ref 137). Among physical sources
directly related to the tool-workpiece interface is
the surface-to-volume size ratio (SVS). This ratio
is relevant for all effects that are dominated by
surface effects. As the part size decreases, the
ratio of surface to volume increases, which makes
the surface effects more pronounced. The occur-
rence of size effects due to the SVS depends on
whether the whole or only a fraction of the surface
participates in the process. Another physical
source is the forces-relation size effect. There
are different forces that act on a part during defor-
mation processing besides the processing force,
namely, van der Waals force, surface tension,
and gravitation. These forces are relatively small
and can be neglected in conventional forming of
macroscale parts. However, in microforming
these forces must be taken into account, because
they are relatively large when compared with the
process forces. The relationship between these
forces and process force, or between two of these
forces, can lead to size effects. The surface struc-
ture scalability size effect should be named among
structural sources of the size effects related to the
interface. Like the grain size of the metal, the sur-
face structure is the result of the history of the part.
It is influenced by cutting processes and surface
roughening, flattening, or intended structuring
during forming processes. The result of these
treatments is also influenced by the grain size,
because it affects elementary processes such as
grain tilting in forming or elastic springback in
cutting operations. In principle, the surface rough-
ness is independent of the part size. It is often not
possible to reduce the surface roughness along
with the part dimension, thereby increasing the
influence of surface roughness. The microscale
contact remains unchanged, while the macroscale

Fig. 11 Schematic representation of tribological simulative tests for sheet metal forming. Source: Ref 128
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contact is changed due tominiaturization. Particu-
larly under lubricated conditions, this leads to
size-dependent friction behavior.
Deep Drawing. There are several para-

meters that affect the deep drawing process.
The most important is friction at the flange
and at the radius of the die. This friction is also
affected by size effects when transferring the
forming technology from macro- to microform-
ing. A new friction test method has been devel-
oped to investigate the friction behavior within
deep drawing (Ref 138, 139). The friction coef-
ficients at the flange and at the die radius were
calculated from the punch force and the punch
stroke of the deep drawing process. Instead of
blank deep drawing, strip drawing was applied
for this investigation, so that the tangential
pressure at the flange area is avoided. The
results of the friction coefficient calculation
for microscale strip drawing are presented in

Fig. 14. The results consistently show that fric-
tion is strongly dependent on pressure, being
highest at low pressure.
Experimental results show a significant

increase in friction, up to a factor of 20, with
decreasing specimen size when using extrusion
oil as the lubricant (Ref 140). The amount of
changes in friction conditions was determined
during double-cup extrusion testing supported
by numerical identification and finite-element
simulation. It was concluded that the so-called
open and closed lubricant pockets are responsi-
ble for the size effect (Fig. 15). The peaks at the
rough surface are flattened, and the oil is held in
the valleys between them during the extrusion.
When the valley is located at the border of the
part, the oil can escape and no lubrication is
given.
The existence of open and closed lubricant

pockets could be inferred from measurement

of the roughness of the macroscopic part after
the extrusion. The roughness at the border areas
was significantly less than the roughness of the
middle area (Ref 141, 142).
When scaling down forming processes, the

contact area is reduced significantly, while the
size of single-topography features remains
roughly constant. The ratio of closed lubricant
pockets is also reduced, and the external load
will be transmitted more and more by the real
contact area, which will increase friction. Addi-
tionally, the total number of asperities is
reduced. At present, nanotopography is being
considered for characterizing friction in micro-
forming applications. The impact of the
measured nanotopography on the friction con-
ditions, in combination with liquid lubrication,
has been investigated during flattening experi-
ments with idealized asperities coupled with
finite-element simulation of the loaded contact
state (Ref 143). The next step is detailed inves-
tigation of the influence of the microstructure of
the workpiece material on the formation of the
nanotopography. Detailed knowledge about
the evolution of surface topography is essential
for characterizing the workpiece surface in
terms of its frictional behavior in microforming
applications.
An alternative approach for modeling friction

on the tool surface involves the creation of an
empirical relationship between the friction
coefficient and the tool roughness profile (Ref
144). The effects of load and metal flow have
been considered, and a geometric description
of the tool interface with zero friction has been
developed, based on surface measurements (Ref
56). The tool surface during the ring compres-
sion test was modeled with a sinusoidal profile
and zero friction in this approach (Fig. 16).
In the ring compression test, the same change

of inner radius with reduction in height between
the conventional friction factor with a flat sur-
face profile and the given geometric model
under conditions of zero friction is used to deter-
mine the equivalent roughness geometry for a
particular friction factor. It can be used for corre-
lation with the real surface of a tool by direct
measurement of the die surface. This model
can be incorporated into simulation software
for a potentially more realistic interpretation of
the friction effect in terms of flow and load.
Application of the atomic force microscope as

a research tool to study the adhesion, friction,
and lubrication phenomena is becoming impor-
tant. The tip of the microscope can be considered
as a single asperity and is able to measure forces
as low as 10�9 N. The data obtained by the
atomic force microscope for the mechanical
properties of a thin film of gold were reported
as early as 1993 (Ref 145). The wear properties
of organic lubricants have been measured (Ref
146), and friction forces at the atomic level have
been shown to depend partly on sound energy
(Ref 147). However, the potential of the atomic
force microscope for characterizing friction on
the microscale and in microforming applications
is still largely unexploited.

Fig. 12 Schematic representation of the competing mechanisms affecting friction in the flat rolling process. Source:
Adapted from Ref 43
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Choosing Optimal Forging Conditions in
Isothermal and Hot-Die Forging, J. Appl.
Metalwork., Vol 3 (No. 4), 1985, p 421–431

92. P.R. Burte, Y. Im, T. Altan, and
S.L. Semiatin, Measurement and Analysis
of Heat Transfer and Friction during Hot
Forging, Trans. ASME, Vol 112, Nov
1990, p 332–339

93. W. Nshama and J. Jeswiet, Evaluation of
Temperature and Heat Transfer Conditions
at the Metal-Forming Interface, Ann. CIRP,
Vol 44 (No.1), 1995, p 201–204

94. J. Jeswiet and S. Zou, A Multi-Point Tem-
perature Sensor for Metal Rolling, Ann.
CIRP, Vol 41 (No. 1), 1992, p 299–302

95. P.G. Stevens, K.P. Ivens, and P. Harper,
Increasing Work-Roll Life by Improving
Roll Cooling Practice, J. Iron Steel Inst.,
Vol 209, 1971, p 1–11

96. A. Silvonen, A. Malinen, and
A.S. Korhonen, A Finite Element Study
of Plane Strain Hot Rolling, Scand.
J. Metal., Vol 16, 1987, p 103–108

97. C.C. Chang and A.N. Bramley, Determi-
nation of the Heat Transfer Coefficient at
the Workpiece-Die Interface for the
Forging Process, Proc. Inst. Mech. Eng.,
Part B—J. Eng. Manuf., Vol 216 (No.
8), 2002, p 1179–1186

98. M. Rosochowska, K. Chodnikiewicz,
and R. Balendra, A New Method of Mea-
suring Thermal Contact Conductance,
J. Mater. Process. Technol., Vol 145,
2004, p 207–214

99. R.E. Smelser and E.G. Thompson,
Advances in Inelastic Analysis, Winter
Annual Meeting of the ASME,
S. Nakazawa, K. Willam, and N. Rebelo,
Ed., AMP-88, PED-28, Boston,
MA. 1987, p 273–278

100. V.K. Jain, Determination of Heat Transfer
Coefficient for Forging Applications,
J. Mater. Shaping Technol., Vol 8, 1990,
p 193–202

101. O. Pawelski, Berechnung der Wärme-
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Heat-Transfer Interface Effects for
Solidification Processes
P.A. Kobryn, Air Force Research Laboratory

A KEY ASPECT OF SOLIDIFICATION
process modeling is the treatment of the inter-
face between the solidifying casting and the
mold in which it is contained. The solidification
rate of a casting is governed by the rate of heat
extraction, which in turn is dominated by the
rate of heat transfer across the casting-mold
interface (although heat flux through the casting
and the mold and heat transfer from the mold
to the environment also play a role). Hence,
solidification process modeling tools must be
able to treat the casting-mold interface in a
manner that appropriately captures the relevant
interface heat-transfer phenomena.
Solidification process modeling tools typi-

cally model heat transfer within the casting
and within the mold by numerically solving
the transient, nonlinear heat conduction energy
equation as a function of time, given user-speci-
fied thermophysical material properties, initial
conditions, and boundary conditions (Ref 1).
Heat transfer across the casting-mold interface
is generally treated by applying a heat-flux
boundary condition to the interface. The heat
flux, q, across the interface is defined as:

q ¼ hðT2 � T1Þ

in which h is the interface heat-transfer coeffi-
cient, and (T2 � T1) is the temperature drop
across the interface (Fig. 1). Hence, the inter-
face region is not explicitly modeled but instead
is treated as a zero-volume surface that behaves
as a resistor to heat flux.
This interface heat-flux boundary condition is

an empirical simplification of the actual phe-
nomena of interface heat transfer. It is employed
because the physical mechanisms of interface
heat transfer, which are described in the follow-
ing section, are too complex to be simulated in
an efficient manner, given the current state of
modeling and simulation technology. Use of this
boundary condition requires the interface heat-
transfer coefficient to be specified by the user
during preprocessing. Typical solidification pro-
cess modeling tools allow h to be defined as a
constant value or as a function of time, tempera-
ture, and/or interface pressure/gap size (Ref 2).

The proper selection of h is critical for obtain-
ing accurate simulation results. Unfortunately,
the true value of h is highly dependent on the
specific characteristics of the interface, which
vary with time and with casting configuration.
Additionally, the value of h cannot be calcu-
lated a priori and cannot be explicitly measured
experimentally. Instead, analytical or numerical
techniques must be used to infer the value of
h for a given casting arrangement, using tem-
perature measurements from the casting and
the mold during solidification.
An in-depth discussion of casting-mold inter-

face heat-transfer phenomena is provided in the
following section. The subsequent sections con-
tain discussions of practical considerations and
methods for incorporating h into models, quan-
tifying h experimentally, and selecting h for a
given casting configuration. Finally, select
results from the literature are described to
guide the solidification modeler in determining
appropriate values of h for specific casting
configurations.

Casting-Mold Interface
Heat-Transfer Phenomena

Although the casting-mold interface com-
monly is assumed to be a zero-volume surface
for process modeling, it is actually an interface
region with finite volume and three-dimen-
sional characteristics. The specific behavior of
the interface region is governed by a combina-
tion of complex phenomena, including heat
transfer, fluid flow, solidification, deformation,
solid-state phase transformation, and chemical
reaction. To understand the evolution of heat-
transfer conditions across the interface as solid-
ification progresses, it is helpful to consider the
physical characteristics of this interface region
over time.
When the casting is in the liquid state, the

extent of physical contact between the casting
and the mold is high and the thickness of the
interface region is small, which allows a high
rate of heat transfer via conduction through
those portions of the casting and the mold that

comprise the interface. As the liquid cools and
solidification begins, asperities form on the
surface of the casting, and the contact between
the casting and the mold degrades. Heat transfer
still occurs through conduction at the points of
contact, but the contact area is smaller and the
conduction distance is greater; concomitantly,
the rate of heat transfer is lower.
As solidification proceeds, local conditions

often cause the casting to shrink away from
the mold surface, thereby forming a physical
gap between the casting and the mold, for
example, when the casting contracts as it cools
(Fig. 2) (Ref 3, 4). This gap is likely to be filled
with a gas either from the ambient environ-
ment, from outgassing of the mold, or from a
chemical reaction between the casting and the
mold surface. At this point, heat transfer occurs
via conduction through and/or radiation across
the gap when the gap is small and conduction,
convection, and radiation as the gap becomes
larger. The rate of interface heat transfer in this
gap-forming scenario is usually much lower
than the initial rate due to the typically low
values of thermal conductivity exhibited by
gases, the increased thickness of the interface
region, the decreasing temperature of the cast-
ing surface (which greatly reduces radiation
heat transfer), and the limited space available
for convection (Fig. 3a).

Fig. 1 Temperature drop across the casting-mold
interface

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 144-151

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Alternatively, local conditions can cause the
casting to move toward the mold surface as
solidification proceeds, for example, if there is
a mold core in the casting (Ref 5, 6). In this
case, the contact pressure between the casting
and the mold at the interface increases, and
the thickness of the interface region becomes
smaller while the contact area becomes larger;
hence, the rate of heat transfer is increased.
In certain cases, the effect of this phenomenon
on the value of the heat-transfer coefficient
can be quite large (Fig. 3b).
The behavior of the casting-mold interface

is influenced by many factors related to the
casting and mold materials, the casting and
mold geometries, and the selected casting pro-
cess (Ref 7). For example, interface contact is
impacted by gravity, metallostatic head, volu-
metric expansion/contraction during liquid-

solid and solid-state phase transformations,
thermal expansion/contraction, viscosity/flow
stress of the casting, mold-wetting characteris-
tics, and the surface finish of the mold. Addi-
tionally, the presence of reaction products,
entrained gases, mold washes, lubricants or
other films or coatings, and the composition of
the ambient atmosphere can impact the behav-
ior of the interface. The thermal properties of
the materials present at the interface also play
a role in determining the rate of heat transfer
across the interface.

Incorporating the Interface
Heat-Transfer Coefficient in Models

As discussed earlier, the complexity of the
interface heat-transfer process makes explicit
modeling of the interface region generally
infeasible and therefore forces modelers to
employ simplified methods for treating heat
transfer across the interface. The use of a
heat-flux boundary condition at the interface is
widely accepted by the solidification modeling
community and requires the user to define the
value of the interface heat-transfer coefficient, h.
The extent to which h is defined as a function
of time, temperature, and/or interface pressure
is governed by the capability of the selected
solidification modeling software, the required
fidelity of model predictions, the complexity
of the casting process and casting geometry,
and the availability of appropriate experimental
input data.
Most commercial solidification modeling

packages allow the user to define h as a constant,
a function of time, a function of casting temper-
ature at the interface, or a function of mold tem-
perature at the interface. Although contact
condition (including contact pressure) is a key
factor in determining the rate of heat transfer
across the interface, most commercial codes are
either incapable of modeling contact stresses/
gap formation, lack appropriate material prop-
erty data to accurately model interface contact
conditions, or add an unacceptable amount of
computation time if mechanical stress/strain is
modeled. Hence, modelers generally choose to
define h as a function of casting surface

temperature alone, h(T). Various researchers
have shown this choice to be more accurate than
the other commonly available options (Ref 8–
11). This approach works reasonably well when
the required model fidelity is not overly high,
the casting geometry is relatively simple, the
casting process itself is not overly sensitive to
the value of h, and experimentally determined
values of h as a function of casting surface tem-
perature are available for the selected casting
system. That is, the systems have the same or
very similar casting alloy, mold material, general
casting shape/size, and casting environment.
As the required model fidelity becomes

greater and/or the geometric complexity of the
casting increases, the appropriateness of defin-
ing h as a function of casting surface tempera-
ture alone becomes questionable. In such
cases, local interface conditions drive local var-
iations in h at a given casting surface tempera-
ture and therefore drive error into the model
results. This error can be reduced either by
modeling contact conditions/gap formation and
defining h as a function of both casting surface
temperature and contact pressure/gap size
(or of gap size alone), or by intelligently prese-
lecting appropriate values of h as a function
of casting surface temperature for geometrically
differing portions (segments) of the interface.
The capability of commercial casting simula-
tion packages to couple thermal and mechanical
phenomena has greatly improved over the last
decade, making the modeling of gap formation
increasingly feasible. However, the availability
of appropriate mechanical input data is still
quite limited.
The availability of experimentally determined

values of h also drives the modeler’s choice of
how to define h. As described subsequently,
many researchers have developed experimental
and analytical/numerical procedures for deter-
mining h as a function of time, interface contact
pressure, and/or gap size for various casting geo-
metries, casting alloys, mold materials, mold
coatings, and casting processes. (Reference 7
and the Appendix of Ref 12 provide a reason-
ably comprehensive list of these publications.)
However, few researchers have published results
that show the variation of h with casting surface
temperature, and no readily accessible publica-
tion has provided values of h as a function of
both casting surface temperature and contact
condition/gap size (Ref 8–11, 13, 14). Addition-
ally, a limited number of casting systems have
been studied, resulting in a limited availability
of data. Hence, the modeler is often left to either
perform system-specific experiments and ana-
lyses to determine appropriate values of h or
to estimate values of h from nonrepresentative
published data.

Quantifying the Interface Heat-
Transfer Coefficient Experimentally

Researchers face many challenges in attempt-
ing to quantify the value of h. As stated earlier,

Fig. 2 Formation of a gap as the casting shrinks away from the mold. Source: Ref 4
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A03360. (a) Outer interface. (b) Inner casting-mold
interface. Source: Ref 5
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h cannot be calculated a priori from material
properties and geometric parameters, and h can-
not be measured directly via physical experi-
ment. Instead, h generally is inferred by
measuring the transient temperature distributions
(temperature as a function of time, T(t), at multi-
ple locations) within the mold and the casting
experimentally and then using the resultant T(t)
data to determine h using one or more analytical
or numerical modeling/estimation/optimization
techniques. Accuracy can be impacted by vari-
ous factors related to the numerical analysis
techniques, the casting system being modeled,
and the experimental apparatus, but the ability
to accurately obtain T(t) data from experiment
is the most challenging factor to overcome.
Experimental Challenges. The process of

collecting T(t) data from points within the
casting and the mold through experiment is not
trivial. Ideally, one would measure the tempera-
tures precisely at the casting and mold surfaces
that comprise the interface as well as at multiple
locations near the interface in both the casting
and the mold throughout the casting process.
Such measurement would require the precise
placement of near-zero latency (that is, very
small time lag between a real change in temper-
ature and the detection of that change by the sen-
sor); near-zero thermal mass; and high-accuracy
temperature sensors at locations in the mold, at
the mold surface, and within the mold cavity
prior to initiating the experiment. Unfortunately,

such sensors do not exist, so most experimental-
ists resort to using thermocouples. Figure 4
shows a typical test arrangement.
The use of thermocouples is problematic

because they have non-zero latency, non-zero
thermal mass, and non-zero innate error, and
they require lead wires (and often a cavity
through which the lead wires can pass) to con-
nect to the data acquisition system. Hence, they
cannot capture extremely rapid transients, and
they often have a nonnegligible effect on the
thermal field in which they are embedded. They
are also difficult to embed at precise locations
within the mold (particularly in sand molds)
and are even more difficult to locate precisely
within the mold cavity (the volume into which
the molten alloy will be poured to make
the casting). Furthermore, it is difficult to
ensure that the thermocouples remain in place
as the casting is poured; as the casting solidi-
fies, cools, and contracts; and as the mold heats
up and expands. In fact, it is possible for a gap
to form between the casting or mold and the
thermocouple, resulting in inaccurate tempera-
ture measurements (Ref 15). Finally, the lim-
ited temperature ranges and survivability of
thermocouples in high-melting-point, reactive
alloys impede the ability to collect complete
temperature data inside the casting. Titanium
castings are an example (Ref 15). A detailed
review of experimental considerations related
to the use of thermocouples to capture

temperature histories during casting can be
found in Ref 10 and 14.
Characterizing and controlling variability in

the casting experiments is also a concern. Var-
iations in parameters such as initial mold tem-
perature, pouring temperature, and melt
volume and composition can be characterized
and/or controlled fairly accurately, but varia-
tions in pouring conditions, thermocouple
placement/movement, and mold composition
and geometry (in the case of sand or investment
casting, for instance) can be very difficult to
characterize and control. The level of variabil-
ity will depend greatly on the choices made
during the design and execution of the experi-
ment. Hence, it is very important to anticipate,
minimize, and understand experimental varia-
bility when planning and conducting interface
heat-transfer experiments and to adjust T(t)
results (and/or error bars) accordingly.
In extreme casting conditions (such as in

reactive-alloy die casting), the reliability of
thermocouple data can be extremely low. In
such cases, certain researchers have comple-
mented thermocouple readings with the use of
mold microstructure signature analysis (Ref 15).
The mold microstructure signature analysis
relies on destructive inspection of the micro-
structure of the mold to infer local temperature
maxima based on well-characterized liquid- and
solid-state reactions, phase transformations,
and annealing/aging phenomena (Fig. 5–7).
The timing and shape of the temperature transi-
ents are captured by the thermocouples, while
the local temperature maxima are obtained
from the postcasting mold microstructure
characterization.
Gap Size. In addition to measuring tempera-

ture, many researchers have also chosen to
measure gap width in an attempt to correlate
h to gap size (Ref 3, 4, 16). In recent times,
these researchers have selected linear variable
differential transformers (LVDT) to measure
gap size over time (Fig. 8, 9). Other techniques
have also been employed. The gap-size mea-
surement complicates the experiments but
enables a much more informed analysis. As
with thermocouples, consideration must be
given to errors associated with the use of
LVDTs (or whatever gap-measurement sensor
is employed) when planning the experiment
and interpreting the results.
Analytical Challenges. One approach to

determining h from experimental T(t) data is to
solve the inverse heat conduction problem for h
(t). Various methods for solving this ill-posed,
nonlinear inverse problem can be found in the
literature, with the nonlinear estimation method
proposed by Beck being the method most com-
monly applied (Ref 17). Alternatively, one can
assume a functional form of h as a function of
time, casting surface temperature, and other
parameters and iteratively determine the best-fit
values of h using a direct calibration-curve
method, that is, by matching the temperatures
predicted via solidification modeling to those
determined experimentally (Fig. 10, 11) (Ref

TC Distance from center TC Distance from center

TC7 22 mm TC4 56 mm
TC1 40 mm TC5 62 mm
TC2 43 mm TC6 65 mm
TC3 49 mm TC8 83 mm

Fig. 4 Selection of thermocouple (TC) locations in the casting and mold for determining h at outer and inner casting-
mold interfaces in a tube-shaped casting. Source: Ref 5
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11, 14). Such calibration-curve techniques rely
on the selection of a reasonably accurate form
of the h(t) or h(T) function, and their efficiency
is greatly aided by using experience- or litera-
ture-based “educated guesses” for the initial
values of h. However, they avoid many of the
numerical issues related to data conditioning
and solution convergence often encountered dur-
ing the application of inverse methods.
Concerns regarding error in and the condition-

ing of temperature data, model oversimplifica-
tion, solution convergence, and computational

intensity remain for many of these methods,
making them somewhat difficult to apply in gen-
eral practice. Modern solidification modeling
packages (such as ProCAST or MAGMASOFT)
and optimization software packages (such as
iSIGHT) can greatly simplify and improve the
process of determining h from experimental
T(t) data, but the lack of precise physical experi-
ments still hampers the proliferation of heat-
transfer coefficient data (Ref 14, 18).
Concerns regarding the applicability of exper-

imentally developed values of h to other casting

shapes/sizes also abound. One major concern is
that the output of the inverse analysis is usually
a set of values for h as a function of time, h(t).
Clearly, such values are tied to the specific cast-
ing configuration employed in the experiment,
because the timeframe for cooling and solidifica-
tion is closely tied to the size and shape of the
casting. Given that it is cooling and solidification
that drive the contact condition at the interface,
which, in turn, drives the value of h, h(t) results
are not universally applicable to different casting
configurations. Instead, the h(t) values must be
used to develop values of h as a function of
some parameter that correlates more generally
to changes in the interface as casting progresses,
such as casting surface temperature, contact
pressure, or gap size.
For example, modelers often choose to

express h as a function of casting surface tem-
perature. Values of h as a function of casting
surface temperature can be derived readily from
h(t) data by modeling the experimental casting
using the h(t) results from the inverse analysis,
extracting model results for T(t) at the surface
of the casting, and manually converting the
h(t) data to h(T) data.
Correlations between h and interface contact

pressure and/or gap size can also be developed
directly from h(t) results if applied contact
stresses and/or gap sizes have been recorded/
measured as a function of time in the experi-
mental casting. Alternatively, the same model-
based procedure described in the preceding par-
agraph for deriving h(T) using results extracted
from the model can be employed to derive h as
a function of contact condition, provided that
the chosen modeling software can predict inter-
face contact condition.

Selecting the Interface
Heat-Transfer Coefficient for a
Given Casting Configuration

Because the goal of solidification modeling is
to predict how a casting solidifies without
performing physical experiments, modelers must
select appropriate values of h from available
data. Large, technologically advanced foundries

Fig. 6 Micrograph illustrating the formation of a solder
layer at the surface of a tool steel mold insert

after multiple titanium alloy castings. Source: Ref 15

Fig. 5 Macrograph and associated micrographs illustrating the microstructure variations observed in a tool-steel
mold insert after multiple titanium alloy castings. Source: Ref 15

Fig. 7 Macrograph and associated plot of microhardness illustrate the correlation of hardness, microstructure, and
known steel phase transformation and tempering temperatures. Diamond pyramid hardness (DPH, Vickers)

and Rockwell C values are given. Source: Ref 15
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often generate a set of heat-transfer coefficient
data that spans the range of casting alloys, mold
materials, and generic casting shapes encoun-
tered during the course of their business, but
they are reluctant to share their databases.
Hence, smaller foundries and those engaged in
independent solidification modeling research
must seek data from the open literature.
A multitude of publications related to inter-

face heat transfer in castings are available in
the scientific and technical literature. Over the
last several decades, numerous experimentalists
have studied the effect of select casting process
variables on the value of h by conducting con-
trolled experiments using a variety of casting
configurations. A rather comprehensive listing
of such studies was compiled by Papai and
Mobley in 1987 and more recently by Pehlke
in 2001 (Ref 7, 12). The effect of factors such
as casting alloy, mold material, mold surface
finish, mold wash, superheat of the melt, inter-
face contact pressure, and casting shape on
h has been investigated in great detail.
Unfortunately for themodeler, the vastmajority

of publishedwork regarding interface heat transfer
has been focused on determining physical
mechanisms rather than on providing modelers
with appropriate input data.Data that are available
are often in the form of h(t) for the specific experi-
mental casting, and complete information regard-
ing the experimental configuration is not always
provided. Databases included with commercial
software packages are encumbered by similar
issues. Hence, themodeler is forced to apply engi-
neering expertise in choosing the best selection of
h for a given casting model.
A selected summary of h data from the open

literature for various types of aluminum casting
is provided in Table 1. Publicly available data
for other materials, such as cast iron, steel,
magnesium, and copper, are quite scarce and
therefore are not included in the summary table.
A general flowchart for selecting appropriate

values of h from data in the literature for a
selected casting configuration is presented in
Fig. 12. This flowchart is based on an assimila-
tion of various methodologies suggested by
multiple researchers and is intended to serve
as a guide for the casting modeler.

Fig. 8 Schematic diagram of an experimental setup for measuring gap size, using linear variable differential
transformers (LVDTs), and temperature, using thermocouples, in a cylindrical casting. Source: Ref 5
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function of time for the experimental setup in

Fig. 8. htc, heat-transfer coefficient. Source: Ref 5

Fig. 10 Variation of h as a function of casting surface temperature derived via the calibration-curve method. Source:
Ref 14

Fig. 11 Comparison of the temperature history predicted using the h(t) function in Fig. 10 with the temperature
history measured experimentally. Source: Ref 14
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Examples

To illustrate how a modeler may experimen-
tally determine and apply appropriate values of
h for a selected casting model, two examples
from the literature are provided. The first exam-
ple illustrates a method for characterizing the
difference in h as a function of location in bar
and plate castings, while the second example
illustrates a method for characterizing h values
for gap-forming and contact-inducing interfaces
and then selectively applying them to a com-
plex casting.

Example 1: Bar and Plate. Prasana Kumar
and Kamath recognized the need to characterize
h for different boundary types (Ref 22). Hence,
they designed an experiment to assess the vari-
ation of h in different segments of the casting-
mold interface for a square bar and rectangular
plate casting. The Al-3Cu-4.5Si castings were
made in thermocoupled cast iron molds. Four
thermocouples were placed at distinct locations
along the horizontal axis in each mold at the
midheight of the casting. Analysis was con-
ducted to determine the values of h as a func-
tion of time, considering one, two, and three

interface segments, respectively. The results
showed that the bar casting has little variation
in h as a function of horizontal location, while
the plate casting has a significant variation in
h as a function of horizontal location. Informa-
tion from experiments such as these can be used
to apply engineering judgment to identifying
appropriate interface segments and associated
h values for a real casting.
Example 2: Titanium Cylinder and Tube.

Kobryn and Semiatin also recognized the need
to consider local interface characteristics when
defining h for a given casting (Ref 11). In this
case, the variation of h with two interface types,
gap-forming, or “shrink-off,” and contact-
inducing, or “shrink-on,” were explored for cyl-
inder- and tube-shaped Ti-6Al-4V castings in
H13 tool steel molds. Two cylinder diameters
and two core diameters were considered, result-
ing in a total of four different casting geome-
tries. Thermocouples were embedded in the
molds and castings at various locations, and
multiple casting trials were performed for each
casting geometry (Fig. 13).
The calibration-curve method was used to

determine the best-fit values of h as a function of
casting surface temperature for one gap-forming
casting and one contact-inducing casting, based
on an assumed functional form of the h(T) curve
for each interface type. For the gap-forming case,
h was assumed to have its maximum value in the
liquid state, decrease linearly from the liquidus to
the solidus, then decrease linearly from the solidus
to a presumed gap-forming temperature, and
finally decrease linearly from the gap-forming
temperature to room temperature. For the con-
tact-inducing case, the h was assumed to have
the same initial value in the liquid as for the gap-
forming case, but then to increase linearly from
the liquidus to the solidus and from the solidus to
the same assumed gap-forming temperature and
remain constant thereafter.
The h values for each interface type that

were obtained via the calibration-curve method

Table 1 Maximum reported h values for various casting configurations during permanent mold casting, die casting, and sand
casting of aluminum alloys

Material

Casting thickness,

mm h, W/m2�K Comments Ref

Casting aluminum

alloy Mold Mold coating

Pure (a) Graphite 34 �2250–3250 Cylinder in a permanent mold 16
Pure (a) Graphite 22 �3000–5000 Horizontal plate in a permanent mold 16
Al-13.2Si (a) Graphite 34 �3000 Cylinder in a permanent mold 16
Al-13.2Si (a) Graphite 22 �3000–5000 Horizontal plate in a permanent mold 16
Pure Cast iron (a) 19 �1150 Vertical plate in a permanent mold 8
Pure Steel (a) 19 �1900 Vertical plate in a permanent mold 8
AC8A(b) SKD61 die steel TOYOCA-ACE

GR-851 graphite
15 �2700 (outer wall) �40,000 (inner wall) Tube in a permanent mold 5

AC8A(b) SKD61 die steel FOSECO-DYCOTE 39 white coating 15 �1500 (outer wall) �20,000 (inner wall) Tube in a permanent mold 5
A356 SKD61 die steel (a) 15 �3000 (outer wall) �40,000 (inner wall) Tube in a permanent mold 5
Pure SKD61 die steel (a) 15 �3000 (outer wall) �100,000 (inner wall) Tube in a permanent mold 5
Al-Si eutectic SKD61 die steel (a) 15 �2000 (outer wall) �100,000 (inner wall) Tube in a permanent mold 5
A356 (a) (a) (a) �5500 Commercial hubcap permanent mold casting 14
A380 H13 tool steel (a) 0.8 78,000–87,000 Die casting; P = 12,700–25,400 psi 19
Unspecified Green sand N/A 30 �1000 Cylinder sand casting 20
Pure Sand N/A (a) �150 Sand casting 21

(a) Not reported. (b) JIS H5202, similar to A336

Fig. 12 Flowchart for selecting appropriate values of the interface heat-transfer coefficient for a complex casting
from published interface heat-transfer coefficient data
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(Fig. 14) were then applied to the remaining
castings for validation purposes. Reasonable
agreement between predicted and measured
temperature profiles was obtained for these
castings using the best-fit h(T) values from the
other castings, indicating that the proposed
functional form and associated best-fit values
of h as a function of casting surface temperature
can be applied to similar interface segments in
different castings.

The validation experiment was taken one
step further by applying the h(T) values to a
completely different casting geometry (Ref 15).
In this case, a rib-web casting, comprised of a
weblike plate with protruding ribs that form
discrete pockets, was modeled by applying the
gap-forming h(T) curve to the flat areas of the
interface and the contact-inducing h(T) to the
edge and corner radii of the interface. Again,
reasonable agreement was obtained between
predicted and simulated thermal histories,
indicating the engineering-expertise approach
to selecting h(T) is quite reasonable.

Summary

The proper selection of interface heat-trans-
fer coefficients is critical to successful simula-
tion of casting processes. Many casting
variables impact the value of h as casting pro-
ceeds. Hence, it is necessary to choose experi-
mentally determined values of h from
experimental casting configurations that most
closely match the casting to be modeled. Speci-
fying h as a function of casting surface temper-
ature provides more robust results than

specifying h a as function of time. However,
specifying h as a function of interface contact
condition (e.g., gap size or contact pressure)
can provide more accurate results if appropriate
input data are available and the added computa-
tion time is acceptable.
The application of engineering judgment to

segment the casting-mold interface into gap-
forming and contact-inducing sections is use-
ful for applying h(T) values obtained from
simple experiments to the modeling of com-
plex castings. Best results are obtained when
the modeler can conduct his/her own simple
experiments to determine h for the selected
casting process, casting alloy, and generic geo-
metric features likely to be encountered prior
to simulating complex castings. However,
extreme care must be taken to design the cast-
ing experiments to minimize error in the tem-
perature measurement and variability in the
casting trials. Once thermocouple data are col-
lected, the calibration-curve method is a sim-
ple, robust method for determining values of
h(T) from thermocouple data for different
interface types.

REFERENCES

1. “ProCAST Users Manual and Technical
Reference,” Version 3.1.0, UES Software,
Inc., Dayton, OH, 1998, p 282–308

2. T. Midea, Solidifying Casting’s Future:
Process Simulation Software Round-Up,
Mod. Cast., Vol 92 (No. 8), Aug 2002, p 32

3. K. Ho and R.D. Pehlke, Mechanisms of
Heat Transfer at a Metal-Mold Interface,
AFS Trans., Vol 61, 1984, p 587–598

4. M. Trovant and S. Argyropoulos, Finding
Boundary Conditions: A Coupling Strategy
for the Modeling of Metal Casting Pro-
cesses: Part I. Experimental Study and Cor-
relation Development, Metall. Trans. B,
Vol 31, Feb 2000, p 75–86

5. T.-G. Kim and Z.-H. Lee, Time-Varying
Heat Transfer Coefficients Between Tube-
Shaped Casting and Metal Mold, Int. J.
Heat Mass Transf., Vol 40 (No. 15),
1997, p 3513–3525

6. M. Aloe and M. Gremaud, Advanced Metal
Casting Simulations Save Time and Cost,
Cast Met. Die Cast. Times, April/May
2007, p 35–38

7. J. Papai and C. Mobley, “Heat Transfer
Coefficients for Solidifying Systems,”
Report ERC/NSM-887-13, Engineering
Research Center for Net Shape
Manufacturing, Aug 1987

8. L.J.D. Sully, The Thermal Interface
Between Castings and Chill Molds, AFS
Trans., Vol 84, 1976, p 735–744

9. M. Rappaz et al., Application of Inverse
Methods to the Estimation of Boundary
Conditions and Properties, Modeling of
Casting, Welding and Advanced Solidifica-
tion Processes VII, Proceedings, Sept 1995
(London), TMS, 1995, p 449

3,10

exposed-bead K; 6.4 mm
from casting/mold interface

1 & 5:
1 & 4:

2 & 6:

3 & 5:

7 & 9:

8 & 10:

2 & 6:

3 & 7:

4 & 8:

9:

10:

coaxial K; 6.4 mm from
casting/mold interface

coaxial K; 0.25 mm from
casting/mold interface

coaxial K; 12.7 mm from
casting/mold interface

coaxial K; 0.25 mm from
casting/core interface

exposed-bead K; 0.64 mm
from casting/mold interface

exposed-bead B; 3.2 mm
from casting/mold interface

exposed-bead K;center
of core

exposed-bead B; center
casting

(a) (b)

coaxial K; 6.4 mm from 
casting/mold interface

coaxial K; 0.64 mm from 
casting/mold interface

Top viewTop view

4

5

6

7, 9

8

1

2

2

3
4

5

6

9,10

1

7, 8

Mold

Mold thermocouples

Casting thermocouples

Casting
Mold Casting

Core

Core thermocouples

Mold thermocouples

Fig. 13 Schematic diagram of the experimental setup discussed in “Example 2: Titanium Cylinder and Tube.” (a)
“Shrink-off” casting. (b) Inner core “shrink-on” casting. Source: Ref 11

1000

6000

5000

4000

3000

2000

1000

0
1100 1200 1300

Temperature °C

h
, W

/m
2 -K

1400 1500 1600 1700

Shrink on 

Shrink off 

Fig. 14 Values of h(T) from “Example 2: Titanium
Cylinder and Tube.” Source: Ref 11

150 / Fundamentals of Process Modeling

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158254


10. K.A. Woodbury et al., “The Relationship
between Casting Distortion, Mold Filling,
and Interfacial Heat Transfer in Sand
Molds,” Report DOE/ID/1336-F, Sept
1999

11. P.A. Kobryn and S.L. Semiatin, Determina-
tion of Interface Heat-Transfer Coefficients
for Permanent-Mold Casting of Ti-6Al-4V,
Metall. Trans. B, Vol 32, Aug 2001, p 685–
695

12. R.D. Pehlke et al., “Heat Transfer at the
Metal-Mold Interface in Permanent Mold
Casting of Aluminum Alloys Project—
Final Report,” U.S. Dept. of Energy Award
No. DE-FC07-97ID159, Dec 14, 2001

13. D. O’Mahoney and D.J. Browne, Use of
Experiment and an Inverse Method to
Study Interface Heat Transfer during Solid-
ification in the Investment Casting Process,
Exp. Therm. Fluid Sci., Vol 22 (No. 3–4),
Sept 2000, p 111–122

14. R.D. Pehlke et al., “Investigation of Heat
Transfer at the Mold/Metal Interface in

Permanent Mold Casting of Light
Alloys—Final Technical Report,” U.S.
Dept. of Energy Award No. DE-FC36-
02ID14236, Oct 27, 2005

15. P. Kobryn, “The Effect of Interface Heat
Transfer on Solidification, Microstructure
Evolution, and Mold Wear in Permanent
Mold Casting of Ti-6Al-4V,” Ph.D. Disser-
tation, The Ohio State University, 1999

16. Y. Nishida, W. Droste, and S. Engler, The
Air-Gap Formation Process at the Casting-
Mold Interface and the Heat Transfer
Mechanism through the Gap, Metall.
Trans. B, Vol 17, 1986, p 833–844

17. J.V. Beck, B. Blackwell, and C.R. St. Clair,
Jr., Inverse Heat Conduction—Ill-Posed
Problems, Wiley, New York, 1985

18. M. Li, R. Vijayaraghavan, and J.E. Allison,
Development and Applications of Opt-
Cast—A Thermal Boundary Condition
and Casting Process Optimization Tool,
Simulation of Aluminum Shape Casting
Processing: From Alloy Design to

Mechanical Properties, Proceedings,
March 2006 (San Antonio, TX), TMS,
2006, p 91–100

19. S. Hong, D.G. Backman, and R. Mehra-
bian, Heat Transfer Coefficient in Alumi-
num Alloy Die Casting, Metall. Trans. B,
Vol 10, 1979, p 299–301

20. R. Rajaraman and R. Velraj, Comparison
of Interfacial Heat Transfer Coefficient
Estimated by Two Different Techniques
During Solidification of Cylindrical Alumi-
num Alloy Casting, Heat Mass Transf., Vol
44, 2008, p 1025–1034

21. M. Trovant and S. Argyropoulos, Finding
Boundary Conditions: A Coupling Strategy
for the Modeling of Metal Casting Pro-
cesses: Part II. Numerical Study and Analy-
sis, Metall. Trans. B, Vol 31, 2000, p 87–96

22. T.S. Prasanna Kumar and H.C. Kamath,
Estimation of Multiple Heat-Flux Compo-
nents at the Metal/Mold Interface in Bar
and Plate Aluminum Alloy Castings,
Metall. Trans. B, Vol 35, 2004, p 575–585

Heat-Transfer Interface Effects for Solidification Processes / 151

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Fundamentals of the Modeling of
Microstructure and Texture Evolution

Modeling Diffusion in Binary and Multicomponent Alloys . . . 155
Diffusion in Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Fundamentals of Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Modeling Diffusion with Constant D Equations . . . . . . . . . . . . 162
Modeling Variable D, Multicomponent, and
Multiphase Diffusion Problems . . . . . . . . . . . . . . . . . . . . . . 169

Diffusivity and Mobility Data . . . . . . . . . . . . . . . . . . . . . . . . 171
Diffusion Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Diffusion Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Modeling Multicomponent Diffusivity Data . . . . . . . . . . . . . . . 175
Determination of Diffusion Mobility Coefficients . . . . . . . . . . . 176
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Appendix 1: Example of Diffusion Matrices for the
Ni-0.05Al-0.10Cr fcc Composition at 1200 �C . . . . . . . . . . . 179

Localization Parameter for the Prediction of
Interface Structures and Reactions . . . . . . . . . . . . . . . . . 182

Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
The Orientation Relationship . . . . . . . . . . . . . . . . . . . . . . . . . 182
Model-Informed Atomistic Modeling of Interface Structures . . . 183
Nanosized Structural Elements of the Interface . . . . . . . . . . . . 183
Theories to Predict Low-Energy Orientation Relationships . . . . 183
Use of the Localization Parameter for Prediction of
Interface Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Estimating the Shear Modulus and Bonding Energy
Across the Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Prediction of Interface Structure in Various Systems and
Their Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Implications of Changes in Interface Structure for
Interface Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Models for Martensitic Transformation . . . . . . . . . . . . . . . . . 191
Physics of Displacive Transformations . . . . . . . . . . . . . . . . . . 192
Martensitic Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Martensitic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Overall Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Modeling of Nucleation Processes . . . . . . . . . . . . . . . . . . . . . 203
Thermodynamic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Conditions for Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
The Capillary Approximation. . . . . . . . . . . . . . . . . . . . . . . . . 204
Steady-State Nucleation Rate . . . . . . . . . . . . . . . . . . . . . . . . . 206
Transient Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Heterogeneous Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Kinetic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Cluster Gas Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . 210
Cluster Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
The Link with Classical Nucleation Theory . . . . . . . . . . . . . . . 213
Extensions of Cluster Dynamics . . . . . . . . . . . . . . . . . . . . . . . 214
Limitations of the Cluster Description. . . . . . . . . . . . . . . . . . . 216

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Appendix—Phase-Field Simulations . . . . . . . . . . . . . . . . . . . . 217

Models of Recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Recrystallization and the Avrami Kinetics . . . . . . . . . . . . . . . . 221
Mesoscale Approach for DDRX . . . . . . . . . . . . . . . . . . . . . . . 224
Mesoscale Approach for CDRX . . . . . . . . . . . . . . . . . . . . . . . 229

Crystal-Plasticity Fundamentals. . . . . . . . . . . . . . . . . . . . . . . 232
Schmid’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Generalized Schmid’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Taylor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Bishop-Hill Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Bounds for Yield Loci from Two-Dimensional
Sachs and Bishop-Hill Averages . . . . . . . . . . . . . . . . . . . . . 235

Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Self-Consistent Modeling of Texture Evolution. . . . . . . . . . . . 239
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Measuring and Representing Textures . . . . . . . . . . . . . . . . . . . 240
Predictions of Texture Evolution . . . . . . . . . . . . . . . . . . . . . . 240
Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Crystal-Scale Simulations Using Finite-
Element Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Crystal Elastoplasticity—Theory, Methods, and Applications. . . 247
Application to the Continuum Scale . . . . . . . . . . . . . . . . . . . . 253
Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Cellular Automaton Models of Recrystallization. . . . . . . . . . . 260
The Cellular Automaton Method . . . . . . . . . . . . . . . . . . . . . . 260
The Cellular Automaton Framework . . . . . . . . . . . . . . . . . . . . 260
Generating the Initial Microstructure. . . . . . . . . . . . . . . . . . . . 262
Nucleation and Growth of Recrystallized Grains . . . . . . . . . . . 262
Developments in Cellular Automaton Simulations . . . . . . . . . . 265
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Monte Carlo Models for Grain Growth and
Recyrstallization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Incorporating Experimental Parameters into the Potts Model . . . 272
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Network and Vertex Models for Grain Growth . . . . . . . . . . . . 282
History of Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Initialization and Discretization of the Microstructure Model . . . 283
Equation of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Topological Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 288
Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Phase-Field Microstructure Modeling . . . . . . . . . . . . . . . . . . . 297
Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Modeling Nucleation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Modeling Growth and Coarsening . . . . . . . . . . . . . . . . . . . . . 302
Material-Specific Inputs—Thermodynamic
and Kinetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Examples of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Modeling of Microstructure Evolution
during Solidification Processing . . . . . . . . . . . . . . . . . . . . 312

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Direct Microstructure Simulation Using the Phase Field Method . . . 313
Direct Grain Structure Simulation Using the
Cellular Automaton Method . . . . . . . . . . . . . . . . . . . . . . . . 315

Coupling of Direct Structure Simulation at
Macroscopic Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Modeling Diffusion in Binary and
Multicomponent Alloys
John Morral, The Ohio State University
Frederick Meisenkothen, UES, Inc./Air Force Research Laboratory

MODELING DIFFUSION in alloys can be
divided into two activities.One activity is tomodel
the changes in composition and phases that take
place due to diffusion. The other is to determine
the kinetic constants that are contained in the
model. Determining the kinetic constants is an
important part of diffusionmodeling, andanarticle
in thisHandbook(“DiffusivityandMobilityData”)
has been devoted to that topic. The article includes
information on how the constants are related to the
atomic mechanisms of diffusion, the atommobili-
ties, and the thermodynamic properties of alloys.
In the present article, it is assumed that the kinetic
constantsareknown,andthefocus isonmodels that
can be used to solve various diffusion problems.
The objective of this article is to provide the

reader with information needed to model diffu-
sion. To this end, the fundamental laws of dif-
fusion and the equations derived from them
are given as necessary background. Then,
well-known solutions to these equations are
presented to provide a sense of how concentra-
tions of individual elements and the overall
composition of an alloy can change during a
diffusion-controlled process. A series of appli-
cations give examples of how various diffu-
sional processes can be modeled with the
equations. Also, the applications are intended
to further extend the reader’s understanding of
conditions when diffusion is important and
how it leads to composition variations as a
function of time and temperature.

Diffusion in Technology

Diffusion can play an important role in both
materials processing and materials degradation
during the service life of a part. For example,
nearly all heat treatments involve diffusion.
Annealing to soften or homogenize, precipita-
tion treatments to strengthen, or spheroidizing
or tempering treatments to increase ductility
all require the redistribution of atoms in a mate-
rial. Gas-solid reactions such as carburizing and
nitriding to increase the wear resistance of

gears and shafts, as well as pack aluminizing
to increase oxidation resistance of turbine
blades, are other examples where engineers
use the concepts of diffusion to design new heat
treatments or modify existing ones. Other pro-
cessing technologies in which diffusion plays
an important role include metal joining by dif-
fusion bonding, material densification by hot
isostatic pressing, and low-pressure deforma-
tion by superplastic forming.
With regard to material degradation, there

are a variety of ways that diffusion can limit
the service life of a part. For example, high-
temperature coatings interdiffuse with parts
they are meant to protect. By this process, criti-
cal elements in the coating diffuse into the
underlying part, thereby reducing their oxida-
tion resistance and often reducing their
mechanical properties. Also, oxidation of
high-temperature materials is a diffusion-
affected process that reduces the cross section
of a part and may create stress raisers for crack
initiation. Metals that are body-centered cubic,
such as ferritic steels and refractory metals,
may pick up solute atoms from the environ-
ment, such as hydrogen, carbon, and nitrogen.
In time, these elements can embrittle a material
and make it difficult to deform during proces-
sing or be the cause of unexpected and cata-
strophic failures, as in the case of hydrogen
embrittlement.
Sources of Diffusion Data. The most com-

plete compilation of diffusion data is Diffusion
in Metals and Alloys, edited by Mehrer
(Ref 1). It provides data on diffusion in pure,
binary, and selected ternary systems. In addi-
tion, it has special chapters on diffusion in
amorphous metals, diffusion of interstitial
atoms, and diffusion in high-diffusivity paths
such as grain and interphase boundaries, dislo-
cations, and on surfaces. Another key reference
on high-diffusivity paths is Handbook of Grain
Boundary and Interphase Boundary Diffusion
Data by I. Kaur et al. (Ref 2).
A less complete butmore readily available ref-

erence isSmithellsMetal ReferenceBook (Ref 3).

Most editions contain diffusion data for pure and
binary alloys. Another resource is Diffusion and
Defect Data, a 92-volume set of diffusion data,
abstracts, and articles that was published from
1967 to 1992. Back issues are available online.
It has since become an online journal called Dif-
fusion and Defect Forum (Ref 4).
Because of the large number of alloy systems

of industrial importance and the limited amount
of diffusion data, there are many systems for
which diffusion data are not available in these
references. In that case, a computer search
using a general online search engine or techni-
cal journal search engine can provide data from
recent journal articles. In some cases, people
make their own measurements of diffusion data
to properly model or understand a diffusion
problem. Also, there are methods to estimate
the diffusivity from existing mobility and ther-
modynamic data. These topics are treated in
detail in the article “Diffusivity and Mobility
Data” in this Volume.

Fundamentals of Diffusion

Models of diffusional processes are typically
designed to simulate the concentration profile of
one or more components as a function of time. A
concentrationprofile is a plot of concentration ver-
sus distance that fits the boundary and initial con-
ditions of the process and satisfies the laws of
diffusion given subsequently. Concentration pro-
files can be measured experimentally by using an
electron microprobe to make concentration mea-
surements incrementally along the length of a
sample.Experimental concentration profiles taken
on a ternary diffusion couple are compared with a
model simulation in Fig. 1 taken from Ref 5.
Comparing simulated and experimental con-

centration profiles is one way to evaluate the
accuracy of a diffusion model and the diffusion
database employed. As explained in the article
“Diffusivity and Mobility Data” in this Vol-
ume, concentration profiles can be used to
create diffusion databases, too.
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Figure 1 is for diffusion in a single phase
region. Diffusion can occur in multiphase
regions as well, but only in ternary and
higher-order systems. In multiphase regions, it
is possible to plot profiles both for concentra-
tions in each phase and for the local average
concentration. In this article, the modeling of
both single-phase and multiphase profiles is
covered.

Diffusion Flux and Fick’s First Law

Two fundamental laws of diffusion were for-
mulated in the 19th century by Adolph Fick.
These laws can be used to model a variety of
diffusion problems in binary systems, as long
as the system is either isotropic or has a cubic
crystal structure (e.g., nickel-copper alloys).
These laws can be extended to more compo-
nents and other crystal structures, as discussed
in a later section.
Fick’s first law gives the flux as:

J ¼ �D@C

@x
(Eq 1)

Equation 1 indicates that a flux of atoms results
from a variation of concentration, C, with dis-
tance, x (i.e., the concentration gradient). The
proportionality constant, D, is the diffusivity
or diffusion coefficient of the alloy. As
explained in the article “Diffusivity and Mobil-
ity Data” in this Volume, this is the chemical
diffusivity and can be used to calculate the flux
for either component. The chemical diffusivity
should not be confused with the tracer or intrin-
sic diffusivity, which are different for different
components and are not appropriate for the
modeling described in this article.
The units of the flux depend on the units of

C, which in SI units is normally given as either
kg/m2 or mol/m2

, although other units are used
as well. With mass units, the flux is given as
kg/m2/s, and with mole units as mol/m2/s or
mole fraction. However, regardless of the units
of C, the diffusivity has units of m2/s.
The flux in Fick’s first law is sometimes

referred to as the flux density, because it refers
to the flux through a unit area (e.g., per square

meter). It follows that if one were calculating
the total flux passing through a membrane, it
would be the flux density times the area.
It is important to realize that J is a vector

quantity. When J is positive, mass is flowing
in the plus x-direction. When it is negative, it
flows in the negative x-direction. A key concept
of diffusion in binary alloys is that solute dif-
fuses down its concentration gradient; that is,
atoms move from regions of high concentration
to regions of lower concentration. However, for
ternary and higher-order systems, this may not
be the case, as shown later.
For isotropic or cubic crystals, Fick’s first

law applies when the concentration gradient is
in any crystal direction. However, in crystals
with less symmetry, the crystal direction is
important, as indicated by the subsequent equa-
tions, which show that a concentration gradient
in one direction can lead to a flux in another
direction:

Jx ¼ �Dxx
@C

@x
�Dxy

@C

@y
�Dxz

@C

@z

Jy ¼ �Dyx
@C

@x
�Dyy

@C

@y
�Dyz

@C

@z

Jz ¼ �Dzx
@C

@x
�Dzy

@C

@y
�Dzz

@C

@z
ðEq 2Þ

In this notation x, y, and z refer to three
orthogonal axes in a single crystal. The diffu-
sion coefficients in Eq 2 can be zero or have
finite values, depending on the symmetry of
the crystal. For a hexagonal crystal, there are
two diffusivities. One is for concentration gra-
dients in the basal plane, and the other is for
concentration gradients perpendicular to the
basal plane. However, because most available
data are for isotropic or cubic materials, the
focus of this article is on those materials for
which there is one D that is independent of
direction, and therefore, Fick’s first law applies.
Additional information on this topic is available
in Chapter 2 of Glicksman’s book, Diffusion in
Solids (Ref 6).
Polycrystalline materials may act in an isotro-

pic way, regardless of the crystal structure, if the
grains have a random orientation. Then, Fick’s
law, with one effective diffusivity, would apply.

However, polycrystalline materials contain grain
boundaries that are high-diffusivity paths for dif-
fusion. This can lead to surprising amounts of
diffusion but normally only at a temperature
below half the melting point, which is when
grain-boundary diffusion tends to dominate mass
transport. More details on high-diffusivity paths
are in the article “Diffusivity and Mobility Data”
in this Volume.

The Diffusion Equation and Fick’s
Second Law

Fick’s first law is a useful equation for
calculating the flux when the concentration gra-
dient is known. However, of more general
interest is how the concentration of a specific
element in a material varies with respect to
distance and time, C(x,t). This is obtained
from the diffusion equation, which is given
subsequently.
The diffusion equation is derived by

performing a mass balance on a small-volume
element in an alloy. As illustrated in Fig 2,
the flux into the volume element, J, may be dif-
ferent than the flux out of the volume element,
(J + dJ). It follows that the change in concen-
tration of the volume element at a given posi-
tion, x, depends on how rapidly the flux is
changing with distance at a given time, t,
according to:

@C

@t

����
x

¼ � @J

@x

����
t

(Eq 3)

Note that if the flux is decreasing with dis-
tance, the concentration will increase, because
more is entering the volume element than is
leaving. Also, if there is no difference between
the fluxes in and out, then the concentration
will stay the same.
When Fick’s first law is substituted into Eq 3,

the diffusion equation is obtained:

@C

@t
¼ @

@x
D
@C

@x

� �
(Eq 4)

Equation 4 is the basic equation used by com-
puter programs to solve for C(x,t) and is quite
general for the diffusion of either component
in a binary alloy. The only exception to Eq 4
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Fig. 1 Concentration profiles measured on a Ni-Cr-Al diffusion couple using an electron microprobe (points) and the
prediction of an error function model (lines). Source: Ref 5

Fig. 2 A small-volume element in a crystal, with a flux
entering the left side of the volume and a

different flux leaving the right side. As a result, the
concentration of the volume element will change with
time.
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is when there are sources or sinks contained in
a volume element. Sources and sinks can be a
factor when considering the diffusion of vacan-
cies, because they can be created or annihilated
at dislocations or other defects. However, sinks
and sources are not a factor for alloying ele-
ments, because they cannot be created or
destroyed.
If the diffusivity is a function of concentra-

tion, there are no simple analytical solutions
to Eq 4. However, if D is a constant, Eq 4
simplifies to Fick’s second law:

@C

@t
¼ D

@2C

@x2
(Eq 5)

This is the equation proposed by Fick in the
19th century. It is a linear differential equation
for which there are several well-known
solutions.

Diffusion in Ternary and Higher-Order
Multicomponent Alloys

Binary alloys have only one independent var-
iable, because the mole fraction or weight frac-
tion of one component can always be used to
calculate the fraction of the other component.
That is why Fick’s first and second laws are
written in terms of one variable. However,
ternary alloys have two independent variables,
and as a result, Fick’s laws must be extended
to consider the additional variable.
Extending Fick’s first law to more compo-

nents yields a series of linear equations. For
ternary alloys, the expanded form is:

J1 ¼ �D11

@C1

@x
�D12

@C2

@x

J2 ¼ �D21

@C1

@x
�D22

@C2

@x
ðEq 6Þ

Here, four diffusivities are needed. These diffu-
sivities are for isotropic or cubic materials and
should not be confused with the directional dif-
fusivities given in Eq 2. Equation 6 can be used
to calculate the flux of the third component, J3,
with the conservation equation:

J1 þ J2 þ J3 ¼ 0 (Eq 7)

Equation 6 shows that, unlike binary alloys, the
flux of atoms may go up a concentration gradient.
For example, if@C2=@x is sufficiently greater than
@C1=@x, then solute 1 will diffuse down the con-
centration gradient of component 2, even if, at
the same time, it is diffusing up the concentration
gradient of component 1. An atom moving up its
own concentration gradient is known as up-hill
diffusion and is one of several multicomponent
effects that are unique to systems that have three
or more components. Figure 3 from Ref 5 gives
an example of up-hill diffusion in which chro-
miummoves froma lowconcentration on the right
to a higher concentration on the left.
These equations can be extended to alloy sys-

tems with four components by recognizing that,

with three independent variables, there must be
three flux equations containing gradients in C1,
C2, and C3. Accordingly, a five-component sys-
tem would require four flux equations with gra-
dients in four independent variables, C1, C2,
C3, and C4. Writing out these equations for the
flux, diffusion equation, and the extended form
of Fick’s second law offers little additional
insight into diffusion in multicomponent systems
but does indicate the need for a more compact
notation. In the following, a matrix notation is
described that is used throughout, in hopes of
reaching the largest number of readers. How-
ever, a more advanced treatment would benefit
from using tensor notation.
Rounded-Bracket Notation. Note: The

symbols “A,” “B,” “C,” “D,” and so on in this
section should not be confused with similar
symbols in other sections of this article.
Matrices play an important role in the deri-

vation, application, and understanding of mul-
ticomponent diffusion equations. As indicated
previously, the diffusion equations are labori-
ous to write out and difficult to manipulate
for systems that contain more than two compo-
nents. Here, a specific type of matrix notation,
known as rounded-bracket notation (Ref 7), is
used that allows the reader to quickly recog-
nize whether a matrix is a column, a row, or
a square matrix. Calculations involving matri-
ces that are written in rounded-bracket nota-
tion are straightforward and can be performed
on most spreadsheets. A summary of
rounded-bracket notation is given as follows,
along with several examples of how to apply
the notation.
A square matrix is designated by using two

square brackets, [ ], to enclose the matrix:

A½ � ¼ a11 a12
a21 a22

� �
(Eq 8)

Column and row matrices are represented by
using one rounded bracket with one square
bracket. A column matrix is indicated by [ ),
while a row matrix is written as ( ], as shown
in the following examples:

½BÞ ¼ column matrix ¼ b11
b21

� �
(Eq 9)

ðC� ¼ row matrix ¼ c11 c12½ � (Eq 10)

The product of a row and column matrix is a
scalar, which is just a number, and is repre-
sented by using two rounded brackets, ( ), or
by using no brackets:

Cð � B½ Þ ¼ dð Þ ¼ d (Eq 11)

Rows and columns of a matrix [A] are indi-
cated by using a subscript for the number of
the row or column:

ðA1� ¼ first row of ½A� ¼ a11 a12½ � (Eq 12)

½A2Þ ¼ second column of ½A� ¼ a12
a22

� �
(Eq 13)

A single element of a matrix is designated by
indicating its row and column with rounded
brackets:

A12ð Þ ¼ a12 (Eq 14)

Calculations are simplified through the use of
rounded-bracket notation. For example, sup-
pose that the following equation needs a
solution:

? ¼ H½ � G½ � L½ Þ (Eq 15)

From the principles of matrix algebra, it follows
that the answer will have the same first and last
brackets of the equation. Therefore, the solution
is a column vector:

E½ Þ ¼ H½ � G½ � L½ Þ (Eq 16)

In a more complex example:

A½ Þ ¼ H½ � Ið � G½ � K½ Þ L½ Þ (Eq 17)

The rounded-bracket notation shows that the
product Ið � G½ � K½ Þ is a scalar equal to some
number N:
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Fig. 3 Concentration profiles measured on a Ni-Cr-Al diffusion couple using an electron microprobe (points) and the
prediction of an error function model (lines). This example illustrates the up-hill diffusion of chromium.

Source: Ref 5
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N ¼ Ið � G½ � K½ Þ (Eq 18)

Therefore, Eq 17 can be simplified to:

A½ Þ ¼ N H½ � L½ Þ (Eq 19)

In another example, the first element of the
column matrix in Eq 16 can be obtained by sub-
stituting the first row of [H], (H1] in the equa-
tion to obtain:

E1ð Þ ¼ H1ð � G½ � L½ Þ (Eq 20)

Fick’s First Law for Single-Phase Multi-
component Systems. Fick’s first law can be
extended to multicomponent systems in the
rounded-bracket notation by the expression:

J½ Þ ¼ � D½ � @C
@x

� �
(Eq 21)

For a ternary system:

D½ � ¼ D11 D12

D21 D22

� �
(Eq 22)

As explained in the section on rounded-
bracket notation, the flux of component 2 can
be written as:

J2 ¼ J2ð Þ ¼ � D2ð � @C
@x

� �
(Eq 23)

Equation 23 is equivalent to the extended form
of Fick’s first law for ternaries given by Eq 6.
Fick’s Second Law for Single-Phase Multi-

component Systems. Fick’s second law can be
extended to ternary systems with the equations:

@C1

@t
¼ D11

@2C1

@x2
þD12

@2C2

@x2

@C2

@t
¼ D21

@2C1

@x2
þD22

@2C2

@x2
ðEq 24Þ

The equations take into account that there are
two independent concentration variables in a ter-
nary system. In rounded-bracket notation, Fick’s
second law for any number of components is:

@C

@t

� �
¼ D½ � @

2C

@x2

� �
(Eq 25)

As in Fick’s first law, [D] for a ternary sys-
tem is a 2 � 2 matrix , while [D] for an n-com-
ponent system would be an (n � 1) � (n � 1)
matrix. Although measured diffusivities are
available only for selected ternary systems and
even fewer quaternary systems, it is possible
to estimate these higher-order diffusivities
using methods described in the section “Model-
ing Multicomponent Diffusivity Data” and in
Appendix 1 of the article “Diffusivity and
Mobility Data” in this Volume.
Equations 24 and 25 are two coupled linear

differential equations. They are coupled because
C1 and C2 appear in both equations. In the
1940s, Onsager explained that these equations
could be readily solved by using a mathematical

procedure to diagonalize the diffusivity matrix,
[D]. This procedure uncouples the equations
and makes their solution straightforward.
The procedure involves writing the concentra-

tions in a new concentration coordinate system in
which the diffusivity is a diagonal matrix. For a
ternary system, the diagonal matrix has the form:

½ ~D� ¼ ~D1 0

0 ~D2

� �
(Eq 26)

The diagonal matrix is obtained from the
equation:

~D

 � ¼ a½ � D½ � a½ ��1 (Eq 27)

The [a] matrix and its inverse, [a]�1, as well as
the elements of ~D


 �
can be obtained from spread-

sheets, which use numerical methods to obtain
them. In the parlance of matrix algebra, the diago-
nal elements of Eq 26 are eigenvalues of [D],
while the columnvectors of [a]�1 are eigenvectors
of [D]. The largest eigenvalue, ~D1, is called the
major eigenvalue, while the smaller eigenvalues
are designated as minor eigenvalues. The two a
matrices are related by the equation:

I½ � ¼ a½ ��1 a½ � ¼ a½ � a½ ��1¼ 1 0

0 1

� �
(Eq 28)

In which [I] is the identity matrix. Multiplying
a matrix by the identity matrix is the matrix
equivalent of multiplying by one.
Concentrations in the new coordinate system

are related to concentrations in the normal coor-
dinate system by the equations:

~C1

� 	 ¼ a11C1 þ a12C2 ¼ a1ð � C½ Þ
~C2

� 	 ¼ a21C1 þ a22C2 ¼ a2ð � C½ Þ ðEq 29Þ

Equation 29 is written in regular algebraic nota-
tion for ternaries and for n-component systems
in the rounded-bracket notation.
Equation 25 in the new coordinate system is:

@ ~C

@t

" !
¼ ~D

 � @2 ~C

@x2

" !
(Eq 30)

The equations are now uncoupled and have the
form:

@ ~C1

@t
¼ ~D1

@2 ~C1

@x2

@ ~C2

@t
¼ ~D2

@2 ~C2

@x2
ðEq 31Þ

Model solutions to Eq 31 are well known for
binary systems, as shown in the section “Model-
ing Diffusion with ConstantD Equations” in this
article. These solutions for ~C1 x; tð Þ and ~C2 x; tð Þ
can be substituted into the reciprocal relations:

C1 x; tð Þ ¼ a�111
~C1 þ a�112

~C2 ¼ a1ð ��1 ~C

 	

C2 x; tð Þ ¼ a�121
~C1 þ a�122

~C2 ¼ a2ð ��1 ~C

 	 ðEq 32Þ

to obtain models for diffusion in terms of nor-
mal concentrations. In Eq 32, the constant

parameters are elements of the matrix a½ ��1
and are not to be confused with reciprocals of
individual elements of the matrix [a].
A key generalization one learns from Eq 32

is that solutions to multicomponent diffusion
problems are linear sums of solutions to binary
diffusion problems. Also, one learns that the
kinetic constants for multicomponent diffusion
problems are eigenvalues of the diffusivity
matrix, [D], and not individual elements of the
diffusivity matrix. The eigenvector directions
are important, too, as seen in the discussion of
models in “Modeling Diffusion with Constant
D Equations” in this article.

Diffusion in Ternary and
Multicomponent, Multiphase Regions

Amultiphase region in an alloy is a region that
containsmore thanone phase. For example, amul-
tiphase region that consists of amatrix phase and a
precipitate is illustrated in Fig. 4. As is the case of
single-phase regions, there can be fluxes in and out
of the volume element, and these will determine
how the overall or average composition of the vol-
ume element changes with time.
For a binary alloy at constant temperature, all

concentrations of the matrix and precipitate
phase are fixed by the ends of a tie line on the
binary-phase diagram. Because the concentra-
tions are fixed, there can be no concentration
gradients and therefore no diffusion. However,
the concentrations can vary with distance if
the volume element is in a temperature gradi-
ent, and in that case, diffusion will occur. If
the temperature gradients are sufficiently large,
as occurs, for example, in nuclear reactors, then
an additional term must be added to Fick’s first
law to account for thermotransport (Ref 8).
However, for this article, isothermal conditions
are assumed, and diffusion in multiphase sys-
tems can occur only if ternary or higher-order
systems are involved.
The change in average concentration of a vol-

ume element with time is given by the mass bal-
ance equation for each component as (Ref 7):

@ �Ci

@t

����
x

¼ � @Ji
@x

����
t

(Eq 33)

Fig. 4 Flux in and out of a volume element containing
more than one phase. In this case, the variation

of flux with distance changes the average concentration of
the volume element.
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or for the composition �C½ Þ as:

@ �C

 	
@t
¼ � @ J½ Þ

@x
(Eq 34)

The concentration �Ci is the overall concentra-
tion of component i that includes i in both the
matrix and precipitate phases:

�Ci ¼ fmCm
i þ fpptCppt

i (Eq 35)

In Eq 35, fm and fppt refer to the fraction, while
Cm

i and Cppt
i refer to concentrations of the matrix

and precipitate phase, respectively. As Eq 35
implies, measurements required to obtain the
average concentration are the concentration in
each phase and the fraction of one of the phases.
Equations 33 and 34 are completely general

and require no assumptions beyond those
needed for the binary diffusion equation. How-
ever, simplifying assumptions are needed to
expresses the flux in these equations. In gen-
eral, the flux will depend on the precipitate
morphology and volume fraction. Here, the
assumption that leads to the simplest equations
is made. It is assumed that the volume fraction
is so small that precipitates will act like point
sources or sinks of solute and thus will not
block or mediate the matrix flux in any way.
Therefore, the flux will be given by Eq 21,
because it can be assumed that all diffusion is
taking place in the matrix phase. It follows that
for ternary, two-phase systems, Eq 33 becomes:

@ �C1

@t
¼ @

@x
Dg

11

@Cg
1

@x
þDg

12

@Cg
2

@x

� �
@ �C2

@t
¼ @

@x
Dg

21

@Cg
1

@x
þDg

22

@Cg
2

@x

� �
ðEq 36Þ

in which the superscript g designates concentra-
tions or diffusivities associated with the matrix
phase.
Equation 36 depends on four different con-

centrations: the average and g concentrations
of solute 1 and the average and g concentrations
of solute 2. However, Eq 36 can be rewritten
entirely in terms of average concentrations by
using the chain rule to change variables (Ref 7):

@ �Ci

@t
¼ @

@x
Dg

i1

@Cg
1

@ �C1

@ �C1

@x

� �
�C2

þDg
i1

@Cg
1

@ �C2

@ �C2

@x

� �
�C1

 

þDg
i2

@Cg
2

@ �C1

@ �C1

@x

� �
�C1

þDg
i2

@Cg
2

@ �C2

@ �C2

@x

� �
�C2

!

(Eq 37)

Gathering like terms in Eq 37 yields:

@ �Ci

@t
¼ @

@x
Dg

i1

@Cg
1

@ �C1

þDg
i2

@Cg
2

@ �C1

� �
@ �C1

@x

�

þ Dg
i1

@Cg
1

@ �C2

þDg
i2

@Cg
2

@ �C2

� �
@ �C2

@x
ðEq 38Þ

Equation 38 shows that diffusion in a multi-
phase region can be treated like diffusion in a
single-phase region according to the equation:

@ �C

@t

� �
¼ @

@x
Deff

 � @ �C

@x

� �
(Eq 39)

in which [Deff] is an effective diffusivity
defined by:

Deff

 � ¼ Dg½ � CTM


 �
(Eq 40)

in which [CTM] is a matrix that transforms the
g-phase diffusivity into an effective diffusivity
for the two-phase mixture. The transformation
matrix is given by:

CTM

 � ¼

@Cg
1

@ �C1

����
�C2

@Cg
1

@ �C2

����
�C1

@Cg
2

@ �C1

����
�C2

@Cg
2

@ �C2

����
�C1

2
6664

3
7775 (Eq 41)

Figure 5 shows that for every pair of �C1 and �C2,
there is a corresponding value of C

g=b
1 and C

g=b
2 ,

which shows that the partial derivatives can be
defined. However, the determinant of Eq 41 is
zero, which indicates that the minor eigenvalue
of Eq 40 must be zero also. The physical signifi-
cance of the zero minor eigenvalue is related to
the minor eigenvector direction. It lies along a
tie line where the composition of each phase is
fixed. It follows that without concentration gradi-
ents in the individual phases, there can be no dif-
fusion in this composition direction. The lack of
diffusion is reflected in the zero eigenvalue, which
is the rate constant for gradients in average con-
centration along a tie line.

Diffusion Paths, Diffusion Couples,
and Composition Vectors

Diffusion paths can provide insights about
the microstructure that forms in an interdiffu-
sion region. The paths are plotted on concentra-
tion axes and show how the local composition
changes on moving from one side of an
interdiffusion region to another. Diffusion paths
are particularly helpful when analyzing diffu-
sion couples, and this section is devoted to that
analysis.
Diffusion couples consist of two single or

multiphase alloys that are placed in intimate
contact with one another to share a common
interface through which diffusion can occur.
The initial composition of a diffusion couple
can be characterized by a list of concentrations
for each alloy, as shown in Fig. 6, or by the com-
position of one alloy and the composition vector.
The composition vector connects the two initial
compositions, as shown in Fig. 7, and by con-
vention (Ref 9) for a ternary is given by:

�C0

 	 ¼ CR

1 � CL
1

CR
2 � CL

2

� �
(Eq 42)

In which CR
1 ; C

R
2

� 	
is the initial composition of

the alloy on the right in the positive x-direction,

Fig. 5 Illustration that the average composition in a two-phase region determines the composition of each phase via
the tie-line ends

Fig. 6 Illustration of a diffusion couple with alloy
compositions given by a list of concentrations
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and CL
1 ; C

L
2

� 	
is the alloy on the left in the neg-

ative x-direction. The vector is important
because it appears in equations used to model
diffusion couples.
If either experimental or simulation data are

available in tabular form, with one column for
position and other columns for each indepen-
dent concentration, for example, C1, C2 , C3,
and so on, and rows are concentrations at a par-
ticular x, then diffusion paths are obtained by
cross plotting concentrations. For a ternary sys-
tem, one would plot C2 versus C1 and would
likely obtain a figure similar to Fig. 7. The ends
of the path for a diffusion couple are the initial
compositions of the alloys and represent com-
positions that are outside the interdiffusion
region. Moving along the path from one end
to other is equivalent to moving across the
interdiffusion region, although the relationship
between distance on the path and distance on
the diffusion couple is highly nonlinear, except
near x = 0, the initial interface.
The slope of the diffusionpath as it leaves either

initial composition is given by a1½ Þ�1, the major
eigenvector direction of [D]. The major eigenvec-
tor tends to dominate here because it is associated
with the largest kinetic constant. Therefore, this
term in the solution to Fick’s second law reaches
deeper into each alloy than other terms in Eq 32.
In single-phase regions, the diffusion path of a

diffusion couple will not change with time as long
as the interdiffusion region is smaller than the dif-
fusion couple. When concentration profiles reach
the ends of the couple, the end compositions will
drift and change the diffusion path. In diffusion
coupleswith regions that aremultiphase, the diffu-
sion pathmay changewith time if the effective dif-
fusivity changes as a result of changes in
precipitate size and morphology.
Diffusion paths are two-dimensional for ter-

nary alloys, because there are two independent
concentration variables. Therefore, they can be

plotted on related ternary phase diagram iso-
therms, as in Fig. 7. Here, one can see why the
diffusion couple is single phase and what
changes would be needed to introduce a two-
phase region. Also, the diffusion path has a ser-
pentine shape, which is expected for single-
phase ternary couples unless the composition
vector is in or nearly in an eigenvector direction,
where the diffusion path is a straight line. If one
models diffusion paths as a function of the com-
position vector angle and assumes constant [D],
one finds that the path starts as a straight line
along an eigenvector direction. As the angle
changes, it becomes more and more serpentine.
Then, as it approaches the next eigenvector
direction, it collapses back into a line (Ref 9).
In four-component and higher-order systems,

the diffusion paths and isothermal phase dia-
grams can be plotted as two-dimensional projec-
tions, but these phase diagrams are complex and
may provide only qualitative information.

Zero-Flux Planes

In diffusion couples, it is possible to deter-
mine the local flux of an element at time t with
the general equation:

Ji x
0; tð Þ ¼ 1

2t

ðC x0 ;tð Þ

C 1;tð Þ

xdCi (Eq 43)

in which x is the distance from the Matano
plane, and x0 is where the flux is evaluated.
Kim and Dayananda (Ref 10) discovered in a
study of Ni-Cu-Zn diffusion couples that at spe-
cific locations, the flux could be zero. Due to
the one-dimensional nature of diffusion cou-
ples, this was named a zero-flux plane, or ZFP
for short. Figure 8 is from their classic paper
(Ref 10) and shows that there are two ZFPs
for copper, one for nickel, and none for zinc.

In addition to being an unexpected phenome-
non, ZFPs have applications to alloy design. Con-
stant [D] models for single-phase diffusion
couples indicate that alloys can be designed so
there is a ZFP at the initial interface where two
alloys are joined (Ref 11, 12). Therefore, a coating
that is high in a protective element such as alumi-
num could be designed so that aluminum would
not be lost to the underlying matrix in the early
stages of interdiffusion and would be minimized
over the life of the coating. This a multicompo-
nent effect that is not seen in binary diffusion cou-
ples. The effect is possible only in ternary or
higher-order systems. More information about
modeling ZFPs using constant D equations is
provided in the section “Modeling Diffusion with
Constant D Equations” in this article.

Kirkendall Porosity

The Kirkendall effect is described in some
detail in the article “Diffusivity and Mobility
Data” in this Volume. The effect is associated
with various atomic elements having different
intrinsic diffusivities. As a result, porosity in a
diffusion couple can develop in regions where
atoms with a higher intrinsic diffusivity leave
a region faster than they can be replaced by
atoms with a smaller intrinsic diffusivity.
Eliminating Kirkendall porosity in a binary

diffusion couple is a nearly intractable problem
for the following reason. The porosity is related
to the movement of markers placed at the initial
interface, which in turn is proportional to the
flux of vacancies. The flux of vacancies, LJV,
makes up for the difference between the indi-
vidual intrinsic fluxes, LJ1 and LJ2, via the
relationship:

0 ¼ LJV þ LJ1 þ LJ2 (Eq 44)

Because:

LJ1 ¼ �LD11

@C1

@x

LJ2 ¼ �LD21

@C1

@x
ðEq 45Þ

The flux of vacancies is:

LJV ¼ LD11 þ LD21

� 	 @C1

@x
(Eq 46)

Therefore, the only way to reduce the vacancy
flux is to reduce the concentration gradients in
the couple by reducing the initial concentration
differences of both components.
However, in multicomponent systems, the

flux of vacancies at the initial interface can be
reduced to zero by alloy design (Ref 13). For
example, in a ternary system, Eq 46 becomes:

LJVð0;tÞ¼ LD11þLD21þLD31

� 	@C1

@x

����
x¼0

þ LD12þLD22þLD32

� 	@C2

@x

����
x¼0

(Eq 47)

Fig. 7 Diffusion path and composition vector for a single-phase diffusion couple plotted on a phase diagram. Open
circles are the initial diffusion-couple alloys.
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Setting Eq 47 equal to zero yields the
relationship:

dC2

dC1

����
x¼0
¼ �

LD11 þ LD21 þ LD31ð Þ
LD12 þ LD22 þ LD32ð Þ (Eq 48)

Equation 48 is the slope of the diffusion path at
x = 0 and does not vary with time for a diffusion
couple. With this direction, there should be nei-
ther Kirkendall porosity or marker movement.

Diffusion at Moving Boundaries

The simplest type of moving boundary to
describe is an interface between two phases that
are in local equilibrium at the interface. Local
equilibrium means that concentrations at the
interface are given by the ends of a tie line on
a phase diagram. In this case, the movement
of the boundary is said to be diffusion
controlled.
The velocity of the interface is governed

by a mass balance at the interface. For the
boundary in Fig. 9 to move a distance dZ, the
difference between the flux entering and leav-
ing the interface in time dt must equal

C
b=a
i � C

a=b
i

� �
dZ, which is the amount of sol-

ute that must be displaced for the interface to
move. Writing:

C
b=a
i � C

a=b
i

� �
¼ �Cab

i (Eq 49)

the mass balance can be written as:

�Cab
i dZ ¼ Jb

i � Ja
i

� �
dt (Eq 50)

For a binary system, Eq 50 can be written as:

�Cab dZ
dt
¼ Da@C

a

@x

����
Z
�Db@C

b

@x

����
Z

(Eq 51)

Equation 50 and Fig. 9 show that the flux in a
away from the interface tends to drive the inter-
face in the positive x-direction, while the flux in
b into the interface drives the interface in the
negative x direction.
Equation 51 must be satisfied for each compo-

nent in a multicomponent system. The equation
can be generalized to any number of components
using the rounded-bracket notation by simply
writing each term as its matrix equivalent:

�Cab
 	 dZ
dt
¼ Da½ � @C

a

@x

� �
Z
� Db
 � @Cb

@x

� �
Z

(Eq 52)

However, there is a problem. In Eq 52, the value
of �Cabcan be read off a binary phase diagram
from the tie line associated with the isothermal

temperature. However, in ternary and higher-
order systems, all the equations in Eq 52 as
well as equations for possible tie lines in the mul-
ticomponent system must be solved simulta-
neously. To avoid writing equations for tie
lines, it is necessary to use computer models
that link to thermodynamic databases in order
to solve multicomponent moving-boundary
problems.
In addition to interfaces between single-phase

regions, there are other types of moving bound-
aries that involve diffusion. For example, there
can be a boundary between a single-phase and
two-phase region in a binary system. Boundaries
such as this have been categorized according to
the number of phases that change when crossing
theboundary (Ref 14).Figure10 shows three types
of boundaries that can be found in binary diffusion
couples. The type 0 boundary has no changes in
phase, just a change in volume fraction at x = 0.
No diffusion is associated with this type of binary
(except for coarsening), but there is diffusion at
type 0 boundaries in ternary and higher-order
systems. In any case, type 0 boundaries are station-
ary unless they are displaced by the Kirkendall
effect. The type 1 boundary does move in a
binary, but only in the direction to extend the
single-phase region. Type 2 boundaries are an
interface between two single-phase regions, and
they can move in either direction, depending on
Eq 52.
Another multicomponent effect is that type 1

boundaries can move in either direction in ternary
and higher-order systems (Ref 15, 16). Also, in
principle, there can be as many types as there are
components in the alloys. However, the
most common types are 0, 1, and 2 (Ref 17),
with an occasional type 3 boundary reported,
even in a ternary system (Ref 18, 19). There
may be type 4 boundaries in quaternary and
higher-order systems as well, but no reference to
this type of boundary has been found by the
authors.
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Fig. 8 Plots of flux versus distance for a Ni-Cu-Zn diffusion couple. In this case, there are two zero-flux planes for
copper atoms and one zero-flux plane for nickel atoms. Source: Ref 10

Fig. 9 Concentration profiles around a diffusion-
controlled moving interface. The phases are

in equilibrium at the interface.
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Modeling Diffusion with
Constant D Equations

Solutions to the diffusion equation and
Fick’s second law are functions that give con-
centrations as a function of distance and time,
Ci(x,t). The diffusion equation is most accurate
because it takes into account the variation of
diffusivities with composition, while Fick’s
second law assumes they are constants.
Solutions to Fick’s second law have the advan-
tage that they often provide simple equations
that are useful when designing alloys and
diffusional processes. However, a disadvantage
of solutions to Fick’s second law is that they
only apply to certain boundary and initial con-
ditions. Another disadvantage is the constant
diffusivity assumption. However, the constant
D solutions tend to be robust, and variations
in D of 10% would likely be insignificant com-
pared to scatter in experimental data.
In the following, four standard solutions to

Fick’s second law for binary single-phase sys-
tems are given. The derivation of these and
additional solutions can be found in the well-
known text by Crank, The Mathematics of Dif-
fusion (Ref 20). The only disadvantage of that
text is that most examples pertain to polymers.

Some cases show how the four solutions can
be modified to apply them to systems contain-
ing more than two components and more than
one phase. As seen, the change is often no more
than a change from scalar to matrix notation.

The Steady-State Solution

The steady-state solution applies when the
concentration is a function of distance only
and therefore must satisfy the equation:

@C

@t
¼ 0 (Eq 53)

For some problems, steady-state solutions are
applied when concentrations vary so slowly
with time that useful models are obtained. In
such cases, they are termed quasi-steady-state
solutions. In the following, it is assumed that
the systems being modeled are single phase.
When multiphase systems are modeled, it is
indicated in the text.
One-Dimensional Solution. Fick’s second

law, given by Eq 5, is for diffusion in one
dimension (1-D). For problems with cylindrical
or spherical symmetry, the two-dimensional
(2-D) and three-dimensional (3-D) solutions
apply. They are given in later sections.
To agree with Eq 53, Fick’s second law

requires that:

@2C

@x2
¼ 0 (Eq 54)

By integrating Eq 54 twice, one obtains the
solution:

C xð Þ ¼ AþBx (Eq 55)

in which A and B are constants that can be cal-
culated from any two concentrations along the
concentration profile. Equation 55 is the 1-D
solution. It applies when the diffusivity is a
constant.
Application—Diffusion of Gas Through a

Flat Wall. The loss of gas from a container
by diffusion through the container walls, as
well as the contamination of a vacuum by gas
diffusing into a vacuum chamber, are problems
that can be modeled by the 1-D steady-state
solution. In either case, it is a problem of gas
diffusing through a wall or other thin section
that separates a region where gas is at a high
pressure from a region where it is at a lower
pressure.
Substituting Eq 55 into Fick’s first law for

the flux yields:

J ¼ �DdðAþBxÞ
dx

¼ �DB (Eq 56)

in which D is the diffusivity of the diffusing
species. The value of B can be obtained by
knowing the solute concentration on either side
of the wall. As shown in Fig. 11, the concentra-
tion on the left side of the wall is CL, the con-
centration on the right side of the wall is CR,
and the thickness of the wall is h0. Substituting
these values into Eq 55 yields:

CL ¼ AþBð0Þ
CR ¼ AþB h0ð Þ ðEq 57Þ

Solving Eq 57 for B and substituting it into
Eq 56 gives the flux as:

J ¼ D
CL � CR

h0

(Eq 58)

The values of CL and CR for a diatomic gas can
be obtained from the gas partial pressures with
Sievert’s law. For the diffusion of hydrogen,
Sievert’s law is:

CH ¼ k
ffiffiffiffiffiffiffi
pH2

p
(Eq 59)

in which CH is the concentration of atomic
hydrogen in the metal, k is the Sievert’s law
constant for the dissociation of hydrogen, and
pH2

is the partial pressure of hydrogen in the
gas phase. If there is a vacuum on the right side
of the wall, the flux of hydrogen through the
wall is:

JH ¼ DH

k
ffiffiffiffiffiffiffi
pH2

p
h0

(Eq 60)

If the total area of the wall (the area across
which the diffusion is occurring) is AT, the time
over which diffusion occurs is tT, and the gas
pressure is constant, then the total mass loss is
JHATtT. However, if the gas pressure is chang-
ing with time, as it would from a closed

% B

T

(b)

(a)

(c)

α β

Λ

Fig. 10 Illustration of three types of boundaries in
binary diffusion couples: (a) type 0, (b) type

1, and (c) type 2. In the phase diagram, closed circles
and circles containing a dot are initial alloy
concentrations of diffusion couples. Open circles
indicate single-phase a concentrations at the moving
boundaries. Arrows indicate boundary direction. In (a),
the boundary is stationary; in (b), the boundary can only
move to the right, while in (c), the boundary can move
either to the left or right, depending on Eq 52. Source:
Ref 14

Fig. 11 Model for diffusion of hydrogen through a flat
wall. Equation 68 for the flux also applies to a

curved wall if the wall is sufficiently thin.
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container, then Eq 60 can be treated as a quasi-
steady solution, and the mass loss is:

MassH2 lost ¼ AT

ðtT
0

JHdt (Eq 61)

Although Eq 58 and 60 were derived for a flat
wall, the next section shows that they apply to
curved walls, too, as long as the radius of cur-
vature is much larger than the wall thickness.
Two-Dimensional Solution. The 2-D ver-

sion of Fick’s second law for systems with
cylindrical symmetry is:

@C

@t
¼ 1

r

@

@r
r
@C

@r

� �
(Eq 62)

Setting Eq 62 equal to zero and integrating
twice yields the equation:

CðxÞ ¼ AþB ln r (Eq 63)

In these equations, r is the radial distance from
the cylindrical axis.
Application—Diffusion of Gas Across a

Pipe Wall. Equation 63 can be applied to the
problem of calculating the flux of gas escaping
from a pipe through the pipe walls. The
approach is much like that for diffusion through
a thin wall. Using Sievert’s law, one obtains the
concentrations of the gas species on both the
inside diameter of the pipe, Cid at rid, and the
outside diameter of the pipe, Cod at rod. With
these two concentrations at two different radii,
one can calculate both A and B. However, as
in the case of a flat wall, only B is needed to
calculate the flux because:

J ¼ �D@C

@r
¼ �D@ AþB ln rð Þ

@r

J ¼ �DB

r
ðEq 64Þ

Solving for B using equations for concentra-
tions at the inside and outside radius gives:

B ¼ Cid � Cod

ln Rid=Rodð Þ (Eq 65)

Therefore:

J ¼ � D

Rid

Cid � Cod

ln Rid=Rodð Þ
� �

(Eq 66)

Equation 66 can be simplified by taking the
thickness of the wall as h0, assuming that
h0 << rid, and making use of the relationship
that:

ln
Rid

Rod

� �
¼ ln

Rid

Rid þ h0

� �
¼ ln

1

1þ h0=Ridð Þ
� �

ffi � h0

Rid

(Eq 67)

The percentage error in making this approxi-
mation is half the percentage difference

between h0 and Rid. For example, if h0 is
10% of Rid, then the approximation error will
be 5%.
Substituting Eq 67 into Eq 66 yields the thin-

wall approximation for cylinders, which is
equivalent to the flat-wall Eq 58:

J ¼ D
Cid � Cod

h0

� �
(Eq 68)

The total flux leaving the pipe is the flux times
the area of the pipe wall. For a pipe of length L,
the area is equal to 2pRidL.
Three-Dimensional Solution. The 3-D

version of Fick’s second law for systems with
spherical symmetry is:

@C

@t
¼ D

r2
@

@r
r2

@C

@r

� �
(Eq 69)

Setting Eq 54 equal to zero and integrating
twice yields the equation:

CðxÞ ¼ Aþ B=r (Eq 70)

In Eq 70, r is the radial distance from the origin
of the sphere.
Application—Growth of a Spherical Pre-

cipitate. When precipitates grow by a diffu-
sional process, they either extract solute from
the surrounding matrix phase or reject solute
back into the matrix, depending on their phase
diagram. In either case, when diffusion is the
rate-limiting step, the growth is said to be diffu-
sion controlled or diffusion limited. In this sec-
tion, an equation is derived for the diffusion-
controlled growth of a spherical, solute-rich
precipitate. It is assumed that the precipitate
size is large enough so that the Gibbs-Thomson
effect on the interface concentrations is negligi-
ble. Therefore, concentrations at the curved
precipitate/matrix interface are nearly the same
as equilibrium concentrations at a flat interface.
Also, the model assumes that the precipitate is
isolated from other growing precipitates. There-
fore, the solute-depleted region surrounding the
precipitate does not overlap that of other
precipitates.
As shown in Fig. 12, the concentration of solute

in the precipitate, b, is given byCb/a, and the con-
centration of thematrix, a, in equilibriumwith the
precipitate is Ca/b. Far from the precipitate the
solute concentration is the initial alloy concentra-
tion, C0. The growth rate of the precipitate is a
moving boundary problem, and therefore, its
equation is similar to Eq 51, except that the con-
centration gradient in the b phase is zero, and
here, the coordinates are spherical. Therefore, a
mass balance at the moving interface is:

Cb=a � Ca=b
� � dR

dt
¼ Da@C

a

@r

����
R

¼ Da@ AþB=rð Þ
@r

����
R

¼ �Da B

R2

(Eq 71)

Because the interface is moving, this is a quasi-
steady-state approximation. As before, A and B

are obtained from two positions on the concen-
tration profile. In this case, the positions are at
the moving interface, R, and at infinity:

Ca=b ¼ AþB=R

C0 ¼ AþB=1 ðEq 72Þ

Solving for B and inserting it in Eq 71 yields:

Cb=a � Ca=b
� � dR

dt
¼ Da C0 � Ca=b

� 	
R

(Eq 73)

The notation in Eq 73 can be simplified by
setting the concentration difference between
the a and b phases at their interface as �Cab

and the concentration difference in the a phase
as�Ca. Then, Eq 73 can be written as:

�Cab dR

dt
¼ Da �Ca

R
(Eq 74)

Integrating Eq 74 gives an expression for R as a
function of time:

�Cab 1

2
R2 ¼ tDa�Ca (Eq 75)

or

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tDa �Ca

�Cab

r
(Eq 76)

Equation 76 shows that precipitates grow propor-
tional to the square root of time. However, when
the solute-depleted regions of nearby precipitates
start to overlap, the growth slows and the square
root dependence no longer applies. Also, the inter-
face must move slowly enough so that the quasi-
steady-state solution applies. This requires that:

�Ca

�Cab hh1:0 (Eq 77)

A full explanation of this problem has been
given by Zener (Ref 21).

Fig. 12 Concentration profile for a growing spherical
precipitate modeled by Eq 74 to 77
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Application—PrecipitateCoarsening.When
the b precipitates described in the previous appli-
cation have grown and consumed most of the
excess solute in the matrix phase, the alloy
microstructure will coarsen to reduce the amount
of interface energy in the system. The micro-
structure coarsens by larger precipitates growing
at the expense of smaller precipitates that, with
time, dissolve back into the a-matrix phase.
The classical theory of precipitate coarsening

was developed independently by Lifschitz and
Slyozov and by Wagner (the LSW theory).
Although the mechanism of coarsening had
been known before, they provided analytical
equations for how the average particle size
and the size distribution vary with time. Their
temporal equation for the change in average
precipitate size with time is:

�R3 ¼ �R3
0 þ

4

9
Kt (Eq 78)

in which �R0is the average size of a spherical pre-
cipitate at time t = 0. Note that �R0 and t = 0 can
refer to any time during the coarsening process.
The constant K was derived for a dilute a solu-
tion and for b, a pure-solute precipitate. In this
case, K is given by:

K ¼ 2DasV b
MC

a=b

RT
(Eq 79)

in which Da is the diffusivity in a, s is the a/b
interfacial tension, V b

Mis the molar volume of the
b-phase, Ca=bis the a-concentration in equilib-
rium with a flat b-precipitate interface, and RT is
the gas constant times absolute temperature.
The LSW theory uses a mean-field approach

in which it is assumed that the matrix phase has
a uniform concentration except for the vicinity
around a precipitate, as shown in Fig. 13.
The derivation makes use of the 3-D
steady-state solution by using it to model the
concentration profiles around each precipitate.
Then, the growth or dissolution of each precip-
itate is given by a formula similar to Eq 74 in
the previous section, except in this case,
�Cais a function of the precipitate radius:

�Cab dR

dt
¼ Da �Ca Rð Þ

R
(Eq 80)

The value for �Ca Rð Þ depends on the Gibbs-
Thomson equation, which gives the concentration
of solute in the a-phase that is in equilibriumwith
a b-precipitate phase of a given radius. A general
form of the Gibbs-Thomson equation that does
not require assuming a dilute solution fora or pure
solute for b is (Ref 22, 23):

�Cab @
2Ga

@C2
Ca=b � Ca Rð Þ
� �

¼ 2sV b
M

R
(Eq 81)

inwhich�Cab is the concentration ofbminus the
concentration of a when the two phases are in
equilibrium across a flat interface (i.e., the tie-line
length from a phase diagram), and @2Ga=@C2 is

the second derivative of the Gibbs energy of the
a-phase with respect to concentration.
The mechanism of coarsening makes use of

Eq 81 by recognizing that larger precipitates
will be able to draw solute away from smaller
precipitates, because they maintain a lower sol-
ute concentration in their vicinity than do smal-
ler precipitates. Smaller precipitates must
dissolve to maintain a higher solute concentra-
tion in their vicinity.
The mean-field concentration, �Ca, can be

associated with a radius R via Eq 77 in:

�Cab @
2Ga

@C2
Ca=b � �Ca
� �

¼ 2sV b
M

R
(Eq 82)

Subtracting Eq 81 from Eq 82 yields:

�Cab @
2Ga

@C2
�Ca � Ca Rð Þ� 	 ¼ 2sV b

M

1

R
� 1

R

� �
(Eq 83)

The bracketed term on the left side of the equa-
tion is �Ca Rð Þ. Solving Eq 83 for �Ca Rð Þ
and substituting it into Eq 80 yields one of the
key equations in coarsening theory:

�Cab� 	2 @2Ga

@C2

dR

dt
¼ 2DasV b

M

R

1

R
� 1

R

� �
(Eq 84)

This, on rearrangement, is:

dR

dt
¼ 2DasV b

M

�Cabð Þ2 @2Ga

@C2

 !
1

R
� 1

R

� �
(Eq 85)

The first bracket on the right side of Eq 85 is K
in the LSW theory (Ref 24):

K ¼ 2DasV b
M

�Cabð Þ2 @2Ga

@C2

 !
(Eq 86)

Equation 86 reduces to the LSW form for dilute
solutions by letting �Cab ffi 1 and @2G=
@C2 ffi RT=Ca=b. (Note: In these equations,
C has units of mole fraction.)
A simplification of both the general and LSW

theory equation forK is made by recognizing that
D can be separated into a kinetic mobility term,
M, and a thermodynamic term with the equation:

D ¼M @2G=@2C
� 	

(Eq 87)

It follows that:

K ¼ 2MasV b
M

�Cabð Þ2
 !

(Eq 88)

which shows that coarsening is a function of
atomic mobilities and not free energy functions
(Ref 24).
For multicomponent systems, K can be

expressed in the rounded-bracket notation by a
similar formula (Ref 24) :

K ¼ 2sV b
M

�Cabð �Ma½ ��1 �Cab½ Þ

 !
(Eq 89)

In Eq 89, the terms �Cab
� �

and �Cab

 	

are
vectors that coincide with a tie line in the
two-phase region of a multicomponent system.
The average composition of the alloy lies on
this tie line.
It can be seen that Eq 89 reduces to Eq 88 for

a binary system when all the matrices are
replaced with scalar quantities.

The Error Function Solution

The error function solution is the most useful
of the constant D solutions, because it applies
to a number of types of problems and can be

Fig. 13 Concentration profiles during coarsening. The larger b-precipitate grows, while the smaller precipitate
dissolves. The scale of this diagram is distorted because the concentrations at the a/b interfaces are

typically much smaller than △Cab.

164 / Fundamentals of the Modeling of Microstructure and Texture Evolution

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



readily extended to multicomponent systems.
Normally, it is restricted to 1-D problems, but,
as is shown for carburizing, it can be used for
certain problems by superimposing the 1-D
solution in multiple directions.
Error Function Equations. The solution to

Fick’s second law can be written as:

C xð Þ ¼ AþBerf zð Þ (Eq 90)

in which A and B are constants that can be cal-
culated from any two concentrations along the
concentration profile, and z is a dimensionless
variable defined by:

z ¼ x

2
ffiffiffiffiffiffi
Dt
p (Eq 91)

and erf(z) is the error function that is defined by:

erfðzÞ ¼ 2ffiffiffi
p
p
ðz
0

expð�Z2ÞdZ (Eq 92)

The error function integral has no simple
algebraic solution, but tables obtained by
numerical methods are available in handbooks
and on the internet. Also, there is an approxi-
mate equation that is accurate to within 1%
for values of z up to 1.7. It is given by:

erfðzÞ ffi 2ffiffiffi
p
p 3z

z2 þ 3
(Eq 93)

Equation 93 is plotted as a line in Fig. 14 and is
compared there with the more exact numerical
values that are plotted as points. As shown
in the figure, the error function becomes asymp-
totic to erf(z) = �1 and +1 for z < �2 and
z > 2.0, respectively.
Exact expressions for both the differential of

the error function and a definite integral of the
complementary error function, erfc(z) = 1 �
erf(z), exist. The differential of erf(z) is:

derfðzÞ
dz

����
z0
¼ 2ffiffiffi

p
p expð�z02Þ (Eq 94)

The definite integral of erfc(z) is:

ð1
0

erfcðzÞdz ¼ 1ffiffiffi
p
p (Eq 95)

These are helpful relationships when deriving
equations for applications.
Application—Interdiffusion of Diffusion

Couples. Most experimental research work on
diffusion is done through the use of diffusion
couples. A diffusion couple is a tool that allows
the engineer in a laboratory to study and mea-
sure the effect of interdiffusion between two
alloys that are in intimate contact. The 1-D
geometry simplifies the analysis, because con-
centration profiles can be measured and mod-
eled with error functions as long as the
diffusivity is approximately constant.
Concentration Profile Equation for Binary

Systems. The error function solution to Fick’s
second law can be expressed as:

C x; tð Þ ¼ Aþ BerfðzÞ (Eq 96)

Evaluating A and B from concentrations at the
left, CL, and right, CR, ends of the diffusion
couple, yields:

CL ¼ AþBerf �1ð Þ ¼ A�B

CR ¼ AþBerf þ1ð Þ ¼ AþB
(Eq 97)

And therefore:

A ¼ CR þ CL

2
(Eq 98)

B ¼ CR � CL

2
(Eq 99)

It follows that the error function solution for a
binary diffusion couple is:

C x; tð Þ ¼ CR þ CL

2

� �
þ CR � CL

2

� �
erfð x

2
ffiffiffiffiffiffi
Dt
p Þ
(Eq 100)

The notation in Eq 100 can be simplified by
recognizing that A is the average concentration
of the diffusion couple, CAve, and CR � CL is
the initial concentration difference of the cou-
ple, �C0. In this notation:

C x; tð Þ ¼ CAve þ �C0

2

� �
erf

x

2
ffiffiffiffiffiffi
Dt
p

� �
(Eq 101)

Amount of Interdiffusion Equation for Binary
Systems. One measure of the extent of interdif-
fusion is given by the total amount of solute

that has crossed from one diffusion-couple
alloy to the other. This amount is illustrated
graphically in Fig. 15 and is obtained from the
integral:

S ¼
ð1
0

C x; tð Þ � CR
� 	

dx

¼ �
ð1
0

�C0

2
erfc

x

2
ffiffiffiffiffiffi
Dt
p

� �
dx (Eq 102)

S ¼ ��C0

ffiffiffiffiffiffi
Dt

p

r
(Eq 103)

The minus sign in Eq 103 indicates that when
�C0 is positive, S is negative, and solute is
leaving the right side of the diffusion couple.
However, when S is positive, solute is entering
the right side. Equation 103 shows that to
reduce the amount of interdiffusion, one must
reduce the initial concentration difference,
reduce the diffusivity (e.g., by reducing the
temperature), and/or reduce the time. As seen
in the section “Concentration Profile Equations
for Multiphase Systems” in this article, the
amount of interdiffusion can be reduced in ter-
nary and higher-order systems by adjusting the
alloy compositions.
Concentration Profile Equations for Single-

Phase Ternary Systems. Concentration profile
equations for multicomponent systems are sim-
ilar to that for binary systems, except that a
concentration profile for an n-component sys-
tem contains n � 1 error functions, and there
are n � 1 concentration profiles to be

Fig. 14 Approximate error function (line) compared with the numerical solution (points). The numerical solution for
erf(z) becomes asymptotic to þ�1.0, while the approximate solution does not. However, the error in the

approximate solution is less than 0.3% up to z = 1.5.
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considered. Any one of the profiles has an equa-
tion with the form:

Ci x; tð Þ ¼ CAve
i þBi1erf z1ð Þ þBi2erf z2ð Þ
þBi3erf z3ð Þ:::::Bin�1erf zn�1ð Þ

(Eq 104)

As in binary systems, the constants are func-
tions of the initial alloy compositions, but
unlike binaries, they are functions also of the
diffusivity matrix via the [a] and [a]�1

matrices.
As indicated previously, there are two con-

centration equations for a ternary system and
two error functions in each equation. Written
together in matrix notation, they are given by:

Cðx; tÞ½ Þ ¼ CAve

 	
þ 1

2
a1½ Þ�1 a1ð � �C 0


 	
erf

x

2
ffiffiffiffiffiffiffiffi
~D1t

p
 !

þ a2½ Þ�1 a2ð � �C 0

 	

erf
x

2
ffiffiffiffiffiffiffiffi
~D2t

p
 !

(Eq 105)

The two diffusivities associated with the two
error functions are eigenvalues of the diffusivity
matrix [D]. For short annealing times, the first
error function dominates because it contains the
major eigenvalue, which is the largest of the
kinetic constants. Equations similar to these were
derived by Cooper and Gupta (Ref 25).
Equation 105 illustrates the advantage of the

rounded-bracket notation. For example, terms
such as a1ð � �C0½ Þ are quickly identified as sca-
lar quantities, and one sees that the first error
function contributes concentration profiles
along the major eigenvector direction, a1½ Þ�1,
while the second error function contributes con-
centration profiles along the minor eigenvector
direction.
Whenever the composition vector �C0½ Þ falls

in one of the eigenvector directions, for

example, when �C0½ Þ / a1½ Þ�1, then
a2ð � �C0½ Þ goes to zero. Equation 105 reduces
to a single error function expression along the
other eigenvector direction, a1½ Þ�1. In this case,
the concentration profile for each solute is sim-
ilar to that for a binary diffusion couple, and the
diffusion path plotted on a ternary phase dia-
gram is a straight line. When diffusion couples
have composition vectors in other directions,
the concentration profiles are more varied and
can have extrema and zero slope at x = 0.
Example ternary concentration profiles have
already been given in Fig. 1 and 3.
When the composition vector is in other

directions, the diffusion path will be serpentine.
The ends of the diffusion path will have an ini-
tial slope given by the major eigenvector.
Because the major eigenvector is associated
with the largest diffusion constant, it dominates
the diffusion path at the outer fringes of the
interdiffusion region.
Concentration Profile Equations for Multi-

phase Systems. The diffusion equation for mul-
tiphase systems given by Eq 39 reduces to an
equation similar to the extended form of Fick’s
second law (Eq 25) by assuming that the effec-
tive diffusivity is constant. The result is
(Ref 7):

@ �C

@t

� �
¼ Deff

 � @2 �C

@x2

� �
(Eq 106)

It follows that the solution to this equation is
the same as for the single-phase equation,
except that concentrations will be averaged
over two phases, and [Deff] will have one
positive and one zero eigenvalue. The result is
(Ref 7):

�Cðx; tÞ
 	 ¼ �CAve

 	
þ 1

2
a1½ Þ�1 a1ð � � �C0


 	
erf

x

2
ffiffiffiffiffiffiffiffi
~D1t

p
 !

þ a2½ Þ�1 a2ð � � �C0

 	

erf
x

2
ffiffiffi
0
p

� �
(Eq 107)

The last term in Eq 103 is a step function that
changes on crossing x = 0, because:

erf
x

2
ffiffiffi
0
p

� �
¼ þ1 for x > 0

¼ �1 for x < 0 ðEq 108Þ

It follows that a diffusion couple prepared
from alloys in the two-phase region of a ter-
nary phase diagram will have a step in average
composition at the initial interface. The only
exception will be when the composition vector
is in the major eigenvector direction. Then, the
coefficient of the step term is zero. However,
if the composition vector is in the minor
eigenvector direction, then the coefficient of
the first error function term will be zero. As
a result, there will be a step but no interdiffu-
sion. The reason there is no interdiffusion is
because both alloys will be on the same tie

line. Therefore, all phases in the alloys will
be in equilibrium, and there will be no driving
force for change except for that due to
capillarity.
Amount of Interdiffusion Equation for a

Ternary System and the Square Root Diffusiv-
ity. Equations for the amount of interdiffusion
in a ternary system are similar to that for bin-
aries, except that the term:

ffiffiffiffi
D
p

is replaced by the square root of the diffusivity
matrix:

ffiffiffiffiffiffiffi
D½ �

p
The notation used here for the square root of
the diffusivity matrix is [r]. It is defined by
the equation:

D½ � ¼ r½ � r½ � (Eq 109)

For a multicomponent system, the equation for
the amount of interdiffusion written in matrix
notation is (Ref 26):

S½ Þ ¼ �
ffiffiffi
t

p

r
r½ � �C 0

 	

(Eq 110)

Written out for a ternary system, the equations
are:

S1 ¼ �
ffiffiffi
t

p

r
r11�C1

0 þ r12�C2
0

� 	
(Eq 111)

S2 ¼ �
ffiffiffi
t

p

r
r21�C1

0 þ r22�C2
0

� 	
(Eq 112)

Reducing Interdiffusion and Zero-Flux Planes.
According toEq111 and112, the amount of solute
either leaving or entering the right side of a diffu-
sion couple can be manipulated by varying con-
centration differences between the alloys in a
diffusion couple. The amount can be reduced to
zero by setting Eq 111 or 112 equal to zero. For
example, S1 will be zero when:

�C2
0 ¼ ��C1

0 r11
r12

(Eq 113)

Under these conditions, x = 0 will be a zero-flux
plane for component 1. Although there will be
flux of component 1 on either side of the initial
interface, the total amount of solute 1 on either
side will stay the same, and therefore, no
flux will cross the initial interface between the
diffusion-couple alloys.
Application—Interdiffusion of Coatings.

For short annealing times, the interdiffusion of
a coating with its substrate and the interdiffu-
sion of a diffusion couple are the same. The
equations for the amount of solute crossing the
initial diffusion-couple interface, Eq 103 and
110 to 112, are the same equations for the
amount of solute diffusing from a coating into
its substrate. In this case:

X = 0

Distance

C2
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C1
L

C2
R

C1
R

C
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ce
nt

ra
tio

n

S1

S2

t = 0

t = 0
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Fig. 15 Illustration of the amount of interdiffusion as
defined by the solute, S, that has entered the

right side of the couple from the left side. In both cases
shown in the figure, the value of S is negative
because solute has left the right side. Source: Adapted
from Ref 5

166 / Fundamentals of the Modeling of Microstructure and Texture Evolution

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



�C 0 ¼ C coat � C 0 (Eq 114)

in which C 0is the initial solute concentration
of the substrate, and C coat is the initial solute
concentration of the coating. As in the case
of diffusion couples, it is possible to reduce or
eliminate the loss of a component due to inter-
diffusion by making the coating/substrate inter-
face a zero-flux plane. However, once the
interdiffusion region extends to the free surface
of the coating, a flux will develop across that
interface, but it will be from the substrate into
the coating, at least initially.
For binary systems, there is an error function

equation that includes the thickness of the coat-
ing. It involves superimposing two error func-
tions. For a coating with thickness 2h0 (Ref 20):

C x; tð Þ ¼ C 0

þ�C 0

2
erf

xþ h0

2
ffiffiffiffiffiffi
Dt
p

� �
� erf

x� h0

2
ffiffiffiffiffiffi
Dt
p

� �� �
(Eq 115)

In this equation, x = 0 is the free surface of the
coating, as indicated in Fig. 16. In addition, the
boundary condition that the concentration gra-
dient at the surface must be zero at all times
is satisfied by Eq 115. The flux must be zero
there, because, presumably, no solute leaves
the coating at the free surface.
In addition to the amount of solute that inter-

diffuses between the coating and substrate for
early times, another measure of interdiffusion
is the concentration of solute at the coating sur-
face. Evaluating Eq 115 at x = 0 gives:

C 0; tð Þ ¼ C 0 þ�C 0erf
h0

2
ffiffiffiffiffiffi
Dt
p

� �
(Eq 116)

Equation 108 indicates that there is little change
in the surface concentration until the argument
of the error function is less than 1.5, which
occurs when t > h2

0

�
9D, as shown in Fig. 14.

According to Eq 116 and Fig. 14, it is not until
t ffi h2

�
D that the solute excess in the coating

C coat � C 0ð Þ has dropped to half of its original
value.
Application—Carburizing, Decarburizing,

and the Corner Effect. Modeling carburizing
is much like modeling interdiffusion. However,
to apply the error function solution, both the
carbon concentration at the surface and the dif-
fusivity must be a constant. Unfortunately,
when carburizing steels, neither of these condi-
tions are met. Carburizing normally starts with
a transient period as the carbon content at the
surface increases to approach the equilibrium
value. Also, the diffusivity of carbon steels
can vary by a factor of 2 across a carburized
region (Ref 27).
To minimize the error when modeling car-

burizing, it is best to use a numerical method
in which the transient period and variable diffu-
sivity are modeled (Ref 28). If a rough estimate
is sufficient, then the constant D solution can be
used. However, the diffusivity at the surface
concentration should be used. That means that

a high diffusivity corresponding to the high car-
bon content at the surface should be used when
modeling carburizing, and a low diffusivity
corresponding to a low carbon concentration
should be used when modeling decarburizing.
The equation for carburizing and decarburiz-

ing is readily derived by solving for A and B in
Eq 96 in terms of the surface concentration,
Csurface

C , and the initial carbon concentration of
the sample, C0

C . The result for either carburiz-
ing or decarburizing is:

CC x; tð Þ ¼ CC
surface � CC

surface � C0
C

� 	
erf

x

2
ffiffiffiffiffiffiffiffi
Dct
p

� �
(Eq 117)

Equation 117 gives the carbon concentration
versus distance along a line perpendicular to a
flat surface.
The aforementioned is a solution to the 1-D

carburizing or decarburizing problem. The error
function can be used for 2-D or 3-D problems
as well if the 1-D solution can be superimposed
in different directions (Ref 20). One example is
to calculate the carbon concentration at an
external corner of a part. The deeper amount
of carburization there is called the corner effect.
The 3-D equation for carbon concentration
versus distance at and near the corner is:

CC x; y; z; tð Þ ¼ CC
surface � CC

surface � C0
C

� 	
erf

x

2
ffiffiffiffiffiffiffiffi
Dct
p

� �
þ erf

y

2
ffiffiffiffiffiffiffiffi
Dct
p

� �
þ erf

z

2
ffiffiffiffiffiffiffiffi
Dct
p

� �� �
(Eq 118)

The corner in this case is at x = y = z = 0, and it
is assumed that the carbon concentration at the
surface is a constant. However, in practice, the
carbon concentration at the surface can be
higher at the corner (Ref 29), in which case
Eq 118 would underestimate the corner effect.
The corner effect also refers to edges, which
is a 2-D problem that requires only two error
functions for x- and y-directions.

Layer Growth between Bonded Alloys.
When bonded alloys are multiphase and multi-
component, there are special difficulties when
modeling interdiffusion. The extension of
single-phase problems from binary to multi-
component systems is straightforward by using
matrix algebra. However, when more than one
single or multiphase alloy is involved and when
layers form between the initial alloys, then
equations become considerably more complex.
Technical examples where layers form

include at coating/substrate interfaces, soldered
and braised joint interfaces, and internal com-
posite interfaces. The layers can be predicted
in binary systems from a phase diagram when-
ever all intermediate phases form. An example
is with the diffusion couple at the lowest tem-
perature in Fig. 17. Here, a Ni-4%Al/Ni-61%
Al diffusion couple is depicted with the initial
alloys (circles) joined by a straight line. It can
be shown by free-energy-versus-concentration
curves that each single-phase region is expected
to form a separate layer in the same sequence as

on the phase diagram. In the example, the
phases present will be in the sequence Ni2Al3/
NiAl/Ni3Al/(Ni). No two-phase regions can
form, because the concentrations of the phases
in a two-phase region are constant, and there-
fore, two-phase regions can only shrink with
time. In ternary and higher-order systems, the
concentration of phases does vary in two-phase
regions, and such regions do grow and form
intermediate layers.
If one or more phases are missing for kinetic

reasons, then the sequence will stay the same,
except without the missing phases. However,
then it is possible for additional metastable
phases to form and appear in the sequence
where stable phases did not form.
A number of interdiffusion problems involv-

ing multiphase regions and single-phase layers
have been solved for binary systems (Ref 22,
30). The additional diffusion couples in
Fig. 17 illustrate the types of diffusion couples
that were treated in that reference. The solution
to the single-phase couple in this group has
already been given by Eq 101. Compare the
simplicity of that equation with the solution
for the diffusion couple in the reference that
involves a single-phase layer. The solution to
that problem is given by the following three
equations. The solution considers that there is
an a + b alloy on the left, a b + g on the right,
and a single-phase b-layer growing between
them. The first equation for the concentration
profile is obtained by solving the general error
function equation for the constants A and B by
using the concentrations at the two moving
boundaries:

Cb x; tð Þ ¼ Cb=g
erf

Z1

2
ffiffiffiffiffiffi
Dbt
p

� �
� erf x

2
ffiffiffiffiffiffi
Dbt
p

� �
erf

Z1

2
ffiffiffiffiffiffi
Dbt
p

� �
� erf

Z2

2
ffiffiffiffiffiffi
Dbt
p

� �
0
@

1
A

þ Cb=g
erf x

2
ffiffiffiffiffiffi
Dbt
p

� �
� erf

Z2

2
ffiffiffiffiffiffi
Dbt
p

� �
erf

Z1

2
ffiffiffiffiffiffi
Dbt
p

� �
� erf

Z2

2
ffiffiffiffiffiffi
Dbt
p

� �
0
@

1
A
(Eq 119)

The following two equations give positions of
the moving interfaces. These are obtained by
solving Eq 51 for the moving-boundary
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Fig. 16 Variation of concentration profiles versus time
for a coating modeled with Eq 115. On the y-

axis, △C0 is the initial coating concentration, CCoat, minus
the initial substrate concentration, C0.
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velocity and then integrating with respect to
time to determine the position. When solving
Eq 51, there is only a flux in the b-layer,
because the concentrations in the two-phase
alloys are constant. The results are:

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
4Dbt

p

r
�Cb

�C aþbð Þb
exp � Z2

1

4Dbt

� �
erf

Z2
1

4Dbt

� �
� erf

Z2
2

4Dbt

� �
(Eq 120)

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
4Dbt

p

r
�Cb

�Cb bþgð Þ
exp � Z2

2

4Dbt

� �
erf

Z2
1

4Dbt

� �
� erf

Z2
2

4Dbt

� �
(Eq 121)

in which �Cbis the concentration difference
across the single-phase b-region, while
�C aþbð Þband�Cb bþgð Þare concentration differ-
ences across the interfaces.
The extension of this problem to ternaries is

straightforward, but there are additional equa-
tions that must be added to account for the con-
centration profiles in the two-phase regions and
for the equilibrium phase diagram boundaries.
These types of problems do not lend themselves
to finding solutions to simultaneous equations.

Instantaneous Source

The instantaneous source (Ref 20), some-
times referred to as the limited source, is a
source of solute that is initially confined to
a localized region that is a point, a line, or a
plane. For example, the region for a plane
source can be envisioned as a thin plate with
thickness �x. However, the plane source of

solute refers to the limit as �x! 0. As a result,
equations for an instantaneous source have the
property that the concentration goes to infinity
at zero time (this type of plane source is also
known as a Dirac delta function). Such behav-
ior may seem nonphysical, but the instanta-
neous source equations are not used at zero
time. Instead, they are applied to longer time,
when t > h2

0

�
4Dð Þ and the plane source equa-

tion approaches the solution for a source of
finite thickness, h0. Its appeal is that the instan-
taneous source equation is far simpler than the
finite thickness source equation, as seen in the
following. The general equation for instanta-
neous sources is:

Cðx; tÞ ¼ Aþ B exp � r2

4Dt

� �
(Eq 122)

in which r is the distance from the instanta-
neous source. For a point source, r is the radius
of a sphere; for a line source, it is the radius of
a cylinder; and for a plane source, it is the dis-
tance, x, from the plane. Substituting this equa-
tion into the 1-, 2-, and 3-D versions of Fick’s
second law, one finds that the value of A is
the concentration of the surrounding material,
and B is obtained by solving the equation for
the total solute, ST:

ST ¼
ð1
�1

C x; tð Þ � C0
� 	

dx (Eq 123)

which is:

B ¼ ST

2f pDtð Þf=2
(Eq 124)

In Eq 124, f is the dimension of the ver-
sion of Fick’s second law that applies, and ST
is a constant equal to the total solute in the
source.
One-Dimensional Thin-Film Solution. The

thin-film solution gets its name from the initial
condition, which can be viewed as a thin film
of solute caught between two alloys or pure
metals. The equation models the concentration
profile as the solute diffuses into its surround-
ings with time. In this case, f = 1 corresponds
to 1-D, and the equation is:

Cðx; tÞ ¼ C 0 þ ST

2
ffiffiffiffiffiffiffiffiffi
pDt
p exp � x2

4Dt

� �
(Eq 125)

Application—Diffusion Bonding. The
bonding of two alloys to each other is often
facilitated by placing a thin sheet or film of
metal between them, as is done in braising.
However, unlike braising, in which the braise
material remains in the joint, diffusion-bonded
parts are heat treated to diffuse the thin film
into the metal, to where it no longer has an
appreciable concentration and effect on proper-
ties. Accordingly, the interdiffusion model
applies to long times, which is when the thin-
film solution is most accurate.
For a film of thickness 2h0 and a concentra-

tion of Cthin--film, the thin-film solution is:

Cðx; tÞ ¼ C 0 þ 2h0 Cthin--film � C 0
� 	

2
ffiffiffiffiffiffiffiffiffi
pDt
p exp � x2

4Dt

� �
(Eq 126)

An example of the thin-film solution is shown
in Fig. 18. The maximum concentration occurs
at x = 0, where the concentration is:

Cð0; tÞ ¼ C 0 þ h0 Cthin--film � C 0
� 	ffiffiffiffiffiffiffiffiffi

pDt
p (Eq 127)

It is apparent that at t = 0, the equation goes to
infinity and does not apply to the physical prob-
lem. However, after a time of t ¼ h2

0

�
4D,

Eq 127 for the maximum concentration is

Fig. 17 Various types of diffusion couples, each of which is modeled with different equations

Fig. 18 Diffusion-bonding concentration profiles
predicted by the error function Eq 115. For

n = 1, the thin-film solution and the error function
solution are nearly the same. For n = 0.25, the profiles
appear to overlap.
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equivalent to that of the more exact error func-
tion equation for the maximum given by
Eq 116. Figure 18 plots the error function solu-
tion Eq 115 as it applies to diffusion bonding
and shows that when the maximum concentra-
tion reaches approximately half its initial value,
Eq 116 is nearly the same as Eq 127 and, for all
practical purposes, is identical for longer times.
If solute concentrations are different in the

two alloys, a solution can be obtained by super-
imposing the error function solution for a diffu-
sion couple, Eq 101, with the thin-film solution
given previously to obtain:

Cðx; tÞ ¼ CAve þ�C 0

2
erf

x

2
ffiffiffiffiffiffi
Dt
p

� �
þ h0 Cthin-film � CAve

� 	ffiffiffiffiffiffiffiffiffi
pDt
p exp

x2

4Dt

� �
(Eq 128)

in which CAve is the average of the two alloy
concentrations, and �C 0is the concentration
difference between the alloys.

Series Solution

The series solution, or trigonometric solu-
tion, as it is sometimes called, is similar to the
thin-film solution in that it provides simple
solutions to diffusion problems during the later
stages of a diffusional process. It is particularly
helpful in 1-D problems in systems involving
periodic changes in concentration and in thin
plates that have equal and constant boundary
conditions on each side of the plate.
The general equation is an infinite series of

the type:

C x; tð Þ ¼
X1
m¼1

Am sin bmxþBm cos bmxð Þ exp �b2mDt
� 	
(Eq 129)

The coefficients Am, Bm, and bm are determined
by performing a Fourier analysis so that the
coefficients fit the initial concentration profile
in the part. The most common initial condition
is a square wave, as shown in Fig. 19. It can
be modeled with the series:

C x; tð Þ ¼ CAve þ 4�C 0

p

X1
n¼0

1

2nþ 1

� exp � 2nþ 1ð Þ2p2
l2

Dt

 !
sin

2nþ 1ð Þpx
l

(Eq 130)

In Eq 130, �C0 is the initial deviation of the
square wave from the average concentration,
CAve, and 2l= 2nþ 1ð Þ is the wavelength of the
nth sine wave in the series. Equation 130 can be
greatly simplified by applying it to times when
the terms associated with n � 1 have become
insignificant with respect to the primary wave
associated with n = 0. This occurs when the
exponential term is less than 0.05, which occurs
when:

3p
l

� �2

Dt � 3 (Eq 131)

At that time, the exponential term of the pri-
mary wave is still greater than 0.70 and there-
fore still significant.
Ignoring n � 1 terms, Eq130 simplifies to a

single sine wave:

C x; tð Þ ¼ CAve þ 4�C0

p
exp �p2

l2
Dt

� �
sin

px
l
(Eq 132)

The result is a sine wave with amplitude A(t),
given by:

A tð Þ ¼ 4�C0

p
exp �p2

l2
Dt

� �
(Eq 133)

Application—Homogenization of Casting
Segregation. The segregation in castings tends
to be periodic because of the shape of dendrites.
During the later stages of a homogenizing heat
treatment, the concentration profile between
secondary dendrite arms becomes sinusoidal,
and the segregation is reduced to a fraction of
its original value. The fraction according to
Eq 133 will be:

A tð Þ
�C0

¼ 4

p
exp � 2pð Þ2

d2sda
Dt

 !
(Eq 134)

In Eq 134, the half-wavelength, l, has been
replaced with half the distance between centers
of secondary dendrite arms, dsda=2 ¼ l. Setting
the exponent in Eq 134 equal to �3.0 and solv-
ing for time yields an equation for when the
segregation has been reduced to approximately
0.5% of its original value:

t0:5% ¼ 3d2sda
4p2D

ffi d2sda
4pD

(Eq 135)

Application—Carburization of a Thin Foil.
To determine the equilibrium concentration of a

steel in a particular carburizing atmosphere, it
is common to include a thin foil of metal
with the parts. The objective is to saturate
the foil with carbon to evaluate the carbon
activity in the atmosphere. The series
solution can be used to predict the maximum
foil thickness that can be saturated in such a
test.
The initial condition for carburizing is illu-

strated in Fig. 20. The initial carbon concentra-
tion of the steel foil is C0. The concentrations
on either side of the foil are assumed to be at
the saturated concentrations, Csat. This initial
condition corresponds to a square wave in
which the amplitude is negative. In Eq 132, Csat

is equivalent to CAve, while �C0 ¼ C0 � Csat.
Therefore, the concentration across the foil as
it approaches saturation is given by:

C x; tð Þ ¼ Csat þ 4�C0

p
exp � p2

h2
0

Dt

� �
sin

px
h0

(Eq 136)

in which h0 is the thickness of the foil. The time
needed to saturate the foil is given by the time
to reduce the amplitude of the sine wave to a
small value. As in the previous example, an
exponent of �3.0 will reduce the amplitude to
0.5% of its original value. For a fixed carburiz-
ing time, tcarb, the equations predict that the
maximum foil thickness should be:

hmax
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDtcarb
p

(Eq 137)

For example, the thickness of a pure iron foil
carburized at 950 �C for 1 h should be:

hmax
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 0:1 cm2=sð Þ exp �136; 000=8:314=ð950þ 273Þð Þð3600 sÞ

p
¼ 0:05 cm

(Eq 138)

Note that the result is independent of the
level of carburizing. It only depends on the
diffusivity and the carburizing time.

Fig. 19 Concentration profiles as a function of time for
a profile that starts as a square wave. After a

time of t = l/(3p2D), the concentration profile looks like a
sine wave that decreases in amplitude with time.

Fig. 20 Concentration profiles for carburizing a thin
foil of metal as a function of time. At zero

time, the film has a concentration of C0, except at the
surface where the atmosphere holds the concentration at
Csat.
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For pure iron and for most steels, Eq 137 gives
a conservative estimate. The reason is that the
diffusivity of carbon in iron increases with
carbon content by as much as a factor of
2 (Ref 27). Therefore, the small value of diffusiv-
ity will underestimate the maximum thickness.

Modeling Variable D,
Multicomponent, and Multiphase
Diffusion Problems

In the previous section, a number of exam-
ples were given in which solutions to diffusion
problems were fashioned from four solutions to
Fick’s second law. For the most part, the solu-
tions were applied to binary systems, although
in several cases the binary solutions could be
extended to multicomponent and multiphase
systems without making the solution overly
complex. All of the solutions had constant
boundary conditions and assumed that the dif-
fusivity was constant. In Crank’s book (Ref 20),
there are additional solutions that permit diffu-
sivities to vary with composition and boundary
conditions to varywith time. However, for indus-
trial problems that need greater accuracy, the use
of commercial codes is necessary.
The use of commercial codes often require

extensive training. Many people familiar with
the codes received their training in graduate
school and used the codes as part of their doc-
toral work. Others train themselves by attend-
ing workshops and reading handbooks on the
subject. Regardless of how training on the
codes is received, a good foundation of thermo-
dynamics and kinetics is essential for under-
standing the inputs to the programs and for
assessing the validity of the outputs, because
programs may produce outputs that contain arti-
facts, and it is important to recognize them.
Artifacts are most easily detected for ternary

systems by plotting composition data as diffu-
sion paths on phase diagrams. If the program
assumes local equilibrium, then rules must be
followed for how the diffusion path can appear
(see the section “Zero-Flux Planes” in this article
as well as Ref 15, 31, and 32 ). Special attention
should be paid to predictions at boundaries
between single-phase and multiphase regions.
The advantage of programs that assume local

equilibrium is that there are definite rules that
diffusion paths must follow, whereas more gen-
eral assumptions are less restrictive, and

violations may be more difficult to recognize.
Local equilibrium is a simplification that avoids
the need to include nucleation theory, because
it assumes that precipitates form instantly when
there is supersaturation. In addition, it assumes
that interphase boundaries are infinitely mobile
and that within a differential volume element
the diffusion distances are so small that the
time to equilibrate occurs between each time
step. Without assuming local equilibrium,
modelers are faced with having to include addi-
tional models for nucleation and interface
mobility. Here, the most formidable problems
may be to obtain viable databases to run the
programs and to obtain the type of results that
can be verified by experiment.
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Diffusivity and Mobility Data
Carelyn E. Campbell, National Institute of Standards and Technology

DIFFUSION is the process by which mole-
cules, atoms, ions, point defects, or other parti-
cle types migrate from a region of higher
concentration to one of lower concentration.
The diffusivity of an atom or diffusion coeffi-
cient is the rate at which a particle migrates
through a particular material and is dependent
on the temperature, composition gradient, and
pressure. Diffusivity determines how quickly

equilibrium is reached from a nonequilibrium
state. In solid-state materials, diffusion can
occur by a variety of different mechanisms. Lat-
tice diffusion (bulk or volume diffusion) occurs
as a result of individual jumps of atoms or point
defects, such as vacancies, divacancies, or inter-
stitials, within the crystal. Diffusion may also
occur along the surface or along line defects,
such as grain boundaries or dislocations. These

line, planar, and surface diffusion mechanisms
are generally much faster than the lattice-diffu-
sion-based-mechanisms and, as a result, are
termed high-diffusivity paths (or short-circuit
diffusivity). Depending on the temperature and/
or microstructure of the material, these high-dif-
fusivity paths or bulk diffusion may be the dom-
inate diffusion mechanism. As a wide variety of
microstructural processes are controlled by lat-
tice diffusion mechanisms and much of the pub-
lished diffusion data is for bulk diffusion
processes, this article focuses primarily on the
diffusivity data and modeling of lattice diffusion
in solid-state materials. A list of symbols is in
Table 1.

Diffusion Mechanisms

In a crystal, lattice vibrations cause atoms to
oscillate around equilibrium positions with
frequencies, n0 (�1012 to 1013 Hz); however,
occasionally the oscillations are large enough
to allow an atom to jump to a different lattice
site, resulting in diffusion of the atom. In the
absence of a driving force, the energy barrier
that an atom must overcome to jump to an
empty site is the free energy of migration, Gm.
Figure 1 shows the Gm as a function of atomic

Table 1 List of symbols

a = nearest-neighbor atomic distance (m)
kApj

i = contribution to the diffusion-activation energy of
component i, in a lattice occupied by p and j
atoms in a given phase. k is the order of the
interaction parameter (i.e., 0, 1, 2, . . .) (Eq 27).

b = thickness of thin layer (Eq 10) (m)
ci = volume concentration of component i (mol/m3)
cs = concentration at the surface of semi-infinite solid

(Eq 11) (mol/m3)
c0 = initial concentration of component at time = 0 s

(Eq 10) (mol/m3)
c1, c2 = initial concentrations at the end of infinite couple

(Eq 12) (mol/m3)
ceqV = thermal equilibrium vacancy concentration

(mol/m3)
c�, c+ = initial compositions of a given diffusion couple

(Eq 18) (mol/m3)
c*, z* = composition at a given distance (z) (Eq 18)
D = diffusion rate in the absence of any driving force

(m2/s)
D0 = pre-exponential factor for diffusion (m2/s)
D
i = tracer diffusion coefficient for component i (m2/s)
Ds

i = self-diffusion coefficient for component i (m2/s)
LDkj = diffusion coefficient for the diffusing component,

j, with respect to the composition gradient of
component k, in the lattice-fixed frame of
reference (m2/s)

VDkj = diffusion coefficient for the diffusing component,
j, with respect to the composition gradient of
component k, in the volume-fixed frame of
reference (m2/s)

~Dn
kj = interdiffusion coefficient, where n is the

dependent component (m2/s)
f = correlation factor for self-diffusion, dependent on

crystal structure
g = geometric factor dependent on the lattice

geometry and type of interstitial site
Gm = free energy of vacancy migration (J/mol)
HF = enthalpy of formation of a vacancy (J/mol)
Hm = enthalpy of vacancy migration (J/mol)
Ji = flux of particles (number particles per second and

unit area) (m�2 s�1)
LJk = flux of particles in the lattice-fixed frame of

reference (number particles per second and unit
area) (m�2 s�1)

VJk = flux of particles in the volume-fixed frame of
reference (number particles per second and unit
area) (m�2 s�1)

Mi = atomic mobility of component i (m/N/s)
LMki = mobility of the diffusing component, k, with

respect to the composition gradient of
component i, in the lattice-fixed frame of
reference

Na
i = number of i atoms on the a sublattice

Na
total = total number of atoms on the a sublattice

p = probability of the next neighboring site being
vacant

DQ = diffusion-activation energy (J/mol)
�Q
i = diffusion-activation energy of component i in a

given phase (J/mol)
Qj

i = diffusion-activation energy of component i in a
lattice occupied by pure j atoms in a given
phase (J/mol)

�Q0i = diffusion-activation energy assuming the
pre-exponential term is included
(J/mol)

�Qord
k = ordered contribution to the diffusion-activation

energy (J/mol)
�Qdis

k = disordered contribution to the diffusion-activation
energy (J/mol)

R = gas constant (J/mol K)
SF = entropy of formation of a vacancy (J/K)
Sm = entropy of vacancy migration (J/K)
t = time (s)
T = temperature (K)
Vm = molar volume of a phase (m3/mol)
xi = mole fraction of component i
yai ; y

b
i = site fractions of component i on the a and b

sublattices, respectively
Yi = normalized concentration variable (Eq 16)
z = distance (m)
zK = position of the Kirkendall plane (m)
zM = position of the Matano plane (m)
dik = Kronecker delta symbol, equals 1 when i = k

and 0 when i 6¼ k
Fi = pre-exponential factor defining the mobility of

atom i
G = jump frequency (s�1)
l = diffusion length (m)
mi = chemical potential of component i (J/mol)
n0 = equilibrium lattice frequency (Hz) (s�1)
p = constant, 3.14. . .
uK = Kirkendall velocity (m/s)
o = jump rate for atom to a neighboring empty

lattice site

Fig. 1 Assuming no driving force on an atom, a
schematic of the energy barrier that must be

overcome for a diffusion to occur. I, initial state; A,
activated state, F, final state
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position. The jump rate, o, for an atom to jump
to a neighboring empty site is given by:

o ¼ n0 exp ��Gm=RT

� �
where �Gm ¼ Hm � TSm

(Eq 1)

where n0 is the atomic vibration frequency, R is
the gas constant, T is the temperature in Kelvin,
and Hm and Sm are the enthalpy and entropy of
migration. The jump frequency, G, of an atom is
then defined as the jump rate times the probability,
p, of the next neighboring site being vacant:

� ¼ o p (Eq 2)

Two of the most common mechanisms by
which atoms diffuse are interstitial diffusion
and vacancy diffusion. Interstitial diffusion
occurs as small interstitial atoms, which are sol-
ute atoms that are considerably smaller than the
solvent atoms, jump from one interstitial site to
the next-nearest unoccupied interstitial site.
Thus, for a dilute interstitial alloy, the probabil-
ity defined in Eq 2 is approximately equal to 1,
and the diffusion rate in the absence of any
driving force (concentration gradient) is:

D ¼ ga2n0 exp
Sm

R

� �
exp

�Hm

RT

� �� �
(Eq 3)

where a is the nearest-neighbor atomic dis-
tance, and g is a geometric factor that depends
on the lattice geometry and the type of intersti-
tial site (i.e., octahedral or tetrahedral). This
expression is commonly simplified to an
Arrhenius-type equation:

D ¼ D0 exp
��Q

RT

� �
where D0

¼ ga2n0 exp
Sm

R

� �
and Hm ¼ �Q (Eq 4)

Vacancy-driven diffusion occurs when a nearest-
neighbor atom (substitutional solute atom) jumps
onto an unoccupied lattice site. The probability
of the nearest-neighbor site being vacant, p from
Eq 2, is defined by the thermal equilibrium
vacancy concentration, ceqV , which is given by:

ceqV ¼ exp
SF

R

� �
exp

�HF

RT

� �
(Eq 5)

where SF and HF are the formation entropy
and enthalpy, respectively, of a vacancy.
Thus, similar to Eq 3 for the interstitial
diffusion rate, the substitutional diffusion
rate in the absence of a driving force is
given by:

D ¼ fa2n0 exp
SF þ Sm

R

� �
exp

� HF þHmð Þ
RT

� �� �
(Eq 6)

where f is the correlation factor that determined
by the crystal structure. Like Eq 3, 6 can be

written in terms of an Arrhenius relation,
where:

D0 ¼ fa2n0 exp
SF þ Sm

R

� �

and DQ = HF + Hm. It should be noted that
while these Arrhenius-type relations (Eq 4
and 6) are common, they are not universal.
Grain-boundary, impurities, or other micro-
structural features; temperature-dependent acti-
vation parameters; and other active diffusion
mechanisms may all result in deviations from
an Arrhenius relation.

Diffusion Equation

In a steady-state one-dimensional system, the
flux of particles is proportional to the concen-
tration gradient:

Ji ¼ �Di
@ci
@z

(Eq 7)

where Ji describes the amount of material that
passes through a unit area of a plane per unit
time (t) within a volume-fixed frame of refer-
ence (otherwise known as flux). The variable
Di is the diffusivity of component i for a given
diffusion mechanism. The variable ci is the con-
centration of particles i (Note: ci ¼ xiVm,
where xi is the mole fraction of component i,
and Vm is the molar volume of the phase), and
z is the diffusion distance. Equation 7, better
known as Fick’s law (Ref 1, 2), assumes there
are no external forces or driving forces acting
on the particles and is formally identical to
Fourier’s law of heat conduction and Ohm’s
law of current flow.
For a nonsteady-state one-dimensional sys-

tem where the flux at each point varies with
time, Fick’s law must be combined with a mass
balance or continuity equation (Eq 8) to deter-
mine the time-dependent concentration, where
t is the time in seconds:

@J

@z
¼ � @c

@t
(Eq 8)

Equations 7 and 8 are combined to form the
general diffusion equation, which is a second-
order linear partial differential equation and
cannot be solved analytically:

@ci
@t
¼ @

@z
Di

@ci
@z

� �
(Eq 9)

However, if Di is assumed to be concentration
independent, the diffusion equation can be
solved for a variety of initial and boundary con-
ditions, as demonstrated by Ref 3 and 4. Two
simple examples of these solutions that are
commonly used experimentally are the thin-
film and error-function solutions.

The thin-film solution assumes that a thin
layer, with a thickness, b, of the diffusing spe-
cies A is concentrated at z = 0 of a semi-infinite
sample, as seen in Fig. 2. Then, concentration
profiles after time, t, are given by:

cðz; tÞ ¼ bc0ffiffiffiffiffiffiffiffiffiffi
�Dt
p exp � z2

4Dt

� �
(Eq 10)

where c0 is the initial concentration of the A
layer. The diffusion length, l, is represented
by the

ffiffiffiffi
D
p

t quantity and is a characteristic
length used in solving diffusion equations. The
thin-film solution is valid for applications
where l is much greater than the initial layer
thickness. The geometry represented by the
thin-film solution (Eq 10) is commonly used
to measure tracer diffusion coefficients in sub-
stitutional alloys (defined in the section “Tracer
Diffusivity” in this article).
Infinite and Semi-Infinite Solutions. Error-

function solutions can be applied to semi-
infinite and infinite samples. The concentration
profiles in a semi-infinite solid with a constant
concentration of a component at the surface,
cs, are defined by the following error functions
and initial and boundary conditions:

Initial conditions: t ¼ 0; z > 0; cðz; 0Þ ¼ c0;

where c0 is the initial concentration in the solid

Boundary conditions: at all t > 0; z ¼ 0; cð0; tÞ ¼ cs

The concentration profile for a given time is
then given by:

c� cs
c0 � cs

¼ erf
z

2
ffiffiffiffiffiffi
Dt
p

� �
(Eq 11)

These types of solutions are applicable to mod-
eling various carburization and coating
problems.
For an infinite sample with a concentration

profile defined by a step function, the composi-
tion profile at given time, t, is:

c� c1
c2 � c1

¼ 1

2
erfc

z

2
ffiffiffiffiffiffi
Dt
p

� �
(Eq 12)

where the initial boundaries at t = 0 are given
by:

t ¼ 0
zh0 c ¼ c2
zi0 c ¼ c1



and c1 and c2 are the compositions at either end
of the infinite couple, as seen in Fig. 3. This type
of solution is often used when the diffusion dis-
tances in the two materials are much smaller
than the width of the samples. While analytical
solutions to the diffusion equation assuming a
constant diffusivity are useful in solving some
practical problems, to solve most problems of
interest, the composition and temperature depen-
dence of the diffusivity must be considered, and
the equation must be solved numerically.
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Diffusion Data

Diffusivity in a material can be evaluated in
variety of different ways, including measure-
ment of diffusion coefficients, composition pro-
files, and layer growth widths. Tracer, intrinsic,
and chemical diffusivities can all be extracted
from various types of direct and indirect diffu-
sion experiments. Table 2 reviews some of the
common direct and indirect methods to mea-
sure these diffusion coefficients. Direct experi-
ments are based on Fick’s law (Eq 7) and the
phenomenological definitions of the diffusion
coefficients. Indirect experimental methods are
not based on Fick’s law and require a micro-
scopic model of the atomic jump processes to
deduce a diffusion coefficient.
Tracer Diffusivity. Tracer diffusion is the

migration of a tagged atom through a material

of which it is a component. As such, the tracer
diffusivity is generally measured by introducing
a radioactive isotope in dilute concentration
into an otherwise homogeneous material. Thus,
the only driving force in the system is that of
the concentration gradient of the tracer. In a
homogenous material, the mean square dis-
placement of the tracer in the z-direction is
defined by the Einstein formula for Brownian
motion (random walk) as:

z2i
� � ¼ 2D
i t where D
i ¼ RTMi (Eq 13)

where D
i is the tracer diffusion coefficient, t is
the diffusion time, and Mi is the atomic mobil-
ity of the i atoms or the movement of atoms
in response to a given force, in this case, the
result of continuous random movement. (Note
that for a multicomponent alloy, the mobility

is a function of each component in the alloy.
Further description of the calculation of the
composition-dependent mobility matrix is
given in the section “Disordered Phase” in this
article.) The tracer diffusion coefficient is equal
to the self-diffusion coefficient, DS

i , if diffusion
takes place by uncorrelated atomic jumps;
otherwise, the tracer diffusion coefficient is
related to the self-diffusion coefficient by the
correlation factor, f, D
i ¼ fDS

i . The correlation
factor is dependent on crystal structure and
introduces off-diagonal terms into the Mi

matrix. For the body-centered cubic (bcc) and
face-centered cubic (fcc) crystal structures
assuming a vacancy-diffusion mechanism, the
contribution of these off-diagonal terms is
small. Thus, for simplicity, these terms are not
included in the present discussion; however,
calculation methods are discussed by Ref 5
and 6. When a tracer impurity is measured in
a homogeneous material (i.e., solute C in a pure
A alloy or homogeneous AB alloy), the
measured tracer diffusivity is often referred to
as the impurity diffusivity.
Chemical Diffusivity (Interdiffusion). In

contrast to tracer diffusivity measurements that
only consider negligible amounts of a tracer
element in an otherwise homogeneous material,
interdiffusion (chemical diffusion) and intrinsic
diffusion coefficient measurements are per-
formed in nonhomogeneous materials where
the diffusion flux is proportional to the gradient
of the chemical potential (e.g., in the presence
of a driving force). The interdiffusion coeffi-
cient, VDkj, is defined in the volume-fixed
frame of reference, where the sum of the fluxes
equals zero, and is given by:

Fig. 3 Example of error-function solutions for an
infinite couple with initial end-member

compositions of c1 and c2. The composition profiles
show the diffusion of the species with increasing time.

Table 2 Direct and indirect methods for measuring diffusion coefficients

Method Dx D, m2/s

Direct

Lathe sectioning, grinding 0.1–250 mm 10�19 to 10�10

Microtome 1–10 mm 10�17 to 10�12

Chemical 10 mm 10�15 to 10�12

Electrochemical 50 nm 10�20 to 10�17

Sputtering 5–100 nm 10�22 to 10�17

Modulated structures 0.5–5 nm �10�26
Ion microprobe (secondary ion mass spectroscopy) 1–100 nm 10�23 to 10�17

Electron microprobe �2 mm 10�16 to 10�12

Rutherford backscattering 50 nm 10�20 to 10�17

Nuclear reaction analysis 20–100 nm 5 � 10�21 to 5 � 10�16

Indirect

Nuclear magnetic resonance . . . 10�20 to 10�9

Neutron inelastic scattering . . . 10�11 to 10�9

Mossbauer effect . . . 10�15 to 10�11

Conductivity (ionic crystals) . . . 10�17 to 10�10

Resistivity (semiconductors) . . . 10�20 to 10�12

Elastic after-effect . . . 10�25 to 10�21

Internal friction . . . 10�20 to 10�15

Magnetic anisotropy . . . 10�25 to 10�21

Source: Ref 5

Fig. 2 Schematic of (a) thin-film geometry and (b) solution. (a) A thin layer of the diffusing species (A atoms per unit
area) is concentrated at z = 0. As time increases, the A atoms diffuse such that concentration becomes

negligible. (b) The concentration of A atoms as a function of distance for different times, where the time increments
are given as D*t, where D is a constant.
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Xn
k¼1

VJk ¼ 0 (Eq 14)

VDkj ¼
Xn
i¼1

dik � xkð ÞxiMi
@mi
@xj

Vm (Eq 15)

The component j is the diffusing component,
and k is the gradient component. The dik is the
Kronecker delta symbol and equals 1 when i =
k and 0 when i 6¼ k. The partial derivative of
the chemical potential, mi, with respect to the
mole fraction, xi, corresponds to the thermody-
namic factor. Note that the partial derivative of
the chemical potential can be easily calculated
using a functional representation of the Gibbs
energy, for example, an appropriate multicom-
ponent thermodynamic database. However, the
thermodynamic factor must be evaluated in the
form mk(x1, x2,. . .xn) because there are n-1 inde-
pendent concentrations. As there are only (n-1)
independent components, diffusion couple
experiments are only able to directly evaluate
the interdiffusion coefficient, ~Dn

kj:

~Dn
kj ¼ DV

kj �DV
kn (Eq 16)

where n is the dependent variable. Using these
interdiffusion coefficients, the flux equations
(Eq 7) in the volume-fixed frame of reference,
where the sum of the fluxes equals zero, can
be written as:

Jk ¼ �
Xn�1
j¼1

~Dn
kj

@cj
@z

(Eq 17)

There are several methods for determining
interdiffusion coefficients from measured com-
position profiles from diffusion couple experi-
ments. Figure 4 shows that for diffusion
couples that can be approximated as an infinite
medium, the Boltzmann-Matano method (Ref
7, 8) can be used to determine the interdiffusion
coefficients from experimental composition
profiles at a given time, t:

~Dðc
Þ ¼ 2t
dc

dz

����
z


� ��1 ðc

c

zM � zð Þdc and

ðcþ
c�

zM � zð Þdc ¼ 0 ðEq 18Þ

The variable zM defines the Matano plane
through which equal amounts of material have
moved in the positive and negative directions.
The concentrations c� and c+ represent the ini-
tial compositions of the diffusion couple. How-
ever, this commonly used method does not
consider the change in molar volume across the
diffusion couple. When significant molar volume
changes are present (e.g., in the intermetallic
NiAl-B2, Ref 9), the interdiffusion coefficients
should be calculated using methods that include
the composition dependence of the molar
volume, such as that proposed by Ref 10 to 12:

~D ¼VM

2t

dz

dYi

� �
Y 


1� Y 
i
� 	 ðz


�1

Yi

VM

dz

2
4

þ Y 
i

ð�1
z


1� Yið Þ
VM

dz

3
5 where Yi ¼

ci � c�i
� 	
cþi � c�i
� 	

(Eq 19)

where Yi is a normalized concentration variable.
This method also eliminates the need to deter-
mine a Matano interface, which is often a source
of error. An example of the method is shown in
Fig. 5 for a cobalt-nickel diffusion couple.
As the number of elements in the diffusion

couples increases, determining the interdiffusion
coefficients becomes more difficult; for each
interdiffusion coefficient, (n�1) composition
profiles with different terminal compositions
must intersect at one common intersection point.
In an effort to overcome this complexity, Ref 13
derived a new analysis method that enables the
determination of an average interdiffusion coef-
ficient over a selected composition range from
a single multicomponent diffusion couple by
integrating the interdiffusion flux of a compo-
nent over the diffusion distance for a selected
range of compositions. This method has been
implemented in the computational software
program MultiDiFlux (Ref 14). (Commercial
products are referenced in this paper as exam-
ples. Such identification does not imply recom-
mendation or endorsement by the National
Institute of Standards and Technology.)
Intrinsic Diffusivity. The intrinsic diffusion

coefficient defines the diffusion of a component
relative to the lattice planes and is the product
of the diffusion mobility and the thermody-
namic factor in the lattice-fixed frame of refer-
ence, where the sum of the diffusion fluxes
equals the vacancy flux:

Xn
k¼1

LJk ¼ �LJvacancy (Eq 20)

LDkj ¼
Xn
i¼1

dxixiMk
@mk
@xj

(Eq 21)

A net flux of atoms across any lattice plane
occurs during interdiffusion as the diffusion
rates of the components in a material are differ-
ent. Thus, there is a shift of lattice planes rela-
tive to a fixed lattice axis, which is known as
the Kirkendall effect. This shift of lattice planes
is observed by placing inert markers at the ini-
tial interface of a diffusion couple (Fig. 6)
(Ref 15, 16). The velocity of the inert markers
equals the Kirkendall velocity. Thus, the differ-
ence between Eq 15, VDkj, and Eq 21, LDkj, is
the reference state. The VDkj represents the
measurement of the diffusivity relative to a
fixed position, while the LDkj represents the
measurement of diffusivity relative to a fixed
lattice plane. This difference in the frame of
reference is similar to measuring the speed of
a train when the observer is standing at a fixed
position on the train platform (in the volume-
fixed frame of reference) versus when the
observer is sitting in one of the train cars (the
lattice-fixed frame of reference).
For a substitutional binary alloy, the intrinsic

and tracer diffusivities are related to the inter-
diffusion coefficient and the Kirkendall

Fig. 4 Example of Boltzmann-Matano calculation for a
single-phase interdiffusion experiment with end-

member composition of c�i and cþi . The Matano plane is
located at z0 and is chosen such that the two shaded
areas, E and F, are equal. The diffusion coefficient at
given ci concentration is then given by Eq 18.

Fig. 5 Example of the Sauer-Freise method to calculate
the interdiffusion coefficient for face-centered

cubic cobalt-nickel at 1150 �C. (a) Measured composition
profile after 1000 h at 1150 �C. (b) Calculated interdiffusion
coefficient at 1150 �C. Source: Ref 10

174 / Fundamentals of the Modeling of Microstructure and Texture Evolution

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158265


velocity. For example, for a binary AB alloy,
Darken (Ref 17) deduced the following approx-
imate relations, which disregard the coupling
between the fluxes of the two atoms and the
vacancy flux:

V ~DAB ¼ xB
LDA þ xA

LDB ¼ xAD


B þ xBD



A

� 	 @mA
@xB

(Eq 22)

The Kirkendall velocity, nK, is given by:

nK ¼ LDA � LDL
B

� 	 @xA
@z

(Eq 23)

For a more complete description of the relation-
ship between the diffusivities in a “random”
alloy during a vacancy-driven diffusion process,
the Darken-Manning relations (Ref 18, 19)
should be used.
As an example of the relationship between the

diffusivities, consider the fcc diffusivities for the
iron-nickel system at 1200 �C (Fig. 7). Figure 7
(a) shows the calculated thermodynamic factors,
and Fig. 7(b) shows the mobilities for nickel and
iron. The Darken relationship (Eq 22) is demon-
strated in Fig. 7(c):

~DFeNi ¼ xFe
LDNi þ xNi

LDFe (Eq 24)

where the intrinsic lattice diffusivities, Eq 21,
(LDNi,

LDFe) are calculated by multiplying the
thermodynamic factor (Fig. 7a) by the mobility
(Fig. 7b).
First-Principles Data. In addition to the vari-

ety of experimental methods available for mea-
suring diffusivity, first-principles calculations
may be available to help estimate difficult-to-
measure or metastable diffusion coefficients.
Density-functional methods can be used to cal-
culate the self-activation diffusion energies (Ref
20). Embedded-atom potentials can be used to
evaluate diffusion mechanisms and determine
activation energies (Ref 21–23). Diffusion coef-
ficients can be extracted from kinetic Monte
Carlo simulations using Kub-Green expressions
(Ref 24, 25).

Modeling Multicomponent
Diffusivity Data

While much of the diffusivity data for the
pure elements and many binary alloys have
been measured and are available in the litera-
ture, diffusivity data for multicomponent sys-
tems are scarce and difficult to measure.
Experimentally determining all the needed dif-
fusion coefficient matrices for a multicompo-
nent diffusion simulation is simply not
practical or efficient. However, these multicom-
ponent data are critical for correctly predicting
diffusion behavior in many industrial (commer-
cial) applications and may be strongly depen-
dent on composition. Thus, multicomponent
diffusion mobility databases are developed to
predict the needed bulk diffusion coefficients.

Using Onsager’s relations and a Calphad-
based method (Ref 26–28), Ref 29 developed
a formalism to describe diffusion mobilities in
multicomponent systems and to develop multi-
component diffusion mobility databases. These
diffusion mobilities can then be combined with
the needed thermodynamic factors to calculate
the multicomponent diffusion coefficients.
Appendix 1 demonstrates how ternary tracer,
intrinsic, interdiffusion coefficients are calcu-
lated for a given set of diffusion mobilities
and chemical potentials.

Disordered Phase

Substitutional Diffusion. Assuming a
vacancy diffusion mechanism in a crystalline
phase, the mobility matrix in the lattice-fixed
frame, LMki, which is both composition and tem-
perature dependent, can be written in terms of an
Arrhenius-type relation similar to Eq 4 and 6:

LMki ¼ dkixiMi (Eq 25)

Mi ¼ �i

1

RT
exp

�Q
i
RT

� �
(Eq 26)

Following the work of Ref 29, the off-diagonal
terms of the diffusion mobility matrix are
assumed to be zero; that is, correlation effects
are assumed to be negligible. Mi is the mobility
of component i in a given phase (this is the
same Mi as in Eq 13, 15, and 21), Yi represents
the effects of the atomic jump distance
(squared) and the jump frequency, and �Q
i
(with units of J/mol) is the diffusion-activation
energy of component i in a given phase. The
partial molar volumes are assumed to be con-
stant, and the composition and temperature
dependence of each �Q
i are expressed in
terms of a Redlich-Kister (Ref 30) polynomial
(Ref 29, 31–35):

�Q
i ¼
X
j

xjQ
j
i þ
X
p

X
j>p

xpxj
X
k

kApj
i xp � xj
� 	

k

(Eq 27)

where Qj
i and

kApj
i are linear functions of tem-

perature. The expansion of the composition
dependence in terms of a Redlich-Kister poly-
nomial is similar to the development of thermo-
dynamic databases with the Calphad method
(Ref 26–28). Note that for a given diffusing
component, i, if all Qj

i are equal and kApj
i

equals zero, then �Q
i and the corresponding
Mi are not concentration dependent. The com-
position dependence of Yi can also be

Fig. 7 Example of the calculation of the intrinsic
diffusion and interdiffusion coefficients for the

iron-nickel system at 1200 �C. Thermodynamic factors
(a) and mobilities (b) for iron and nickel as functions of
composition are multiplied to calculate the intrinsic
diffusion coefficients shown in (c). The Darken relation
(Eq 22) is used in (c) to calculate the interdiffusion
coefficient.

Fig. 6 Schematic of Kirkendall effect in an A-B
diffusion couple where the B atoms diffuse

faster than the A atoms (DB > DA), and the interface
moves to the right. The Matano plane is defined by zM,
and the Kirkendall plane is located at zK.
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represented by Eq 27. If there is no ferromag-
netic contribution, it is frequently assumed that
Yi depends exponentially on composition
(Ref 36), and it is included in the activation
energy term. With this assumption, Eq 26 can
be written as:

Mi ¼ 1

RT
exp

�Q0i
RT

� �
where �Q0i ¼ �Q
i �RT ln�i

(Eq 28)

Interstitial Diffusion. Interstitial elements
can be added to the database by using a sublat-
tice description and by assuming the partial
molar volume of the interstitial element is zero
(Ref 37). An example of this model is the addi-
tion of carbon to the Fe-Ni-Cr fcc phase in the
diffusion assessment by Ref 38.
Magnetic Transition. For substitutional ele-

ments in bcc alloys, such as transition metals,
the effect of the transition between the para-
and ferromagnetic states contributes to the dif-
fusion. The effect of magnetic ordering on dif-
fusion can be included (Ref 39, 40), using the
model of Braun and Feller-Kniepmeier (Ref
41), which relates the change in diffusivity to
the magnetic enthalpy. For interstitial elements,
such as carbon or nitrogen, the effect of the
magnetic transition is less well established.
The magnetic transition has a strong effect on
carbon diffusivity (Ref 42), which can be mod-
eled by applying the same activation energy to
both the paramagnetic and ferromagnetic states
(Ref 43). However, no significant change in the
nitrogen diffusivity is observed as the magnetic
transition occurs.

Ordered Phases

For an ordered phase, the composition
dependence of the diffusion mobilities must
include the effect of chemical ordering. Based
on the model by Girifalco (Ref 44), which
assumes the activation energy from chemical
ordering is dependent on a long-range order
parameter, the effect of chemical ordering is
included by dividing the activation energy into
two terms (Ref 35). The first term represents
the contribution from the disordered state,
�Qdis

k , and the other term represents the contri-
bution from the ordered state, �Qord

k , which is
based on a long-range order-type parameter, the
site fraction of a given component i:

�Qk ¼ �Qdis
k þ�Qord

k (Eq 29)

where �Qord
k is defined as:

�Qord
k ¼

X
i

X
i 6¼j

�Qord
kij yai y

b
j � xixj

h i
(Eq 30)

and �Qord
kij are the contributions to the activa-

tion energy for component k as a result of the
chemical ordering of the i and j atoms on the
two sublattices; xi is the mole fraction of com-
ponent i; and yai and ybi are the site fractions
of component i on the given sublattices:

yai ¼
Na

i

Na
total

(Eq 31)

where Na
i equals the number of i atoms on the a

sublattice, and Na
total equals the total number of

atoms on the a sublattice. This approach was
developed for an AB (B2) alloy where diffusion
occurs via jumps between two metal sublat-
tices; however, the approach is also valid for
A3B (Fe3Al) alloys (D03 ordering) (Ref 45),
where diffusion occurs via a network of near-
est-neighbor jumps and where the fcc or hexag-
onal close-packed crystal structure is the base
for the ordered phase. This model has been suc-
cessfully used to describe the Fe-Ni-Al diffu-
sion in the B2 phase (Ref 34) and to describe
the Ni-Al-Cr diffusion in the B2 and g0 phases
(Ref 46).

Stoichiometric Phases

For binary stoichiometric phases, the diffu-
sivity is assumed to be proportional to the dif-
ference in the chemical potentials at each end
of the stoichiometric phase multiplied by the
mobility for the component in the phase. Tracer
diffusivity data for the component in the stoi-
chiometric phase are used to assess the diffu-
sion mobility functions. This type of model
has been applied to the diffusivity of carbon
in cementite (Ref 47).

Determination of Diffusion
Mobility Coefficients

Similar to the Gibbs energy function coeffi-
cients used in multicomponent thermodynamic
databases, the diffusion mobility parameters in
Eq 26 and 30 are determined from experimental
data for each system and can be evaluated using
trial-and-error methods or mathematical meth-
ods that minimize the error between the calcu-
lated and experimental diffusion coefficients,
as indicated in Fig. 8. The trial-and-error
method is only feasible if a few different data
types are available. This method becomes
increasingly cumbersome as the number of
components and/or number of data types
increases. When this occurs, mathematical
methods, such as the least-squares method of
Gauss (Ref 48), the Marquardt method
(Ref 49), or the Bayesian estimation method
(Ref 50), are more efficient. The PARROT
optimizer (Ref 51) within the DICTRA code
(Ref 52, 53) allows direct optimization of diffu-
sion mobility functions.
General Principles. The same principles

guiding the assessment of thermodynamic data
(Ref 28) also apply to diffusion data, with a
few additional constraints. First, a thermody-
namic database (or description) must be
selected to calculate the needed thermodynamic
factors for intrinsic and interdiffusion coeffi-
cients. In choosing a thermodynamic database,

the phase models used for the thermodynamics
must be the same as those used in the diffusion
mobility database. For example, if a thermody-
namic description uses a two-sublattice model
of an fcc phase (one sublattice for the substitu-
tional elements and a second sublattice for the
interstitials), then the same two-sublattice
model must be used in the diffusion mobility
database. After selecting a thermodynamic
database/description to use for developing the
diffusion mobility database, a critical evalua-
tion of all the available data must be performed.
As the tracer diffusivity data are not dependent
on the thermodynamics, these data are preferred
and often weighted more heavily than other dif-
fusivity data, which are dependent on the ther-
modynamic description used. The assessment
process continues by optimizing the mobility
parameters for each component in each phase
separately and then optimizing the mobility
parameters for all of the components in a given
phase with all of the relevant, and appropriately
weighted, diffusion data. Zero-order binary and
ternary interaction parameters may be added as
needed to fit the available diffusion data. Gen-
erally, ternary and higher-order binary interac-
tions are rarely needed to fit the experimental
data, or there are insufficient experimental data
to justify such terms. After all of the needed
mobility parameters are optimized, the assess-
ment is verified using diffusion data not consid-
ered during optimization, such as a comparison
of calculated and measured composition pro-
files from diffusion-couple experiments. The
assessed parameters may also be evaluated by
comparing activation energies with diffusion
correlations published in the literature (Ref
54) or with first-principles calculations.
Binary Assessment Example. The assess-

ment of the nickel-tungsten diffusion mobilities
in the fcc phase is described here as an exam-
ple. The thermodynamic description developed
by Gustafson et al. (Ref 55) is used. The fcc
phase is modeled using a two-sublattice
description (nickel, tungsten: vacancies), where
nickel and tungsten occupy the substitutional
sublattice, and vacancies occupy the interstitial
sublattice. For the nickel-tungsten system in
the fcc phase, both tracer (Ref 56) (Fig. 9)
and interdiffusion (Ref 57) (Fig. 10) data are
available. The nickel and tungsten diffusion
mobilities in the fcc phase are described as:

Mi ¼ 1

RT
exp

�Q0i
RT

� �
where i ¼ Ni;W (Eq 32)

�Q0Ni ¼ xNiQ
Ni
Ni þ xWQW

Ni þ xNixW
0ANi;W

Ni

�Q0W ¼ xNiQ
Ni
W þ xWQW

W þ xNixW
0ANi;W

W

:

(Eq 33)

(Note that because this phase has no ferromag-
netic contribution, the mobilities are expressed
using Eq 28.) If a ferromagnetic contribution
were present, separate composition-dependent
functions for the activation energy and pre-
exponential terms would be needed (Eq 26).
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QNi
Ni is the self-activation energy for diffusion of

nickel in pure fcc nickel; it is well established
experimentally, and the mobility parameters
are previously determined in the assessment
work by Ref 32. Two metastable end-member
self-activation energies must be determined:
one for the diffusion of tungsten in pure fcc
tungsten, QW

W, and one for nickel in pure fcc
tungsten, QW

Ni. Because these quantities cannot
be measured experimentally (fcc tungsten is
not stable), they are determined during the opti-
mization, using diffusion correlations or first
principles as initial estimates. The activation
energy for tungsten diffusing in fcc nickel,
QNi

W, is determined using the available tracer
and interdiffusion data. The three activation
energies are modeled using the following form,
where B and C are constants:

BþRT lnðCÞ (Eq 34)

The binary interaction parameters, 0ANi;W
Ni and

0ANi;W
W , are also considered in the optimization

and are modeled using a constant value.
To start the assessment, the initial values for

the activation energies are all set to equal the
value of nickel in pure nickel: �28,700 +
69.8*T (Ref 32) (Table 3). The binary interac-
tion parameters are initially set to zero. Note
that with this initial set of parameters, there is
no concentration dependence for the tracer dif-
fusivities. As seen in Fig. 9(a, b), the tracer dif-
fusivities for all three alloy compositions are
equal, using the initial parameters. The first
parameters optimized are activation energies
for the diffusion of tungsten in pure tungsten
and nickel, QW

W and QNi
W, using the tungsten

tracer diffusivity data from Ref 56. The optimi-
zation is done by comparing the diffusivities
calculated using the values defined for Eq 33
in Eq 13 and the experimental values:

D
WðxW; T Þ ¼

1

RT
exp

xNiQ
Ni
W þ xWQW

W þ xNixW
0ANi;W

W

� �
RT

0
@

1
A

(Eq 35)

After these parameters are optimized, the binary
interaction term,0ANi;W

W , is optimized, using a
start value of �5000 J/mol. Once the tungsten
mobility parameters have been optimized using
tracer diffusivity data, the values for QNi

W, QW
W,

and 0ANi;W
W are then fixed, and the nickel mobil-

ity parameters (QW
Ni and

0ANi;W
Ni ) are optimized

using the nickel tracer diffusivity data. After
these nickel mobility values are optimized, all
of the mobility values (excluding the values for
QNi

Ni) are optimized using both the tracer diffu-
sivity data and the interdiffusion data. Again,
the optimized parameters are used to calculate
the tracer and interdiffusion diffusivities given
by Eq 13 and 15 and then compared to the
experimental values. The optimized mobility
parameters are listed in Table 3.
The comparison of the diffusivities calcu-

lated with the optimized parameters and the
experimental values are shown in Fig. 9 and
10. Good agreement between the measured
and calculated tracer diffusivity and interdiffu-
sion coefficients is achieved. Other recent diffu-
sion mobility assessment examples are given in
the literature by Ref 58 to 60.
In addition to optimizing the mobility func-

tions using various composition-dependent dif-
fusion coefficient data, diffusion mobility
functions can be optimized directly from exper-
imental composition profiles. Both Ref 61 and
62 developed methods that combine DICTRA
with an optimization tool (MatLab or Mathe-
matica) to assess the mobility parameters from

experimental composition profiles. For a given
set of mobility parameters, the difference
between the experimental composition and cal-
culated composition is defined by a least-
squares error function. The mobility parameters
are optimized to minimize the error. This
method has been successfully demonstrated
for binary and ternary systems.
Strengths and Weaknesses of Assessment

Method. The Calphad-based approach to
modeling the diffusion mobilities provides an
efficient representation of the composition
dependence in multicomponent systems. The
reduced number of parameters needed to
describe diffusion in a multicomponent system
occurs as a result of the assumption that the
correlation factors are negligible in the lattice-
fixed frame of reference, and only the diagonal
terms of the mobility matrix must be evaluated.
However, if the vacancy concentration is not in
local equilibrium, the off-diagonal terms resulting
from the correlation factors should be considered
(Ref 5, 19). Using the Calphadmethod to describe
the composition dependence of themobility terms
requires the determination of mobilities for fictive
metastable end-member phases. Examples of such
quantities are the mobility of tungsten in fcc tung-
sten and the mobility of tungsten in fcc aluminum
at temperatures above the fcc aluminum melting
temperature (e.g., 1300 �C). Determination of
these end-member quantities may follow
approaches similar to those used to determine the
lattice stabilities of themetastable thermodynamic
quantities of the elements (Ref 26–28). This deter-
mination of diffusion-activation energies for fic-
tive end-member phases may appear to limit the
Calphad method; however, it is these determina-
tions that enable the extrapolation to higher-order
systems where diffusion data are limited.
These optimization methods have been

employed to develop several commercial

Fig. 8 Schematic of diffusion mobility parameter optimization procedure
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diffusion mobility databases, as well as many
smaller databases for specific research applica-
tions. Table 4 lists several of the commercial
and research databases available. All of these
databases can be employed by a variety of diffu-
sion codes, finite-difference codes that assume
local equilibrium at each grid point (e.g., DIC-
TRA), random walk methods (Ref 71), and
phase-field codes.

Application

Single-Phase Diffusion. The most common
diffusion simulation is the diffusion of one sin-
gle-phase material into another at constant

temperature and pressure. The results of these
simulations are generally shown as composition
profiles as a function of distance at a specified
time. The complexity associated with an 11-
component nickel-base superalloy diffusion
couple is demonstrated in Fig. 11, where the
interdiffusion between two single-phase g(fcc)
nickel-base superalloys (René-N4/René-N5)
after 100 h at 1293 �C (Ref 72) is shown. The
predictions were made using the DICTRA
software in conjunction with the National Insti-
tute of Standards and Technology (NIST)-
NiMob diffusion mobility database (Ref 64 )
and the Thermotech Ni-Data thermodynamic
database (Ref 73). In addition to accurately pre-
dicting the composition profiles, the diffusion

simulation also predicts the location of the
maximum pore formation resulting from Kir-
kendall porosity. Figure 12(a) shows the pre-
dicted location of the maximum pore
formation, given by the maximum of the nega-
tive derivative of the vacancy flux with respect
to distance (Ref 74), and Fig. 12(b) reveals that
the predicted location corresponds well to the
location of Kirkendall porosity observed on
the René-N4 side of the diffusion couple.

Fig. 9 Comparison of calculated and measured tracer diffusivity data for (a) nickel and (b) tungsten in nickel-tungsten face-centered cubic (fcc) alloys as functions of temperature.
The diffusivities are calculated before and after optimizing the nickel-tungsten system. Note: Before the system optimizes, there is no composition dependence in the

mobility functions. Experimental data from Ref 56

Fig. 10 Comparison of calculated and measured interdiffusion coefficients for the nickel-tungsten system as a
function of composition for temperatures ranging from 900 to 1300 �C. (a) Calculated diffusivities before

optimization; observed composition dependence is entirely from the composition dependence of the chemical
potentials. (b) Calculated diffusivities after the nickel-tungsten system has been optimized. Source: Ref 57

Table 3 Optimized mobility parameters
for the nickel-tungsten system

Parameter Initial values, J/mol Optimized value, J/mol

QNi
Ni

�28,700 � 69.8*T
(Ref 32)

�28,700 � 69.8*T
(not optimized)

QW
Ni �287,000 � 69.8*T �628,250 + RT

ln(4.78 � 10�4)
QW

W �287,000 � 69.8*T �411,423 + RT
ln(2.18 � 10�4)

QNi
W �287,000 � 69.8*T �282,130 + RT

ln(2.80 � 10�5)
0ANi;W

Ni + 0.0 +175,736
0ANi;W

W
+ 0.0 �97,025

Table 4 Available mobility databases

Database name/alloy system Reference

MOB2 (general-purpose database,
with emphasis on iron-base alloys

Ref 63

MOBAl1 (aluminum-base alloys) Ref 63
MOBNi1 Ref 63
NIST-NiMob (face-centered
cubic nickel-base alloys)

Ref 64

Cobalt-base alloys (face-centered
cubic phase)

Ref 65

Solder alloys Ref 66, 67
Zirconium-base alloys Ref 68
Cemented carbides Ref 69, 70
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Multiphase Diffusion. The formation of an
additional phase is also a common occurrence
during the diffusion process between two
single-phase materials. Figure 13 shows the
formation of a Ni3Al (gamma prime, g0) layer
between the NiAl-B2 and fcc nickel diffusion
couple after heat treating for 1000 h at 1150 �C
(1423 K). The Ni-NiAl section of the nickel-alu-
minum phase diagram is shown in Fig. 13(a). In
Fig. 13(b), both the measured and predicted com-
position profiles show the formation of a Ni3Al
(gamma prime) layer between the initially present
NiAl-B2 and nickel layers. The dashed lines
between Fig. 13(a) and (b) show how the jumps
in the composition profiles relate to the phase
boundaries on the phase diagram.

In addition to the complexity of multicompo-
nent single-phase diffusion couples, industrially
relevant diffusion simulations often involve
complicated time-temperature schedules and
the precipitation and dissolution of a variety
of different phases, both as planar layers and
dispersed particles. These simulations are char-
acterized by a variety of outputs, including the
position of a moving phase boundary as a func-
tion of time, phase fraction profiles, particle-
size diameters during coarsening, and locations
of Kirkendall porosity. These outputs are essen-
tial in optimizing heat treating cycles and solid-
ification schedules, predicting service lifetimes,
and determining weldability. Examples of the
complex uses of diffusion data to predict

microstructure evolution are found in other arti-
cles of this Handbook.

Appendix 1: Example of Diffusion
Matrices for the Ni-0.05Al-0.10Cr
fcc Composition at 1200 �C

The following is an example of the calcula-
tion of the various diffusion matrices for a ter-
nary Ni-Al-Cr system, for a given set of
diffusion mobilities and chemical potentials.
The diffusion mobilities and chemical poten-
tials are calculated using the data from
Engström (Ref 33) and the SSOL4 substance
database (Ref 75), respectively.
For the given Ni-0.05Al-0.1Cr (atomic fraction)

composition at 1200 �C, the diffusionmobilities, in
a lattice-fixed frameof reference, assuming the cor-
relation effects are negligible, are given as:

LMik¼dikxiMi¼

Al Cr Ni

Al 0:05 �4:25ð Þ 0 0

Cr 0 0:10 �2:35ð Þ 0

Ni 0 0 0:85�1:75ð Þ

2
6664

3
7775�10�18m2=s

¼

Al Cr Ni

Al 2:12 0 0

Cr 0 2:35 0

Ni 0 0 14:9

2
6664

3
7775�10�19m2

�
s

(Eq1.1)

Assuming nickel is the dependent variable, the
matrix of chemical potentials at 1200 �C is
given by:

@mk
@xj

� �
¼

Al Cr Ni

Al þ39:2 þ9:23 þ0
Cr þ8:60 þ18:3 þ0
Ni �3:32 �2:70 þ0

2
664

3
775�104ðJ=molÞ

(Eq 1.2)

The tracer diffusivities for the Ni-5Al-10Cr
composition at 1200 �C are then calculated
using Eq 13:

Fig. 11 Calculated (solid lines) and experimental
(symbols) composition profiles for René-N4/

René-N5 diffusion couples after 100 h at 1293 �C.
Source: Ref 72 Fig. 12 (a) Predicted location of the maximum pore density for a René-N4/René-N5 diffusion couple at 1293 �C.

(b) Backscattered image of René-N4/René-N5 diffusion couple after 100 h at 1293 �C. The thin white line
indicates the position of the microprobe scan. The dashed white line corresponds to the Matano interface. The
dashed line is the location of the predicted maximum porosity. Source: Ref 72

Fig. 13 Example of multiphase diffusion in the nickel-aluminum system at 1423 K. (a) The Ni-NiAl section of the
nickel-aluminum phase diagram, where the solid circles indicate the initial end-member compositions of

the diffusion couple. (b) The measured (open symbols) and calculated (solid line) composition profiles for the Ni-NiAl
diffusion couple at 1423 K. Vertical dashed lines indicate the position of the Ni3Al (gg) region. The horizontal dashed
lines extending between (a) and (b) demonstrate that the positions of the measured and calculated composition jumps
corresponding to the different phase regions on the phase diagram. Source: Ref 46
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D
 ¼
Al 5:20
Cr 2:87
Ni 2:14

2
4

3
5� �10�14m2

�
s

� 	
(Eq 1.3)

The diffusion matrix in the lattice frame of ref-
erence is the product of the mobility matrix
(Eq 1.1) times the chemical potential matrix
(Eq 1.2), as defined in Eq 21:

LD ¼ dxixi M½ �ð Þ � @mk

@xj

� �

¼
Al Cr Ni

Al þ8:33 þ1:96 þ0
Cr þ2:09 þ4:30 þ0
Ni �4:95 �4:02 þ0

2
664

3
775�10�14 m2

�
s

� 	

(Eq 1.4)

The diffusion matrix in the volume-fixed frame
of reference, assuming constant molar volumes,
is given by Eq 15:

VDn
kj ¼ dik � xkð ÞxiM� @mi

@xj

¼

Al Cr Ni

Al 2:02 �0:12 �0:74
Cr �0:21 2:11 �1:49
Ni �1:81 �1:99 2:23

2
6664

3
7775�10�19

Al Cr Ni

Al þ39:2 þ9:23 þ0
Cr þ8:60 þ18:3 þ0
Ni �3:32 �2:70 þ0

2
6664

3
7775�104

¼

Al Cr Ni

Al þ8:06 þ1:85 þ0
Cr þ1:48 þ4:07 þ0
Ni �9:54 �5:92 þ0

2
6664

3
7775�10�14 m2

�
s

� 	

(Eq 1.5)

The reduced diffusion matrix in the volume-
fixed frame of reference (Eq 15), which is com-
monly referred to as the interdiffusion coeffi-
cient matrix, is defined as the following,
where nickel is the dependent variable:

V ~DNi
kj ¼ VDkj � VDkn

V ~DNi
kj ¼

Al Cr

Al VDNi
AlAl

VDNi
AlNi

Cr VDNi
CrAl

VDNi
CrCr

2
64

3
75

V ~DNi
kj ¼

Al Cr

Al VDAlAl � VDAlNi
VDAlCr � VDAlNi

Cr VDCrAl � VDCrNi
VDCrCr � VDCrNi

2
64

3
75

¼
Al Cr

Al þ8:06 þ1:85
Cr 1:48 þ4:07

2
64

3
75�10�14 m2

�
s

� 	
(Eq 1.6)

Using this matrix of interdiffusion coefficients,
the flux equations for the specified composition
can be written in terms of Eq 16:

~JAl ¼ �V ~DNi
AlAl

@cAl
@z
� V ~DNi

AlCr

@cCr
@z

(Eq 1.7)

~JCr ¼ �V ~DNi
CrAl

@cAl
@z
� V ~DNi

CrCr

@cCr
@z

(Eq 1.8)

Solution of these flux equations enables the cal-
culation of composition profiles as a function of
time in a single-phase region.
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P.F. Shi, and B. Sundman, Thermo-Calc
and DICTRA, Computational Tools for
Materials Science, Calphad, Vol 26, 2002,
p 273–312

53. A. Borgenstam, A. Engström, L. Höglund,
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62. L. Höglund, DICTRA ToolBox, Thermo-
Calc AB, Stockholm, Sweden, 2004

63. Thermo-Calc Software, http://www.ther-
mocalc.com/

64. C.E. Campbell, W.J. Boettinger, and
U.R. Kattner, Development of a Diffusion
Mobility Database for Ni-Base Superal-
loys, Acta Mater., Vol 50, 2002, p 775–792

65. T. G¢mez-Acedbo, B. Navarcorena, and
F. Castro, Interdiffusion in Multiphase,
Al-Co-Cr-Ni-Ti Diffusion Couples, J. Phase
Equil. Dif.,Vol 25 (No. 3), 2004, p 237–251

66. G. Ghosh, Dissolution and Interfacial
Reactions of Thin-Film Ti/Ni/Ag Metalli-
zations in Solder Joints, Acta Mater., Vol
49 (No. 14), 2001, p 2609–2624

67. G. Ghosh and Z.K. Liu, Modeling the
Atomic Transport Kinetics in High-Lead
Solders, J. Electron. Mater., Vol 27
(No. 12), 1998, p 1362–1366

68. C. Toffolon-Masclet, M. Mathon, A.
Engström, and J.C. Brachet, in 14th Interna-
tional Symposium on Zirconium in the
Nuclear Industry (Stockholm, Sweden), 2004

69. Y.L. He, L. Li, S.G. Huang, J. Vleugels, and
O.Van derBies, Computer Simulation ofW-
C-Co-V System Diffusion Couples, Rare
Met., Vol 26 (No. 5), 2007, p 492–497

70. S. Haglund and J. Ågren, Acta Mater.,
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Localization Parameter for the Prediction
of Interface Structures and Reactions
Witold Lojkowski, Institute of High-Pressure Physics, Polish Academy of Sciences, Poland
Hans J. Fecht, Institute for Micro and Nanotechnology, University of Ulm, Germany

INTERFACE REACTIONS cannot be
understood and modeled without knowing the
structure of interfaces. However, there are an
infinite number of possible interface structures,
depending on the interface crystallography and
physical parameters. Furthermore, interfaces
may undergo phase transformations when the
crystallographic parameters, temperature, pres-
sure, or chemical composition are changed.
The computation effort can be drastically
reduced by focusing it on specific questions that
result from the physical model.
The structure of interfaces can be described

as being built of nanosized clusters of atoms
interacting across the interface with each other.
These clusters, or close-packed groups, interact
with each other by means of elastic fields.
However, if the interatomic interactions are rel-
atively weak compared to the elastic interac-
tions, the aforementioned model is not valid
any more. Thus, the basic questions that must
be answered to understand the interface struc-
ture are whether the energy of an interface can
be minimized by formation of low-energy
atomic clusters at the expense of elastic energy,
what the structure is of such clusters, and
whether a change of parameters leads to a
change of structure. Transitions can occur
between the aforementioned structures depend-
ing on independent variables such as the orien-
tation relationships, temperature, pressure, and
chemical composition.
A parameter called the localization parame-

ter (p) was introduced that enables a simple
method of predicting which structure is actually
present under given conditions.
Internal interfaces form part of the micro-

structure of almost every natural or artificially
produced material. An intercrystalline interface
separates two crystals of different phases, while
grain boundaries separate crystals of the same
phase but with different spatial orientation.
The arrangement of atoms in the interface is
neither that of the crystal nor of a liquid
(Ref 1). Depending on the mutual orientation
relationship of the crystals and such parameters

as pressure, temperature, and chemical compo-
sition, there are an infinite number of interface
structures. The energy structure and kinetics
(Ref 2) as well as crucial properties of materials
and devices, such as the mechanical strength,
hardness, brittleness and ductility, corrosion
and wetting behavior, transparency and optical
properties, electrical resistivity, magnetic prop-
erties, reactivity, and so on, are determined by
the properties of the interfaces (Ref 3, 4). The
structure of interfaces plays an especially cru-
cial role in nanotechnology, because in nanos-
tructures a large fraction of atoms is situated
at the interfaces (Ref 5). In microsystems tech-
nology, interfaces determine the service life and
performance of devices (Ref 6).
Atomistic modeling is a powerful tool for

understanding the structure of defects in a crys-
talline lattice. However, there is an infinite
range of possible interface structures, and there-
fore, it is important to focus modeling efforts
on specific interfaces; otherwise, the task of
understanding the interface structure via model-
ing is almost impossible to be realized. A phys-
ical approximate model guides the direction of
the modeling efforts and explains the structure
of interfaces. With the help of such a model,
the properties of all interfaces situated in the
space of coordinates between some special
interfaces can be estimated.
This article summarizes a physical model of

the interface structure described in detail in
Ref 2 and shows how this model may help to
optimize atomistic modeling studies.

Interface Structure

A structure is defined as a set of elements and
their interactions (Ref 2). What a structure ele-
ment is depends on what kind of interactions
are important in a given process. When the inter-
action is between individual atoms, the structure
elements are atoms. When the interaction is
between groups of atoms, the interactions are
long-range fields, for example, elastic fields.

Interatomic interactions can be precisely cal-
culated using various modeling techniques.
In some cases, however, an approximate esti-
mation can be made, starting from such data
as cohesion energy, vaporization energy
(showing the energy needed to break inter-
atomic bonds in a material composed of one
type of atoms), and free energy to form the
given chemical compound. Furthermore, the
chemical composition of the atmosphere around
the material may influence the structure of the
interface by changing the thermodynamic equi-
librium and the strength of the interatomic
bonds (Ref 2). The structure of the interfaces
may also depend on the size of the crystals. In
epitaxy or during the growth of precipitates,
for instance, it depends on the amount of elastic
energy the crystals can store (Ref 2).

The Orientation Relationship

The orientation relationship (OR) defines the
mutual crystallographic position of the adjacent
crystals. More about interface crystallography
can be found in the book by Randle (Ref 7).
To describe the OR of two crystals, there is a
need for nine equilibrium and three nonequilib-
rium parameters (Ref 2). Imagine that two crys-
tals are allowed to interpenetrate, forming a
bicrystal lattice. Two parameters determine the
orientation of the rotation axis, one determines
the rotation around this axis (misorientation),
and three determine the rigid body translation
of one crystal relative to the other. This makes
six parameters. Now, cut the system with a
plane, and allow only atoms of one phase on
each side of the plane. The orientation of the
interface plane is defined by two parameters
and its position by one parameter. At this point,
nine parameters define the interface. Now,
allow the system to relax to minimum energy.
The spacing of the two crystals (in other terms,
the interface thickness) and their mutual posi-
tion (shift parallel to the interface) will adjust
to a minimum energy value. At first glance,
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the structure of the interface is now determined
as a function of the aforementioned nine crys-
tallographic parameters. However, some exter-
nal stress may shift the interface out of such a
local energy minimum: stress-induced change
of thickness and shift parallel to the interface
induced by interaction of the interface with dis-
locations (Ref 8–10), vacancies, segregated
atoms, external or internal stresses, or high cur-
vature (Ref 11). These conditions can be locally
described by three parameters, which are the
three principal stresses acting on a small seg-
ment of an interface, for example, the local dis-
tance between the two crystals and the local
torsion or stretching (Ref 2). Thus, interfaces
in a state of nonequilibrium are characterized
by 12 parameters.
When the crystallographic parameters are

varied, the interface may display a sharp or shal-
low energy minimum. One may imagine a nine-
dimensional surface with energy valleys and
energy minima or maxima. The set of crystallo-
graphic parameters of interfaces situated in the
energy minima are called low-energy ORs
(LEORs). The interfaces are called low-energy
interfaces or special interfaces. Coincidence
boundaries are those where the bicrystal lattice is
periodic, with a relatively short period. The num-
ber of atoms in a periodic cell of such a bicrystal
lattice are designated S. For instance, a coinci-
dence boundary S5 means that for each atom in
coincidence in the two lattices, there are atoms in
each lattice that are not coincident.Much research
was focused on symmetric grain boundaries,
where the interface is a mirror plane, or on tilt
grain boundaries, where the rotation axis is per-
pendicular to the plane. Less attention was given
to interfaces parallel to index planes in at least
one crystal, although, as shown subsequently, they
are candidates to correspond to LEORs as well as
the symmetric and periodic ones.
In real experiments or in atomistic modeling,

one parameter is usually varied, and it is
assumed the others take values of minimum
energy by a relaxation process. In most cases,
the variable is the misorientation angle or the
inclination of the interface plane.

Model-Informed Atomistic
Modeling of Interface Structures

The concept of model-informed atomistic
modeling of interfaces is based on the analysis
by Ashby (Ref 12) of the role of modeling
and empiricism in reaching engineering solu-
tions. A purely empirically based approach, as
well as a purely atomistic modeling-based
approach, lead to having too many parameters
to be considered, for instance, the results of
the calculations of atomic positions, or too
many experimental variables. Performing atom-
istic modeling is very similar to an experiment
and needs interpretation in terms of a physical
model equally well as any experiment. A phys-
ical model is useful if it produces an analytical

expression describing important properties of
the system as a function of independent vari-
ables. Atomistic modeling may help to calcu-
late some parameters that can only be
estimated using a physical model. Combining
both saves computational time, experiment
costs, and permits one to foresee results for
interfaces that have not been modeled. The
aim of this article is to provide for a physical
model that may permit interpolating the results
of atomistic modeling to predict the properties
of interfaces.

Nanosized Structural Elements
of the Interface

Atoms may interact with each other individu-
ally or as groups of atoms. In the latter case,
interactions bonding an atom within the group
must be stronger than those between the whole
group. Structural elements or units (SUs) are
atoms or groups of atoms. Information is sought
about their internal structure, their relative posi-
tion in space, and the interactions between
them. For this assumption to be valid, the SUs
cannot be a topological construction, where
only mutual positions of atoms count but not
their distances. The atoms being part of the
SUs should preserve their relative positions to
each other regardless of the OR of the interface
in which the SU is embedded. If interactions
between individual atoms across groups are
equally as strong as within the group, the group
reduces to a single atom, and the idea of struc-
ture groups becomes irrelevant for the interface
structure. The original concept of SUs proposed
by Bishop and Chalmers (Ref 13, 14) agrees
well with this assumption, since their proposed
SUs are built from close-packed groups of
atoms in the size range of a nanometer.

Several computer modeling studies and
transmission microscopy observations (Ref
13–18) have led to the conclusion that, in many
cases, the interface structure can indeed be
described in terms of SUs (Fig. 1). It was
shown that low-energy grain boundaries are
built from SUs of only one type, and grain
boundaries of higher energy are built from a
mixture of different SUs.
Because the two crystals must be strained to

permit SUs to be built at their interface, there
are dislocations between different kinds of
SUs. Thus, the interface energy is lowered at
the price of building elastic strain fields. Of
course, if the atoms within the SUs are moved
out of their positions, the localized strain field
is relaxed due to interactions, and the SU model
of the structure is invalid.
The dislocations separating the low-energy

sectors of interfaces are called structural dislo-
cations. For interface boundaries they are also
called misfit dislocations; for grain boundaries,
they are called displacement shift complete
(DSC) dislocations. Figure 2 schematically
illustrates a DSC dislocation for the S5 coinci-
dence grain boundary.

Theories to Predict Low-Energy
Orientation Relationships

It was soon realized that short-period inter-
faces with a large fraction of atoms belonging
to vaguely defined “good matching areas” may
display a relatively low energy (Ref 1, 19).
The “good matching areas” are, in fact, regions
of locally dense atomic packing. It was also
soon realized that besides local atomic match-
ing, low energy is connected with an average
dense packing of atoms found in interfaces
parallel to low-index crystallographic planes.

Fig. 1 Structural units (SUs) for grain boundaries in metals. Grain boundaries of low energy are composed of periodic
arrangements of such units, and grain boundaries with different orientations are a mixture of SUs. Source:

Ref 13
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Wolf (Ref 20, 21), Paidar (Ref 22), Lojkowski
et al. (Ref 14), and Fecht (Ref 23) have shown
that special interfaces are parallel to the dense

lattice planes in both crystals. For instance,
Fecht (Ref 23) has shown that the pressure
required to separate two crystals is:

sðd
Þ ¼ E0

l
expð�d
Þ � ð�1� 0:15d
 þ 0:05d
Þ

(Eq 1)

where l is the characteristic screening length,
and d* is the interplanar spacing in dimension-
less units. Because the strain to separate the
two crystals increases when their distance
decreases, the energy of such interfaces is also
lower than for other interfaces. Close-packed
interfaces with low interplanar spacing also have
the lowest vibrational entropy, and thus, they are
connected with energy minima at temperatures
close to the melting point.
Figure 3, from Paidar’s work (Ref 22), shows

the hierarchy of grain boundaries in a face-cen-
tered cubic (fcc) material as sources of structural
units to grain boundaries. Only symmetrical
interfaces are considered, and their symmetry
planes are marked in the diagram. The plane
indices shown in Fig. 3 define special interfaces
as follows: The rotation axis is <110>, and the
plane (xyz) is the interface plane for a symmetric
tilt boundary. Grain boundaries situated between
two grain boundaries with index planes listed in
the figure will “borrow” SUs from these grain
boundaries. Crystalline planes with low crystal-
lographic indices ({111}, {110}, and {100} in
the fcc structure) have the densest packing and
thus correspond to the lowest energy minima.
The temperature effect on the interface struc-

ture is now considered. It is known that with
increasing temperature, the number of LEORs
that are a source of SUs decrease (Ref 2), because
the energy of thermal vibrations becomes compa-
rable to the energy bonding the atoms to their SU,
and with increasing temperature, the grain-
boundary structure becomes gradually disor-
dered. This process can be described as delocali-
zation of the cores that separate the SUs. When
the cores merge and the interfacial bonding is
comparable to the strength of bonds inside the
crystals, the interface will assume a disordered,
amorphous-like structure. At temperatures close
to the melting point, only the (111) and (010)
planes are sources of SUs, and these are the
close-packed atomic units described in the SU
model by Bishop and Chalmers (Ref 14).
The earlier consideration concerned the tilt of

grain boundaries. When two crystals are twisted
relative to each other, the favored twist angle is
where the dense atomic rows in one crystal are
parallel to valleys between the atomic rows in
the other crystal (Ref 14, 24), so that the two
crystals can mutually lock (Fig. 4). The energy
minima when the twist angle is varied are of less
depth than in the case of tilt.
When factors that increase the density of

atomic packing in the interface act simulta-
neously, as shown in Fig. 5 (Ref 2), the energy
at the interface is minimized. These factors are:

� A, good local bonding (short distance
between the good matching areas)

� B, parallelism of dense atomic planes on the
two sides of the interface

� C, parallelism of the dense atomic rows

Fig. 2 Schematic illustration of a displacement shift complete (DSC) dislocation. The grain boundary was created by
plotting two regular arrays of circles and approaching them in such a way that a periodic structure was

created, without any relaxation. On each side of the dislocation, the grain-boundary structure is identical and
composed of a regular arrangement of structural units. The Burgers vector of the DSC dislocation is smaller than for a
lattice dislocation. Source: Ref 2

Fig. 3 Plot of grain boundary planes in the fcc lattice that correspond to low energy orientation relationships (LEORs).
It is assumed that the LEORS are symmetric tilt grain boundaries with the tilt axis [�101]. When the angle of

misorientation increases from 0� to 180�, some grain boundaries will be low energy ones corresponding to symmetric
tilt with low index planes. The other ones will acquire SUs from the closest symmetrical grain boundaries with low
index planes. For instance, the (373), grain boundary (GB) consists of 2 units of the (131) GB and one unit of the
(111) or of 3 (111) units and 2 (010) units. The number of minima decreases as the temperature increases. At
temperature close to melting point, only two minima are present. Source: Ref 20 and 2.
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Use of the Localization
Parameter for Prediction
of Interface Structures

The previous considerations concerned an
interface between two phases, where the vari-
ables were the temperature and misorientation
between the crystals. It was noted that a
change of temperature may lead to a change
of interfacial bonding strength, leading to a

transformation in their structure. However, a
similar effect can be caused by a change in
thermodynamic conditions. The bonding
strength across the interface also depends on
the kind of bonded materials. Furthermore, an
important role may be played by the thickness
of the crystals, since the elastic energy
depends on the thickness. Therefore, there is
need for a theory permitting the prediction of
the interface structure between two different
crystalline phases. The presence of interfacial

dislocations is an indication that the SUs
model well describes the interface structure.
For such interfaces, one may expect high adhe-
sion between the two crystals and the presence
of sharp energy minima for LEORs (Ref 2).
The principal question is: Under what condi-
tions is this model of the interface structure
applicable at all?
On one hand, there can be interfaces where

adhesion is low, and their energy is not signifi-
cantly lowered for the special LEORs; SUs do
not form, and the atoms do not shift much from
their position in each crystal. On the other hand,
there can be interfaces with intermediate struc-
tures between these two, or amorphous inter-
faces. So, a basic question is whether energy
optimization will lead to a coherent interface
at the expense of elastic energy or whether it
will lead to the formation of a fully incoherent
interface. From an engineering point of view,
the question is: Is it possible to predict which
of the aforementioned structures will form in a
real material?
It was recently shown that it can be predicted

which interface forms by using one single
parameter, called the localization parameter
(p), expressed as:

p ¼ Gi=G (Eq 2)

where Gi is the interface shear modulus, and G
is the shear modulus of the less stiff of the two
crystals. The notion of interface shear modulus
is explained in detail in Ref 2.
Figure 6 (Ref 2) shows how the p-value

determines the interface structure. The structure
shown in Fig. 6(a) corresponds to the situation
when Gi << G; stretching the bonds across
the interface does not cost energy, and there is
no gain in building SUs and separating them
at dislocations. Some energy decrease is asso-
ciated with the parallelism of atomic rows
and/or planes. Figure 6(b) shows the intermedi-
ate case, where the structure of the interface is
controlled both by the parallelism criterion

Fig. 4 Low-energy structure of an interface due to mutual locking of dense rows of atoms of one crystal into the
surface of another. A twist, tilt, or rigid body shift of one of the crystals relative to the other is associated

with an increase in energy. g is the surface energy, y is the tilt or twist angle, and R is the rigid body translation.
Source: Ref 2

Fig. 5 Schematic illustration of factors contributing to
energy minima of interfaces. Factors A, B, or

C lower the energy, but their coincidence leads to the
deepest energy minima. Source: Ref 2

Fig. 6 Schematic of interface structures as a function of the localization parameter value, p. Source: Ref 2
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and by increasing atomic matching. Figure 6(c)
shows schematically the case when the inter-
face forms SUs, and dislocations help to mini-
mize the energy. Figure 6(d) corresponds to
p > 1, that is, where the shear stress in the
interface is higher than in one of the crystals.
In such a case, the misfit dislocations can be
pushed away from the interface into the bulk
material to conserve energy.
The interface shear modulus is defined in the

same way as for the bulk structure: by the pro-
portionality coefficient between applied shear
and deformation. A detailed treatment of the
interface shear modulus is given in Ref 2.
The equilibrium width of the structural dislo-

cation core, sm, is comparable to a dislocation
in the bulk material:

sm ¼ aG=Gi ¼ as=p (Eq 3)

This result is almost identical to the result for
the core width of a dislocation given by the
Perierls model. The only difference is that in
the Perierls model, G = Gi.
In the Perierls model, the crystal is regarded

as a continuum in which the elastic energy is
stored, and its value can be calculated using
the continuous elasticity theory. The equilib-
rium core width corresponds to the minimum
of the sum of the elastic energy and stretched
bonds energy:

dðEel þ EcoreÞ
ds

¼ 0 (Eq 4)

The dislocation is represented as the infinite
sum of dislocations with infinitely small Bur-
gers vectors:

b ¼
ð1
�1

du

dx
dx (Eq 5)

The dislocation core width, s, is the diameter
of the circuit enclosing half of the aforemen-
tioned dislocations. The stretched bonds energy
in the plane of slip of the dislocation is calcu-
lated using an analytic expression and is pro-
portional to the bulk shear modulus:

Eel ¼ const �G (Eq 6)

By simply replacing G with Gi, Eq 3 has
been obtained. The constant a accounts for all
the approximations made. Its exact value can
be calculated only using atomistic modeling.
Equation 3 explains the meaning of the term

localization parameter. For p = 0, the misfit is
delocalized, and there is no atomic matching;
for p = 1, the misfit is localized, and the misfit
dislocation core has a width similar to a bulk
dislocation. The previous equation was
obtained by analytically solving simple equa-
tions for the energy of the interface, where
the elastic part increases as the core is more
localized, and the contribution made by broken
bonds decreases as the dislocation core is more
localized.

In the case of thin layers or small precipi-
tates, the elastic energy stored in the material
is less than for large crystals. Therefore, the
interface structure for a thin layer or small pre-
cipitate may be coherent, while for large crys-
tals, it may be amorphous or semicoherent.
This is because the elastic energy increases
with increasing material thickness, while the
broken bond energy remains constant.

Estimating the Shear Modulus and
Bonding Energy Across the Interface

To apply Eq 3 and predict the interface struc-
ture, it is necessary to know the interface shear
modulus. It was assumed that:

Gi ¼ EAB=O (Eq 7)

where EAB is the bonding energy across the
interface and O is the atomic volume. The
bonding energy includes a contribution from
the ionic or covalent bonding of atoms across
the interface and van der Waals forces:

EAB ¼ CB

EA þ EB

2
þ DGAB þ EWAALS (Eq 8)

where EA and EB are the cohesion energies of
crystals A and B, respectively; DGAB is the
chemical bonding energy between the two crys-
tals, and EWAALS is the van der Waals bonding
energy. In the case of grain boundaries in metals,

it depends weakly on temperature and is
expressed as:

EAB ¼ ECOH ¼ EA þ EB

2
þ DGAB (Eq 9)

where ECOH is cohesion energy.
The previous equations give a fairly good

approximation for the localization parameter,
and they enable the structure of interfaces to
be predicted (Tables 1, 2). However, in some
cases, it is not possible to predict which atom
of one crystal forms a bond with which atom
of another crystal. Furthermore, in ionic crys-
tals, Madelung forces contribute to the bond-
ing, which are not tabulated for interface
atoms (Ref 25). Hence, it is important to carry
out calculations assuming different kinds of
atoms in front of each other in an interface
structure and to understand whether the proper
value of the interaction energy was taken into
account in Eq 2.
Figure 7 shows how atomistic modeling can

provide for proper application of the aforemen-
tioned model. An interface between two materi-
als is shown: a chemical compound A-B and a
chemical compound C-D. Atomistic modeling
may help to determine what kind of chemical
bonding is present and controls the adhesion of
the crystals: A-C or A-D or B-C or B-D, and
what is the interface shear modulus? With these
data, it is possible to calculate the localization
parameter, p. The figure also illustrates the
concept of interface shear modulus, Gi.

Table 1 Correlation between the value of the localization parameter and properties of
interfaces

Localization

parameter (p) Metal/oxide interface (p-value) Interface description(a)

p� 1 Al/Al2O3 (2.1), Standoff—the misfit dislocation is not in the interface but in the less stiff of
the two crystals

Nb/Al2O3 (1.5) Coherence
All features the same as for the 0.35–1 range

0.35 < p
< 1.1

Al/Al (1.2), Al/GaAs (1.1), Misfit dislocations separate structure units of low energy.
NiCr (1.1), Au/Pd (0.9),
MgO/CdO (0.9),

Periodic interfaces have low energy, but the depth of the energy minimum
strongly depends on the orientation of the interface plane.

MgO/MgO (0.8), Au/Au (0.8),
Pb/Sn (0.8), Au/Ag (0.7), Asymmetric low-energy interfaces parallel to vicinal planes are observed
Cu/Cu (0.7), Ag/Cu (0.7),
Cu/Fe (0.7), Ag/Ag (0.6),
Mo/Mo (0.6),
Al2O3/ZrO2 (0.7),
Al2O3/Al2O3 (0.7),
Fe/Fe (0.5), Si/Si (0.5), Combination of geometrical factors like short periodicity, parallelism to

vicinal planes, and parallelism of close packed atomic rows leads to deep
energy minima

MgO/ZrO2 (0.4),
0.3 < p
< 0.35

Fe/Al2O3 (0.3), Ni/MgO (0.3), Parallelism
Partially delocalized misfit dislocations

NiO/NiO (0.3), ZrO2/NiO
(0.3),

LEORs of surface type

MgO/Al2O3 (0.3),
Ag/Ni (0.35), SiC/SiC (0.3)

0.02 < p
< 0.25

Cu/NiO (0.2), Cu/MgO (0.2),
Au/MgO (0.1),

Misfit dislocations are delocalized.

Parallelism
Al/MgO (<0.1), Ag/MgO
(<0.1), Ag/NaCl (0.02),

Random twist angle at high temperatures

All LEORs are surface type
Au/NaCl (0.02), Au/LiF (0.01)

(a) Characteristic features, type of low-energy orientation relationships (LEORs), degree of localization of misfit dislocations. Source: Ref 2
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Prediction of Interface Structure
in Various Systems and Their
Transformations

Table 1 lists the type of interface structure that
can be expected, based on the aforementioned
simplified calculations of the p-parameter.
It follows that the previous phase transforma-

tions in the interface structure (Fig. 8) will
occur when moving in the space of coordinates
of the crystallographic parameters, varying the
misfit, temperature, pressure, and size of the
crystal.
Table 2 shows the expected range of angles

for the validity of the SU model, depending
on the localization parameter, p.

Figure 9 shows the phase diagram for various
phases of an interface as a function of the misfit
and thickness of the crystals.
Some maps showing the relaxation structures

of interfaces depending on the degree of misfit
and the adjoining metals are also given in the
book by Howe based on the papers of Stoop
and van der Merve (Ref 26) and Kato (Ref 27).
Therefore, changes of structure may occur

because of:

� A change of bonding energy, which is a
function of temperature and pressure or con-
centration of segregating atoms

� A change of thickness of the adjoining
crystals

� A change of the misorientation of the
crystals

However, the borders of the areas separating
the various structures can hardly be estimated
based only on the previous simplified calcula-
tions. The greatest challenge for analytical cal-
culations is to estimate the bonding energy,
EAB, also including the temperature effects.
Knowledge of the effect of interatomic spacing
change on the energy of the broken bond is
required. Similarly, the contribution of van der
Waals forces is difficult to estimate, because
they strongly depend on the crystal separation
or separation of the interatomic rows. With an
accurate value for the p-parameter, it may be
possible to draw a precise phase diagram for
the interface structure.
Nanoscale Effects. With the recent advent

of nanotechnology, the importance of interfaces
for the performance of materials and devices is
crucial (Ref 28, 29), because for nanometric
dimensions of the crystals, the atoms situated
at interfaces form a large fraction of all the
atoms in the material. It is therefore most

important to consider how the effects of nanos-
tructuring lead to a necessary modification of
the localization parameter model of interfaces
and include in the modeling efforts the effects
of strong curvature, triple junctions, and small
sizes of crystals.

Implications of Changes in Interface
Structure for Interface Reactions

Because the interface structure is a function
of the previously explained crystallographic
parameters, strength of interfacial bonding,
and stiffness of the crystals, the mechanism
of interfacial reactions is a function of these
parameters as well. Some examples of the
application of the a forementioned theory of
interface structure are presented to predict
interface reaction mechanisms.
Growth of One Crystal at the Expense of

Another. Two cases of interfaces between two
crystals—a disordered interface and an ordered
interface built from low-energy SUs separated
by dislocations—are considered. In the case of
a low-energy interface composed of one kind
of SU, the reaction kinetics will be negligible,
because there are no channels for transfer of
atoms across the interface, except thermally
activated vacancies. In the case of an interface
built up from low-energy SUs separated by dis-
locations, the reaction kinetics will depend on
the kinetics of glide and climb of the interfacial
dislocations.
Figure 10 provides an example of a reaction

driven by the movement of interface dislocations
(Ref 30, 31). The high-resolution electron
microscopy image shows misfit dislocations that
accommodate the difference of the lattice con-
stants of the two phases. This interface has a dif-
ferent structure for two different thicknesses of

Fig. 8 Illustration of a change of interface structure, from that described in terms of structural units and interface
dislocations to the one where maximizing atomic matching of the interface is not a criterion for low

energy. (a) Structure with low-energy areas of the interface separated by interface dislocations. (b) Delocalization of a
misfit dislocation due to change of bonding strength. (c) Overlap of dislocation cores due to their high density.
Source: Ref 2

Fig. 7 Possible structures of an interface between two
crystals. The top crystal (circles) has chemical

components A-B, and the bottom (squares) C-D.
Atomistic modeling helps to calculate which atoms are
neighbors across the interface, what kind of chemical
bonding is present, and what is the interface shear
modulus. With these data, it is possible to calculate the
localization parameter. The horizontal arrows at the
interface represent an external stress applied to the
interface. The small arrows linking atoms across the
interface symbolize the stretched interatomic bonds
across the interface. They are stretched due to misfit
between the lattices of the two crystals and because of
the applied stress. The interface shear modulus, Gi,
describes the reaction of the interface to applied stress
and therefore also the degree of localization of interface
dislocation cores. Knowing its value and bulk elastic
constants, it is possible to calculate the localization
parameter, p.

Table 2 Maximum disorientation angles for
some groups of interfaces

p-value
Maximum

disorientation Type of interface

p < 1.0 Dy < 18� Metals and oxides of high cohesion
energy

p < 0.5 Dy < 9� Interfaces of medium bonding
strength and/or highly stiff
crystals

p < 0.2 Dy < 4� SiC-like material and van der
Waals bonding

Source: Ref 2
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the growing spinel and different growth rates. In
Fig. 10(a), the Burgers vectors of the misfit dis-
locations are parallel to the interface. The MgO
layer grows slowly by a parabolic law, while
the misfit dislocations climb. On the other hand,
in Fig. 10(b), the Burgers vectors of the misfit
dislocations are inclined to the interface plane.
The MgO film grows by a combination of dislo-
cation glide and climb, so that the rate of the
film growth increases in a linear fashion. Hence,
the dislocation structure of the interface is differ-
ent for the two growth regimes. For the inter-
faces studied, misfit dislocation cores are the
place where the actual reaction takes place that
leads to new phase growth. It follows that for
an interface composed of low-energy regions
and structural dislocations, the kinetics of the
reaction depend on the kind of dislocations
present.
In the case of a disordered interface, one

crystal will grow at the expense of the other
along the whole interface, taking advantage of
enhanced diffusion coefficients for mass trans-
fer along and perpendicular to the interface.
Grabski and Korski (Ref 8) proposed to regard
interface kinetics as controlled by the number
of channels that atoms can cross and the fre-
quency of jumps. It is clear that for a disordered
interface, anyplace can be such a channel for
material transfer, while for interfaces built of
SUs, such channels are most likely situated
between the SUs, and their number depends
on their spacing.
Surface Reactions in Thin Films. When a

thin film grows on the surface of a large crystal,
the first atomic layer must be fully coherent
with the substrate, because the thin layer cannot

sustain any stress. However, there will be a crit-
ical thickness when the elastic energy stored in
the layer is already sufficient to drive one of
two possible transformations:

� Growth in the form of islands separated by
valleys, so that elastic energy is minimized

� Transformation into semicoherent and sub-
sequently noncoherent interfaces

These stages are shown in Fig. 11 (Ref 2).
Hence, the same interface may grow by differ-
ent mechanisms, depending on the thickness
of the growing layer.
The transition from coherent to semicoherent

interface takes place when the grain-boundary
structure with dislocations has less energy than
the strained coherent structure (Ref 2):

h ¼ bGp

8EYc
2

(Eq 10)

where EY is Young’s modulus, and G is shear
modulus. It is clearly seen that h decreases as
the p-value decreases, and c is the misfit
between the lattices of the two crystals. One
of the definitions of the misfit is as follows:

c ¼ 2jaa � abj
ðaa þ abÞ (Eq 11)

or:

c ¼ D
ao

(Eq 12)

where aa and ab are both lattice constants, D is
jaa � abj, and ao is the average lattice constant.

However, if the dislocations have wide cores,
they will overlap, and the semicoherent interface
will transform into a noncoherent. The condition
for a semicoherent interface is (Ref 2):

p >
ðaa � abÞ

b
(Eq 13)

where aa and ab are the lattice constants of the
two phases. However, for delocalized MDs
cores, this is a direct coherent-to-noncoherent
transition instead of a coherent-to-semicoherent
transition.
For p = 0.1 and c = 2%, Eq 10 gives the

value h � 50 b, that is, approximately 50
atomic layers, which is a reasonable value.
Figure 9 (Ref 2) shows a phase diagram illus-

trating the regions of stability of each of the
aforementioned structures. The plane abcd is a
plane of constant misfit. For low-p-values, the
path (1) => (3) is the direct transformation
from a coherent to a noncoherent interface. At
high-p-values, the sequence is (1) coherent =>
(2) semicoherent =>(3) noncoherent.

Fig. 9 Phase diagram with regions of stability of coherent, semicoherent, or noncoherent interfaces, depending on
the value of the localization parameter value (p), misfit (f), and crystal thickness (h). The plane (abcd) is a

plane with a constant misfit. For low p-values, the path (1) ) (3) is the direct transformation from a coherent to a
noncoherent interface. At high p-values, the sequence is (1) coherent, (2) semicoherent, and (3) noncoherent.

Fig. 10 High-resolution electron microscopy image of
misfit dislocations that accommodate the

difference of the lattice constants of the two phases
MgO and MgIn2O4. In (a), the Burgers vectors of the
misfit dislocations are parallel to the interface. The MgO
layer grows slowly by a parabolic law, while the misfit
dislocations climb. In (b), the Burgers vectors of the
misfit dislocations are inclined to the interface plane. In
(c), the MgO film grows by a combination of dislocation
glide and climb, so that the rate of the film growth is
faster and a linear growth law is followed as time
elapses. Source: Ref 30
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Some maps of interface relaxation structures
that depend on misfit and adjoining metals are
also given in the book by Howe based on the
papers of Stoop and van der Merve (Ref 26)
as well as Kato (Ref 27).
Surface Reactions with Nanoparticles. For

nanosized particles on which a layer should
grow due to interaction with the gas phase, sim-
ilar to the manner for large crystals, SUs built
from dense atomic blocks play a crucial role

in determining the process kinetics. As particles
become smaller, they have a large number of
atoms located at the edges and corners. The
fraction of corners increases approximately
d�3 as the diameter of the particle shrinks,
while the total number of surface atoms
changes only slightly when the particle size
decreases from 10 to 2 nm. The number of cor-
ners and edges determines the rate of reactions
between the particles and surrounding atmo-
sphere, including catalytic reactions (Ref 32).
An example of ledges on the surface of nano-
particles for the case of a Raney (sponge) nickel
catalyst with a crystallite size of a few nan-
ometers and a large number of corner and edge
atoms is shown in Fig. 12. Thus, in the case of
surfaces, similar SUs control interface kinetics,
while in the case of interfaces, it is segments of
close-packed planes and their ledges.
Bonding or Debonding Two Crystals. The

crucial parameter for bonding or debonding
two crystals is the work of adhesion:

gI ¼ gA þ gB � gadh (Eq 14)

where gA and gB are the surface energies of
crystals A and B, respectively; gI is the inter-
face surface energy; and gadh is the work of
adhesion or adhesion energy. Figure 13 illus-
trates the concept of the work of adhesion.
The work per unit surface to separate two crys-
tals along the interface is the work of adhesion.
Since the value of the localization parameter, p,
depends on intercrystalline bonding energy, it
depends on the adhesion energy as well. Actu-
ally, bonding energy and adhesion are equiva-
lent (Fig. 13 a, b). Figure 13 illustrates
qualitatively the various factors that may influ-
ence adhesion. Figures 13(c) and (d) show that
saturation of the broken bonds by impurities
from the gas atmosphere or atoms segregated
to the interface may eliminate adhesion.
In other words, the presence of such impurities
or atoms added on purpose may completely
change the bonding energy and interface struc-
ture. In real systems, that may be a kinetically
controlled process. Figure 13(e) shows schema-
tically how surface reconstruction may lead to a
decrease of adhesion energy, since the broken
bond energy would be partially relaxed by sur-
face reconstruction. Figure 13(f) shows that
high misfit leads to low adhesion as well. The
aforementioned two types of reconstruction
make it difficult to predict the interface energy
based solely on the theoretical interaction
energy between the atoms, as, for instance, in
the Binder et al. (Ref 33), Miedema and
den Broeder (Ref 34), Becker (Ref 35), or
McDonnald-Eberhard (Ref 36) models.
In summary, the interface structure depends

on factors completely independent of the crys-
tallographic parameters, such as the presence
of small quantities of foreign atoms or the
possibility of surface reconstruction. Therefore,
before any structural calculations are
performed, the assessment of the interfacial
bonding energy is of primary concern. This
may impose a considerable challenge for atom-
istic modeling of the interface structure and
reactions.

Conclusion

The kinetics of interface reactions depend on
their structure, whether it is disordered and non-
coherent, semicoherent, or with structural dislo-
cations, or coherent/low energy composed of
one kind of SUs. This, in turn, depends on the
thermodynamic conditions, misfit of the crystals,
size of the crystals, nature of the intercystalline
bonding, and nine crystallographic parameters
that determine the mutual orientation of the crys-
tals, without taking into account nonequilibrium
structures. Phase transitions can occur between
the various structures, depending on the variable
parameters such as the orientation relationship,
temperature, pressure, chemistry, and so on.
The physical model of the interfaces pre-

sented here may save computation time by:

Fig. 12 High-resolution transmission electron micro-
scopy image of the surface of a Raney nickel

catalyst showing the small crystallite size and large
number of corner and edge atoms. Courtesy of U.
Hörmann, Ulm University, by personal communication

Fig. 11 Interface growth. (a) Coherent. (b) Semicoherent
or coherent interface with formation of islands

(so-called self-organization). (c) Noncoherent interface as
the stored elastic energy caused by misfit increases.
Source: Ref 2

Fig. 13 The work of adhesion and factors decreasing
adhesion. (a) Bonded interface. (b) Cleaved

interface and dangling bonds. (c) Decrease of free
surface energy and adhesion due to chemical reactions
at the surfaces. (d) Decrease of free surface energy and
adhesion due to segregation of impurities to the
surfaces. (e) Decrease of surface energy and adhesion
due to surface reconstruction. (f) Decrease of adhesion
due to misfit. Source: Ref 2
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� Indicating which interfaces play a crucial
role in determining the structure of all other
interfaces

� Asking crucial questions that advance under-
standing of the structure of interfaces and fre-
quently cannot be answered without modeling.

The interface structures can be described as
being built of nanosized clusters of atoms inter-
acting with each other by means of elastic
fields, or as dense atomic planes and rows inter-
acting with each other by means of van der
Waals forces and elastic fields, or as individual
atoms interacting to locally form low-energy
structures. The challenge is to develop phase
diagrams for the interfacial structure based on
precise calculations of the localization parame-
ter, p. For that purpose, the interface shear
modulus must be calculated. This, in turn,
requires knowledge of the nature of interfacial
bonding, particularly the Coulombic contribu-
tion, the covalent contribution, and the contri-
bution of van der Waals forces. Knowledge of
which atoms interact across the interface is also
required. The localization parameter, p, can
enable the prediction of the type of structure
that is actually present in particular conditions.
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Models for Martensitic Transformations
G.B. Olson, Northwestern University
A. Saxena, Los Alamos National Laboratory

MODERN NUMERICAL METHODS,
paced by rapidly advancing computational
power, have opened the way to a far more real-
istic theoretical treatment of the complexity of
materials behavior. The resulting enhanced
appreciation of natural complexity has fostered
renewed interest in the systems view of materials
proposed by the late C.S. Smith (Ref 1), who
recognized the inevitable hierarchical nature of
materials structure, with strong interactions
amongst length scales and an interplay between
perfection and imperfection involving duality,
whereby structure can be equivalently regarded
as a hierarchy of three-dimensional space-filling
domains of relative perfection or a hierarchy of
lower-dimensional defects/imperfections that
bound them. Smith warned of a cultural bias
toward perfection and emphasized the impor-
tance of defect hierarchy in the willful control
of materials behavior. His view also acknowl-
edged an intrinsic dynamic nature, whereby a
spectrum of relaxation times associated with
structural hierarchy assures an intrinsic path-
dependent nonequilibrium structure of real mate-
rials. This inherent complexity sets limits on the
degree of predictability of materials behavior
from first-principles approaches. The late Morris
Cohen (Ref 2) eloquently argued the importance
of reciprocity between the deductive cause/effect
logic of reductionist analysis and the inductive
goal/means logic of systems synthesis, whereby
useful insights such as structure/property rela-
tions can be distilled from natural complexity
by probing structure from the viewpoint of spe-
cific desired properties.
This philosophy has formed the basis for a

systems approach to computational materials
design that has been successfully applied
to martensitic steels over the past decade and
is now extended to all classes of materials
(Ref 3). The pioneering application in marten-
sites stems from an early scientific appreciation
of complexity in martensitic systems. Current
design research aimed at acceleration of the full
materials development cycle emphasizes:

� Integration of microstructural evolution in
process models supporting a design-for-
processability approach anticipating process
scaleup

� A probabilistic science quantifying the role
of distributed defect hierarchy, especially in
structure/property relations, for predictive
control of variation to accelerate materials
qualification

This article assesses the evolution of mar-
tensite modeling in the context of this changing
materials engineering environment.
Consonantwith this view,Fig. 1 depicts the spa-

tiotemporal hierarchy of first-order displacive
transformations. Blocks at the left represent inter-
active levels of structure, both preceding and gen-
erated by the transformation, while blocks at the
right denote a sequence of dynamic phenomena
interactingwith these structural levels. As denoted
by the interconnections, initial nucleation is sensi-
tive to interfacial defects generated by the proces-
sing history, determining the initial number
density, Ni, of heterogeneous nucleation sites and

the critical driving force at which they operate.
The latter determines the dynamics of unit growth
events and influences the degree of dislocation
substructure generation determining subunit mor-
phology (plate/lath) and the initial average particle
volume,V o. The character of growth in turn estab-
lishes the elastic or plastic fields governing the
number density, NA, and potency of autocatalytic
nucleation sites,which evolvewith phase fraction,
f. The character of autocatalytic nucleation in turn
establishes the initial geometry of variant pairs
influencing the cooperative multivariant growth
of higher-level groups (packet/sheaf) determining
the evolution of average particle volume, V ðfÞ.
These are also influenced by the transgranular
spread of transformation in polycrystals, as well
as other macroscopic constraints of component
shape and external boundary conditions. On the
finest scale denoted, solutes and other fine-scale
defects exert an influence on several levels,

Fig. 1 Flow-block diagram of martensitic transformation as a multilevel dynamic system. See text for explanation of
details.
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primarily through interfacial friction. Progress in
martensite theory has addressed each of these
aspects, with due attention to both hierarchies of
space-filling domains and space-dividing defects.
An overall assessment of the current state of

computational materials science is that simula-
tions have demonstrated remarkable success in
reproducing many aspects of observed natural
complexity. In the spirit of Cohen’s reciprocity,
the challenge for the near future is to purpose-
fully exploit the capabilities of these techniques
(allowing parametric studies not accessible by
experiment) to yield new insights offering
predictive control of specific desired behaviors.

Physics of Displacive
Transformations

Ginzburg-Landau Theory. A general contin-
uum framework for the representation of marten-
sitic microstructures is now well established.
To describe the thermodynamics of the phase
transformation and the phase diagram, a free
energy model of the transformation is needed.
A Landau free energy (LFE) is a symmetry-

allowed polynomial expansion in the order
parameter that characterizes the transformation
(Ref 4), for example, strain tensor components
and/or (intraunit cell) shuffle modes, as repre-
sented schematically in Fig. 2. A minimization
of this LFEwith the order parameter components
leads to conditions that give the phase diagram.
Derivatives of the LFE with respect to tempera-
ture, pressure, and other relevant thermodynamic
variables provide information about the specific
heat, entropy, susceptibility, and so on. To study
domain walls between different orientational
variants (i.e., twin boundaries) or different shuf-
fle states (i.e., antiphase boundaries), symmetry-
allowed strain gradient terms or shuffle gradient
terms must be added to the LFE. These gradient
terms are called Ginzburg terms, and the aug-
mented free energy is referred to as the Ginz-
burg-Landau free energy (GLFE). Variation of
the GLFE with respect to the order parameter
components leads to (Euler-Lagrange) equations
(Ref 5, 6) whose solution leads tomicrostructure.
In two dimensions, the symmetry-adapted dila-

tation (area change), deviatoric, and shear strains
(Ref 5–7), respectively, are defined as a function
of the Lagrangian strain-tensor components, e:

e1 ¼ 1ffiffiffi
2
p ðexx þ eyyÞ; e2 ¼ 1ffiffiffi

2
p ðexx � eyyÞ; e3 ¼ exy

(Eq 1)

As an example, for a square-to-rectangle
transition, the LFE (Ref 8, 9) is given by:

F ðe2Þ ¼A

2
e22 þ

B

4
e42 þ

C

6
e62 þ

A1

2
e21 þ

A3

2
e23

(Eq 2)

where A1, A, and A3 are the bulk, deviatoric,
and shear modulus, respectively, and B and C
are higher-order elastic constants. The sixth-
order term makes it a first-order transition. This
free energy without the nonorder parameter
strain (e1, e3) terms below a critical temperature
(Tc) has two minima in e2 corresponding to the
two rectangular variants (of martensite). Above
T0, it has only one global minimum at e2 =
0 associated with the stable square lattice (i.e.,
austenite; Fig. 2b). Because the shear modulus
softens (partially) above T0, A = A0(T � T0).
As another example, the LFE for a triangu-

lar-to- (centered) rectangular transition is given
by (Ref 8, 9):

Landau Free Energy
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f0
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0

φ

Fig. 2 Schematic Landau free energy with three minima as a function of temperature. (a) Scaled free energy (f0) vs scaled strain (f) for different temperatures. (b) Eq (2) as a function
of temperature for representative parameters.
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F ðe2; e3Þ ¼ A

2
ðe22 þ e23Þ þ

B

3
ðe32 � 3e2e

2
3Þ

þ C

4
ðe22 þ e23Þ2 þ

A1

2
e21 (Eq 3)

whereA is the shear modulus,A1 is the bulkmod-
ulus, andB andC are third- and fourth-order elas-
tic constants, respectively. The third-order term
makes it a first-order transition. This free energy
without the nonorder parameter strain (e1) term
below Tc has three minima in (e2, e3)
corresponding to the three rectangular variants.
Above Tc, it has only one global minimum at e2
= e3 = 0 associated with the stable triangular
lattice. Again, above T0, A = A0(T � Tc).
In three dimensions, symmetry-adapted

strains are defined as (Ref 5):

e1 ¼ 1ffiffiffi
3
p ðexx þ eyy þ ezzÞ; e2 ¼ 1ffiffiffi

2
p ðexx � eyyÞ;

e3 ¼ 1ffiffiffi
6
p ðexx þ eyy � 2ezzÞ;

e4 ¼ exy; e5 ¼ eyz; e6 ¼ exz ðEq4Þ

As an example, the Landau part of the elastic
free energy for a cubic-to-tetragonal transition
in terms of the symmetry-adapted strain compo-
nents is given by (Ref 5, 6, 10, 11):

F ðe2; e3Þ ¼ A

2
e22 þ e23
� 	þB

3
e32 � 3e2e

2
3

� 	
þ C

4
e22 þ e23
� 	2þA1

2
e21

þA4

2
e24 þ e25 þ e26
� 	

(Eq 5)

whereA1,A, andA4 are bulk, deviatoric, and shear
modulus, respectively, B and C denote third- and
fourth-order elastic constants, and (e2, e3) are the
order parameter deviatoric strain components.
The nonorder parameter dilatation (e1) and shear
(e4, e5, e6) strains are included to harmonic order.
For studying domain walls (i.e., twinning) and
microstructure, this free energy must be aug-
mented (Ref 10) by symmetry-allowed gradients
of (e2, e3). The plot of the free energy inEq 5with-
out the nonorder parameter strain contributions (i.
e., compression and shear terms) is identical to the
two-dimensional triangle-to-rectangular case
(Eq 3), except that the three minima in this case
are associatedwith the three tetragonal correspon-
dence variants.
While the crystal symmetry dictates the form of

GLFE, the coefficients in the free energy are deter-
mined from a combination of experimental struc-
tural (lattice parameter variation as a function of
temperature or pressure), vibrational (e.g., phonon
dispersion curves along different high-symmetry
directions from neutron scattering), and thermo-
dynamic data (entropy, specific heat, elastic con-
stants, etc.). Where sufficient experimental data
are not available, electronic structure calculations
and molecular dynamics simulations (using
appropriate atomistic potentials) can provide the
relevant information to determine some or all of
the coefficients in the GLFE.
For simple phase transitions, for example,

two-dimensional square-to-rectangle (Ref 6) in
Eq 2 or those involving only one component

order parameter (Ref 12), the GLFE can be writ-
ten down by inspection (from the symmetry of
the parent phase). However, in general, theGLFE
must be determined by group theoretic means
that are now readily available for all 230 crystal-
lographic space groups in three dimensions and
(by projection) for all 17 space groups in two
dimensions (Ref 12); see the computer program
ISOTROPY by Stokes and Hatch (Ref 13).
Microstructure Representation. There are

several different but related ways of modeling
the microstructure in structural phase
transformations:

� GLFE-based models, as described previ-
ously (Ref 5)

� Phase-field models in which strain variables
are coupled in a symmetry-allowed manner
to the morphological variables (Ref 14)

� Sharp interface models used by applied
mathematicians (Ref 15, 16)

The natural order parameters in the GLFE are
strain-tensor components. However, until recent
years, researchers have simulated the micro-
structure in displacement variables by rewriting
the free energy in displacement variables
(Ref 8, 11). This procedure leads to the micro-
structure without providing direct physical
insight into the evolution. A natural way to bring
out the insight is to work in strain variables only.
However, if the lattice integrity is maintained
during the phase transformation, that is, no lat-
tice dislocation (or topological defect) genera-
tion is allowed, then one must obey the St.
Venant elastic compatibility constraints, because
various strain-tensor components are derived
from the displacement field and are not all inde-
pendent. This can be achieved by minimizing
the free energy with compatibility constraints
treated with Lagrangian multipliers (Ref 7, 9).
This procedure leads to an anisotropic long-
range interaction between the order parameter
strain components. The interaction (or compati-
bility potential) provides direct insight into the
domain wall orientations and various aspects of
the microstructure in general.
Mathematically, the elastic compatibility

condition on the geometrically linear strain ten-
sor, e, is given by (Ref 17–19):

r!� ðr!� eÞ ¼ 0 (Eq 6)

which is one equation in two dimensions con-
necting the three components of the symmetric
strain tensor: exx;yy þ eyy;xx ¼ 2exy;xy. In three
dimensions, it is two sets of three equations,
each connecting the six components of the sym-
metric strain tensor (eyy;zz þ ezz;yy ¼ 2eyz;yz and
two permutations of x,y,z; exx;yz þ eyz;xx ¼
exy;xz þ exz;xy and two permutations of x,y,z).
For periodic boundary conditions in Fourier
space, it becomes an algebraic equation that is
then easy to incorporate as a constraint.
For the free energy in Eq 2, the Euler-Lagrange

variation of [F�LG] with respect to the nonorder
parameter strains, e1, e3 is then (Ref 9, 12) d(F

c –

SrLG)/d ei = 0, where i = 1,3, and G denotes
the constraint equation (Eq 6), L is a Lagrangian
multiplier, and Fc ¼ ðA1=2Þe21 þ ðA3=2Þe23 is
identically equal to:

P
k F

cðkÞ:
The variation allows (in k-space, assuming

periodic boundary conditions) nonorder param-
eter strains to be obtained in terms of L(k).

e1ðkÞ ¼
k2x � k2y

� �
k2

k4 þ 8 A1

A3

� �
ðkxkyÞ2

; e2ðkÞ;

e3ðkÞ ¼ � A1

A3

� � ffiffiffi
8
p

kxky k2x � k2y

� �
k4 þ 8 A1

A3

� �
ðkxkyÞ2

e2ðkÞ ðEq 7Þ

Then, e1(k), e3(k) are put back into the com-
patibility constraint condition (Eq 6) to solve
for the Lagrange multiplier, L(k). Thus, e1(k)
and e3(k) are expressed in terms of e2(k).

Uðk̂Þ ¼
k2x � k2y

� �2
k4 þ 8 A1

A3

� �
ðkxkyÞ2

; e3ðkÞ

¼ � A1

A3

� � ffiffiffi
8
p

kxky k2x � k2y

� �
k4 þ 8 A1

A3

� �
ðkxkyÞ2

(Eq 8)

and

FcðkÞ ¼ A1

2

X
k

Uðk̂Þje2ðkÞj2

Uðk̂Þ ¼
k2x � k2y

� �2
k4 þ 8 A1

A3

� �
ðkxkyÞ2

ðEq 9Þ

which is used in a (static) free energy variation
of the order parameter strains. The (static) com-
patibility kernel, Uðk̂Þ, is independent of k

!��� ���
and therefore only orientationally dependent:
Uð k!Þ ! Uðk̂Þ. In coordinate space, this is an
anisotropic long-range (~1/r2) potential mediat-
ing the elastic interactions of the primary order
parameter strain. From this compatibility ker-
nel, one can obtain domain wall orientations,
parent-product interface (i.e., habit plane)
orientations, and local rotations (Ref 12) con-
sistent with those obtained previously using
macroscopic matching conditions and symme-
try considerations (Ref 20, 21).
The concept of elastic compatibility in a

single crystal can be readily generalized to poly-
crystals by defining the strain-tensor components
in a global frame of reference (Ref 22, 23). By
adding a stress term (bilinear in strain) to the
free energy, one can compute the stress-strain
constitutive response in the presence of micro-
structure for both single and polycrystals and
compare the recoverable strain upon cycling.
The grain rotation and grain boundaries play an
important role when polycrystals are subject to
external stress in the presence of a structural
transition. Similarly, the calculation of the con-
stitutive response can be generalized to improper
ferroelastic materials, such as those driven by
shuffle modes (intracell displacements or lat-
tice-point relative displacements).
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Dynamics and Simulations. The over-
damped (or relaxational) dynamics can be used in
simulations to obtain equilibriummicrostructure:

_e ¼ �1
A0

dðF þ FcÞ
de

where A0 is a friction coefficient, and Fc is the
long-range contribution to the free energy due
to elastic compatibility. However, if the evolu-
tion of an initial nonequilibrium structure to the
equilibrium state is important, one can use iner-
tial strain dynamics with appropriate dissipation
terms included in the free energy. The strain
dynamics for the order parameter strain-tensor
component, e2, are given by (Ref 9):

r0€e2 ¼
c2

4
r!2 dðFþ FcÞ

de2

�
þ dðRþ RcÞ

de_2

�
(Eq 10)

where r0 is a scaled mass density, c is a sym-
metry-specific constant, R ¼ ðA0=2Þ _e22 is the
Rayleigh dissipation, Rc is a contribution to

the dissipation due to the long-range elastic
interaction, and €e is the second time derivative
of strain.
The compressional and shear free energy in

Eq 2 is replaced with the corresponding long-
range elastic energy in the order parameter
strain and includes a gradient term,
FG ¼ ðK=2Þ½ðre2Þ2�, where the gradient coef-
ficient K determines the elastic domain wall
energy and can be estimated from phonon dis-
persion curves. Simulations performed with
the full underdamped dynamics for the square-
to-rectangular transition are depicted in Fig. 3.
The equilibrium microstructure is essentially
the same as that found from the overdamped
dynamics.
The three-dimensional cubic-to-tetragonal

transition (free energy in Eq 5) can be
simulated by either using the strain-based for-
malism outlined here (Ref 10) or directly using
the displacements (Ref 11). Figure 4 depicts
microstructure evolution for the cubic-to-tetrag-
onal transition in FePd mimicked by a square-

to-rectangle transition. To simulate mechanical
loading of a polycrystal (Ref 22, 23), an exter-
nal tensile stress, s, is applied quasi-statically,
that is, starting from the unstressed configura-
tion. The applied stress, s, is increased in steps
of 5.13 MPa, after allowing the configurations
to relax for t

*
= 25 time steps after each incre-

ment. The loading is continued until a maxi-
mum stress of s = 200 MPa is reached.
Thereafter, the system is unloaded by decreas-
ing s to zero at the same rate at which it was
loaded. The favored (rectangular) variants grow
at the expense of the unfavored (differently ori-
ented rectangular) variants. The orientation dis-
tribution does not change much. As the stress
level is increased further, the favored variants
grow. Even at the maximum stress of 200
MPa, some unfavored variants persist.
Note that the grains with large misorientation

with the loading direction rotate. Grains with
lower misorientation do not undergo significant
rotation. The mechanism of this rotation is the
tendency of the system to maximize the trans-
formation strain in the direction of loading so
that the total free energy is minimized (Ref
22, 23). Within the grains that rotate, subgrain
bands are present that correspond to the unfa-
vored strain variants that still survive. Upon
removing the load, a domain structure is nucle-
ated again, due to the local strains at the grain
boundaries and the surviving unfavored var-
iants in the loaded polycrystal configuration.
This domain structure is not the same as that
prior to loading, and thus, there is an underlying
hysteresis. The unloaded configuration has non-
zero average strain. This average strain is
recovered by heating to the austenite phase, in
accordance with the shape memory effect. The
orientation distribution reverts to its preloading
state because the grains rotate back when the
load is removed.
The aforementioned mechanical behavior of

the polycrystal in Fig. 4 is compared to the
corresponding single crystal. The recoverable
strain for the polycrystal is smaller than that
for the single crystal, due to nucleation of
domains at grain boundaries upon unloading.
In addition, the transformation in the stress-
strain curve for the polycrystal is not abrupt,
because the response of the polycrystal is
averaged over all grain orientations. Similarly,
using the free energy given by Eq 3 for the
triangular-to-rectangular transition, one can
simulate the microstructure (Ref 9, 24) that
has been observed in lead orthovanadate
crystrals (Ref 25, 26).
Comparison with Other Methods. The

approach based on the work of Barsch and
Krumhansl (Ref 5, 6) is compared with two
other methods that make use of Landau theory
to model structural transformations. Here, a
brief outline of the differences is provided
(except for models with dislocation (Ref 27)),
and the methods are compared and reviewed
in detail in Ref 28. Khatchachuryan and cowor-
kers (Ref 14, 29, 30) used a free energy in
which a structural or morphological order
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parameter, Z, is coupled to strains. This order
parameter is akin to a shuffle order parameter
(Ref 31), and the inhomogeneous strain contribu-
tion is evaluated using the method of Eshelby
(Ref 14). The strains are then effectively
removed in favor of the Z’s, and the minimiza-
tion is carried out for these variables. This
approach (sometimes referred to as phase field)
applied to improper ferroelastics is essentially
the same as the approach outlined in this article,
with minor differences in the way the inhomoge-
neous strain contribution is evaluated. However,
for the proper ferroelastics that are driven by
strain, rather than shuffle, essentially the same
procedure is used with phase field; that is, the
minimization (through relaxation methods) is
ultimately for the Z’s rather than the strains.
In the approach outlined in this article, the non-
linear free energy is written upfront in terms of
the relevant strain order parameters, with the dis-
crete symmetry of the transformation taken into
account. Here, terms that are gradients in strains,
which provide the costs of creating domainwalls,
are also added according to the symmetries.
The free energy is then minimized with respect
to the strains. That the microstructure for proper
ferroelastics obtained from either method would
appear qualitatively similar is not surprising.
Although the free energy minima or equilibrium
states are the same from either procedure, differ-
ences in the details of the free energy landscape
would be expected to exist. These could affect,
for example, the microstructure associated with
metastable states.
The method outlined in this article and that

developed by the applied mechanics community
(Ref 15, 16) share the common feature of mini-
mizing a free energy written in terms of strains.
The method is ideally suited for laminate micro-
structures with domain walls that are atomisti-
cally sharp. This sharp interface limit means
that transformation strains are incorporated
through the use of the Hadamard jump condition
(Ref 15, 16). The method takes into account
finite deformation and has served as an optimi-
zation procedure for obtaining static equilibrium
structures, given certain volume fractions of var-
iants. The approach outlined in this article dif-
fers in that it uses a continuum formulation
with interfaces that have finite width, and there-
fore, the transformation strains are taken into
account through the compatibility relation
(Ref 7, 9). In addition, the full evolution equa-
tions are solved so that kinetics and the effects
of inertia can be studied.
Density Functional Theory (DFT). Many of

the martensitic phase transformations are driven
by a shuffle mechanism that is reflected in the
softening of a phonon mode in the phonon dis-
persion curves (energy versus wave vector).
Inelastic neutron scattering provides a direct
means of measuring the dispersion curves along
various high-symmetry directions in the unit
cell (i.e., Brillouin zone in the reciprocal or
wave vector space). A useful way of obtaining
these curves is by means of ab initio calcula-
tions within the DFT using standard electronic

structure packages, such as Vienna ab initio
Simulation Package (VASP), and by invoking
either local-density approximation (LDA) for
the electron density or the more accurate
generalized gradient approximation (GGA).
The latter is implemented with a specific choice
of basis, for example, projector-augmented
wave basis. Lattice dynamics is carried out for
the different (austenite and martensite) crystal
structures by first constructing the dynamical
matrix. Its diagonalization allows one to find
the phonon dispersion relations.
The DFT is a ground-state theory that essen-

tially depends on the total number of electrons
in the unit cell. In addition to calculating elec-
tronic structure, lattice parameters, bonding
properties (e.g., bulk modulus), elastic con-
stants, crystal structures, atomic positions, and
equation of state, the DFT allows one to study
the energy pathway associated with the strain
(distortion)-shuffle transformation and the
corresponding energy landscape as well as the
(asymmetric) energy density barrier between
the austenite and martensite. Recent calcula-
tions for B2! B19 and B190 transformations
have provided fundamental parameters for TiNi
and related alloys (Ref 31).
The Ginzburg-Landau free energy functional

can be fit to the first-principles energy data to
obtain the coefficients of the Landau free
energy (Ref 32).
Shuffle Transitions. Previously, the proper

ferroelastic transitions were considered. This
method can be readily extended (including the
Ginzburg-Landau free energy and elastic com-
patibility) to the study of improper ferroelastics
(e.g., shuffle-driven transitions such as
B2!B190 in TiNi) (Ref 33). However, now
the elastic energy is considered only up to the
harmonic order, whereas the primary order
parameter has anharmonic contributions. For
example, for a two-dimensional shuffle-driven
transition on a square lattice, the Ginzburg-
Landau free energy is given by (Ref 31, 34):

F ðQ!Þ ¼ a1 Q2
x þQ2

y

� �
þ a11 Q4

x þQ4
y

� �
þ a12Q2

xQ
2
y þ a111 Q6

x þQ6
y

� �
þ a112 Q2

xQ
4
y þQ4

xQ
2
y

� �
þ g1

2
Q2

x;x þQ2
y;y

� �
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2
Q2
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2
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1

2
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1
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2
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y

� �
þ b2e2 Q2

x �Q2
y

� �
þ b3e3QxQy

(Eq 11)

where Qx and Qy are the shuffle components.

Martensitic Nucleation

The application of the Ginzburg-Landau
approach to rigorous solutions for the structure
of a martensitic nucleus has clarified

longstanding issues in the theory of martensitic
nucleation. Olson and Roitburd (Ref 35)
reviewed the full range of possible theoretical
mechanisms of martensitic nucleation set forth
in the pioneering work of Morris Cohen. A cen-
tral issue has been whether nucleation operates
in the “classical” limit, where a critical nucleus
has the full strain amplitude corresponding to
fully formed martensite, or exhibits “nonclassi-
cal” behavior with significantly reduced strain
amplitude, resembling a local lattice instability.
As first described by Olson and Cohen (Ref 36),
the Ginzburg-Landau theoretical framework
allows a rigorous description of the competition
between these modes of nucleation, when
adapted to the two- and three-dimensional vari-
ational solutions describing critical nuclei.
Using the case of a simple coherent shear trans-
formation, Reid et al. (Ref 27, 36–38) applied
such Ginzburg-Landau descriptions to obtain
rigorous two-dimensional variational solutions
for heterogeneous nucleation at linear defects,
using an element-free Galerkin numerical
method. For the case of a group of dislocations
of sufficient potency to account for nucleation
at the martensite start (Ms) temperature, Fig. 5
(a) shows the computed strain field (right) when
the material is described as linear elastic (left).
The defect provides a significant volume of
highly distorted material. Representing condi-
tions far above the To equilibrium temperature,
Fig. 5(b) shows the computed field (right) under
conditions corresponding to the first appearance
of a second energy well (left), representing the
martensite structure. The variational solution
shows that such a defect field becomes unstable
with respect to the formation of a locally stabi-
lized classical (fully formed) martensitic
embryo well above the transformation tempera-
ture. This solution constitutes rigorous confir-
mation of the “pre-existing embryo”
hypothesis of Kaufman and Cohen in 1958
(Ref 39). Operational nucleation at the Ms tem-
perature then corresponds to the growth startup
of such classical embryos with kinetic control
by processes of interfacial motion.
A central concept of quantitative martensite

kinetic theory (Ref 40) is a potency distribution
of nucleation sites, as originally proposed by
Machlin and Cohen (Ref 41). For low-potency
heterogeneous nucleation, Fig. 6 (Ref 38)
shows the computed fields (right) at tempera-
tures below To (left) for the case of a single lat-
tice dislocation, which would contribute to
nucleation at temperatures well below Ms. For
the smaller distorted volume in this class of
defect, gradient energy suppresses the forma-
tion of a local classical embryo, so that nucle-
ation abruptly transforms the crystal in Fig. 6
(c) without a pre-existing classical embryo.
The defect field in this case resembles the
“strain embryo” concept of the nonclassical
reaction path model first proposed by Cohen
et al. in 1949 (Ref 42). The variational solutions
of Fig. 6 confirm that the strain amplitude of the
critical nucleus in this weak defect limit shows
some departure from the classical limit.
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Stronger departures from classical behavior
can be expected in the limit of homogeneous
martensitic nucleation, which requires high
driving forces approaching the critical driving
force for lattice instability. The data points in
Fig. 7 represent the measured critical driving
force for homogeneous face-centered cubic
(fcc) ! body-centered cubic (bcc) martensitic
nucleation in defect-free 10 nm iron-cobalt par-
ticles coherently precipitated in a copper
matrix, as studied by Lin et al. (Ref 43). The
driving force is normalized to the critical
driving force for fcc lattice instability deter-
mined from DFT calculations. The solid curve
shows the theoretical prediction of a three-
dimensional model of a single-domain, fully
coherent bcc nucleus based on a rigorous one-
dimensional Ginzburg-Landau description,
using the gradient energy coefficient as a fitting
parameter (Ref 44). Significant departure of the
critical nucleus strain amplitude from the clas-
sical limit is predicted. With the model para-
meters fixed, the upper dashed curve shows
the predicted critical driving force for nucle-
ation at full strain amplitude. The model pre-
dicts that in this limit of homogeneous
coherent fcc ! bcc nucleation, nonclassical
effects reduce the critical driving force for
nucleation by 15 to 20%.
These examples of the incorporation of rigor-

ous nonlinear physics in two- and three-dimen-
sional variational solutions of critical nucleus
structure provide important guidelines for
appropriate approximations in the engineering
application of martensite kinetic theory. For

the case of finely dispersed metastable particles,
transformation controlled by weak defect or
homogeneous nucleation at high driving forces
can require significant nonclassical corrections.
For bulk polycrystals, where transformation is
dominated by strong defects at relatively low
driving forces, classical heterogeneous nucle-
ation theory (Ref 45) can be applied with high
confidence.
Nucleation in the low-driving-force classical

limit is predicted to involve relatively sharp
interfaces, as supported by direct high-resolu-
tion electron microscopy observations of inter-
facial core structure (Ref 46) in this regime.
Sharp interface models are therefore appropri-
ate. This includes discrete dislocation models,
whose application in martensitic transformation
modeling has been comprehensively reviewed
by Olson and Cohen (Ref 47). The earliest
quantitative solution to the heterogeneous mar-
tensitic nucleation problem is based on this
approach, as depicted in Fig. 8 (Ref 48). Equiv-
alent to the case described in Fig. 5, Fig. 8(a)
represents an interfacial defect as a group of
“extrinsic” interfacial dislocations. A martensi-
tic embryo formed at such a defect is repre-
sented by an array of discrete partial
transformation or coherency dislocations (Fig.
8b), which account for the transformation strain
while maintaining interfacial coherency, and an
array of lattice dislocations (Fig. 8c), account-
ing for the lattice-invariant deformation of a
semicoherent embryo. The energetics of forma-
tion of such an embryo can equivalently be
described as the dissociation of the defect of

Fig. 8(a) to form the coherency dislocations of
Fig. 8(b) or the elastic interaction of a semicoher-
ent embryo of Fig. 8(b and c) with the defect of
Fig. 8(a). Both descriptions predict barrier-less
nucleation, where an embryo with a thickness
of n close-packed planes of interplanar spacing
d is derived from the defect interaction. The
value of n scales with the resolvedBurgers vector
content of the defect and thus defines the defect
potency. Consideration of an interfacial work,
wf, for the glide of a martensitic interface in a
solid solution gives a critical free energy change
(driving force) per volume for barrier-less nucle-
ation at a defect of potency, n, as (Ref 48):

�gcritðnÞ ¼ � 2g
nd
þ go þ wf

� �
(Eq 12)

where g is the semicoherent interfacial energy
per area. The term go was originally interpreted
as a shape-independent elastic energy asso-
ciated with distortion in the interface at small
embryo size. Detailed comparison of nucleation
in thermoelastic and nonthermoelastic transfor-
mation in the iron-platinum system (Ref 49) has
led to a reinterpretation of this quantity as a dislo-
cation forest hardening term for autocatalytic
nucleation in the plastic zone associated with
the nonthermoelastic growth mode described in
the section by that name that follows.
Based on direct measurements of interfacial

mobility in thermoelastic single-interface trans-
formations, the theory of thermally activated
dislocation mobility has been adapted to marten-
sitic interfaces (Ref 50, 51) to predict the form of
the composition and temperature dependence of
the wf interfacial frictional work term. Finding
a characteristic potency, n, for the defects
controlling the Ms of typical polycrystals, a
kinetic database has been established for the
solution-hardening coefficients of alloying ele-
ments in steels (Ref 52), predicting both ather-
mal and thermal contributions to wf, the latter
contribution describing observed isothermal
nucleation behavior. Compared to traditional
empirical linear regression models for the com-
position dependence of Ms, the combination of
the nonlinear thermodynamics and kinetic wf

behavior of Eq 12 has provided a significant
improvement in the accuracy of Ms prediction
in the design of complex high-alloy steels.

Martensitic Growth

Thermoelastic Growth. Addressing the sec-
ond unit process of Fig. 1, Wang and Khachatur-
yan (Ref 53) employed the time-dependent
Ginzburg-Landau equation, incorporating a
linear-viscous dynamic response, in the three-
dimensional dynamic simulation of a cubic-
tetragonal martensitic transformation with inter-
nal shuffles (improper ferroelastic), giving the
sequence of structures depicted in Fig. 9. Starting
from a supercritical embryo of arbitrary shape,
the detailed simulation predicts the dynamic
growth form of an internally twinned plate,

Fig. 5 Heterogeneous nucleation at strong defects. Two-dimensional variational solutions to Ginzburg-Landau model
for (a) linear elastic material and (b) nonlinear material at onset of martensite mechanical stability. Length

scale in units of lattice dislocation Burgers vector, b. Source: Ref 27
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which is strikingly similar to the oblate spheroi-
dal, semicoherent embryo assumed by Kaufman
and Cohen (Ref 39) and Knapp and Dehlinger
(Ref 54) and predicted by the growth dynamic
model of Raghavan and Cohen (Ref 55).
Nonthermoelastic Growth. The model

assumptions of the unit growth simulation of
Fig. 9 correspond to a thermoelastic system.

A model of unit growth dynamics in nonther-
moelastic systems demonstrated the important
role of (size- and rate-dependent) plastic
accommodation of the transformation shape
strain in governing the technologically impor-
tant lath/plate morphological transition in steels
(Ref 47, 56). The complex interactions that
occur during nonthermoelastic growth have

been modeled by Haezebrouck (Ref 56) using
simulations of dynamic growth events in FeNi
alloys. The interactions considered are summar-
ized in Fig. 10. As in the thermoelastic case, the
driving force for interfacial motion arises from
the chemical free energy change (a), with
restraining forces arising from interfacial
energy (b) and elastic strain energy (c). Differ-
entiating the total energy with respect to parti-
cle radius, r, and semithickness, c, these terms
all influence the net driving force per unit area
acting on the interface (d) for radial growth
and thickening. Through interfacial mobility
relations (e), these net forces determine the
interfacial velocities in the r and c directions.
For a first-order phase transformation with a
latent heat, the interfacial velocity influences
the heat transfer across the interface and thus
affects the temperature at the interface (f). This
in turn affects the interfacial mobility (e),
modifies the chemical free energy change (a)
at the interface, and weakly affects the interfa-
cial energy (b). The overall interaction thus
far discussed would also apply to the initial
radial growth events in thermoelastic
transformations.
In a nonthermoelastic transformation, the

interfacial velocity also determines the plastic
strain rate (g) imposed on the parent phase.
This influences the extent of plastic accommo-
dation (h), which is also dependent on particle
size through the conditions for slip nucleation
in the particle stress field. Plastic accommoda-
tion modifies the elastic strain energy (c) and
introduces two important dissipations: the work

Fig. 6 Heterogeneous nucleation at weak defects. Two-dimensional variational solutions to Ginzburg-Landau model
for single lattice dislocation with increasing driving force (a and b), leading to transformed crystal at critical

driving force for nucleation in (c). Length scale in units of lattice dislocation Burgers vector, b. Source: Ref 38

Fig. 7 Normalized critical driving force for
homogeneous coherent face-centered cubic

! body-centered cubic nucleation in defect-free iron-
cobalt particles, comparing three-dimensional Ginzburg-
Landau variational solution for nucleus (solid curve)
with experimental data points. Horizontal dashed line
denotes elastic energy threshold for coherent nucleation.
Upper dashed curve represents classical nucleus of full
strain amplitude. Source: Ref 44
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of creating the plastic zone (i) and the addi-
tional interface frictional work (j) for moving
the interface through strain-hardened material.
These dissipations modify the net interfacial
driving forces (d).
As discussed in the previous section, interfa-

cial mobility parameters for thermally activated
behavior in ferrous alloys can be estimated
from nucleation kinetic data; phonon drag para-
meters are estimated from studies of slip dislo-
cation mobility. Steady-state heat transfer
during radial growth of a martensitic particle
has been analyzed by Lyubov and Roitburd
(Ref 57), and the transient behavior during
thickening has been treated by Nishiyama et
al. (Ref 58). From the form of the behavior
obtained for the latter case, the interface tem-
perature at time t can be taken to be a function
of v2, where v2 is the time-averaged mean-
square velocity. Using available alloy thermo-
dynamic parameters and elastic constant data,
all the necessary parameters can then be defined
to describe the uppermost loop of Fig. 10.
The mechanics of plastic accommodation can

be treated using available slip kinetic data for
the alloys of interest and adapting concepts

from fracture mechanics developed for crack-
tip plasticity. Using the plastic zone solution
for a mode III shear crack (Ref 59), the radial
plastic zone size, Rp, is estimated as:

Rp ¼ r½1þ 2:5ð�tf=tiÞ��2 (Eq 13)

where �tf is the matrix effective shear strength,
and ti is the internal shear stress in the particle,
as defined by the Eshelby elastic particle calcu-
lation (Ref 60). Using the same model for the
form of the plastic distribution, the average plas-
tic strain rate imposed in the plastic zone by a
radial interfacial velocity, vr, is expressed by:

_g ¼ 2vr�tf=mRp (Eq 14)

From the form of calculated elastic stress
fields in the c-direction (Ref 61), the plastic-zone
size normal to the particle habit is estimated as:

Cp ¼ 1

2
rð1� �tf=tiÞ (Eq 15)

Both the dependence of the local plastic strain
rate on vc and the total plastic displacement

across the zone can be estimated by assuming a
constant plastic strain gradient in the zone and
fitting to experimental displacement fields based
on detailed analysis of surface-relief effects from
isolated martensite plates in ferrous alloys. Mod-
ification of the invariant plane-strain elastic
strain energy (and the associated particle internal
stress parameter, ti ) is taken into account by a
radial plastic-zone size correction to the effec-
tive particle radius (Ref 62) and by an effective
transformation shear strain that incorporates
accumulated plastic displacements averaged
over the particle volume. Integration of the plas-
tic strain fields defines the work of plastic-zone
formation. The primary influence of strain hard-
ening is assumed to lie in the athermal resistance
to interfacial motion, and this is taken to vary
linearly with the average plastic strain in each
zone (r and c directions treated separately). The
magnitude of the strain-hardening effect, within
the range of theoretical possibilities, is estimated
from the thermodynamic conditions for which
radial growth is observed to cease in thermal-
gradient and composition-gradient experiments
(Ref 63).

Fig. 8 Martensitic nucleation by dislocation
dissociation. (a) Nucleating defect. (b)

Dissociation of defect to produce a/18 [112] partial
dislocations. (c) Simultaneous generation of lattice
dislocations. Source: Ref 48 Fig. 9 Simulation of growth of supercritical semicoherent (internally twinned) martensitic embryo in nonlinear,

nonlocal continuum model. Source: Ref 53
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Nucleation of slip dislocations in the particle
stress field is regarded as a necessary condition
for plastic-zone formation. A linear elastic cal-
culation of the conditions for barrier-less nucle-
ation of slip dislocations in the stress field at the
plate periphery gives a critical plate radius as a
function of plate aspect ratio, plotted in Fig. 11.
For an aspect ratio of a few percent, a plate
radius of a few micrometers is required to
nucleate slip. When this nucleation condition
is met, a radial plastic-zone size can be calcu-
lated by expressing the matrix strength, �tf , as
a function of _g. The latter function is denoted
by the schematic solid curve in Fig. 12. Here,
region I (tm < �tf < t̂) corresponds to thermally
activated behavior, linear region II represents
phonon drag control, and region III is a

relativistic limit where _g is not allowed to
exceed _gs, corresponding to a dislocation veloc-
ity equal to the elastic shear wave velocity. The
dashed curves indicate the imposed strain rate
in the plastic zone as a function of �tf , depicting
three different radial interface velocities. For
the velocities v1 and v2, physically meaningful
plastic-zone solutions correspond to the curve
intersections shown by the heavy points. At the
higher velocity, v3, no solution exists, and a
radial plastic zone cannot form. Similar behavior
is obtained for determination of the plastic-zone
size in the c-direction.
Results of simulations of growth events at the

Ms temperature for two FeNi alloys are

summarized by plots of radial velocity versus
plate radius in Fig. 13. For the Fe-31Ni case,
radial growth rapidly accelerates to a velocity
near one-third the shear wave velocity. The con-
dition for slip nucleation is met at the point indi-
cated by the first arrow, but the interface velocity
is sufficiently high that a plastic zone cannot
form. As the plate grows, its increasing tip radius
makes heat transfer less effective, and the inter-
face temperature increases, causing a gradual
deceleration. At the point marked by the second
arrow, a critical velocity is reached where plas-
tic-zone formation is possible. Abrupt formation
of a plastic zone causes a strong deceleration and
erratic growth behavior, leading to complete ces-
sation of radial growth at a plate radius of �80
mm. This is then followed by an additional incre-
ment of plate thickening.
For the case of the Fe-24Ni alloy, which forms

lath martensite, a lower peak velocity is achieved
during growth, due primarily to increased pho-
non drag at its higher Ms temperature. Soon after
the slip nucleation condition is achieved, as indi-
cated by the arrow, extensive plastic accommo-
dation brings growth to a halt. In contrast to the
Fe-31Ni growth involving a macroscopic elastic
event, the major part of the growth occurs in a
plastic state and stops at a size that is smaller
by an order of magnitude.
The behavior described here identifies three

basic modes of martensitic growth:

� Elastic: When significant plastic accommo-
dation is absent, the behavior described in
Fig. 9 occurs, corresponding to thermoelas-
tic plate martensite.

� Elastic/plastic: When plastic accommoda-
tion is delayed by a high initial growth rate,
a macroscopic elastically accommodated
“midrib” forms, followed by thickening and
growth cessation in an irreversible plastic
mode. This corresponds to nonthermoelastic
plate martensite (as in Fe-31Ni, Fig. 13).

� Fully plastic: When plastic accommodation
is not significantly delayed beyond the slip
nucleation condition, the entire growth event
can be considered to take place in a plastic
condition. This corresponds to the lath mar-
tensite of Fe-24Ni.

Fig. 10 Dynamic interactions during nonthermoelastic growth of a martensitic particle. Source: Ref 56
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Although the approximations employed in
the simulations of Fig. 13 are based on small-
scale yielding and cannot accurately describe
the highly plastic behavior of the Fe-24Ni alloy,
the model does predict a substantial transition
in growth mode that correlates with the lath/
plate morphological transition and provides a
likely physical basis for it. While radial sym-
metry was imposed in these calculations, aniso-
tropic plastic-zone interactions could provide
some tendency toward a lath shape during fully
plastic growth. The macroscopic elastic growth
events common to the thermoelastic and non-
thermoelastic plate martensites would be con-
sistent with the success of habit plane analyses
for these cases, based on elastic strain energy
minimization alone. The more complex defor-
mations possible during fully plastic growth
may favor interfacial energy minimization, pro-
moting habits near close-packed planes, as
observed for lath martensites.
Working within a mesoscopic continuum non-

equilibrium thermodynamic framework (Ref
64), Levitas (Ref 65) has undertaken more rigor-
ous finite-element simulations of unit growth in a
plastic matrix. Contours of computed accumu-
lated plastic strain for directional growth of a
martensite lath are represented in Fig. 14. Calcu-
lating the incremental work of elemental growth
steps offers insights into the evolution of mor-
phology in a plastic environment. The behavior
is found to be strongly path dependent, and non-
local plasticity models could be employed to
more realistically treat size-dependent plastic
flow at the 0.1 mm length scales of interest.

Overall Kinetics

While the basic characteristics of individual
nucleation and growth events determine many

essential features of martensitic transforma-
tions, the overall kinetics of the reaction also
depend on the nature of the interactions
between martensitic particles. As represented
in Fig. 3 and 4, the strain-energy reducing rear-
rangements allowed by particle translation will
play an important role in the course of thermo-
elastic transformations. For nonthermoelastic
behavior, where particles are frozen into the
configuration in which they originally form,
the nature of autocatalytic nucleation plays a
more important role in microstructural
development.
In addition to particle-shape-related differ-

ences in the character of the stress fields of
martensitic laths and plates, the macroscopic
elastic growth event predicted for the plate mar-
tensite of Fig. 13 suggests different types of
autocatalysis. With plastic-zone formation and
autocatalytic nucleation as competitive modes
of stress-field accommodation, the intense elas-
tic event can provide an autocatalytic nucle-
ation site of high potency, in line with the
“bursting” form of autocatalysis encountered
in plate martensites. Similar to Hall-Petch
strengthening, austenitic grain refinement can
reduce the intensity of these elastic stress fields
and inhibit the grain-to-grain spread of autocat-
alytic nucleation. The effect is manifested in a
grain size dependence of the martensite burst-
ing temperature (Ref 66) and an influence of
grain size on the relative roles of the grain-to-
grain spreading and intragranular filling-in
modes of autocatalysis in controlling micro-
structure development (Ref 67, 68). The latter
effects are important to the overall transforma-
tion kinetics through the dependence of average
plate volume, �V , on the extent of transforma-
tion (Ref 69). As represented by the example
in Fig. 15 (Ref 40), the behavior measured dur-
ing the filling-in mode can be modeled as a

simple power-law function of the phase frac-
tion, f:

�V ¼ �V1f
�m (Eq 16)

where m is an exponent near 1. As denoted by
the horizontal dashed lines in Fig. 15, the
behavior during the initial spreading mode of
transformation is represented by truncation of
Eq 16 for f below a characteristic level. While
this behavior has been well established by
stereological measurements in nonthermoelastic
ferrous alloys, surface-relief observations have
more recently demonstrated that it also applies
to thermoelastic TiNi alloys (Ref 70).
When the dependence of �V on the trans-

formed volume fraction, f, was established, the
overall kinetics of a nucleation-controlled mar-
tensitic transformation was modeled by Pati and
Cohen (Ref 71) by a rate equation of the form:

_f ¼ ðNi þ pf �NvÞð1� fÞV v exp � Q

RT

��
:

(Eq 17)

Here, Ni is the density of the most-potent initial
nucleation sites; p defines the density of autocat-
alytically generated sites; Nv is the number of
plates per unit volume, accounting for sites that
have operated; the (1 � f) factor accounts for
potential sites swept up by the transformation; V
is the instantaneous mean plate volume obtained
by differentiation of Eq 16; while v and Q are an
attempt frequency and activation energy defined
by the thermal component of the interfacial fric-
tional work, wf, in Eq 12. This model has been
successfully fit to experimental transformation
curves of f versus time, t. BecauseNv is equal to
f= �V , the shape of the f(t) function is sensitive to
the product p �V , curving upward when p �V > 1.
For pV < 1, f(t) curves downward, leading to a
finite saturation level of transformation at a given
reaction temperature.
The model of Eq 17 employs the simplifying

approximation of a singly-activated process.
The derivation of the activation energy, Q, from
Eq 12, employing the thermal contributions to
wf, predicts that Q will be a function of defect
potency, n. Small-particle experiments in
metals and ceramics show that the pre-existing
defects corresponding to Ni in Eq 17 are in fact
distributed in potency and described by an
exponential cumulative potency distribution
(Ref 72):

Nið� nÞ ¼ No
i expð�anÞ (Eq 18)

with a � 0.84. Sensitive acoustic emission
measurements detecting earliest nucleation
events have further prescribed the dependence
of the total amplitude, No

i , on grain size, D
(Ref 73). It is expected that the autocatalytic
nucleation described by the factor p in Eq 17
should also be distributed in potency, n. In this
case, its mechanistic origin in growth events
suggests a function distributed about a charac-
teristic mode.Fig. 14 Computed plastic strain contours for growth of lath martensite in a ferrous alloy. Source: Ref 65
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Based on these concepts, Lin et al. (Ref 40)
developed a comprehensive kinetic model for
martensitic transformations, allowing the Q-
values associated with Ni and p to be distributed
in a manner predicted by potency distributions
with respect to n. Equation 17 is then
generalized by an integration of the form:

dNv

dt
¼
ðQ
o

dNi

dQ
þ f

dP

dQ
�

��
dNv

dQ

�

ð1� fÞv exp � Q

kT

� ��
dQ ðEq 19Þ

where dNi/dQ is the activation-energy distribu-
tion of pre-existing defects, dP/dQ is the activa-
tion-energy distribution of autocatalytic defects,
and dNv/dQ is the plate-number-density distribu-
tion as transformed from defects having an acti-
vation energy, Q. With the measured parameters
of Eq 18 as input, together with the measured
�V ðfÞ behavior of Fig. 15, the evolution of f with
temperature and time defines a cumulative auto-
catalytic p(n) functionwell described by aGauss-
ian distribution, as shown in Fig. 16.
With the athermal and thermal components

of wf in Eq 12, this model describes the full
range of athermal and isothermal behaviors
exhibited by ferrous martensites defining the
evolution of f, Nv, and �V with both temperature
and driving force. As summarized by Fig. 17,
an opposite grain-size dependence of initial
and autocatalytic potency distributions also
accounts for a transition from smooth to burst
character with increasing grain size.
More recent application to ferrous lath

martensites has demonstrated applicability of
the same functional forms of �V ðfÞ and p(n)
(Ref 74). Numerical implementation as the

CryoMART simulator (Ref 75) has applied the
model in optimization of cryogenic treatments
for minimization of retained austenite in high-
performance steels. Surface-relief measure-
ments have shown that the same Gaussian
p(n) form allows the model to accurately
describe the evolution of transformation in
thermoelastic TiNi alloys (Ref 37, 70).

Conclusions

Rigorous application of continuum Ginzburg-
Landau models informed by atomistic-energy
calculations has answered key questions in the
mechanism and kinetics of martensitic transfor-
mations. This in turn has informed appropriate
approximations for the treatment of behaviors
of higher complexity, such as morphological
transitions associated with nonthermoelastic
growth, and the quantitative modeling of overall
transformation kinetics in both thermoelastic and
nonthermoelastic systems. The opportunity now
exists to employ large-scale Ginzburg-Landau
simulations to predict the �V ðfÞ evolution and p
(n) autocatalytic potency distributions to com-
pare with the corresponding functions derived
from experiment.
Current models and simulations have already

provided significant support for computational
materials design and process optimization.
Improved model fidelity will enhance these cap-
abilities and support higher levels of optimiza-
tion in integrated materials and product design.
The models presented here provide the

framework for the prediction of behaviors
under stress, including nonthermoelastic trans-
formation plasticity, thermoelastic superelasti-
city, and shape memory behavior. The

nonthermoelastic applications are reviewed in
detail elsewhere (Ref 76–78). Rigorous applica-
tion to thermoelastic systems is a current
opportunity.
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Modeling of Nucleation Processes
Emmanuel Clouet, CEA, DEN, Service de Recherches de Métallurgie Physique, France

NUCLEATION is the onset of a first-order
phase transition by which a metastable phase
transforms into a more stable one. Such a phase
transition occurs when a system initially in
equilibrium is destabilized by the change of an
external parameter such as temperature or pres-
sure. If the perturbation is small enough, the
system does not become unstable but rather
stays metastable. In diffusive transformations,
the system then evolves through nucleation,
the growth and coarsening of a second phase.
Such a phase transformation is found in many
situations in materials science, such as conden-
sation of liquid droplets from a supersaturated
vapor, solidification, precipitation from a super-
saturated solid solution, and so on. The initial
stage of all these different processes can be well
described within the same framework, currently
known as the classical nucleation theory.
Since its initial formulation in 1927 by Vol-

mer, Weber, and Farkas (Ref 1, 2) and its modifi-
cation in 1935 by Becker and Döring (Ref 3),
the classical nucleation theory has been a suit-
able tool to model the nucleation stage in phase
transformations. The success of this theory relies
on its simplicity and on the few parameters
required to predict the nucleation rate, that is,
the number of clusters of the new phase appear-
ing per unit of time and volume. It allows ratio-
nalizing experimental measurements, predicting
the consequences of a change of the control
parameters such as temperature or supersatura-
tion, and describing the nucleation stage in
mesoscopic modeling of phase transformations.
This article first describes the results

obtained by Volmer, Weber, Farkas, Becker,
and Döring (Ref 1–3), which constitute the
classical nucleation theory. These results are
the predictions of the precipitate size distribu-
tion, steady-state nucleation rate, and incuba-
tion time. This theory describes the nucleating
system as a homogeneous phase where hetero-
phase fluctuations occur. Some of these fluctua-
tions reach a large enough size that they can
continue to grow and lead to the formation of
precipitates. The nucleating system is thus envi-
sioned mainly from a thermodynamic view-
point. The key controlling parameters are the
nucleation driving force and the interface free
energy. A kinetic approach, cluster dynamics,

can also be used to describe nucleation. This
constitutes the second part of this article. Here,
a master equation describes the time evolution
of the system, which is modeled as a cluster
gas. The key parameters are the cluster conden-
sation and evaporation rates. Both approaches
are different in their description of the nucleat-
ing system and their needed input parameters.
They are nevertheless closely related. Predic-
tions of the classical nucleation theory have
actually been derived from the same master
equation used by cluster dynamics (Ref 3),
and extensions of classical nucleation theory
always start from this master equation. In this
article, the links as well as the difference
between both descriptions are emphasized.
Since its initial formulation, the classical nucle-
ation theory has been enriched, mainly by Binder
and Stauffer (Ref 4–6), to take into account the
fact that clusters other than monomers can
migrate and react. It has also been extended to
multicomponent systems (Ref 7–12). These
generalizations of the initial formalism are
presented at the end of the second part.

Thermodynamic
Approach

Conditions for Nucleation

Nucleation occurs when a homogeneous
phase initially in stable thermal equilibrium is
put in a state where it becomes metastable by
the variation of a controlling parameter. In the
following case, the controlling parameter is
the temperature, and the initial system is
quenched through a first-order phase transition
in a two-phase region. The system then tends
to evolve toward a more stable state and to
reach its equilibrium. Because the parent phase
is not unstable, this transformation cannot pro-
ceed through the continuous development of
growing infinitesimal perturbations delocalized
in the whole phase, that is, by spinodal decom-
position (Ref 13, 14). Such perturbations in a
metastable state increase the free energy. As a
consequence, they can appear because of

thermal fluctuations, but they naturally decay.
To reach its equilibrium, the system must over-
come an energy barrier to directly form clusters
of the new equilibrium phase, a process known
as nucleation.
This difference between a metastable and an

unstable state, as well as between nucleation
and spinodal decomposition, is better under-
stood through the following example. Consider
a system corresponding to a binary mixture of
two elements, A and B, with a fixed atomic
fraction x of B elements. Such a system can
be a solid or a liquid solution, for instance.
Assume that the free energy per atom, G(x),
of this system is known for every composition
x and is given by the function plotted in
Fig. 1. A two-phase region given by the com-
mon tangent construction exists at the consid-
ered temperature; the equilibrium state of
binary mixtures with an intermediate composi-
tion x0 between xe and ye corresponds to a mix-
ture of two phases having the compositions xe

and ye. A homogeneous system with a composi-
tion x0 will then separate into these two equilib-
rium phases. The variation of the free energy
can be examined if this transformation happens
through the development of infinitesimal fluc-
tuations. In that purpose, consider a small per-
turbation corresponding to a separation of the
initially homogeneous system into two phases
having the compositions x0 + dx1 and x0 + dx2.
For the perturbation to be small, assume
dx1j j � 1 and dx2j j � 1. If f1 is the fraction
of phase 1, matter conservation imposes the
following relation between both compositions:

f1dx1 þ 1� f1ð Þdx2 ¼ 0 (Eq 1)

The free energy variation associated with this
unmixing is given by:

�G ¼ f1G x0 þ dx1
� 	þ 1� f1ð ÞG x0 þ dx2

� 	
�G x0

� 	
¼ 1/2 f1dx

2
1 þ 1� f1ð Þdx22


 �
G00 x0ð Þ þ o dx21

� 	
(Eq 2)

The first derivative G0(x0) of the free energy
does not appear in Eq 2 because of the relation
in Eq 1. The sign of the free-energy variation is
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thus governed by the second derivative G00(x0)
of the free energy. If this second derivative is
negative, the initial infinitesimal perturbation
decreases the free energy (Fig. 2a). It can there-
fore develop until the system reaches its two-
phase equilibrium state. This is the regime of
spinodal decomposition. In Fig. 1, the free-
energy second derivative changes its signs in
xs and ys; all homogeneous systems with a com-
position between these limits are unstable and
evolve spontaneously to equilibrium. On the
other hand, if the composition x0 is higher than
the equilibrium composition xe but smaller than
the spinodal limit xs, the homogeneous binary

mixture is metastable. Because the second
derivative of the free energy is positive, any
infinitesimal perturbation increases the free
energy (Fig. 2b) and will therefore decay. To
reach its equilibrium state, the system must
overcome an energy barrier, and phase separa-
tion occurs by nucleation of the new equilib-
rium phase with the composition ye.

The Capillary Approximation

In the nucleation regime, the system evolves
through the formation of well-defined and loca-
lized fluctuations corresponding to clusters of

the new equilibrium phase. The formation free
energies of these clusters are well described by
the capillary approximation. This assumes that
two contributions enter this free energy (Fig. 3):

� Volume contribution: By forming a cluster
of the new phase, the system decreases its
free energy. The gain is directly proportional
to the volume of the cluster or, equivalently,
to the number, n, of atoms forming the clus-
ter. This is the nucleation driving force.

� Surface contribution: One needs to create an
interface between the parent phase and the
cluster of the new phase. This interface has
a cost that is proportional to the surface area
of the cluster or, equivalently, to n(d�1)/d,
where d is the dimension of the system.

The following is restricted to the three-
dimensional case. The formation free energy of
a cluster containing n atoms is then given by:

�Gn ¼ n�Gnuc þ n2=3As (Eq 3)

where DGnuc is the nucleation free energy, s is
the interface free energy, and A is a geometric
factor. If the interface free energy is isotropic,
the equilibrium shape of the cluster is a sphere.
The corresponding geometric factor is then A =
(36pO1

2)1/3, where O1 is the volume of a mono-
mer. For anisotropic interface free energy, one
can use the Wulff construction (Ref 15, 16) to
determine the equilibrium shape, that is, the
shape with minimum free energy for a given
volume, and deduce an average interface free
energy corresponding to a hypothetical spheri-
cal cluster having the same volume and the
same interface energy as the real one, which
may be facetted. An example is given in
Ref 17 for precipitates with {100}, {110}, and
{111} interfaces.
The nucleation free energy is obtained by

considering the difference of chemical poten-
tials in the parent and in the equilibrium phases
for all atoms composing the cluster:

Fig. 1 Sketch of the free energy of a binary mixture quenched in a two-phase region. The bold line is the free energy
per atom G(x) of the homogeneous system. The compositions xe and ye of the equilibrium phases are given by

the common tangent construction. The spinodal limits xs and ys define the unstable region. DG nuc (x0) is the nucleation
free energy of the metastable homogeneous system of composition x0.

Fig. 2 Variation DG of the free energy corresponding to the spontaneous unmixing of a homogeneous system of composition x0 in two phases of respective compositions x0 + dx1
and x0 + dx2. (a) Spinodal regime (G 00(x0) < 0). (b) Nucleation regime (G 00(x0) > 0)
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�Gnuc ¼
X

i
yei ðmei � m0i Þ (Eq 4)

where yei is the atomic fraction of the type i
atom in the nucleating equilibrium phase, and
mei and m0i are the corresponding chemical
potentials in the nucleating equilibrium phase

and the parent phase, respectively. When the
parent phase is metastable, chemical potentials
in this phase are higher than the ones at equilib-
rium. The nucleation free energy given by Eq 4
is therefore negative. Classic expressions of the
nucleation free energy are given at the end of

this section in some simple cases. For negative
nucleation driving force, because of the compe-
tition between the volume and the interface
contributions, the cluster formation free energy
(Eq 3) shows a maximum for a given critical
size, n*, as illustrated in Fig. 3. n* corresponds
to the size at which the first derivative of DGn is
equal to zero, thus leading to:

n
 ¼ �2/3 As
�Gnuc

� 	3
(Eq 5)

and the corresponding formation free energy:

�G
 ¼ �Gn
 ¼ 4/27 Asð Þ3
�Gnucð Þ2 (Eq 6)

Below this critical size, the energy of growing
clusters increases because of the interface pre-
dominance at small sizes. Clusters in this size
range are therefore unstable; if a cluster
is formed, it will tend to redissolve. Nevertheless,
unstable clusters can be found in the parent phase
because of thermal fluctuations. The size distribu-
tion of these clusters is given by:

Ceq
n ¼ C0 exp ��Gn

kT

� �
(Eq 7)

whereC0 is the atomic fraction of sites accessible
to the clusters. For precipitation in the solid state,
for instance, all lattice sites can receive a cluster,
and therefore C0 = 1. The validity of the size dis-
tribution (Eq 7) can be demonstrated for an
undersaturated system (DGnuc � 0) using a lat-
tice gas model (compare with “Cluster Gas Ther-
modynamics” in the “Kinetic Approach” section
of this article). For a supersaturated system, one
assumes that the system reaches a steady state
where clusters smaller than the critical size still
obey the distribution (Eq 7).
Comparisons with atomic simulations have

shown that Eq 7 correctly describes the size dis-
tribution of subcritical clusters. An example
of such a comparison is given in Fig. 4 for
aluminum-zirconium alloys, leading to the
coherent precipitation of L12 Al3Zr compounds
(Ref 17); size distributions are given for under-
saturated, saturated, and supersaturated solid
solutions. A similar comparison leading to the
same conclusion can be found in Ref 18 for
an unmixing alloy on a body-centered cubic lat-
tice, or in Ref 19 and 20 for the magnetization
reversal of an Ising model in two and three
dimensions, respectively.
The kinetic approach developed further in

this article shows that the steady-state distribu-
tion in a nucleating system slightly deviates
from the equilibrium distribution (Eq 7) around
the critical size. An exact expression of the
steady-state distribution has been obtained by
Kashiev (Ref 21, 22). In the critical size inter-
val, Dn, which is precisely defined as follows,
it can be approximated by:

Cst
n ¼ 1/2� Z n� n
ð Þ½ �Ceq

n (Eq 8)

The Zeldovich factor, Z, appearing in this
equation is a function of the second derivative

Fig. 3 Variation of the cluster formation free energy DGn with the number, n, of atoms they contain as described by
Eq 3. n* is the critical size and DG* the corresponding free energy. The size interval Dn characterizes the

energy profile around the critical size and is directly linked to the Zeldovich factor (Eq 10).

Fig. 4 Dependence on the nominal concentration x0Zr of the cluster size distribution of an aluminum solid solution at
500 �C. At this temperature, the solubility limit is xeZr ¼ 0:0548 %. Symbols correspond to atomic simulations

(kinetic Monte Carlo) (Ref 18) and lines to predictions of the classical nucleation theory. Full lines correspond to the
equilibrium cluster size distribution (Eq 7) for n � n* and dotted lines to the steady-state distributions (Eqs 8 and 85).
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of the cluster formation free energy at the
critical size:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2pkT
@2�Gn

@n2

����
n¼n


s
¼ 3 �Gnucð Þ2

4
ffiffiffiffiffiffiffiffiffi
pkT
p

Asð Þ3=2
(Eq 9)

The physical meaning of the Zeldovich factor
can be seen in Fig. 3, which sketches the varia-
tion of the cluster formation free energy with
their size. If the formation free energy was har-
monic, the size interval where the difference
between the cluster free energy and the nucle-
ation barrier, DG*, is smaller than the thermal
energy, kT, would be given by:

�n ¼ 2ffiffiffi
p
p 1

Z
(Eq 10)

The Zeldovich factor therefore characterizes the
flatness of the energy profile around the critical
size. Equation 8 shows that steady-state cluster
concentrations in the critical region are reduced
compared to the equilibrium distribution. For
the critical size, a factor 1/2 appears in front of
the equilibrium concentration.

Steady-State Nucleation Rate

When the nucleation barrier, DG*, is high
enough compared to the thermal energy, kT, the
metastable state of the system contains thermal
fluctuations well described by the distribution
(Eq 7). Sometimes, one of these fluctuations will
reach and overcome the critical size. It can then
continue to grow and become more and more sta-
ble. Classical nucleation theory assumes that the
system reaches a steady state, and it then shows
that stable nuclei appear at a rate given by (Ref 3):

J st ¼ b
ZC0 exp ��G


kT

� �
(Eq 11)

where b* is the rate at which a critical cluster
grows, and Z is the Zeldovich factor (Eq 9).
This factor has been introduced by Becker and
Döring (Ref 3) to describe cluster fluctuations
around the critical size and, in particular, the
probability for a stable nucleus to redissolve.
ZC0 exp(�DG*/kT) is therefore the number of
critical clusters that reach a size large enough
that they can continuously grow. The initial
expression of the nucleation rate derived by
Volmer and Weber (Ref 1) and by Farkas
(Ref 2) did not consider this Zeldovich factor
and led to an overestimation of the nucleation
rate. A small Zeldovich factor corresponds to
a flat energy profile around the critical size.
Critical clusters experience size variations that
are mainly random and not really driven by
their decrease in energy. Some of them will
redissolve and not fall in the stable region. This
explains why the nucleation rate is reduced by
the Zeldovich factor. A more rigorous deriva-
tion of the nucleation rate where the Zeldovich
factor naturally appears is given in the section

“The Link with Classical Nucleation Theory”
in this article.
An expression for the growing rate b* of the

critical cluster is needed. If the growth-limiting
process is the reaction at the interface to attach
the atoms on the critical cluster (ballistic
regime), b* is then proportional to the cluster
area. Assuming that this reaction is controlled
by one type of atom, the following expression
is obtained (Ref 23):

b
 ¼ 4pr

2 li�i

�

x0i
yei

(Eq 12)

where r* is the radius of the critical cluster, li
is the distance corresponding to the atom last
jump to become attached to the critical cluster,
Gi is the corresponding reaction frequency, and
O is the volume corresponding to one atomic
site. x0

i and yei are the respective atomic fraction
of the jumping atoms in the metastable parent
phase and the stable nucleating phase.
For solid - solid phase transformations, the

critical cluster growth is usually controlled by the
long-range diffusion of solute atoms. The critical
condensation rate is then obtained by solving the
classical diffusion problem associated with a
growing spherical particle. If diffusion of only
one type of atom limits the growth, and all other
atomic species diffuse sufficiently fast enough so
that the cluster composition instantaneously
adjusts itself, one obtains (Ref 23):

b
 ¼ 4pr

Di

�

x0i
yei

(Eq 13)

where Di is the diffusion coefficient of type i
atoms. In a multicomponent alloy, when

diffusion coefficients of different atomic spe-
cies have close values and when the composi-
tion of the critical cluster can vary, one must
use the linked flux analysis presented in the sec-
tion “Cluster Dynamics” in this article. In all
cases, the growth rate is proportional to the
cluster radius in this diffusive regime.
Both events, that is, the long-range diffusion

and the reaction at the interface, can be simulta-
neously taken into account. The corresponding
expression of the condensation rate has been
derived by Waite (Ref 24).

Transient Nucleation

A transient regime exists before the nucle-
ation rate reaches its stationary value (Eq 11).
One conventionally defines an incubation time,
or a time lag, to characterize this transient
regime. This is defined as the intercept with
the time axis of the tangent to the curve repre-
senting the variations of the nuclei density
(Fig. 5). Exact expressions of the incubation
time have been obtained as a series of the initial
and steady-state cluster size distributions (Ref
26, 27). Different approximations have then
been made to evaluate this series and obtain
closed forms of the incubation time. They all
lead to an incubation time:

tinc n
ð Þ ¼ y0
1

pZ2b

¼ y0

16kT Asð Þ3
9 �Gnucð Þ4b
 (Eq 14)

where the factor y0 depends on the chosen
approximation and is close to 1 (Ref 28). Some
authors obtained a factor y0 that depends
slightly on the temperature and the shape of the

Fig. 5 Precipitate density as a function of aging time for an aluminum solid solution containing 0.18 at.% Sc aged at
300 �C. The time evolution obtained from cluster dynamics simulations (Ref 25) allows the definition of a

steady-state nucleation rate, J st, and an incubation time, tinc.
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cluster formation free energy around the critical
size (Ref 26, 29). One can stress, however, that
a precise value of this factor is seldom, if ever,
needed. As is shown later, the incubation time
depends on too many parameters to be known
precisely experimentally. Equation 14 allows
describing its main variation when the tempera-
ture or the nucleation driving force are changed;
this is usually enough to model incubation and
nucleation.
This expression (Eq 14) of the incubation

time can be obtained from simple physical con-
siderations (Ref 23, 30). The steady state will
be reached once the clusters have grown suffi-
ciently far away from the critical size. Super-
critical clusters have a negligible probability
to decay when their size becomes greater than
n
 þ 1/2�n. Dn characterizes the width of the
critical region (Fig. 3) and is related to the
Zeldovich factor via Eq 10. Because the energy
profile is flat in this neighborhood, clusters
make a random walk in the size space, with a
constant jump frequency b*. Accordingly, the
corresponding time needed to diffuse from n*
to n
 þ 1/2�n is:

tinc n
ð Þ � �n2

4b

(Eq 15)

This leads to the expression (Eq 14) with a fac-
tor y0 = 1.
Different approximations of the nucleation

rate in this transient regime can also be found in
the literature. Kelton et al. (Ref 28) have com-
pared these approximations with exact results
obtained, thanks to a numerical integration of
the kinetic equations describing nucleation. They
concluded that the best-suited approximation to
describe the transient nucleation rate is the one
obtained by Kashchiev (Ref 21, 22):

J tð Þ ¼ J st 1þ 2C
X1
m¼1

�1ð Þmexp �m2t

t

� �" #

(Eq 16)

where C = 1 for a system initially prepared in a
state far from its nucleating metastable state.
The time constant is given by:

t ¼ 4

p3
1

Z2b

(Eq 17)

When t > t, one can retain only the first term in
the sum appearing in Eq 16. Usually, it is even
enough to assume that the nucleation rate behaves
like the Heaviside step function; that is, that the
nucleation rate reaches its stationary value after
an incubation time where no nucleation occurs.
The incubation time corresponding to Eq 16 is
p2t/6. Therefore, in the Kashchiev treatment, the
factor in Eq 14 is y0 ¼ 2/3 .
It is worth saying that the incubation time

and the associated transient regime depend on
the conditions in which the system has been
prepared. Equations 14 and 16 implicitly assume
that the quench was done from infinite temper-
ature; no cluster around the critical one existed

at the initial time. This may not be true. For
instance, the system could have been prepared
in an equilibrium state corresponding to a
slightly higher temperature where it was stable
and then quenched in a metastable state. A clus-
ter distribution corresponding to this higher
temperature already exists before the beginning
of the phase transformation. If the temperature
difference of the quench is small, these preex-
isting clusters will reduce the incubation period.
The dependence of the incubation time on the
initial conditions has been observed, for
instance, in atomic simulations for an unmixing
binary alloy (Ref 18). Starting from a random
solid solution corresponding to an infinite
temperature preparation, an incubation time is
observed before nucleation reaches its steady
state. If the alloy is annealed above its solubility
limit before a quench, the incubation stage dis-
appears if the temperature difference of the
quench is not too high. Kashchiev considered
the effect of this initial cluster distribution on
nucleation in the case of a change in pressure
(Ref 22, 31). His results can be easily
generalized (Ref 28). To do so, the supersatura-
tion variation is introduced:

�s ¼ �Gnuc t ¼ 0�ð Þ
kT t ¼ 0�ð Þ �

�Gnuc t ¼ 0þð Þ
kT t ¼ 0þð Þ (Eq 18)

where t = 0� means that thermodynamic quan-
tities are calculated for the initial state in which
the system has been prepared, and t = 0+ for the
state where nucleation occurs. In his derivation,
Kashchiev assumed that the interface free
energy of the clusters is the same in both stable
and metastable states. The constant entering
in the expression (Eq 16) of the transient nucle-
ation rate is then:

C ¼ 1��s

Z
exp �n
�sð Þ (Eq 19)

and the corresponding incubation time is multi-
plied by this constant C. The supersaturation
variation, Ds, is positive; otherwise, nucleation
would have happened in the initial state
in which the system has been prepared. The
existence of an initial cluster size distribution
therefore always reduces the incubation time.
Nevertheless, C rapidly tends to 1 when the
thermodynamic states t = 0� and t = 0+ become
too different.
By definition, the nucleation rate does not

depend on the cluster size in the stationary
regime. This property is used to advantage in
Eq 11 to calculate the steady-state nucleation
rate, Jst, at the critical size. However, the time
needed for the stationary regime to develop will,
of course, vary with the cluster size. This means
that the incubation time depends on the cluster
size at which it is measured. The previously
defined incubation time corresponds to the criti-
cal size. However, the smallest cluster size that
one can detect experimentally may be signifi-
cantly larger than the critical size. Therefore, it
is necessary to describe the variation with the

cluster size of the incubation time. This problem
has been solved by Wu (Ref 26) and Shneidman
and Weinberg (Ref 29), who showed that the
incubation time measured at size n is:

tinc nð Þ ¼ tinc n
ð Þ þ 1

2pZ2b

y1 þ ln

ffiffiffi
p
p

Zðn� n
Þ
 �� �
(Eq 20)

for n > n* + Dn, that is, a cluster size outside
the critical region. The constant y1 is 1 in the
expression obtained by Wu and y1 = g/4 + ln
(2)/2 for Shneidman and Weinberg, where g �
0.5772 is Euler’s constant.
All the aforementioned expressions are

obtained in the parabolic approximation, that is,
assuming that the cluster formation free energy
is well described by its harmonic expansion
around the critical size. According to Shneidman
and Weinberg (Ref 29), this approximation is
highly accurate when calculating the steady-state
nucleation rate, but its validity is limited for the
incubation time. When considering the exact
shape of the cluster formation free energy
(Eq 3), the expression of the incubation time then
depends on the model used for the absorption
rate. In all cases, the incubation time at the
critical size can be written:

tinc n
ð Þ ¼ 1

2pZ2b

	

2
þ ln

ffiffiffi
p
p

Zn

� 	� y3

h i
(Eq 21)

where the constant y3 differs from 0 when the
parabolic approximation is not used. In the bal-
listic regime, when the condensation rate is pro-
portional to the cluster surface, such as in
Eq 12, the authors obtained y3 = 1 � ln(3).
The incubation time measured at size n is then:

tinc nð Þ ¼ 1

2pZ2b

n

n

� �1=3

þ ln
n

n

� �1=3

�1
� �

þ 	 � 2þ ln
6�G


kT

� ��
; 8n > n
 þ 1/2�n

(Eq 22)

In the diffusive regime, when the condensation
rate is proportional to the cluster radius, such
as in Eq 13, y3 = 3/2 � ln(3) and:

tinc nð Þ ¼ 1

2pZ2b

1/2 n

n

� 	1=3þ2h i2

þ ln n
n

� 	1=3�1h i

þ 	�7/2þ ln 6�G

kT


 �o
; 8n > n
 þ 1/2�n:

(Eq 23)

It should be stressed that all these expres-
sions for incubation time have been obtained
in the continuous limit valid for large clusters.
The expressions should be used only when the
nucleation barrier DG* is high enough for the
critical size not being too small.

Heterogeneous Nucleation

Until now, only homogeneous nucleation has
been considered; it was assumed that nuclei can
form anywhere in the system. However, it may

Modeling of Nucleation Processes / 207

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



require less energy for the nuclei to form hetero-
geneously on preferred nucleation sites. These
sites can be at the interface with existing impuri-
ties or some lattice defects such as grain bound-
aries or dislocations. The classical theory also
allows modeling heterogeneous nucleation after
some slight modifications. The first modification
is that the parameter C0 appearing in the cluster
size distribution (Eq 7) is now the number of
sites where heterogeneous precipitation can take
place. One also needs to take into account the
decrease of the nuclei free energy when they
are located at a preferred nucleation site. Such
a decrease usually arises from a gain in the inter-
face free energy; it is more favorable for the
nuclei to form on an already existing interface,
because the cost to create the interface between
the old and the new phases is reduced.
First consider the case where the cluster wets

the substrate and has a cap shape (Fig. 6a).
Electrodeposition is one example where this
happens (Ref 32). Three different interface free
energies must be considered:

� s between the parent and the nucleating
phase

� ss between the parent phase and the
substrate

� si between the nucleating phase and the
substrate

The wetting angle is then defined by the Young
equilibrium equation (Ref 16):

cos yw ¼ ss � si

s
(Eq 24)

The wetting leads to a cap shape only if the
interface free energies obey the inequalities
�s � ss � si � s. If the difference ss � si

is smaller than �s, then yw = p, and the wet-
ting is not possible because an unwet cluster
costs less energy. On the other hand, if the
difference is greater than s, the wetting is com-
plete, and one can no longer define a cap shape
because the nucleating phase will uniformly
cover the interface.
The cluster free energy takes the same expres-

sion as the one given by the capillary approxi-
mation in the homogeneous case (Eq 3). To
calculate the geometric factor A appearing in
this expression, the radius, R, of the cap must
be defined. The cluster volume is then given
by (Ref 22):

n�1 ¼ 1/3pR3 2þ cos ywð Þ 1� cos ywð Þ2

¼ pR3 2sþ ss � sið Þ s� ss þ sið Þ2
3s3

(Eq 25)

and the free energy associated with the whole
cluster interface by:

n2=3As ¼ pR2 s2 1� cos ywð Þ þ si � ssð Þ sin2 yw

 �

¼ pR2 s� ss þ sið Þ

� 2s2 þ si � ssð Þ sþ ss � sið Þ
s2

(Eq 26)

Eliminating the variable R between Eq 25 and
26, one obtains the expression of the geometric
factor appearing in the capillary approximation:

A ¼ 9p�2
1

� 	1=3 2s2 � ss � sið Þ sþ ss � sið Þ
s 2sþ ss � sið Þ2=3 s� ss þ sið Þ1=3

(Eq 27)

When ss � si = s, the unwetting is com-
plete; one recovers the geometric factor
A ¼ 36p�2

1

� 	1=3
corresponding to a spherical

cluster. With this expression of the geometric
factor and the correct value of the parameter
C0, all expressions obtained for homogeneous
nucleation can also be used for heterogeneous
nucleation.
Nuclei can also have a lens shape (Fig. 6b).

In such a case, the two wetting angles are
defined by (Ref 22):

cos yw ¼ s2
s þ s2 � s2

i

� 	
=2sss

cos ys ¼ s2
s þ s2 � s2

i

� 	
=2sssi

(Eq 28)

The geometric factor corresponding to this
lens shape is obtained using the same method
as previously; one expresses the volume and
the interface energy of the two caps composing
the cluster and then eliminates the cap radii
between these two equations.

Examples

It is worth having a closer look at some
examples—solidification and precipitation in
the solid state—and giving an approximated
expression of the nucleation free energy in
these simple cases.

Example 1: Solidification. A single compo-
nent liquid that was initially at equilibrium is
quenched at a temperature, T, below its melting
temperature, Tm. Because the liquid and the
solid have the same composition, the nucleation
free energy is simply the free-energy difference
between the liquid and the solid states at the
temperature T. If the undercooling is small,
one can ignore the difference in the specific
heats of the liquid and the solid. The nucleation
free energy is then proportional to the latent
heat of fusion per atom, L (Ref 16):

�Gnuc ¼ L
T � Tm

Tm

(Eq 29)

When the undercooling is large, Eq 29may be not
precise enough. One can then consider the next
term in the Taylor expansion (Ref 22), leading to:

�Gnuc ¼ L
T � Tm

Tm

��Cp
T � Tmð Þ2
2Tm

(Eq 30)

where �Cp ¼ Cliq
p Tmð Þ � Csol

p Tmð Þ is the dif-
ference in the heat capacities of the liquid and
solid phases.
Equation 29 shows how the steady-state

nucleation rate varies with the quenching tem-
perature. Assuming that the interface free
energy is constant and that the condensation
rate, b*, simply obeys an Arrhenius law, one
obtains the nucleation rate given by:

J st ¼ l
T � Tmð Þ2ffiffiffiffi

T
p exp � A

T
þ B

T T � Tmð Þ2
 !" #

(Eq 31)

where l, A, and B are positive constants. The
nucleation rate corresponding to this equation is
sketched in Fig. 7. The main variations are given
by the exponential. As a consequence, there is a
temperature window in which the nucleation rate
is substantial. For high temperatures close to the
melting temperature, Tm, the nucleation free
energy is small and leads to a negligible nucle-
ation rate. At low temperatures, the nucleation
rate is also negligible because of the Arrhenian
behavior of the kinetic factor and the critical
cluster concentration (Eq 7). The nucleation rate
can be measured only at intermediate

q q

q

s

s

s

s

s

s

Fig. 6 Possible shapes of a nucleus in heterogeneous nucleation. (a) Cap shape. (b) Lens shape

Fig. 7 Variation with quenching temperature of
steady-state nucleation rate in the case of

solidification (Eq 31). Tm, melting temperature
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temperatures. Such conclusions on the nucle-
ation rate are not specific to solidification but
are encountered in any nucleation experiment.
Example 2: Precipitation in the Solid

State. In this example, it is necessary to take
into account elastic effects. The free energy is
thus divided between a chemical and an elastic
contribution.
Chemical Contribution. For the binary mix-

ture, whose free energy per atom G(x) is
sketched in Fig. 1, the homogeneous metastable
phase of composition x0 has a nucleation free
energy given by:

�Gnuc x0
� 	 ¼ 1� yeð Þ mA yeð Þ � mA x0

� 	
 �
þ ye mB yeð Þ � mB x0

� 	
 �
(Eq 32)

A and B atom chemical potentials are respec-
tively defined as the first derivatives of the total
free energy with respect to the number NA and
NB of A and B atoms. This leads to the follow-
ing expressions:

mA xð Þ ¼ G xð Þ � xG0 xð Þ
mB xð Þ ¼ G xð Þ þ ð1� xÞG0 xð Þ (Eq 33)

which check the property (NA + NB)G(x) =
NAmA + NBmB.
Incorporating these expressions in Eq 32:

�Gnuc x0
� 	 ¼ G yeð Þ �G x0

� 	� ye � x0
� 	

G0 x0
� 	
(Eq 34)

This shows that the nucleation free energy
corresponds to the difference, calculated in the

point of abscissa ye, between the free energy
and the tangent in x0, as illustrated in Fig. 1.
It should be stressed, however, that this con-

struction does not correspond to the maximal
nucleation driving force. If the stoichiometry
of the precipitates is allowed to vary, the maxi-
mal nucleation driving force is obtained for a
cluster composition y0 corresponding to the
point where the tangent to the free energy is
parallel to the tangent in point of abscissa x0

(Fig. 8). Such a deviation of the nucleating
phase from its equilibrium may be important
to consider. An example is the precipitation of
carbonitride precipitates in steels (Ref 33).
The following considers that the free energy
well defining the nucleating phase is deep
enough that the compositions ye and y0 can be
assumed identical. This question of the precipi-
tate composition is revisited in “Nonstoichio-
metric Clusters” of the “Kinetic Approach”
section of this article, where a general frame-
work to treat variations of the precipitate com-
position is presented.
To go further, one must consider a precise

function for the free energy. The regular solid
solution is a convenient energetic model that
is representative of a binary alloy. In this
model, the free energy per atom is:

G xð Þ ¼ kT x ln xð Þ þ 1� xð Þ ln 1� xð Þ½ � þ x 1� xð Þo
(Eq 35)

where o is the interaction parameter. When this
parameter is positive, the alloy tends to unmix
at low temperature, and the corresponding phase
diagram possesses a two-phase region. For

temperatures lower than o/2k, the free energy
indeed has two minima, and its variation with
the composition is similar to the one sketched
in Fig. 1. The nucleation free energy of a solid
solution quenched in a metastable state, as given
by this thermodynamic model, is:

�Gnuc x0
� 	 ¼ 1� yeð ÞkT ln

1� xe

1� x0

� �
þ yekT ln

xe

x0

� �
þ o x0 � xe

� 	
(Eq 36)

A useful approximation of this expression is the
dilute limit corresponding to a small solubility
limit, xe � 1, and a small nominal concentra-
tion, x0 � 1. In that case, one can keep only
the major contribution in the nucleation free
energy, leading to:

�Gnuc x0
� 	 ¼ yekT ln

xe

x0

� �
(Eq 37)

This generally gives a good approximation of the
nucleation free energy at low temperature for
not-too-high supersaturations. It then allows pre-
dicting the main consequences of a variation of
the solid-solution nominal composition on the
nucleation. This approximation of the nucleation
free energy in the dilute limit can be easily
generalized to a multicomponent alloy.
Other thermodynamic approaches can be

used to obtain expressions of the nucleation
free energy. It is possible, for instance, to
describe interactions between atoms with an
Ising model. Chemical potentials entering in
Eq 4 can then be calculated with the help of
current thermodynamic approximations, such
as mean-field approximations and low- or
high-temperature expansions (Ref 34). Using
the simple Bragg-Williams mean-field approxi-
mation, one indeed recovers the expression
(Eq 36) corresponding to the regular solid-solu-
tion model. An example of this approach, start-
ing from an atomic model, is given in Ref 17
and 35 for a face-centered cubic solid solution
leading to the nucleation of a stoichiometric
compound with the L12 structure, such as
aluminum-zirconium or aluminum-scandium
alloys. On the other hand, it is possible to use
an experimental thermodynamic database, such
as the ones based on the Calphad approach (Ref
36, 37), to calculate the nucleation free energy.
Elastic Contribution. Usually, the precipitat-

ing phase has a different structure or molar vol-
ume from the parent phase. If the interface
between both phases remains coherent, an elastic
contribution must be taken into account in the
formation free energy of the clusters (Eq 3). Sim-
ilar to the “chemical” nucleation free energy, this
elastic contribution varies linearly with the vol-
ume, V, of the cluster. Its sign is always positive
because there is an extra energy cost to maintain
coherency at the interface. One can illustrate this
elastic contribution by considering the case of a
precipitating phase having a slightly different
equilibrium volume from the parent phase, as

Fig. 8 Parallel tangent construction leading to the maximal nucleation driving force for precipitates having the
composition y0
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well as different elastic constants. For the sake of
simplicity, the assumption is that both phases
have an isotropic elastic behavior characterized
by their Lamé coefficients, l and m for the parent
phase, and l0 and m0 for the precipitating phase.
If a and a(1 + d) are the respective lattice para-
meters of the two phases, the elastic energy nec-
essary to embed a spherical cluster of volume V
in an infinite elastic medium corresponding to
the parent phase is:

�Gel ¼ V
6mð3l0 þ 2m0Þ
3l0 þ 2m0 þ 4m

�2 (Eq 38)

The model of the elastic inclusion and inhomo-
geneity developed by Eshelby (Ref 38–40) allows
calculating the elastic energy inmore complicated
situations, when the inhomogeneity elastic behav-
ior is anisotropic or when the inclusion stress-free
strain is different from a simple pure dilatation.
One can also deduce from this model the cluster
shape minimizing its elastic self-energy. Never-
theless, thismodel is tractableonlywhen the inclu-
sion is an ellipsoid. When the elastic contribution
becomes important compared to the interface one,
the shape of the critical cluster strongly deviates
from an ellipsoid. One can then use a diffuse inter-
face phase-field model to determine the critical
nucleus morphology and determine the associated
nucleation activation energy (Ref 41, 42). How-
ever, in all cases, the extra energy cost arising
from elasticity is positive and proportional to the
inclusion volume. It thus reduces the absolute
value of the nucleation driving force.
This inclusion model allows deriving the clus-

ter self-elastic energy. However, the interaction
of the cluster with the surrounding microstructure
is ignored. In particular, one does not consider the
elastic interaction between different clusters.
Such an interaction is long range and cannot
always be neglected. It may lead to self-organized
morphological patterns due to preferred nucle-
ation sites around already existing clusters. In
the case where the strain induced by the micro-
structure varies slowly compared to the size of
the nucleating cluster, it has been shown that the
interaction elastic energy depends linearly on the
cluster volume and is independent of its shape
(Ref 43). This interaction energy, whose sign is
not fixed, depends on the position of the cluster.
It can be considered in the cluster formation free
energy (Eq 3) to model strain-enhanced nucle-
ation. Such amodel is able to predict, for instance,
variation of the nucleation driving force near an
existing precipitate between the elastically soft
and hard directions. A natural way to develop
such a model is to use a phase-field approach
(see the Appendix to this article).

Kinetic Approach

Predictions of the classical nucleation theory,
that is, the steady-state nucleation rate and the
incubation time, are approximated solutions of

kinetic equations describing the time evolution
of the system. Instead of using results of the
classical nucleation theory, one can integrate
these kinetic equations numerically. This
kinetic approach is known as cluster dynamics.
It rests on the description of the system under-
going phase separation as a gas of clusters that
grows and decays by absorbing and emitting
other clusters. In this section, the cluster gas
thermodynamic formalism used by cluster
dynamics is described first. Kinetic equations
simulating the phase transformation are then
presented. Finally, the link with classical nucle-
ation theory is shown. It is generally assumed
that the stoichiometry of the nucleating phase
cannot vary. This is thus equivalent to consider-
ing the nucleation of clusters with a fixed com-
position that is known a priori. The end of this
section shows how this strong assumption can
be removed when one is interested in the nucle-
ation of a multicomponent phase with a varying
composition.

Cluster Gas Thermodynamics

The system is described as a gas of noninter-
acting clusters having a fixed stoichiometry
corresponding to that of the precipitating phase
at equilibrium with the parent phase. Clusters
are groups of atoms that are linked by a neighbor-
hood relation. If onewants tomodel precipitation
in an unmixing alloy, for instance, one can con-
sider that all solute atoms that are closer than a
cutoff distance belong to the same cluster. No
distinction is made between clusters belonging
to the old or to the new phase. In this modeling
approach, clusters are defined by a single param-
eter: their size or the number, n, of atoms they
contain. The term Gn is the free energy of a clus-
ter containing n atoms embedded in the solvent.
Gn is a free energy and not simply an energy
because of the configurational entropy; for a
given cluster size, there can be different config-
urations having different energies. Thus, the
associated partition function must be considered.
IfDi

n is the number of configurations having the
energyHi

n for a cluster of size n, the cluster free
energy is then defined as:

Gn ¼ �kT ln
X
i

Di
n exp �Hi

n=kT
� 	" #

(Eq 39)

It is formally possible to divide this free energy
into a volume and an interface contribution
such as in the capillary approximation, except
that the interface free energy, sn, may now
depend on the cluster size. This free energy cor-
responds to an interface between the stoichio-
metric cluster and the pure solvent. Thus, in
three dimensions:

Gn ¼ nge þ n2=3ð36p�2Þ1=3sn (Eq 40)

where ge is the free energy per atom of the bulk
equilibrium precipitating phase, that is, without
any interface. This is, by definition, the sum of

the chemical potentials, mei , for each constituent
of the cluster modulated by its atomic fraction, yei :

ge ¼
X
i

yeim
e
i (Eq 41)

The interface free energy, sn, entering in
Eq 40 is an average isotropic parameter, and
clusters, on average, are therefore assumed to
be spherical. One important difference with
the capillary approximation is that this interface
free energy now depends on the size n of the
cluster. It is possible to compute the cluster free
energy, Gn, starting from an energetic model
describing interactions between atoms. For
small clusters, one can directly enumerate the
different configurations, i, accessible to a clus-
ter of size n, and then directly build the free
energy (Eq 39) (Ref 17, 32, 44). Because the
degeneracy Di

n grows very rapidly with the size
of the cluster, this approach is limited to small
clusters. For larger clusters, one can sample
thermodynamic averages with Monte Carlo
simulations to compute the free-energy differ-
ence between a cluster of size n and one of size
n + 1 at a given temperature (Ref 44, 45). These
simulations have shown that, in three dimen-
sions, the size dependence of the interface free
energy is well described for large enough clus-
ters by a generalized capillary approximation:

sn ¼ s 1þ cn�1=3 þ dn�2=3 þ en�2=3 lnðnÞ
� �

(Eq 42)

where the temperature-dependent coefficients c,
d and e correspond to the line, the point, and the
undulation contributions to the interface free
energy (Ref 45). They take into account the
interface curvature. The asymptotic limit of
Eq 42 corresponds to the constant interface free
energy of the classic capillary approximation,
which also depends on temperature.
Some other expressions have been proposed

in the literature for the size dependence of the
interface free energy. Gibbs (Ref 46) indeed
obtained a differential equation of this size
dependence. Integrating this expression, Tolman
(Ref 47) obtained the following expression:

sn ¼ s 1þ n0

n

� �1=3� ��2
(Eq 43)

where n0 is a parameter. One can see, however,
that Eq 42 and 43 are equivalent up to the order
o(n�1/3) when n tends to infinity.

Consider an assembly composed of noninter-
acting clusters and model thermodynamics in
the cluster gas approximation of Frenkel (Ref
48). If Nn is the number of clusters containing n
atoms, the free energy of the system is given by:

G ¼ G0 þ
X1
n¼1

NnGn � kT ln Wð Þ (Eq 44)

where G0 is the free energy in the absence of
clusters, andW is the number of different config-
urations accessible to the cluster assembly.
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Assuming that each cluster, whatever its size, lies
only on one site, and neglecting around each clus-
ter all excluded sites that cannot be occupied by
any other cluster, this number is simply given by:

W ¼ N0!

N0 �
P1
n¼1

Nn

� �
!
Q1
n¼1

Nn!

(Eq 45)

where N0 is the number of sites accessible to
the cluster. Application of the Stirling formula
leads to the following estimation for the free
energy:

G ¼ G0 þ
X1
n¼1

NnGn þ kT
X1
n¼1

Nn ln Nnð Þ

þ kT N0 �
X1
n¼1

Nn

 !
ln N0 �

X1
n¼1

Nn

 !
�N0 ln N0ð Þ

(Eq 46)

The equilibrium cluster size distribution can be
deduced from this free energy. This distribution
is obtained by minimizing Eq 46 under the con-
straint that the total number of atoms included
in the clusters is fixed. Therefore, a Lagrange
multiplier, m, is introduced, and the grand
canonical free energy is defined:

G� m
X1
n¼1

nNn (Eq 47)

The minimization of this grand canonical free
energy with respect to the variables Nn leads
to the equilibrium cluster size distribution that
should check the equation:

Neq
n

N0 �
P1
n¼1

Neq
n

¼ exp �Gn � nm
kT

� �
(Eq 48)

The assumption of noninteracting clusters used
to derive this equation is only valid in the dilute
limit. It is therefore reasonable to neglect in Eq
48 the sum appearing in the rightside denomi-
nator compared to the number of accessible
sites N0. At equilibrium, the atomic fraction of
clusters containing n atoms is then:

Ceq
n ¼

Neq
n

Ns

¼ C0 exp �Gn � nm
kT

� �
(Eq 49)

where C0 = N0/Ns, and Ns is the total number of
sites. For homogeneous nucleation, all sites can
act as nucleation centers: N0 = Ns and C0 = 1.
Sometimes, Eq 49 iswritten in its equivalent form:

Ceq
n ¼ C0

Ceq
1

C0

� �n
exp �Gn � nG1

kT

� �
(Eq 50)

The quantities Gn � nm and Gn � nG1 should
nevertheless not be confused; the first one is
the cluster formation free energy in a cluster
gas characterized by the parameter m, whereas
the last one is the energy difference between
the cluster and the equivalent number of mono-
mers. The following uses Eq 49 because it

allows a direct link with the capillary approxi-
mation used by the classical nucleation theory.
It is interesting tounderstand thephysicalmean-

ing of the Lagrange multiplier m appearing in Eq
49.Atequilibrium, thegrandcanonical free energy
(Eq 47) is at a minimum. Then, for all sizes n:

m ¼ 1

n

@G

@Nn
(Eq 51)

To calculate this derivative, the total number of
atoms of type i is introduced:

Mi ¼ yei
X1
n¼1

nNn (Eq 52)

Equation 51 is equivalent to:

m ¼ 1

n

X
i

@G

@Mi

@Mi

@Nn

¼
X
i

m0i y
e
i

(Eq 53)

which uses the definition of the chemical
potential—first derivative of the total free
energy with respect to the number of atoms.
Therefore, the Lagrange multiplier is nothing
else than the chemical potentials of the differ-
ent atomic species modulated by their atomic
fraction. The fact that only one Lagrange mul-
tiplier is needed, and not one for each constit-
uent, is a consequence of the initial
assumption that the clusters have a fixed
composition corresponding to the equilibrium
one, yei . Using the expression (Eq 40) of the
cluster free energy and the definition (Eq 41)
of the volume contribution, the equilibrium
cluster size distribution given by the capillary
approximation is recovered:

Ceq
n ¼ C0 exp ��Gn

kT

� �
(Eq 54)

with:

�Gn ¼ n�Gnuc þ n2=3 36p�2
1

� 	1=3
sn (Eq 55)

The nucleation free energy has the same
expression as the one used in classical nucle-
ation theory (Eq 4), but now the interface free
energy depends on the cluster size.
It should be stressed that the cluster gas

approximation is a thermodynamic model by
itself; thermodynamic quantities such as chem-
ical potentials are results and not input para-
meters of the model (Ref 49). This has
important consequences for the kinetic approach
of nucleation developed in the next section; in
contrast with classical nucleation theory, one
does not need to calculate the nucleation
driving force to input it in the modeling.
One can use this cluster gas thermodynamic

model to calculate the composition of the parent
phase at the coexistence point between the parent
and the nucleating phase, that is, the solubility
limit. This coexistence point is defined by the

equality of the chemical potentials m0i and mei .
The nucleation free energy is thus null, and only
the interface contributes to the cluster formation
free energy (Eq 55). At the coexistence point, the
composition of the parent phase is then:

xei ¼ yei
X1
n¼1

n exp �n2=3 36p�1ð Þ2sn

kT

 !
(Eq 56)

The interface free energy fixes the solubility
limit in the parent phase. This interface free
energy is actually the key parameter of the
nucleation kinetic approach. Even if its depen-
dence on the cluster size is small, it is generally
important to take it into account, because all
thermodynamic quantities derive from it, and
it enters in exponential terms such as in Eq 56.

Cluster Dynamics

For the sake of simplicity, in the following sub-
sections homogeneous nucleation is considered.
All monomers can be assumed equivalent; one
does not need to distinguish between monomers
lying on nucleation sites and free monomers.
Master Equation. Kinetics is described

thanks to a master equation that gives the time
evolution of the cluster size distribution. In
many cases, one can assume that only monomers
migrate. Therefore, this assumption is consid-
ered first and later the case where all clusters
are mobile. When only monomers can migrate,
the probability of observing a cluster containing
n atoms obeys the differential equations:

@Cn

@t
¼ Jn�1!n � Jn!nþ1 8n � 2

@C1

@t
¼ �2J1!2 �

X
n�2

Jn!nþ1
(Eq 57)

where Jn!n+1 is the cluster flux from the class
of size n to the class n + 1. This flux can be
written:

Jn!nþ1 ¼ bnCn � anþ1Cnþ1 (Eq 58)

where bn is the probability per unit time for one
monomer to impinge on a cluster of size n, and
an is the probability for one monomer to leave a
cluster of size n.

Condensation Rate. Expression of the con-
densation rate bn can be obtained from physical
considerations. This condensation rate must be
proportional to the monomer concentration
and can generally be written:

bn ¼ bnC1 (Eq 59)

where bn is an intrinsic property of the cluster
of size n. In the ballistic regime, this factor is
proportional to the surface of the cluster and
to the jump frequency, G1, of the monomer to
impinge on the cluster. In the diffusion regime,
this factor is proportional to the cluster radius
and to the monomer diffusion coefficient, D1.
A general expression of the condensation rate,
covering the ballistic and the diffusion regime,
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has been proposed by Waite (Ref 24), who
obtained:

bn ¼ 4p
R2

n

Rn þ k
D1

�1

C1 (Eq 60)

where O1 is the monomer volume, and Rn is the
cluster capture radius. It can be assumed that
this radius is close to the one corresponding to
the more compact cluster shape, that is, a
sphere, leading to:

Rn ¼ 3n�1

4p

� �1=3

(Eq 61)

The distance, k, is given by the relation:

k ¼ D1

l1�1

(Eq 62)

where l1 is the distance corresponding to the
monomer last jump to become attached to the
cluster. If Rn � k, one recovers the expression
of the condensation rate in the ballistic regime,
and in the diffusive regime if Rn � k.
Equation 60 therefore shows that condensation
on small clusters is generally controlled by
ballistic reactions, and condensation on big
clusters by diffusion.
The expressions used by classical nucleation

theory for the condensation rate (Eq 12 and
13) are similar to the ballistic and diffusion lim-
its of Eq 62. Nevertheless, a difference appears
because the condensation rate of the classical
nucleation theory is proportional to the solute
concentration and not to the monomer concen-
tration, as in Eq 62. It thus makes use of the
total solute diffusion coefficient or jump fre-
quency and not of the monomer diffusion coef-
ficient or jump frequency. For a dilute system,
one can consider that all the solute is contained
in monomers. The condensation rates used by
both approaches are then equivalent. However,
the difference may be important for more con-
centrated systems. This point has been thor-
oughly discussed by Martin (Ref 49), who
showed the equivalence in the dilute limit.
Evaporation Rate. By contrast with the con-

densation rate, the evaporation rate, an cannot
generally be obtained directly. It has to be
deduced from bn using the equilibrium cluster
size distribution (Eq 49). The evaporation rate
is obtained assuming that it is an intrinsic prop-
erty of the cluster and does not depend on the
embedding system. Therefore, it is assumed
that the cluster has enough time to explore all
its configurations between the arrival and the
departure of a monomer. This assumption is
coherent with the fact that the clusters are only
described through their sizes. Thus, an should
not depend on the saturation of the embedding
system. It could be obtained, in particular, by
considering any undersaturated system. Such a
system is stable, and there should be no energy
dissipation. This involves all fluxes Jn!n+1

equaling zero. Using Eq 58, the following is
obtained:

anþ1 ¼ �anþ1 mð Þ ¼ �bn mð Þ
�Cn mð Þ
�Cnþ1 mð Þ (Eq 63)

where overlined quantities are evaluated in the
system at equilibrium characterized by its
effective chemical potential, m. In particular,
the cluster size distribution is the equilibrium
relation given by Eq 49. Using the expression
(Eq 59) for the condensation rate, this finally
leads to the following expression for the evapo-
ration rate:

anþ1 ¼ bnC0 exp Gnþ1 �Gn �G1ð Þ=kT½ � (Eq 64)

Because the condensation rate varies linearly
with the monomer concentration, the contribu-
tion of the effective chemical potential cancels
out in the expression (Eq 63) of an. The starting
assumption is recovered; the evaporation rate
depends only on the cluster free energy and
not on the overall state of the cluster gas char-
acterized by the effective chemical potential, m.
Using the generalized capillary approximation
(Eq 55), one can show that the evaporation rate
actually depends only on the cluster interface
free energy:

anþ1 ¼ bnC0 exp 36p�1
2

� 	1=3n
� ½ nþ 1ð Þ2=3snþ1 � n2=3sn � s1�=kT

o
(Eq 65)

The evaporation rate is then independent of the
nucleation free energy, DGnuc, which does not
appear in any parameter. The nucleation free
energy is implicit in cluster dynamics; there is
no need to know it, but, if needed, one can cal-
culate it from the cluster gas thermodynamic.
This is in contrast with classical nucleation the-
ory, where the nucleation free energy is an
input parameter. On the other hand, cluster
dynamics is very sensitive to the interface free
energy as it appears in an exponential in the
expression (Eq 65) of the evaporation rate. It
is very important to have a correct evaluation
of this interface free energy, especially of its
variations with the cluster size, at least for
small sizes.
In this approach, the evaporation rate is

derived assuming that it is an intrinsic property
of the cluster. Sometimes, one derives this
parameter assuming instead that a hypothetical
constrained equilibrium exists for the clusters
in the supersaturated system; the equilibrium
cluster size distribution (Eq 49) is taken to hold,
although the system is supersaturated and can-
not be at equilibrium. The evaporation rate is
then obtained by imposing a detailed balance
for Eq 58 with respect to this constrained equi-
librium. Comparison with atomic simulation of
the magnetization reversal of an Ising model
(Ref 20) has shown that this constraint equilib-
rium assumption is good. The same conclusion

was reached for subcritical clusters in the case
of precipitation in the solid state (Ref 50). Katz
and Wiedersich (Ref 51) pointed out that this
constrained equilibrium assumption generally
leads to the same expression of the evaporation
rate as the intrinsic property assumption. In par-
ticular, this is true when the condensation rate
varies linearly with the monomer concentration,
as is the case here (Eq 59).
When the growth and decay of clusters is

controlled by a reaction at the interface (ballis-
tic regime), it is also possible to directly com-
pute the condensation and evaporation rates
(Ref 44). An atomistic model is used to
describe the physical process at the atomic
scale, and the corresponding rates are obtained
by thermal averaging through Monte Carlo
sampling. Detailed balance is now imposed at
the atomic scale. This ensures that the detailed
balance at the cluster scale, as given by
Eq 63, is also checked. A huge computational
effort is required, but this could be optimized
by calculating the cluster interface free energies
and their condensation and evaporation rates at
the same time.
Numerical Scheme. The evolution of the

cluster size distribution is obtained by integrat-
ing the set of equations (Eq 57). A direct
approach can become cumbersome because
the number of differential equations varies line-
arly with the size of the largest cluster. The
maximum size of the cluster that can be consid-
ered is therefore limited by the number of dif-
ferential equations that can be integrated. This
problem can be circumvented by noticing that
a detailed description is important only for
small cluster sizes where quantities vary rap-
idly. For large sizes, variations are smoother,
and an approximated description can be used.
The easiest approach to do so is to consider that
the size n is now a continuous variable. One can
then develop Eq 57 and 58 to the second order
about n, and the system evolution is described
by the Fokker-Planck equation (Ref 52):

@Cn

@t
¼ � @

@n
bn � anð ÞCn½ � þ 1

2

@2

@n2
bn þ anð ÞCn½ �

(Eq 66)

This continuous equation can be solved numer-
ically by discretizing the continuous variable n.
The best way to handle large cluster sizes is to
use a varying increment greater than 1 and
increasing with the cluster size. A convenient
solution is an increment growing at a constant
rate l. The variable n is then discretized
according to:

nj ¼ j; 8j � nd

nj ¼ nd þ 1� lj�nd

1� l
; 8j � nd

(Eq 67)

where nd is the number of classes for which the
discrete equation (Eq 57) is used. Above this
size, one integrates instead the discretized ver-
sion of Eq 66, which is:
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@Cnj

@t
¼ 1

njþ1 � nj�1
bnj
� anj

� �
þ bnj

þ anj

nj � nj�1

�

� @

@n
bnj
þ anj

� ��
Cnj�1

þ � bnj
þ anj

njþ1 � nj

� 	
nj � nj�1
� 	� @

@n
bnj
� anj

� �"

� 1

2

@2

@n2
bnj
þ anj

� ��
Cnj

þ 1

njþ1 � nj�1
� bnj

� anj

� �
þ bnj

þ anj

njþ1 � nj

�

þ @

@n
bnj
þ anj

� ��
Cnjþ1

(Eq 68)

The evolution of the monomer concentration is
approximated by:

@C1

@t
¼ �2b1C1 þ a2C2 þ

Xnd

j�2
anj
� bnj

� �
Cnj

þ
X
j�nd

anj
� bnj

� �njþ1 � nj�1
2

Cnj

(Eq 69)

This numerical scheme is simple and allows
large cluster sizes to be reached with a reason-
able number of differential equations.Typically,
it is possible to simulate clusters containing
more than 4 million atoms by using 100 discrete
classes and 400 continuous classes with a grow-
ing increment rate l = 1.03. It should neverthe-
less be mentioned that this numerical scheme
does not strictly conserve the matter. By using
reasonable values for the discretization para-
meters l and nd, the losses are generally insig-
nificant, but, in any case, they must be checked
afterward to see if they are acceptable. Onemust
also verify that the concentration of the largest
size has not evolved at the end of the simulation.
Another numerical approach has been pro-

posed by Kiritani (Ref 53) to solve the set of
differential equations (Eq 57) while allowing
large cluster sizes to be reached. His grouping
method consists of replacing a group of master
equations by only one equation representing the
class. It assumes that the number of clusters of
each size in a group is the same and that the
condensation and evaporation rates for clusters
in a group do not vary. Unfortunately, it has
been shown that the result can be very bad if
the grouping is not carried out properly (Ref
54). Furthermore, as in the previous scheme, it
does not strictly conserve the matter, even with
an optimized grouping. Golubov et al. (Ref 55)
proposed a new grouping method that can con-
serve the matter. For this purpose, the first and
second moments of each group are considered,
and two equations for each class are obtained.
The first moment equation controls the time
evolution of the cluster size distribution, and
the second moment equation ensures the matter
conservation. Such a numerical scheme there-
fore requires twice as many equations as the
one proposed previously.

The Link with Classical
Nucleation Theory

The main results of classical nucleation the-
ory have actually been derived from cluster
dynamics, that is, from the master equation
(Eq 57) describing the time evolution of the
cluster population. This derivation is interest-
ing because it allows a better understanding
of the assumptions behind the classical nucle-
ation theory. Moreover, it provides insights
into how this theory can be further developed
to broaden the range where it applies. In the
following subsection, the definition of the crit-
ical size in cluster dynamics is compared with
the classical ones, and then it is shown how the
steady-state nucleation rate and the
corresponding cluster size distribution can be
derived from the master equation. The deriva-
tion of the incubation time is not given here
but can be found in Ref 26 and 27, for
instance.
Critical Size. Subcritical clusters are unsta-

ble; they have a higher probability to decay
than to grow. On the contrary, supercritical
clusters are stable and have a higher probability
to grow than to decay. The critical size n* is
then defined as the size for which the condensa-
tion rate equals the evaporation rate:

bn
 ¼ an
 (Eq 70)

This definition is actually different from the
one used by the classical nucleation theory,
where the critical size is the size at which the
cluster formation free energy is maximum.
One can show that these two definitions are
consistent and lead to the same expression in
the limit of large cluster sizes. To do so,
rewrite Eq 70 using the expressions of the con-
densation rate (Eq 59) and of the evaporation
rate (Eq 64):

bn
C1 ¼ bn
�1C0 exp
Gn
 �Gn
�1 �G1

kT

� �
(Eq 71)

Then, assume that monomers are at local equi-
librium; their concentration C1 obeys the equi-
librium cluster size distribution (Eq 49). One
can thus eliminate in Eq 71 the monomer free
energy G1:

bn
 exp
m
kT

� �
¼ bn
�1 exp

Gn
 �Gn
�1
kT

� �
(Eq 72)

Using the definition DGn = Gn � nm of the clus-
ter formation free energy, Eq 72 can be
rewritten:

bn
�1
bn


exp
�Gn
 ��Gn
�1

kT

� �
¼ 1 (Eq 73)

Using Eq 55 to express the cluster formation
free energy, one finally obtains that the critical
size verifies:

bn
�1
bn


exp

�Gnuc þ 36p�2
1

� 	1=3
� n
2=3sn
 � n
 � 1ð Þ2=3sn
�1
h i

kT

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ 1

(Eq 74)

To go further, one needs to take the limit
corresponding to large cluster sizes. One can
then neglect the size dependence of the conden-
sation rate prefactor, bn
�1 � bn
 , and of the
cluster interface free energy, sn
�1 � sn
 � s.
At the critical size, one should therefore check:

�Gnuc þ 36p�2
1

� 	1=3
n
2=3 � n
 � 1ð Þ2=3
h i

s ¼ 0

(Eq 75)

A limited expansion of Eq 75 for large sizes
leads to the result:

n
 ¼ �2/3
36p�2

1

� 	1=3s
�Gnuc

" #3
(Eq 76)

One therefore recovers Eq 5 of the critical size
with a geometric factor A corresponding to
spherical clusters. The critical size considered
by classical nucleation theory corresponds to
the one of cluster dynamics in the limit of large
cluster sizes. However, when the critical size is
small, both definitions may differ. This coher-
ence of both definitions at large size and this
deviation at small sizes has been observed in
atomic simulations (Ref 20).
The Steady-State Nucleation Rate. One can

calculate the steady-state nucleation rate, Jst,
corresponding to the master equation (Eq 57).
To do so, one must make two assumptions:

� There is a small size below which clusters
have their equilibrium concentration, given
by Eq 49. Clusters smaller than the critical
size appear and disappear spontaneously
through thermal fluctuations, and their con-
centrations stay roughly at equilibrium. The
smaller the cluster, the better this assumption.
The most convenient choice is therefore to
impose thermal equilibrium for monomers:

C1ðtÞ ¼ Ceq
1 ¼ C0 exp �G1 � mðtÞ

kT

� �
(Eq 77)

� There is a maximum cluster size, N, above
which the cluster concentration remains null:
CN (t) = 0. This assumption cannot be
checked for a true steady state without
invoking a demon that removes clusters that
appear at the size N and dissolves them into
monomers. Nevertheless, one can always
define at a given time a size large enough
so that the cluster distribution did not propa-
gate to this size.

By definition, the steady-state nucleation rate
can be calculated at any cluster size n. At the
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steady-state, all cluster concentrations remain
constant. As a consequence:

@Jn!nþ1
@n

¼ 0 (Eq 78)

and the steady-state nucleation rate can be cal-
culated at any given cluster size. Using the
expression of the cluster flux (Eq 58) with Eqs
59 and 64 for the condensation and evaporation
rates, one obtains:

J st ¼ bn C1Cn � Cnþ1C0 exp
Gnþ1 �Gn �G1

kT

� � �
;

n ¼ bnC1 exp �Gn � nm
kT

� �
Cn exp

Gn � nm
kT

� �

�Cnþ1 exp
Gnþ1 � nþ 1ð Þm

kT

� ��
(Eq 79)

This equation uses the fact that monomers are
at equilibrium (Eq 77) to go from the first to
the second line. After rearranging the terms
between the left and right sides, a sum between
a minimal and a maximal size is derived:

Xn2

n¼n1

J st

bnC1C0 exp � Gn�nm
kT


 �
¼ Cn1

C0 exp � Gn1
�n1m
kT

h i� Cn2þ1

C0 exp �Gn2þ1� n2þ1ð Þm
kT

h i
(Eq 80)

n1 = 1 is chosen so that the first term on the
right side is equal to 1. With n2 = N � 1, the
second term is null; it is assumed CN = 0, and
the exponential is tending to1 for high enough
N. This results in:

J st ¼ C1C0

1PN�1
n¼1

1
bn
exp Gn�nm

kT


 � (Eq 81)

This gives an exact expression of the steady-
state nucleation rate under both of the previous
assumptions.
The sum appearing in Eq 81 can be easily

evaluated. To do so, a continuous approximation
is made to transform the sum into an integral.
The cluster formation free energy, DGn = Gn �
nm, presents a maximum at the critical size n*.
As a consequence, the main contribution to the
integral arises from sizes around the critical size
and can be evaluated by a Taylor expansion
around n*. Finally, neglecting the variations of
bn in front of the exponential leads to:

Jst ¼ C1C0bn


� 1ÐN�1
1

exp �Gn
 þ 1
2
@2�Gn

@n2

���
n¼n


n� n
ð Þ2
� ��

kT

� �
dn

(Eq 82)

Changing the integration limits in �1 and +1,
the result of classical nucleation theory is
recovered:

J st ¼ b
ZC0 exp ��G


kT

� �
(Eq 83)

where b* = C1bn*, �G
 ¼ �Gn
 and the
Zeldovich factor is given by Eq 9.
The Steady-State Cluster Size Distribution.

Once the steady-state nucleation rate is known,
one can easily obtain the corresponding cluster
size distribution. Equation 80 is again used with
the limits n2 = N � 1, so that the last term on
the right side is still null, and with n1 = n, the
size for calculating the cluster concentration.
This leads to the result:

Cst
n ¼ C0 exp �Gn � nm

kT

� �XN
j¼n

J st

bnC1C0 exp �Gj�jm
kT

h i
(Eq 84)

Similar to the steady-state nucleation rate, the
sum can be evaluated by making a continuous
approximation, developing the cluster forma-
tion free energy around the critical size, and
considering the limit N ! 1. One obtains:

Cst
n ¼ C0 exp �Gn � nm

kT

� �
J st

C1C0bn
ð1
n

exp �Gn
 þ 1/2
@2�Gj

@j2
j� n
ð Þ2

� ��
kT

� �
dj

¼ 1/2 erfc
ffiffiffi
p
p

Z n� n
ð Þ½ �C0 exp �Gn�nm
kT


 �
(Eq 85)

The stationary distribution therefore corre-
sponds to the equilibrium one, reduced by a
factor varying from 0 for large sizes to 1 for
small sizes. Well below the critical size, that
is, for n � n* � Dn/2 with Dn given by
Eq 10, this factor differs only slightly from 1,
and the stationary distribution corresponds to
the equilibrium one. At the critical size n*, this
factor is exactly one-half, and in the vicinity
of n*, the stationary distribution can be
approximated with Eq 8.
Discussion. This derivation of quantities

predicted by classical nucleation theory from
cluster dynamics formalism enlightens the
approximations made by this theory. It assumes
that the supersaturation is not too high, so that
the critical size is large enough. This allows
one to consider the size as a continuous instead
of a discrete variable and to make a finite
expansion of key parameters around the critical
size. Classical nucleation theory may therefore
appear as more restricted than the kinetic
approach based on the master equation (Eq 57),
but the situation is not so simple.
One severe restriction of cluster dynamics is

the thermodynamic model on which it relies. It
is based on the cluster gas model of Frenkel
(Ref 48), which is valid for a dilute system.
Strictly speaking, cluster dynamics should only
be used in the dilute case. If one wants to study
more concentrated systems, the cluster gas
model must be extended. Such an extension has
been performed by Lépinoux (Ref 56) and is pre-
sented in the section “Configurational Frustra-
tions between Clusters” in this article. On the

other hand, classical nucleation theory does not
rely on the cluster gas thermodynamic model.
Instead, it makes use of the nucleation driving
force that may be calculated with any thermody-
namic model, in particular, one better suited to
concentrated systems. Therefore, it is not a prob-
lem to use the classical nucleation theory to study
concentrated systems as long as one correctly
calculates the nucleation driving force.
Both formalisms also differ in the way they

describe the parent and the nucleating phases.
In the classical theory, one differentiates both
phases, and nucleation is described through het-
ero-phase fluctuations corresponding to precipi-
tates embedded in the parent phase. Such a
differentiation does not appear in the kinetic
approach, where one deals with only one system
that is described as a gas of clusters having a
fixed stoichiometry and embedded in a pure sol-
vent. This description difference may become
relevant when modeling concentrated systems,
because the values of the input parameters may
then differ according to the chosen, thermody-
namic or kinetic, approach. This is the case, for
instance, of the interface free energy. In cluster
dynamics, this corresponds to the energy cost of
an interface between a cluster with a fixed stoi-
chiometry and the pure solvent, whereas in clas-
sical nucleation theory, one should consider that
the precipitate and the parent phase are not pure
and that solubility exists in both phases. The con-
centration appearing in the expression of the con-
densation rate may also differ between both
approaches, as already quoted in the previous
section, “Condensation Rate,” in this article.
This is either themonomer concentration (cluster
dynamics) or the total solute concentration
(classical nucleation theory).
All these subtle differences between cluster

dynamics and classical nucleation theory have
been discussed by Martin (Ref 49) in the case
of precipitation in the solid state. He showed
that both approaches were consistent and led
to the same expressions in the dilute limit.

Extensions of Cluster Dynamics

The master equation (Eq 57) can be modified
to describe nucleation under less restricted con-
ditions than the ones of the previous subsections
and then to build extensions of the cluster
dynamics. In particular, the assumptions that
only monomers can react and that clusters have
a fixed stoichiometry corresponding to the equi-
librium nucleating phase can be removed.
Mobile Clusters. Until now, it was assumed

that only monomers are mobile. This assump-
tion is not always valid. There is no reason to
think, for instance, that all clusters except
monomers are immobile in solidification. Diffu-
sion of small clusters can also happen in solid-
solid phase transformations. An interesting
example is copper precipitation in iron, where
atomic simulations have revealed that clusters
containing up to several tens of copper atoms
can be much more mobile than individual cop-
per atoms (Ref 57). The master equation should
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therefore be modified to account for reactions
involving clusters larger than monomers. Such
a generalization of the cluster dynamics formal-
ism has been performed by Binder and Stauffer
(Ref 4–6).
The probability of observing a cluster con-

taining n atoms now obeys the generalized mas-
ter equation:

@Cn

@t
¼ 1/2

Xn�1
n0¼1

J n� n0; n0 ! nð Þ

�
X1
n0¼1

J n; n0 ! nþ n0ð Þ � J n; n! 2nð Þ

(Eq 86)

where J(n,n0 ! n + n0) is the cluster flux
corresponding to the reaction between the classes
n and n0 to the class n + n0. The factor ½ appearing
in Eq 86 accounts for overcounting the pairs {n�
n0,n0} in the summation. In this equation, one
should not forget that the reactions nþ nÐ 2n
involve two clusters of size n. When reactions
are limited to reactions involving monomers, n0
can only take the value 1, and n � 1 in the first
sum and 1 in the second sum; the classical master
Eq 57 of cluster dynamics is recovered.
The cluster flux is the difference between the

condensation of two clusters of sizes n and n0
and the splitting of a cluster of size n + n0 into
two clusters of sizes n and n0:

J n; n0 ! nþ n0ð Þ ¼ b n; n0 ! nþ n0ð ÞCnCn0

� a nþ n0 ! n; n0ð ÞCnþn0

(Eq 87)

One then obtains an expression for the absorp-
tion coefficient b(n, n0). If the reaction is lim-
ited by the cluster diffusion, this coefficient is
given by (Ref 24):

b n; n0 ! nþ n0ð Þ ¼ 4pRn;n0
Dn þDn0

�1

; 8n 6¼ n0

b n; n! 2nð Þ ¼ 4pRn;n
Dn

�1

(Eq 88)

where Rn,n0 is a capture radius and can be approxi-
mated by the sum of the two reacting cluster radii.
In the expression (Eq 13) used in the classical
nucleation theory, this capture radius was identi-
fied with the radius of the critical cluster, and the
monomer radius was neglected.
If the diffusion coefficients of then-mers are not

known, one canuse an approximationproposedby
Binder et al. (Ref 58, 59). They simply consider
that cluster diffusion is due to jumps of atoms
located at the interface.When an atom jumps over
a distance rs with a frequency Gs, the center of
gravity of the cluster jumps over rs/n. Since the
number of possible jumps at the interface
increases with its area as n2/3,Dn depends on n as:

Dn ¼ �s
rs
n

� �2
n2=3 ¼ D1n

�4=3 (Eq 89)

In the case of precipitation in the solid state,
one should not forget that substitutional atoms

diffuse through exchange with vacancies and
that a vacancy enrichment at the cluster interface
is possible. In such a case, Eq 89 must be cor-
rected with a prefactor to consider the vacancy
concentration at the interface (Ref 57). This
vacancy segregation is the reason why clusters
containing several copper atoms aremoremobile
than monomers in iron (Ref 57).
The evaporation rate is still obtained by

assuming that it is an intrinsic property of the
cluster (or imposing a constrained equilibrium),
thus leading to:

a nþ n0 ! n; n0ð Þ

¼ b n; n0 ! nþ n0ð ÞC0 exp
Gnþn0 �Gn �Gn0

kT

� �
(Eq 90)

All parameters are thus determined, and the
master equation (Eq 86) can be numerically
integrated.
Binder and Stauffer (Ref 4, 6) also extended

classical nucleation theory to obtain expres-
sions of the steady-state nucleation rate and
the incubation time, taking into account the
mobility of all clusters. They started from the
master equation (Eq 86) and imposed the
detailed balance corresponding to Eq 90. They
obtained expressions similar to the classical
ones—Eq 11 for the steady-state nucleation rate
and Eq 14 for the incubation time—except that
now the growing rate, b*, of the critical cluster
incorporates contributions of all clusters. This
growing rate is given by:

b
 ¼
Xnc

n¼1
b n
; n! nþ n
ð Þn2C0 exp �Gn � nm

kT

� �
(Eq 91)

where nc is a cut-off size corresponding to the
correlation length of thermal fluctuations. It
seems reasonable to identify this cut-off size
with the critical size n*. When only reactions
involving monomers can occur, the sum in
Eq 91 is limited to the term n = 1, and one
recovers the classical growing rate b
 ¼ bn
C

eq
1 .

When reactions involving other clusters are pos-
sible, this growing rate increases. The mobility
of small clusters therefore leads to an increase
of the nucleation rate and a decrease of the
incubation time by the same factor.
Nonstoichiometric Clusters. Until now, it

has been assumed that clusters have a fixed
stoichiometry corresponding to the equilibrium
of the nucleating phase. In some systems, the
composition of the nucleating phase can vary.
One therefore must extend cluster dynamics to
allow the cluster stoichiometry to vary (Ref 7).
To illustrate such an extension of the formal-

ism, consider the example of a system where
the nucleating phase is composed of two ele-
ments, A and B, and assume that the composi-
tion can vary. A cluster is then a group of A
and B atoms that are linked by a neighborhood
relation. If the clusters are homogeneous (no
segregation of one element at the interface, for

instance), they can simply be described by two
variables: the number i and j of elements A
and B they contain. Therefore, Gi, j is the free
energy of such a cluster. If the system is under-
saturated, one can show that the concentration
of {i,j} clusters is given by the distribution:

Ceq
i;j ¼ C0 exp� �Gi;j � imA � jmB

kT

� �
(Eq 92)

where mA and mB are Lagrange multipliers
ensuring matter conservation for A and B and
are related to their chemical potentials.
It is assumed that only monomers are mobile.

The time evolution of clusters containing i A
elements and j B elements is then governed by
the master equation:

@Ci;j

@t
¼ Ji�1;j!i;j � Ji;j!iþ1;j þ Ji;j�1!i;j � Ji;j!i;jþ1;

8fi; jg 6¼ f1; 0g and fi; jg 6¼ f0; 1g
@C1;0

@t
¼ �

X
i�0

X
j�0

Ji;j!iþ1;j � J1;0!2;0

@C0;1

@t
¼ �

X
i�0

X
j�0

Ji;j!i;jþ1 � J0;1!0;2

(Eq 93)

Fluxes are written as a difference between the
evaporation and the condensation of a monomer:

Ji;j!iþ1;j ¼ bi;j!iþ1;jC1;0Ci;j � aiþ1;j!i;jCiþ1;j
Ji;j!i;jþ1 ¼ bi;j!i;jþ1C0;1Ci;j � ai;jþ1!i;jCi;jþ1

(Eq 94)

The condensation and evaporation rates are still
linked by a detailed balance condition, leading
to the relations:

aiþ1;j!i;j ¼ bi;j!iþ1;j exp
Giþ1;j �Gi;j �G1;0

kT

� �

ai;jþ1!i;j ¼ bi;j!i;jþ1 exp
Gi;jþ1 �Gi;j �G0;1

kT

� �
(Eq 95)

One therefore needs a physical modeling of the
condensation process to express the coefficients
bi,j!i+1,j and bi,j!i,j+1. The evaporation rates are
then obtained by Eq 95, and the kinetics are
obtained by integration of Eq 93.
Starting from the master equation (Eq 93),

the classical nucleation theory has been
extended to treat a multicomponent system.
This was first performed by Reiss (Ref 7) for
a binary system such as the one considered here
and then extended by Hirschfelder (Ref 8) to a
general multicomponent system. Both authors
assumed that the growth of the critical nucleus
was entirely driven by the free energy. It was
realized later by Stauffer (Ref 9) that the
growth direction in the {i,j} plane may also be
affected by the condensation coefficients, espe-
cially when coefficients corresponding to A and
B condensation have very different values. He
proposed an expression of the steady-state
nucleation rate for the binary system that was
then extended to a multicomponent system by
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Trinkaus (Ref 10). All these approaches calcu-
lated the steady-state nucleation rate in the
vicinity of the critical nucleus. Wu (Ref 11)
instead defined a global nucleation rate that
should correspond more closely to what can be
measured experimentally. The following gives
the expression of the steady-state nucleation
rate for a binary system obeying the master
equation (Eq 93) in the local approach as
derived by Vehkamäki (Ref 12). Expressions
in the more general case—multicomponent
systems and mobile clusters other than mono-
mers—can be found in the cited references.
The critical cluster corresponds to the saddle

point of the cluster formation free energy DGi,j

= Gi,j � imA � jmB appearing in the equilibrium
distribution (Eq 92). It is thus defined by the
equations:

@�Gi;j

@i
¼ 0 and

@�Gi;j

@j
¼ 0 (Eq 96)

DG* is the corresponding formation free
energy, and H* is the Hessian matrix calculated
for the critical cluster:

H
 ¼
@2�Gi;j

@i2

���
fi;jg


@2�Gi;j

@i@j

���
fi;jg


@2�Gi;j

@i@j

���
fi;jg


@2�Gi;j

@j2

���
fi;jg


0
B@

1
CA (Eq 97)

This Hessian matrix has two eigenvalues. One
of them is negative and gives the direction in the
{i,j} space corresponding to themaximal decrease
of the critical cluster free energy. In the approach
of Reiss and Hirschfelder, this direction corre-
sponds to the nucleation flow. Nevertheless, one
should generally take into account that the con-
densation rates for A and B elements may be dif-
ferent, because this will impact the direction of
the nucleation flow. Therefore, a newmatrix char-
acterizing the condensation process for the critical
cluster is defined:

B
 ¼ C1;0bi;j!iþ1;j 0

0 C0;1bi;j!i;jþ1

� �����
fi;jg


(Eq 98)

The fact that this matrix is diagonal reflects the
assumption that only reactions involving mono-
mers are possible. The angle y of the nucleation
flow in the {i,j} space is then defined by:

tan y ¼
�H
11B
11 þH
22B



22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H
12

2B
11B


22 þ H
11B



11 �H
22B



22

� 	2q
2H
12B



11

(Eq 99)

The equivalent of the Zeldovitch factor is given
by:

Z ¼ �H
11 þ 2H
12 tan yþH
22 tan
2 y

1þ tan2 yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det H
ð Þj jp (Eq 100)

and the average growth rate of the critical
cluster by:

b
 ¼ det B
ð Þ
B
11 sin

2 yþ B
22 cos2 y
(Eq 101)

With these definitions, the steady-state nucle-
ation rate keeps its usual expression:

J st ¼ b
ZC0 exp ��G


kT

� �
(Eq 102)

Configurational Frustrations between Clus-
ters. Cluster dynamics simulations rely on the
cluster gas approximation derived in the section
“Cluster Gas Thermodynamics” in this article.
This thermodynamic approximation, initially
introduced by Frenkel (Ref 48), is strictly valid
only in the dilute limit. It indeed assumes that
the space occupied by the clusters can be
neglected when computing the configurational
partition function (Eq 45) of the cluster gas;
each cluster occupies only one site, no matter
its size. Lépinoux (Ref 56) has shown that this
approximation can be improved to properly
take into account frustrations between clusters,
that is, the space forbidden to a given cluster
by other clusters. This allows the modeling of
systems that are not as dilute as required by
Frenkel’s treatment.
Note that Vj,n is the number of sites that a

cluster of size j forbids to a cluster of size n.
According to Lépinoux (Ref 56), the equilib-
rium cluster size distribution is given by:

Ceq
n ¼ C0 exp �Gn � nm

kT

� �
exp �

X
j

Ceq
j Vj;n

 !

(Eq 103)

or equivalently:

Ceq
n ¼ C0

Ceq
1

C0

� �n

exp �Gn � nG1

kT

� �

exp �
X
j

Ceq
j Vj;n � nV1;n

� 	" # (Eq 104)

It is clear that Frenkel’s approximation corre-
sponds to neglecting all exclusion volumes
(Vj,n = 0). When exclusion volumes are consid-
ered, only an implicit expression of the size dis-
tribution is obtained; equilibrium cluster size
concentrations, Ceq

j , are required to evaluate the
right side of Eq 103 or 104. A self-consistent
loop can be used to evaluate the equilibrium dis-
tribution, starting from the distribution given by
Frenkel’s approximation (Eq 49 or 50).
The exclusion volumes can be approximated

by identifying a cluster of size n with a sphere
of radius Rn. This leads to:

Vj;n ¼ 4p
3

Rj þRn

� 	3
(Eq 105)

The radii Rn depend on the temperature because
a cluster becomes less compact with higher
temperatures due to its configurational entropy.
Nevertheless, it can be reasonably assumed that
these radii are close to the ones corresponding
to the more compact cluster shape (Ref 56),
and Eq 61 can be used.
The second step is to obtain the kinetic coef-

ficients an and bn. As previously mentioned, the

condensation rate bn is obtained by the proper
physical modeling of the condensation process,
leading to an expression of the form in Eq 59.
However, it is no longer possible to assume that
the evaporation rate is an intrinsic property of
the cluster; the obtained expression would vio-
late the assumption because of the frustration
contribution in the cluster size distribution.
The constrained equilibrium is not satisfactory
either, because it leads to a diverging frustra-
tion correction and hence diverging evaporation
rates in supersaturated systems. There is actu-
ally no framework that allows rigorously deriv-
ing the evaporation rate from the condensation
rate, taking into account cluster frustrations. It
seems that the most reasonable scheme is to
consider that the classical expression (Eq 64)
of the evaporation rate must be corrected from
frustrations caused by the instantaneous cluster
size distribution and not by a hypothetical equi-
librium one:

anþ1 tð Þ ¼ bnC0 exp
Gnþ1 �Gn �G1

kT

� �

exp
X
j

Cj tð Þ Vj;nþ1 � Vj;n � Vj;1

� 	" #

(Eq 106)

This set of condensation and evaporation
rates ensures that the cluster distribution evolves
toward the equilibrium distribution given by
Eq 103 for subcritical clusters. Equation 106
clearly shows that the evaporation rate is no
longer an intrinsic property of the cluster,
because it now depends on the whole cluster
distribution. Moreover, because this parameter
depends on the instantaneous concentrations
Cj(t), it must be calculated at each time step.
When the system is dilute, the frustration cor-
rection in Eq 106 becomes negligible, and the
classical expression of the condensation rate is
recovered. Comparisons with atomic simula-
tions (Ref 50, 56) have shown that this treatment
of cluster frustrations greatly improves the abil-
ity of cluster dynamics to describe nucleation
kinetics for high supersaturations.

Limitations of the Cluster Description

The previous extensions of cluster dynamics
have allowed the removal of two limitations
of classical nucleation theories due to initial
simplifying assumptions:

� Only monomers are mobile, and therefore,
only reactions involving monomers are
possible.

� The cluster stoichiometry is fixed and known
a priori. It is assumed to correspond to the
composition of the nucleating phase at equi-
librium with the mother phase.

The extension to mobile clusters is quite
straightforward, and that to nonstoichiometric
clusters shows that it was possible to take
into account a nonfixed cluster composition.
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The composition of the nucleating cluster was
found to be the one minimizing the work,
DG*, necessary to form them.
Nevertheless, some limitations still remain

for this nucleation modeling approach. One of
these limitations arises from the needed
assumption that clusters are homogeneous. This
assumption is induced by the fact that clusters
are only described by the number of elements
they contain. This is not always valid because
segregation may occur in some systems; it can
be more favorable for one element to lie at the
interface between the cluster and the matrix
instead of in the core of the cluster. In such a
case, it is necessary to introduce at least one
more parameter to describe the cluster struc-
ture. Binder and Stauffer (Ref 4) have extended
cluster dynamics formalism to incorporate addi-
tional parameters describing cluster internal
degrees of freedom, but the application of the
formalism appears quite intricate.
Cahn and Hilliard (Ref 60) proposed a model-

ing approach different from the classical one pre-
sented here, which is based on a cluster
description. Their approach agrees with the clas-
sical one at low supersaturations and underlines
some limitations of the classical approach with
increasing supersaturations. They showed that
the work, DG*, required to form a critical cluster
becomes progressively less than that given by the
classical theory and continuously approaches
zero at the spinodal limit, thus for a finite super-
saturation. By contrast, the classical theory pre-
dicts that this work becomes zero only for an
infinite supersaturation (Eq 6). Moreover, the
classical theory assumes that clusters are homo-
geneous and that their composition is the one
minimizing the work, DG*. Cahn and Hilliard
showed that the composition at the center of the
nucleus approaches that of the exterior mother
phase when the supersaturation tends to the spi-
nodal limit, and that the interface becomes more
diffuse until eventually no part of the nucleus is
even approximately homogeneous. The last dis-
agreement found with the classical theory is the
variation of the critical cluster size. They showed
that this size first decreases, passes through a
minimum, and then increases to become infinite
when the supersaturation increases and
approaches the spinodal limit. Nevertheless,
some recent experiment observations (Ref 61,
62) have contradicted this last point, showing
no divergence of the cluster critical size when
approaching the spinodal limit.

Conclusions

Two different approaches based on an equiva-
lent cluster description can therefore be used to
model nucleation in a phase-separating system.
In the classical nucleation theory, one obtains
expressions of the nucleation rate and the incuba-
tion time. These expressions depend on a limited
number of input parameters: the nucleation

driving force, the interface free energy, and the
condensation rate. On the other hand, the kinetic
description of nucleation relies on a master equa-
tion. Cluster dynamics simulations, that is, the
integration of this master equation, allow the
time evolution of the cluster size distribution to
be obtained. The input parameters needed by
such simulations are the cluster condensation
rates and the cluster free energies. At variance
with classical nucleation theory, no external
thermodynamic model is needed to calculate
the nucleation driving force; cluster dynamics
simulations possess their own thermodynamic
model, the cluster gas. As shown previously,
both approaches are intrinsically linked, but it
is worth saying that they differ in the way they
can be used to model the kinetics of phase trans-
formations. Classical nucleation theory is able to
model only the nucleation stage. To model the
whole kinetics, one must couple this theory with
classical descriptions of the growth and coarsen-
ing stage. Such a coupling can be done following
the Wagner and Kampmann approach (Ref 63,
64). On the other hand, the cluster dynamics
modeling approach is not restricted to the nucle-
ation stage. It also predicts growth and coarsen-
ing kinetics. To conclude, this cluster approach
is well suited when one knows what the nucleat-
ing new phase looks like. Such information is not
always available a priori. One then must use
other modeling techniques. These can be atomic
simulations, such as molecular dynamics (Ref
65, 66), for condensation of a gas into a liquid
or crystallisation of a liquid, or kinetic Monte
Carlo (Ref 67–69) for solid-solid phase transfor-
mations, or phase-field simulations (see the
Appendix at the end of this article). These simu-
lations are computationally much more time-
consuming and, as a consequence, are limited
to the study of high enough supersaturations.
Nevertheless, they can be very useful for under-
standing what happens in the nucleation stage
and then building a classical model based on a
cluster description and extending the range of
supersaturations that can be simulated. More-
over, these atomic or phase-field simulations
can be a convenient way to calculate the input
parameters needed by classical theories.

Appendix—Phase-Field Simulations

The phase-field approach describes the differ-
ent phases through continuous fields such as the
atomic concentration or long-range-order para-
meters. The spatial and temporal evolution of
the microstructure is then driven by differential
equations obeyed by these fields. Because this
technique is the object of the article “Phase-Field
Modeling of Microstructure Evolution” in this
Volume, this Appendix addresses how nucle-
ation can be handled in such simulations.
The main advantage of phase-field simulations

is that all spatial information on the microstruc-
ture is obtained. This is in contrast with classical
approaches where a limited number of informa-
tion is known, such as the flux of nucleating

particles (classical nucleation theory) or the clus-
ter size distribution (cluster dynamics). This may
make the phase-field approach an attractive tech-
nique for modeling nucleation in specific situa-
tions. Indeed, such simulations perfectly take
into account phase inhomogeneities. These inho-
mogeneities can be, for instance, a solute segrega-
tion in the vicinity of a defect such as a
dislocation. Phase-field simulations therefore
allow the description of heterogeneous nucleation
associated with a variation of the driving force.
Moreover, in the case of solid-solid phase trans-
formations, the elastic energy is fully contained
in the calculation of the system free energy (Ref
41). One therefore does not need a specific expres-
sion for the elastic self-energy of a nucleating par-
ticle nor for its elastic interaction with the existing
microstructure. The correlated and collective
nucleation due to elastic interaction between pre-
cipitates is naturally described. Two different
roads have been proposed to include nucleation
in phase-field simulations.
One can use the phase-field approach to cal-

culate spatial variations of the concentrations
and the order parameters describing the differ-
ent phases as well as the inhomogeneous strain
created by the microstructure. One then calcu-
lates the nucleation free energy as a function
of the local phase fields and the local strain.
Finally, the expression of the nucleation rate
given by the classical theory is used to seed
the phase-field simulations with new nuclei
(Ref 70–72). In this way, one obtains a spatial
variation of the nucleation rate caused by the
microstructure inhomogeneities.
The phase-field approach offers another way

to model nucleation without relying on the
classical theory. One can add to the equations
describing the phase-field evolution a stochas-
tic term through a Langevin force to describe
thermal fluctuations. This allows nucleation
to proceed. Phase-field simulations can then
naturally describe the spatial and temporal
evolution of the microstructure, from the
nucleation to the coarsening stage (Ref 73–
75). Nevertheless, this description is usually
only qualitative; to obtain a fully quantitative
modeling, the amplitude of the Langevin force
must be carefully set. In particular, it must
depend on the coarse-graining size similar to
the other ingredients of the simulation (chemi-
cal potentials, mobilities, stiffness coeffi-
cients) (Ref 76). Such phase-field simulations
that naturally handle nucleation through ther-
mal fluctuations suffer from the small time-
step needed to catch the rare event of a nucle-
ating particle. On the other hand, simulations
using an explicit description of the nucleation
do not have this drawback.
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Models of Recrystallization
Frank Montheillet, CNRS, Ecole Nationale Supérioure des Mines de Saint-Etienne, France
John J. Jonas, Birks Professor of Metallurgy Emeritus, McGill University, Canada

DURING HOT PROCESSING, metallic
materials can undergo various types of recrys-
tallization, which dramatically modify their
microstructures and crystallographic textures.
Therefore, recrystallization is to a large extent
responsible for their final mechanical proper-
ties. Various types of recrystallization must be
considered.
Static recrystallization (SRX) occurs (most

generally) after room-temperature deformation
during further heat treatment. In the initial fully
annealed state (Fig. 1a), the dislocation density
of the material is very low (r � 0.01 mm/mm3).
Strain hardening makes it grow to 104 mm/mm3

(Fig. 1b). Since it was formerly believed that
metals lost their crystalline character after large
strain deformation, the generation of new grains
upon subsequent heating was termed recrystal-
lization. It is now well known, however, that
deformed initial grains are still present
(although more or less strongly deformed) in
the cold-worked state (Fig. 1c), and they are
merely replaced by new grains during static
recrystallization (Fig. 1e). Note that here static
means that no strain is imposed to the material
during recrystallization. Static recrystallization
is similar to a phase transition.
Dynamic recrystallization (DRX) takes

place instead during hot working, which means
that the generation of new grains is combined in
an intricate way with other phenomena asso-
ciated with high-temperature straining, such
as work hardening and dynamic recovery
(Fig. 1d). Two types of DRX can, in fact, be
distinguished.
Continuous Dynamic Recrystallization.

When dynamic recovery is very efficient (i.e.,
in metals where high stacking-fault energy
favors dislocation mobility), the initial grains
can undergo quite large strains without losing
their individualities. In the absence of a nucle-
ation mechanism, the new grain structure
results from the progressive fragmentation of
the latter, by the generation of subgrain bound-
aries (polygonization) and their evolution into
high-angle boundaries. This mechanism is
referred to as continuous dynamic recrystalliza-
tion (CDRX). In addition, initial grain bound-
aries become elongated and serrated at large

strains and also contribute to the grain fragmen-
tation, a process known as geometric dynamic
recrystallization. CDRX has been observed
mainly in hot worked aluminum alloys (Ref 1)
and ferritic steels (Ref 2). However, quite simi-
lar microstructures are also generated during
cold or warm severe plastic deformation
(SPD), produced by equal channel angular
extrusion (ECAE) (Ref 3), high pressure torsion
(HPT) (Ref 4), or merely large strain torsion

testing (Ref 5). Ultrafine grain strucutres can
be obtained in this way.
Discontinuous Dynamic Recrystallization.

When dynamic recovery is weak, local concen-
trations of dislocations lead to various types
of nucleation events. The large gradients of
dislocation density induce considerable grain-
boundary migration velocities such that CDRX
cannot occur. The new structure then results
from repeated cycles of nucleation, growth,

Fig. 1 Schematic representations of (a) the fully annealed state of a polycrystalline metal, (b) the former interpretation
of a cold-worked specimen (amorphous state), (c) the modern interpretation of the latter, (d) a hot-worked

dynamically recrystallized microstructure, and (e) a postdynamically recrystallized state
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and shrinkage of grains. This mechanism is
called discontinuous dynamic recrystallization
(DDRX). It should be noted that for a long time
it was the only recognized DRX mechanism.
Moreover, in some cases, hot deformation is
likely to take place according to mixed or
intermediate mechanisms.
In both cases, a steady state of flow stress,

microstructure, and crystallographic texture is
observed at large (DDRX) or very large
(CDRX) strains (in the latter case, the steady
state cannot generally be achieved in industrial
processes). In such a state, the material has
reached a dynamic equilibrium with the exter-
nal prescribed conditions (strain rate and tem-
perature) and behaves as a dissipative
structure that converts the mechanical energy
input into heat.
The basic difference between static and

dynamic recrystallization is also illustrated in
Fig. 2, which shows the level of stored (elastic)
energy associated with dislocations. During
steady-state DRX, the latter is larger than in the
annealed state but less than after cold working.

Recrystallization and the
Avrami Kinetics

Historical Background

Jewelers and armor makers have known
since biblical times that a heavily worked piece
of metal can be softened by heating. This takes
place largely by means of recrystallization, a
mechanism that is clearly influenced by a num-
ber of experimental parameters in a manner that
is outlined subsequently. (Recovery also plays a
role but is not discussed here.) Without the
occurrence of recrystallization, it would not be
possible to manufacture the fairly thin sheets
of steel from which auto bodies and many
household appliances are made. Similar
remarks apply to many other industrial pro-
cesses. The progress of recrystallization can be
described by what are known as Avrami kinet-
ics (Ref 6, 7), which are sometimes referred to

instead as Johnson-Mehl-Avrami-Kolmogorov
(JMAK) kinetics (Ref 8, 9).
The Avrami theory was developed to take into

account the followinggeneral observations regard-
ing the progress of recrystallization (Ref 10):

1. A minimum amount of deformation is neces-
sary to initiate recrystallization.

2. The greater the amount of deformation, the
lower the temperature required for initiation.

3. Increasing the annealing time decreases the
initiation temperature.

4. The final grain size decreases with the
amount of deformation and increases with
the deformation temperature.

5. More deformation is required, for a given
temperature and time, when the original
grain size is coarser.

6. More deformation is required to produce a
specific amount of hardening as the temper-
ature of working is increased.

Such behavior can be interpreted in broad terms
by considering the individual characteristics of
nucleation and growth (Ref 11). For example,
the existence of a critical strain (item 1) is
based on the need to establish a minimum
dislocation density (or local lattice curvature)
in order to create a nucleus. Since nucleation
is thermally activated, longer annealing times
and higher temperatures increase the probabil-
ity of producing a nucleus (items 2 and 3).
The need for thermal activation, in turn,
accounts for the presence of an incubation time
before recrystallization can be observed.
The final grain size will depend on the balance

between the rates of nucleation and growth.
Because the nucleation rate increases with the
amount of work hardening, while the growth rate
increases with temperature, it is clear that the
grain size will decrease with the imposed strain
and increase with the temperature. Given that
most nucleation takes place at or near grain
boundaries, a finer initial grain size will lead to
a higher nucleus density (item 5). Finally, item
6 is based on the dependence of dislocation den-
sity on the deformation temperature, decreasing

as it does with increased temperature. Similar
remarks apply to strain rate: An increase in the
latter increases the net dislocation density at a
given strain and temperature and therefore the
nucleation rate. In this case, higher strain rates
are associated with finer final grain sizes.
The Avrami analysis (Ref 6, 7) was based on

the following assumptions and simplifications:

1. The potential nuclei are already present in
the deformed material and are randomly
distributed.

2. All the nuclei are either active from the
beginning of heating (one extreme), or else
they form at a constant rate (the other
extreme).

3. The nuclei may grow isotropically in three
dimensions, two dimensions, or one dimen-
sion (i.e., there can be polyhedral, platelike,
or linear growth).

4. A correction must be made for the impinge-
ment of growing grains upon one another;
that is, transformation can no longer occur
within the overlapped regions.

The constant formation rate (item 2) taken
together with the three-dimensional growth rate
(item 3) leads to a transformed (recrystallized)
volume that increases with the fourth power of
the time. This can account for the observation
of what appears to be an incubation time.

The JMAK Model for Static
Recrystallization

Defining X as the recrystallized volume frac-
tion, the Avrami analysis leads to the following
general relationship:

X ¼ 1� expð�k tnÞ ¼ 1� exp �k0 t=tRð Þn½ � (Eq 1)

Here, k ¼ k0=tRn is the Avrami constant;
k0 depends on the definition of tR (see the follow-
ing); t is the annealing time; tR is a characteristic
time, defined in more detail later; and n is the
Avrami time exponent. The general equation for
n on the basis of physical models is n ¼ q dþB,
where q is 1 for interface-controlled growth, q is
½ for diffusion-controlled growth, d is the
dimensionality of growth, and B is 0 and 1 under
site-saturation nucleation conditions and continu-
ous nucleation at a constant rate, respectively (Ref
12). Nevertheless, most experimental values fall
in the range 1 to 2. In the original paper byAvrami
(Ref 7), n was = 3, 2, and 1 under site-saturation
conditions for three-, two-, and one-dimensional
growth, respectively. Similarly, under continuous
nucleation conditions, nwas = 4, 3, and 2, respec-
tively, for the same three classes of dimensional-
ity. In Avrami’s work, no account was taken of
diffusion-controlled growth.
For algebraic purposes, it is useful to define tR

as the time required for a given fraction of
recrystallization. In the general case,
k0 ¼ � lnð1� fÞ, where f is the fraction
selected. Thus, if the times associated with 5,
50, and 95% recrystallization are of interest, for

Fig. 2 (a) Static recrystallization (SRX) that follows cold working (CW) involves the transition between a high-energy
work-hardened state (H) to the low-energy annealed state (A). (b) Dynamic recrystallization (DRX) taking

place during hot working (HW) leads at large strains to a steady-state (SS) microstructure with intermediate energy level.
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example, k0 = 0.05, 0.69, and 2.99, respectively.
For most calculations, the time for 50% recrys-
tallization, t50% or t50, is employed, leading to:

X ¼ 1� exp �0:69 ðt=t50Þn½ � (Eq 2)

where k ¼ 0:69=tn50.
The dependence of t50 on the experimental

conditions, that is, on temperature, strain, strain
rate, composition, and so on, is considered in
some detail later. If the value of n is known,
the aforementioned relation can be used to eval-
uate the ratio t95=t5, for example, for different
materials.
For plotting purposes, it is useful to take the

double log of 1=ð1�XÞ so that the progress
of recrystallization 1 � X can be displayed
against time t. The previous equation can then
be rewritten as:

logfln½1=ð1�XÞ�g ¼ ½log ð0:69Þ � n log ðt50Þ�
þ n log ðtÞ

¼ log ðkÞ þ n log ðtÞ
(Eq 3)

Such plots are frequently linear, signifying that
both k and n are constant. An example of such a
plot is presented in Fig. 3. Numerous other
examples can be found in the literature.
For practical purposes, the time required to

soften a material (produce recrystallization) in
1 h is of considerable interest. Some typical
values are displayed in Table 1 (Ref 14). Here,
because the values are taken from the work of
different researchers, the amount of cold work
is not constant. The temperatures, in K, are
generally about 0.4 Tm or above, where Tm is
the melting temperature in absolute degrees.
Nevertheless, as can be seen, the addition of
alloying elements increases the recrystallization
temperature by appreciable amounts. This is
due to the effects of both solute drag and
boundary pinning by particles.
Another useful way of describing and com-

paring the recrystallization kinetics of different
materials is in terms of their characteristic times.
An example is given in Fig. 4, where materials
of different purities are examined, together with
the dependence of the characteristic time, tR, on
the absolute temperature of deformation
(Ref 15). Note that in this case, however, the
authors have chosen to use the time for 63%
recrystallization, because under these conditions
k0 ¼ � ln 1� fð Þ ¼ � ln 0:37ð Þ ¼ 1:0, thus
eliminating the former from the Avrami
equation.
The effects of strain, strain rate, composition,

and temperature on t50 will be considered in
more detail as follows. For the moment, it is
simply of interest to compare the recrystalliza-
tion temperatures of different materials in a
straightforward manner. As expected from the
discussion of Fig. 3, the latter can be expected
to scale with the absolute melting temperature

of the metal. This is illustrated in Fig. 5, where
the excellence of this correlation can be seen.
Effect of the Rates of Nucleation and

Growth on Recrystallization Kinetics. Here,
the simple case is considered where recrystalli-
zation is being continuously nucleated through-
out the material at a constant rate N. It is also
assumed that the nuclei are randomly
distributed. (The alternative case of site satura-
tion can be treated in a similar manner.)
The volume of a spherical new grain, before
impingement, will therefore be given by (Ref 16):

V ¼ 4/3pr3 ¼ 4/3p v tð Þ3 (Eq 4)

where r is the radius of the sphere, t is the time,
and v is the growth velocity, which is taken here
to be constant with time. Because of continuing
nucleation, prior to impingement, the volume
fraction recrystallized, X, at any time is given by:

X ¼ 4

3
pN v3

ð t

0

u3du ¼p
3
N v3t4 (Eq 5)

This equation is only valid for small values
of X, that is, prior to impingement. Once impin-
gement begins, a correction must be made for
the effect of overlapping. This leads to the
Avrami equation in the form:

X ¼ 1� expð� p
3
N v3t 4Þ (Eq 6)

where k ¼ p=3N v3 and n = 4 for constant rates
of nucleation and of three-dimensional growth.
The other examples of dimensionality and con-
ditions of nucleation can be readily described in
a similar manner.
Given that the exp �p=3N v3ðt50Þ4

h i
¼ 0:5

when recrystallization is half complete, it

Fig. 3 Log [ln 1/(1 – X)] plotted as a function of the
logarithm of the annealing time at various

temperatures in zone-refined aluminum containing
0.004% Cu cold rolled to 40% reduction at 0 �C.
Source: Ref 13

Table 1 Approximate recrystallization
temperatures for various metals

Metal Quality

Temperature

�C K

Lead 99.999% <0 <273
Aluminum 99.999% 75 348
Aluminum Commercial purity 275 548
Aluminum +1% Mn 400 673
Copper 99.999% 100 373
Copper Commercial purity 200–250 473–523
Copper +2% Be 250 523
Iron Pure 450 723
Molybdenum Sintered 1000 1273
Molybdenum 0.5% Ti 1400 1673
Molybdenum 10% Nb 1750 2023
Tungsten Sintered 1200 1473

Adapted from Ref 14 Fig. 4 Dependence of the characteristic time (tR) on annealing temperature (TA) for different materials and rolling
temperatures. Source: Ref 15
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can be seen that t50 is given by ð0:69=kÞ1=n,
which is equivalent to:

t50 ¼ 0:9=ðN1=4v3=4Þ (Eq 7)

under the present conditions. This relation
makes it clear that rapid recrystallization is asso-
ciated with rapid rates of nucleation and growth.
Effect of the Rates of Nucleation and

Growth on the Recrystallized Grain Size.
The rates of nucleation and growth also determine
the new grain size after recrystallization. For
example, the new grain size d is approximately
given by d � 2 v t50, which, for the case discussed
previously, works out to d � 1:8 ðv=NÞ1=4. This
agrees with the intuitive expectation that the grain
size increases somewhat slowly with v and
decreases in a similar manner with N.

Both the grain-boundary mobility and nucle-
ation rate are thermally activated processes, as
indicated previously, and can therefore be asso-
ciatedwith activation energiesQv andQN, respec-
tively. Thus, their rates can be expressed as:

v ¼ v0 expð�Qv=kT Þ (Eq 8a)

N ¼ N0 expð�QN=kT Þ (Eq 8b)

Here, the pre-exponentials v0 and N0 are con-
sidered to be temperature independent (Ref 15).
In this way, t50 can be rewritten in the

following form:

t50 ¼ 0:9= N0v0
3

� 	1=4h i
exp

QN þ 3Qv

4kT

� �
(Eq 9)

It follows that the slope of an Arrhenius plot
of t50 or tR versus 1/T, which corresponds to the
apparent activation energy for recrystallization,
QSRX, should be approximately equal to
ðQN þ 3QvÞ=4.

The effects of N, v, QN, and Qv on the recrys-
tallized grain size can be derived in a similar
manner. Thus, the aforementioned expression
for d can be expanded as follows:

d � 1:8 ðv0=N0Þ1=4 exp
QN �Qv

4 kT

� �
(Eq 10)

From this equation, it is apparent that the
final grain size is determined by a competition
between the nucleation rate and the growth rate,
where higher nucleation rates lead to finer grain
sizes and higher growth rates to coarser sizes. It
also follows that the recrystallized grain size
will be approximately temperature independent
if QN and Qv are approximately equal. Another
important outcome of this analysis involves the
effects of prior strain on N and v. Both of these
rates increase with strain, N the more rapidly.
Thus, both t50 and d decrease with the prior
strain.
It should be noted that the expressions dis-

cussed in these two sections are valid for the
ideal case of continuous, homogeneous nucle-
ation and isotropic, three-dimensional growth.
Equivalent relations can be readily derived for
the other dimensional growth conditions and
for the case of site saturation. These are not
reviewed here.
Because continuous dynamic recrystalliza-

tion (CDRX), discussed later in this article,
does not involve nucleation and growth, the
aforementioned treatment only applies to static
(SRX) and discontinuous dynamic recrystalliza-
tion (DDRX).
Effects of Strain, Strain Rate, and Temper-

ature on t50. It is important to be able to predict
and quantify the rate of static recrystallization
under industrial conditions, because of its effect
on the flow stress and therefore on the modeling
of rolling load. For this reason, it was proposed

by Sellars (Ref 17) that the effects of the preced-
ing parameters on t50 can be described as
follows:

t50 ¼ A e�p _e�q d0r expðQSRX=RT Þ (Eq 11)

Some typical values for p, q, and QSRX are
presented in Table 2 for seven steels (Ref 18).
Substituting these typical values in Eq 11, it
can be seen that the strain e has quite a signifi-
cant effect—doubling e reduces t50 by a factor
of 4. Conversely, t50 is much less sensitive to
the strain rate _e of the prior pass. Although
the dependence on prior grain size d0 is not
shown in the table, the value of r is generally
about 2, so that increasing the prior grain size
increases t50, as has already been mentioned.
During the hot rolling of austenite, and that

of most face-centered cubic metals, dynamic
recrystallization is induced after a certain criti-
cal strain. Once dynamic recrystallization is
well under way, the rate of recrystallization
after unloading becomes much more rapid,
and the parameters listed previously are no lon-
ger valid. This phenomenon is referred to as
metadynamic recrystallization (MDRX) or
postdynamic recrystallization. After large
enough prestrains, the rate of postdeformation
softening actually becomes strain independent.
As in this case, nucleation has taken place dur-
ing deformation; the behavior is largely con-
trolled by growth of the grains nucleated
during the prior deformation (and partly by
the nucleation of new grains in the strain-
hardened regions, i.e. by conventional SRX).
For this reason, the activation energy for
MDRX (� 3Qv=4 only, see Eq 8 to 10) is
always lower than for SRX [ðQN þ 3QvÞ=4].
In a similar manner, because the initial micro-
structure is now replaced by the dynamic
microstructure, which is strain-rate dependent,
the rate dependence of MDRX is approximately
double that of SRX. This relatively complex
topic is not treated here but is discussed in
greater detail in Ref 18 and 20.

Kinetics of Dynamic Recrystallization

Although not immediately apparent, it is also
possible to describe the kinetics of dynamic
recrystallization with the aid of the Avrami
relations. This is because the time variable
applicable to static conditions can be replaced
by the strain using the relation e ¼ _e t (as long

Fig. 5 Recrystallization temperatures of various metals as a function of their melting temperatures. Source: Ref 10

Table 2 t50 parameters for static
recrystallization in seven steels

Grade p q QSRX, kJ�mol�1

SS 304 1.48 0.42 207
C-Mn 2 0.34 215
HSLA 2 0.37 330
IF 2 0.37 250
IF 1.9 0.4 192
IF (B) 1.9 0.4 293
X65 2.5 0.3 390

Source: Ref 18
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as the strain rate is constant). A further modifi-
cation involves the introduction of the critical
strain, ec, for the initiation of dynamic recrys-
tallization (DRX), so that the appropriate strain
variable becomes ðe� ecÞ. (Here, ec plays the
role of the incubation time in conventional
recrystallization.) In turn, the critical strain
can be determined by the method of Poliak
and Jonas (Ref 21); however, according to
classical metallographic observations, it is
generally taken equal to 5/6 ep.
A suitable expression must now be intro-

duced to represent the flow curve expected in
the absence of dynamic recrystallization, that
is, due to dynamic recovery alone. It is shown
schematically in Fig. 6(a), where it is identified
as srecov. This curve is described by the
relation:

s ¼ s2
1 � s2

1 � s2
e

� 	
exp ð�reÞ
 �1=2

(Eq 12)

Here, se is the yield stress; the recovery satura-
tion stress,s1, is determined from the intercept
of the s�ds=de versus s2 curve, and the value
of the recovery parameter, r, from its slope (Ref
18, 19). Note that the appropriate s=e data are
only taken from the portion of the work-harden-
ing curve prior to sc, ec.
With the aid of these definitions, the soften-

ing attributable to DRX, defined with respect
to the dynamic recovery flow curve, can be
specified as follows:

X ¼ 1� exp �k2ðe� ecÞn½ � (Eq 13a)

Here, k2 is the Avrami constant applicable to
softening by DRX. Note that X refers here to
the fractional softening and not the volume frac-
tion of recrystallization employed previously.
A schematic diagram depicting the Avrami

kinetics pertaining to Fig. 6(a) is presented in
Fig. 6(b), with n � 2.5. The strong similarity
to Fig. 3 for the case of the volume fraction
recrystallized during static recrystallization is

evident. A somewhat similar analysis was
employed by Stewart et al. (Ref 22) to estimate
the volume fraction of new grains (not the
fractional softening) associated with DRX.
An approximate description of the kinetics as

well as the magnitude of the softening is the
following, which does not require knowledge
of srecov, s1, or ec. For this purpose, the peak
strain, ep, is used in place of ec. Then, the
amount of softening is defined with respect to
sp and not s1. Under these conditions, X is
given instead by:

X ¼ 1� exp �k02ðe� epÞn
0h i

(Eq 13b)

A plot of the softening depicted in Fig. 6(a) in
terms of this alternative relation is shown in
Fig. 7, from which it can be seen that the second
DRX relation can also be used to describe the
softening taking place under DRX conditions.

Mesoscale Approach for DDRX

By contrast to the Avrami phenomenological
approach, the mesoscale (or grain scale) models
take the basic physical mechanisms into account,
that is, strain hardening and dynamic recovery,
nucleation, grain-boundary migration, and the
associated softening effects. Their main advan-
tage, however, is to predict both flow stress and
microstructure changes (dislocation densities,
crystallite or grain sizes) during hot deformation.
In this section, the basic framework of the meso-
scale approach for DDRX is first presented,
including the three basic equations for:

� Grain size changes
� Strain hardening and dynamic recovery
� Nucleation

The model is then illustrated by some numerical
predictions. Finally, a simplified analysis is
given for the steady state, in the case of the

power-law strain-hardening equation. Closed-
form equations for the flow stress and the aver-
age recrystallized grain size are derived, which
allow the Derby relationship and the Jonas and
Sakai criterion to be discussed.

Geometrical Framework

The material is made of a set of N (number
per unit volume) interacting crystals where,
more specifically, each grain is considered as
an inclusion embedded in a matrix, the proper-
ties of which will be obtained by averaging that
of all the grains in the aggregate. Such an
approach is close to the self-consistent models
commonly used in the continuum mechanics
of heterogeneous materials. It precludes topo-
logical effects, such as necklacing, which are
expected, however, to be second-order effects
and do not even take place during the steady
state. As shown as follows, this average-field
approach leads to a simple formulation of
the model, leading, in most cases, to quasi-
analytical predictions. Three-dimensional
aggregates of equiaxed grains are often repre-
sented by stacks of tetrakaidecahedra (or
truncated octahedra), which can fill space with-
out voids or overlapping. However, calculations
are much easier when ellipsoids or spheroids
are used. Even in that case, when normal
grain-boundary migration takes place (i.e., the
normal component of the local grain-boundary
velocity remains constant over the whole area),
the ellipsoidal shape is not conserved, which
leads us to consider merely spherical grains
(Ref 23). This approximation is likely to hold
for DDRX, since grains generally disappear
before their shapes become significantly flat-
tened or elongated. Then, each grain will be
specified at any time by only two parameters,
for example, its diameter, Di, and average dislo-
cation density, ri, while �r will denote the aver-
age dislocation density of the material.

Fig. 6 (a) Stress-strain diagram of dynamic recovery and dynamic recrystallization (DRX) flow curves. The critical
strain, ec, and peak strain, ep, are identified. The amount of softening attributable to DRX is defined

as srecov � s. The fractional softening X is then given by the following expression:
X ¼ srecov � sð Þ= srecov � sð Þmax ¼ srecov � sð Þ= s1 � ssð Þ. (b) Avrami plot of the schematic softening data of (a)
prepared using ec and srecov � s

Fig. 7 Avrami plot of the softening data of Fig. 6(a)
prepared using ep and sp � s
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Instantaneous homogenization of the disloca-
tion densities is assumed to take place within
the grains.

Basic Equations

The evolution of the aforementioned dynami-
cal system of interacting grains is ruled by three
types of equation, pertaining to grain-boundary
migration, dislocation density changes, and grain
nucleation, respectively (Ref 24, 25 and 34).
Grain Growth and Shrinkage. The disloca-

tion density difference between a grain and the
surrounding matrix is assumed to be the pre-
dominant driving force for dynamic migration
of grain boundaries (Fig. 8). Hence:

_Di ¼ dDi

d t
¼ 2Mt ð�r� riÞ (Eq 14a)

or

dDi

d e
¼ 2Mt

_e
ð�r� riÞ (Eq 14b)

for each grain, where the strain rate, _e, is con-
sidered as identical for all the grains (Taylor
assumption). M denotes the grain-boundary
mobility [m4/(J�s)], and t ¼ mb2 (J/m) is the
line energy of the dislocations, m is the shear
modulus, and b is the Burgers vector. The
driving energy for the grain boundary is
DG ¼ tð�r� riÞ, and the factor 2 means that
two opposite parts of a spherical grain bound-
ary move into opposite directions. Note that
the product Mt has the simple dimension of a
material flux (m3/s). In the following, it will
be convenient to use the micrometer as unit
length, and therefore mm/mm3 for dislocation
densities and mm3/s for Mt. Equations 14(a)
and (b) mean that a grain either grows or
shrinks according to whether its dislocation
density is less or greater than the average dislo-
cation density �r of the material. Since ri mostly
increases monotonically with time, the grain
reaches its maximum size when ri ¼ �r.
Volume Conservation. The time derivative

of the overall volume V ¼PD3
i is pro-

portional to
P

D2
i
_Di, whence, according to

Eq 14(a) and (b):

_V / 2Mt �r
X

D2
i �

X
riD

2
i

� �
(Eq 15)

Volume conservation therefore requires �r to be
defined as:

�r ¼
P

riD
2
iP

D2
i

(Eq 16)

When the aforementioned summation is
restricted to the first neighbors of the grain under
consideration, Eq 16 can be given a physical
interpretation: It merely means that grain inter-
actions with their neighbors are proportional
to their surfaces rather than their volumes.
Strain Hardening and Dynamic Recovery.

The dislocation density change within a grain
can be described by any equation accounting
for the effects of strain hardening and dynamic
recovery. Two of them are used as follows,
namely the power-law equation:

dr
de
¼ Hnþ1

rn
(Eq 17)

where n� 0, andH has the dimensions of disloca-
tion density (mm�2), since it leads to closed-form
expressions for the steady state. In the absence
of DRX (low strains), it gives by integration:

r ¼ ðnþ 1Þ1=ðnþ1ÞH eþ rnþ10

ðnþ 1ÞHnþ1

� �1=ðnþ1Þ
(Eq 18)

where r0 is the initial value of the dislocation
density. Using the classical relationship
s ¼ amb

ffiffiffi
r
p

(a � 1) relating the dislocation
density to the flow stress, this yields:

s ¼ K ðeþ e1Þn (Eq 19)

where K and e1 are constants, and
n ¼ 1=ð2nþ 2Þ, which is the well-known
power-law strain-hardening (Swift) equation.
Note that the dislocation density and the flow
stress grow indefinitely at large strains.
The Yoshie-Laasraoui-Jonas (YLJ) equation

is (Ref 26):

dr
de
¼ h� rr (Eq 20)

where the two terms on the right side represent
strain hardening (h) and dynamic recovery (rr).
Note that h has the dimension of a dislocation
density, whereas r is dimensionless. Integration
of Eq 20 gives:

r ¼ r1 � ðr1 � r0Þ expð�r eÞ (Eq 21)

where r0 is again the initial dislocation density.
At large strains, r tends to the asymptotic value
r1 ¼ h=r. The associated flow stress can be
written in the form:

s0 ¼ s2
1 � ðs2

1 � s2
eÞ exp ð�reÞ


 �1=2
(Eq 22)

where se and s1 are the yield stress and
steady-state stress, respectively. Equations
similar to Eq 20, for example, proposed by
Estrin and Mecking (Ref 27) or Stüwe and
Hertel (Ref 28), can be employed as well.
In contrast to the power law, they lead to a
steady-state flow stress at large strains. How-
ever, they are unable to model the flow soften-
ing usually associated with DRX.
Effect of Grain-Boundary Migration on

the Dislocation Density. A first cause of soft-
ening during hot working can be expected to
arise from the annihilation of dislocations
(belonging to subgrain boundaries or not) by
moving grain boundaries. Such an effect will
be referred to as boundary-migration-induced
softening (BMIS). In the mesoscale DDRX
model, during grain growth the volume incre-
ment during time dt is almost free of disloca-
tions (density r0), as shown in Fig. 9. Under
the assumption of instantaneous homogeniza-
tion, a simple geometric derivation leads to
the following BMIS term:

dri
de

� �
BMIS

¼ �3ri � r0
Di

dDi

de
(Eq 23)

for a grain of current sizeDi and dislocation den-
sity ri, with dDi=dt > 0, that is, ri < �r accord-
ing to Eq 14 When a grain shrinks, however, its

Fig. 8 Schematic representation of a grain in the aggregate, which grows when (a) ri � �r and shrinks when (b) ri > �r

Fig. 9 Schematic representation of the boundary-
migration-induced softening mechanism

associated with grain growth during discontinuous
dynamic recrystallization
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dislocation density is not affected by boundary
migration, since the volume swept by the bound-
ary is simultaneously removed from the grain
(BMIS is then implicitly accounted for in �r).
Finally, the dislocation density changes in a

grain of the aggregate are given by:

dri
de
¼ fiðriÞ � 3

ri � r0
Di

dDi

de
if ri < �r (Eq 24a)

dri
de
¼ fiðriÞ if ri > �r (Eq 24b)

where fiðriÞ stands for Eq 17 or 20 or a similar
relationship. Parameters involved in fi (i.e., Hi,
ni, hi, ri) may depend on the grain under consid-
eration. In particular, in the YLJ formulation,
variations of the strain-hardening parameter
h are expected due to the different crystallo-
graphic orientations of the grain in the aggre-
gate. On the other hand, possible variations of
r can be discarded to a first approximation.
Nucleation. Physical mechanisms for the

nucleation of new grains during hot deforma-
tion (e.g., grain-boundary bulging, subgrain
rotation, thermal twinning) are not yet well
established and are likely to depend on the
material and accumulated strain. In the meso-
scale DDRX model, a general equation for the
number of new grains generated per unit time
and unit volume is introduced:

dNþ

dt
¼ kN �rp

X
D2

i (Eq 25a)

or

dNþ

de
¼ kN �rp

_e

X
D2

i (Eq 25b)

where kN (mm2p�2/s) is a nucleation parameter.
Here, dNþ=dt is assumed to be proportional to
the total grain-boundary area in the aggregate,
since DRX new grains are generally observed
to nucleate at grain boundaries, and _n ¼ kN�rp

represents the classical nucleation rate per unit
area (the exponent p is estimated subsequently).
Volume nucleation of the new grains could be
alternatively accounted for by a cubic depen-
dence with respect to the Di. The Nþ increases
monotonically during straining; in the numerical
version of the model, whenever it reaches the
critical value 1, a nucleus of size D = 0 and dislo-
cation density r0 is added to the set of grains, and
Nþ is reset to zero.
Strain Rate and Temperature Dependence

of the Parameters. The grain-boundary mobil-
ity M and nucleation parameter kN are assumed
to be rate-insensitive increasing functions of
temperature, while the various strain-hardening
and dynamic recovery parameters (H, n, h, r)
are likely to be both temperature and strain-rate
dependent. Power-law and Arrhenius relation-
ships have sometimes been used (Ref 24, 29):

M ¼M0 exp �QM

RT

� �
(Eq 26a)

kN ¼ kN0 exp �QN

RT

� �
(Eq 26b)

h ¼ h0
_e
_e0

� �mh

exp
mhQh

RT

� �
(Eq 27a)

r ¼ r0
_e
_e0

� ��mr

exp �mrQr

RT

� �
(Eq 27b)

where M0, kN0, h0, and r0 are constants, usually
_e0 ¼ 1s�1, R is the gas constant, and mh (>0)
and mr (>0) are the strain-rate sensitivities of
h and r, respectively; similarly, QM, QN, Qh,
and Qr denote the apparent activation energies
of M, kN, h, and r. Equations 26(a) and (b) indi-
cate that M and kN both increase with tempera-
ture. On the other hand, Eq 27(a) and (b) show
that h increases with strain rate and decays with
increasing temperature, whereas the opposite
holds for r. A set of values of h, r, and
their strain-rate and temperature dependences
are given in Table 3 for various materials.
Combining Eq 27 with Eq 21 gives:

s1 ¼ amb

ffiffiffi
h

r

r

¼ amb

ffiffiffiffiffi
h0

r0

r
_e
_e0

� �ðmhþmrÞ=2
exp

mhQh þmrQr

2RT

� �
(Eq 28)

This means that the steady-state flow stress pre-
dicted by the YLJ equation (i.e., without DRX)
exhibits, in turn, power-law and Arrhenius-type
dependences, which justifies the aforementioned
choices for h and r. Similar assumptions could
be proposed for the strain-rate and temperature
dependence of H and n in the power-law consti-
tutive Eq 17. Note that the model parameters can
also be changed by the presence of solutes and
second-phase precipitates in a given alloy.
The strain-hardening and dynamic recovery

parameters (H, n, h, r) can be readily deter-
mined from the experimental stress-strain rela-
tionships for each deformation temperature
and strain rate. However, only the portion of
the work-hardening curve prior to the onset of

DRX should be used (i.e., e < ec). Direct fitting
procedures with Eq 19 or 22 are very efficient.
Alternatively, special plots can be used to
reduce the problem to a simple linear
regression.

Some Numerical Predictions

To obtain numerical results, the equations of
the previous section can be applied step by step
as follows:

1. Choose a suitable stress-strain equation
and determine the relevant parameters, for
example, H, n, or h, r.

2. Estimate M and kN. (For M, literature data
are available; however, a trial-and-error
method shall be used at least for kN.)

3. Define a set of grains Di (i = N) of average
size D0.

4. Then, for each time (or strain) increment:
a. Compute new Di’s (Eq 14a or b). If Di is

less than some critical value close to zero,
remove the grain from the set.

b. Compute new ri’s (Eq 24a and b).
c. Compute new N+. If N+ > 1, add a new

grain to the set.
d. Compute new �r (Eq 16), s, and �D.
e. Compute the recrystallized fraction,

defined as the ratio of volume of new
grains/total volume.

Figure 10(a) shows stress-strain curves pre-
dicted by the DDRX mesoscale model using
material parameters for a high-purity 304L stain-
less steel deformed at 1050 �C and 10�2 s�1.
The strain-hardening parameters hi (Eq 20) and
initial grain sizes D0

i were uniformly distributed
within intervals h0 þ� Dh and D0 þ� DD, with
Dh = 0.05 h0 and DD = 0.3 D0, respectively.
The average grain size evolutions are displayed
in Fig.10(b), which shows that grain size
increase or moderate decrease is associated with
oscillating stress-strain curves, whereas single-
peak flow curves are predicted when grain size
is strongly reduced. This is in good agreement

Table 3 Strain-hardening and dynamic recovery parameters of various materials

Material

Range of validity Parameters

Temperature �C
Strain

rate, s�1 h0, mm
�2 mh

Qh, kJ�
mol�1 r0 mr Qr, kJ�mol�1 Reference

Aluminum
alloy 6060

350–500 10�2–3 35.89 0.15 90 2497 0.15 210 30

Stainless
steel 304(a)

850–1100 10�3–10�1 1.03 0.27 200 . . . 0 r increases
from 2
(850 �C) to 7
(1090 �C)

31

Stainless steel
304L(b)

850–1150 10�4–10�1 0.48 0.4 280(c) 45 0.066 280(c) 32

Stainless steel
304H(d)

850–1150 10�4–10�1 4.65 0.26 280(c) 110 0.096 280(c) 32

Pure Ni 800–1000 0.03–0.1 2.42 0.14 335 3–10 �0 r increases with
temperature �0

33

Ni-1Nb 800–1000 0.03–0.1 10.85 0.14 335 �6 �0 r increases with
temperature �0

33

(a) High purity, < 5 � 10�6 C. (b) Low carbon, <0.03C. (c) Prescribed value. (d) High carbon, <0.10C. Note: When mr = 0 it is not possible to
estimate Qr from Eq 27b so behavior of r is given.
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with experimental data and is rationalized by the
Jonas and Sakai criterion as follows. Finally,
Fig.10(c) illustrates the strain dependence of
the fraction recrystallized, which can be defined
as the volume fraction of grains that were
not present at the onset of straining. It is worth-
while to note, however, that it is not equivalent
to its counterpart in static recrystallization, since
here, recrystallized grains can contain a wide
range of dislocation densities, according to
their specific strain. Figure 10(c) shows clearly

that increasing the initial grain size decreases
the rate of DDRX, which is meaningful since
nucleation has been assumed to take place at
grain boundaries.

Simplified Analysis for the Steady State

The previous numerical results show that the
system of equations used to model DDRX natu-
rally leads to steady-state behavior,where the aver-
age flow stress, s, and average grain size, �D, no
longer depend on time (or strain). Furthermore,
assuming that all the grains of the aggregate have
the same behavior, that is, their constitutive para-
meters h and r are the same, their histories
described by the variablesD(e) andr(e) are identi-
cal (here, e is the specific strain of the grain under
consideration). The ergodic assumption can then
be applied to the steady-state system. This
means that the investigation of the whole set of
grains at any given time is tantamount to the
observation of any single grain along its lifetime,
from its nucleation (e = 0) to its disappearance (e
= eend). Accordingly, summations over the grains
can be replaced by integrals with respect to time
or strain. For example, the average grain size can
be written:

�D ¼
P

Di

N
¼ 1

eend

ð eend

0

DðeÞde (Eq 29)

This approach is illustrated using the power law
(Eq 17) without the BMIS term, since, in this
case, closed-form analytical predictions can be
obtained.
Flow stress and average grain size with

r0 ¼ 0 (Eq 18) can be written:

r ¼ ðnþ 1Þ1=ðnþ1ÞH e1=ðnþ1Þ (Eq 30)

The combination of Eq 14(b) and 30 gives:

D ¼ 2Mt
_e

H e
�r
H
� ðnþ 1Þðnþ2Þ=ðnþ1Þ

nþ 2
e1=ðnþ1Þ

" #

(Eq 31)

assuming that the initial grain (nucleus) size at
e = 0 is zero. The aforementioned relationship
shows that D also vanishes for:

eend ¼ ðnþ 2Þnþ1
ðnþ 1Þnþ2

�r
H

� �nþ1
(Eq 32)

(end of grain life) and reaches its maximum
value:

Dmax ¼ 2Mt
_e

H
1

ðnþ 1Þðnþ 2Þ
�r
H

� �nþ2
(Eq 33)

for

emax ¼ 1

nþ 1

�r
H

� �nþ1
(Eq 34)

The strain dependences of r and D are illu-
strated in Fig. 11 in the case of 304L steel
deformed at 1050 �C and two different strain
rates. Numerical values of the parameters are
given in Table 4.
In its integral form, Eq 25(b) becomes:

kN�rp

_e

ð eend

0

D2de ¼ 1 (Eq 35)

which means that exactly one new grain is
nucleated on average over the life of any grain

Fig. 10 (a) Stress-strain curves showing the numerical
response of the system. The initial grain size

varies between 10 and 150 mm, and the curves from the
multiple peak behavior to the single-peak one. The stress
tends to a unique steady-state value. Material parameters
used here are Mt = 0.278 mm3 � s�1, kN = 5.8 � 10�7

mm4 � s�1, p = 3, h0 = 80.9 mm�2, and r = 5 (refer to
the Yoshie-Laasraoui-Jonas equation). (b) Strain
dependence of the average grain size. The initial grain
size varies between 10 and 150 mm. The average grain
size tends to a unique steady-state value. Same
parameters as in (a). (c) Strain dependence of the
fraction recrystallized. The initial grain size varies
between 50 and 150 mm. Same parameters as in (a)

Fig. 11 Strain dependence of the grain size D (solid lines) and the dislocation density r (broken lines) over the
lifetime of a grain during steady-state discontinuous dynamic recrystallization. Data pertaining to 304

steel were used at 1050 �C and two strain rates (Table 4).

Models of Recrystallization / 227

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158296
/knovel2/view_hotlink.jsp?hotlink_id=440158297
/knovel2/view_hotlink.jsp?hotlink_id=440158298
/knovel2/view_hotlink.jsp?hotlink_id=440158299


during steady state. Substituting Eq 31 into
Eq 35 and solving for �r gives:

�r ¼ C1

ðHnþ1 _eÞ3
M2t2kN

" # 1
pþ3nþ5

(Eq 36a)

where

C1 ¼ 3/8 ð3nþ 4Þð3nþ 5Þ ðnþ 1Þ3ðnþ2Þ
ðnþ 2Þ3ðnþ1Þ

(Eq 36b)

from which the steady-state flow stress
ss ¼ amb

ffiffiffi
�r
p

is readily derived as a function
of strain rate and the material parameters H, n,
M, kN, and p (which can themselves be both
strain-rate and temperature dependent):

ss ¼ amb C1

Hnþ1 _eð Þ3
M2t2kN

" # 1
2ðpþ3nþ5Þ

(Eq 37)

The average grain size can now be computed
from Eq 29:

�D ¼ C2

Mtð Þpþnþ1
Hnþ1 _eð Þp�1knþ2N

" # 1
pþ3nþ5

(Eq 38a)

where

C2 ¼ 1

2nþ 3

ðnþ 2Þnþ1
ðnþ 1Þnþ2 C

ðnþ2Þ=ðpþ3nþ5Þ
1 (Eq 38b)

From the previous expressions for ss and �D,
which are both easily measurable quantities,
closed-form formulae can be derived for the
parameters Mt (where M is the grain-boundary
mobility) and kN (nucleation rate), which, in
contrast, are quite difficult to determine
directly. Indeed, solving Eq 37 and 38(a) for
Mt and kN gives:

Mt ¼ ð2nþ 3Þ ðnþ 1Þnþ2
ðnþ 2Þnþ1 Hnþ1 _e

�D

ðss=ambÞ2ðnþ2Þ
(Eq 39a)

kN ¼ 3/8
ð3nþ 4Þ ð3nþ 5Þ
ð2nþ 3Þ2

ðnþ 1Þnþ2
ðnþ 2Þnþ1

Hnþ1 _e

ðss=ambÞ2ðpþnþ1Þ �D2

(Eq 39b)

where the parameters H and n accounting for
strain hardening and dynamic recovery can also
be measured from the transient part of the
stress-strain curves. In the special case where
n = 0 (parabolic hardening) and assuming
p = 3 (see previous), quite simple expressions
are found:

Mt ¼ 3/2H _e
�D

ðss=ambÞ4
(Eq 40a)

kN ¼ 5/12
H _e

ðss=ambÞ8 �D2
(Eq 40b)

The Derby Relationship. It is quite remark-
able that Eq 37 and 38(a) can be solved for
Hnþ1 _e, thus providing a simple relationship
between �D and ss:

ss ¼ amb
Mt
kN

Cn
�D3

� �1=2ðp�1Þ
(Eq 41a)

where

Cn ¼ 3/8
ð3nþ 4Þð3nþ 5Þ
ð2nþ 3Þ3 (Eq 41b)

which can be written in the form:

ss ¼ kD
�Da

(Eq 41c)

where the exponent a ¼ 3=½2ðp� 1Þ�.
The aforementioned inverse power-law cor-

relation has been reported a long time ago from
a number of experimental data pertaining to
various materials (undergoing both DDRX and
CDRX) by Derby (Ref 35). The empirical
exponent a of �D is generally observed to range
between 0.5 and 1, with the majority of mea-
surements around 0.75. This indicates that the
nucleation exponent p should be chosen close
to 3, which gives a = 3/4. Furthermore, the
empirical Derby relationship seems to be
almost independent of strain rate and tempera-
ture, provided the flow stress is normalized by
m. As a consequence, kD in Eq 41(c) is likely
to be independent of (or weakly dependent on)
_e and T. In particular, the apparent activation
energies of M and kN are expected to be similar.
Strain Rate and Temperature Dependence

of the Steady-State Flow Stress. The strain-
rate sensitivity of the steady-state flow stress,
defined as m ¼ @ lnss=@ ln _�e, can be derived
from Eq 41(a), assuming to a first approxima-
tion that n and therefore Cn are independent of
_e (as well as Mt and kN; compare with Eq 26
and 27):

m ¼ 3½ðnþ 1ÞmH þ 1�
2ðpþ 3nþ 5Þ (Eq 42)

where mH ¼ @ lnH=@ ln _�e is the strain-rate
sensitivity of the hardening parameter H. For
n = 0 (parabolic hardening, n = 0.5), n = 4
(n = 0.1), and p = 3, this leads to
m ¼ ð3/16Þð1þmHÞ and m ¼ ð3/40Þð1þ 5mHÞ,
respectively, which indicates that the weight of
mH in the overall strain-rate sensitivity increases
with n, that is, when strain hardening weakens.

In the same way, the apparent activation
energy of the flow stress, defined as
Q ¼ ðR=mÞ ½@ lnss=@ð1=T Þ�, is derived in turn
from Eq 41(a):

Q ¼ 3ðnþ 1ÞmHQH þ 2QM þQN

3½ðnþ 1ÞmH þ 1� (Eq 43)

where QH ¼ ðR=mHÞ ½@ lnH=@ð1=T Þ�, and R
is the gas constant. According to this equation,
the overall activation energy is a combination
of the activation energies pertaining to strain
hardening (and dynamic recovery), grain-
boundary migration, and grain nucleation.
Whenever QH � QM � QN � Qa (the activation
energy of diffusion), Eq 43 reduces to Q � Qa.

The Sakai and Jonas Criterion

In the transient stage of DDRX, the flow
curves exhibit a transition from a single-peak
behavior at large values of the Zener-Hollomon
parameter Z ¼ _e expðQ=RT Þ to an oscillatory
behavior when Z is low. Sakai and Jonas (Ref
36) proposed a criterion involving the initial
grain size D0 and the steady-state grain size �D.
If DDRX leads to grain refinement (more pre-
cisely, if D0 � 2 �D), the initial microstructure
contains few nucleation sites (on the grain
boundaries). The recrystallization process is
associated with necklace formation until new
nuclei appear, which prevents synchronization.
The transient flow curve then exhibits one single
peak. By contrast, if the average grain size
increases (D0 � 2 �D), the presence of a large
number of nucleation sites allows synchronized
recrystallization. The transient flow curve is then
characterized by a series of oscillations. The
mesoscale DDRX model leads to a physical
background to the Sakai and Jonas relationship.
The average grain-boundary velocity can first

be estimated from the steady-state model:

�vGB ¼ Dmax

tend
¼ Dmax _e

eend
(Eq 44)

Using again the simple power-law model for
strain hardening, the combination of Eq 32
and 33 gives:

�vGB ¼ 2Mt
ðnþ 1Þnþ1
ðnþ 2Þnþ2

�r (Eq 45)

On the other hand, the nucleation rate per unit
time and area is _n ¼ kN�r3, assuming a nucle-
ation exponent p = 3 (see previous text). The
ratio vGB= _n (which has dimensions of a volume)
can be used to estimate the influence of grain-
boundary velocity with respect to nucleation
rate. Deriving �r as a function of �D from
Eq 41(a) leads to:

�vGB
_n
¼ C0n �D3 (Eq 46a)

where

C0n ¼
16

3

ðnþ 1Þnþ1
ðnþ 2Þnþ2

ð2nþ 3Þ3
ð3nþ 4Þð3nþ 5Þ (Eq 46b)

The factor C0n decreases from 1.800 for n = 0 to
1.748 for n = 4 and will therefore be taken

Table 4 Parameters used in Fig. 11

Strain-hardening and

recovery parameters

Strain rate ( _e), s�1

10�4 10�1

H, mm�2 28.7 162.8
n, unitless 0.40 1.85
Mt, mm3/s 0.011 0.232
r, mm�2 8.29 151.81

Source: Ref 34
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equal to 2 for the sake of simplicity. D0 � 2 �D
is then equivalent to:

�vGB
_n
� D3

0

4
(Eq 47a)

for grain refinement to occur (single-peak flow
curve) and conversely:

�vGB
_n

>
D3

0

4
(Eq 47b)

for grain coarsening (multiple-peak flow curve).

Mesoscale Approach for CDRX

Similar to DDRX, the following mesoscale
(or grain scale) model for CDRX allows to take
into account the basic physical mechanisms and
to predict microstructural evolutions occurring
during hot deformation.
The basic equations pertaining to DDRX

must be modified to deal with CDRX, since it
is relevant in that case to focus on subgrains
and grain boundaries instead of grains (Ref
29). The main features of the CDRX mesoscale
model are first described, after which it is illu-
strated by some examples.
Description of the Model. Figure 12 shows

a schematic representation of a CDRX micro-
structure, made of an aggregate of crystallites.
Each of them is delimited partly by (high-angle)
grain boundaries (HAB) and partly by (low-angle)
subgrain boundaries (LAB), as commonly
observed at large strains in high-stacking-fault-
energy metals (e.g., aluminum alloys, ferritic
steels). The model involves three internal vari-
ables: the average dislocation density ri inside
the crystallites, their average diameter D (scalar
parameters), and the distribution function j(y)
of the subgrain-boundary misorientations. The
latter is defined as follows:j(y)dy is the area frac-
tion of LAB, with misorientations ranging
between y and y + dy. Here, y denotes the mini-
mum angle of misorientation between two adja-
cent crystals. It ranges between y0, the angle at
which a LAB can be considered to be generated,
and yc � 15�, the angle beyond which the

boundary can no longer be considered as an array
of dislocations and therefore transforms into a
HAB. The area fraction of LAB is then given by:

fLAB ¼
ð yc

y0
jðyÞ dy (Eq 48)

whence, obviously, fHAB ¼ 1� fLAB.
Furthermore, the dislocation length per unit

area in a LAB of misorientation angle y is:

L ¼ n y=b (Eq 49)

where n = 1, 2, or 3, according to whether the
boundary is made of an array of 1, 2, or 3 sets
of parallel dislocations, and b is the Burgers
vector length. Thus, the density of dislocations
in the LABs is:

rLAB ¼
ð yc

y0
LS jðyÞ dy (Eq 50)

where S is the total area of boundaries per unit
volume.
Assuming the average crystallite size D

equals the mean intercept length (accounting
for all boundaries), the stereological relation-
ship D ¼ 2=S is used in the following (Ref 37).

The flow chart in Fig. 13 summarizes the
behavior of dislocations during CDRX. The

main part dr�ð1Þi of the dislocation density
drþi generated during a strain increment de is
subject to dynamic recovery. A fraction a of
dr�ð1Þi is consumed by the creation of new sub-
grain boundaries (with misorientation angle y0),
while the remaining fraction 1 � a is absorbed
by pre-existent LAB or HAB, in direct ratio to
their respective area fractions fLAB and fHAB.
In turn, the absorption of dislocations by sub-
grain boundaries induces, on average, a pro-
gressive increase in their misorientation
angles, as indicated by the gray arrows in the
diagram. Whenever y reaches the critical value
yc, the LAB continuously transforms into HAB,
which then merely acts as a sink for disloca-
tions. Finally, grain-boundary migration leads
to the elimination of an additional part dr�ð2Þi

of the dislocations and a boundary area dS�

(black arrows).
Basic Equations. Similar to DDRX (Eq 20

and 24a), the evolution of the dislocation den-
sity ri inside the crystallites can be assumed
to take the form of a modified Laasraoui-Jonas
equation:

dri
de
¼ h� rri � ri

dV

de
(Eq 51)

where, as usual, h and r denote the strain-hard-
ening and dynamic recovery parameters, which

Fig. 12 Schematic representation of a continuous
dynamic recrystallization microstructure

made up of an aggregate of crystallites. High- and low-
angle grain boundaries are represented with thick and
fine lines, respectively.

Fig. 13 Flow chart schematically illustrating the behavior of dislocations produced by strain hardening during
continuous dynamic recrystallization (hatched arrows), the continuous increase of low-angle boundary

(LAB) misorientations (gray arrows), and the absorption of dislocations and boundaries by high-angle grain
boundaries (HABs, black arrows)
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are generally dependent on strain rate and tem-
perature (Eq 27a and b), and dV is the volume
swept by mobile boundaries during the strain
increment de. The last term on the right side
of Eq 51 is associated with BMIS, already
introduced for DDRX. Assuming for the sake
of simplicity that boundary migration is
restricted to HAB, it is easy to find:

dV

de
¼ 2 fHAB vm

D _e
(Eq 52)

where vm is the rate of grain-boundary migra-
tion, which is likely to depend on temperature.
Simple geometric considerations lead to a sec-
ond basic equation:

dy
de
¼ b

2n
ð1� aÞ rri D (Eq 53)

The change in the total area of boundaries per
unit volume is dS ¼ dSþ � dS�, where dSþ is
the area of LAB generated during the strain
increment de, and dS� ¼ S dV is the area anni-
hilated by the movement of HAB. Therefore:

dSþ

de
¼ b

ny0
a rri (Eq 54a)

and

dS�

de
¼ fHAB S

2 vm
_e

(Eq 54b)

Finally, the evolution of the distribution func-
tion j(y) is obtained using a first-order series
expansion in de in the form (Ref 29):

jðyþ dy; eþ deÞ ¼ 1þ 1

D

dD

de
� dV

� �
jðy; eÞ

(Eq 55)

The material flow stress is then derived from
the aforementioned microstructural parameters.

It depends primarily on the dislocation density
ri inside the crystallites. However, an additional
term involving the dislocation density rLAB
within the subgrain boundaries is usually intro-
duced, leading to:

s ¼ amb A1
ffiffiffiffi
ri
p þ A2

ffiffiffiffiffiffiffiffiffiffi
rLAB
p� 	

(Eq 56)

where A1 � 1 and A2 << A1.
Some Predictions of the CDRX Mesoscale

Model. To obtain numerical results, the equa-
tions of the previous section can be applied step
by step as follows:

1. Choose a suitable stress-strain equation and
determine the relevant parameters, for exam-
ple, h, r for the Laasraoui-Jonas relationship.

2. Estimate the average grain-boundary migra-
tion rate vm using literature data and/or a
trial-and-error method.

3. Choose initial D, ri, and jðyÞ (e.g.,
jðyÞ ¼ 0 for all y if no LABs are present
in the initial state). Choose a < 1 by
trial and error. (Tests have shown that
a < 0.1.)

4. Then, for each time (or strain) increment:
a. Compute new S (Eq 54a, b), D ¼ 2=S,

fLAB (Eq 48), and fHAB.
b. Compute new ri (Eq 51, 52).
c. Compute new jðyÞ (Eq 55) and rLAB

(Eq 50).
d. Finally, compute s (Eq 56).

Figure 14(a) shows stress-strain curves
obtained from the aforementioned set of equa-
tions, using physical parameters pertaining to
AA1200-grade aluminum. Two variants of Eq
56 were used here, namely A1 = 1, A2 = 0 (solid
lines) and A1 = 0.9, A2 = 0.1 (broken lines).
The strain dependence of the crystallite size is
illustrated in Fig. 14(b) at 460 �C and 0.01
s�1 for various initial grain sizes. Comparison
of these two figures with Fig. 10(a) and (b)

shows that CDRX takes place much more
slowly than DDRX. In particular, a significantly
larger strain is required to reach the steady
state. Furthermore, no oscillations of the flow
stress are visible, and this holds whatever the
straining conditions, in agreement with experi-
mental data. By contrast, commonly observed
flow softening is not correctly reproduced,
which may be due to the fact that texture
changes are not accounted for in the model.
With the conditions that the total area of

boundaries per unit volume S and the disloca-
tion density inside the crystallites ri remain
constant, the mesoscale CDRX model leads to
analytical expressions for the steady-state flow
stress and microstructural parameters (Ref 29).
In particular, it predicts a decreasing exponen-
tial form for the distribution function of the
subgrain-boundary misorientations:

jðyÞ ¼ jðy0Þ exp �jðy0Þ ðy� y0Þ½ � (Eq 57a)

where

jðy0Þ ¼ a
ð1� aÞ y0 (Eq 57b)
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Crystal-Plasticity Fundamentals
Henry R. Piehler, Carnegie Mellon University

THE PURPOSE of this article is to enable
the reader to understand through examples the
fundamentals of crystal plasticity. The rich
historical development of crystal plasticity is
traced in some detail to enable the reader to
appreciate and critically analyze more sophisti-
cated recent approaches to crystal-plasticity
modeling. While most of the examples involve
cubic metals deforming by rate-insensitive plastic
flow, the concepts outlined here can be
generalized to other crystal structures and loading
conditions as well.

Schmid’s Law

Crystal plasticity has as its origin Schmid’s
law, which states that crystallographic slip is
initiated when a critical resolved shear stress
on a slip plane in a slip direction is reached.
As shown in Fig. 1, crystallographic slip initiates
in uniaxial tension when the resolved shear stress

on the slip plane in the slip direction reaches a
critical value k (Ref 1). This critical resolved
shear stress criterion can be expressed as:

tns ¼ s cos l cosf ¼ k (Eq 1)

where tns is the shear stress on the slip plane,
with normal n in the slip direction s; s is the
applied uniaxial stress; cos l is the cosine of
the angle between the tensile axis and the slip
direction; cosj is the cosine of the angle between
the tensile axis and the slip plane normal; and k
is the critical resolved shear stress. If l̂, ŝ, and n̂
are unit vectors along the tensile axis l, the slip
direction s, and the slip plane normal n, cos l
and cos f can be found from the dot products
l̂ � ŝ and l̂ � n̂.
For cubic metals, it is convenient to express

the unit vectors l̂, ŝ, and n̂ in terms of the unit
vectors î1, î2, and î3 along the [100], [010], and
[001] crystallographic axes, respectively. For
example, if a uniaxial stress is applied in the
[001] direction of a face-centered cubic (fcc)
single crystal, slip will occur on the (111) plane
in the ½0�11� direction when the normal stress s
reaches k/cos l cos f (Eq 1). For slip to occur
on this (111)½0�11� slip system in response to a
uniaxial normal stress applied along the [001]
direction:

l̂ ¼ î3; n̂ ¼ 1ffiffiffi
3
p ½1̂1 þ î2 þ 1̂3�; and ŝ ¼ 1ffiffiffi

2
p ½�î2 þ î3�

Performing the dot products l̂ � ŝ and l̂ � n̂
yields:

s½001� ¼
ffiffiffi
6
p

k ¼ 2:45 k

It should be noted that the yield stress must be
at least 2 times the critical resolved shear stress,
the minimum value achievable when both the
slip plane normal and the slip direction are ori-
ented at 45� to the uniaxial stress axis. As seen
from Eq 1 and indicated in Table 1, Schmid’s
law is identical for fcc metals deforming on
{111}<110> systems and body-centered cubic
metals deforming on {110}<111> systems;
only the identity of f and l are interchanged.

One of the earliest crystal-plasticity calcula-
tions was the determination by Sachs (Ref 2)
of the uniaxial yield stress of an isotropic fcc

metal in terms of the critical resolved shear
stress k. Sachs’ calculation was an average over
the stereographic triangle of the uniaxial stresses
necessary to initiate slip on the most highly
stressed {111}<110> slip system(s). This isos-
tress model predicted that the uniaxial yield stress
of an isotropic fcc metal should equal 2.22k. It is
also noteworthy that the single-crystal yield stress
in the [111] direction is equal to:

1:5
ffiffiffi
6
p

k

50% higher than the isostress yield stress for
the [001] orientation calculated earlier and
65% above the Sachs average. It is this depen-
dence of the single-crystal yield stress on crys-
tallographic orientation that provides the basis
for texture hardening (Ref 3).

Generalized Schmid’s Law

Schmid’s law for the response of crystals to a
uniaxial normal stress can be generalized to three
dimensions to include both normal and shear
stresses. A critical resolved shear stress criterion
can again be used, this time in response to all six
components of stress, chosen initially for conve-
nience along the cubic axes of an fcc crystal.
These stresses along the cubic axes include the
three normal stresses,s11,s22,s33, and the three
independent shear stresses, s12 = s21, s23 = s32,
and s31 = s31. These stresses can be referred to
as sij, where i and j = 1, 2, 3.
Expressions for the resolved shear stresses on

the twelve crystallographic slip systems (and
their negatives) are written in terms of the six
independent stresses referred to the cubic axes
of the fcc crystal. The notation used by Bishop
and Hill (Ref 4, 5) and Bishop (Ref 6) for
the twelve slip systems is shown in Fig. 2 and
Table 1, where the individual slip planes and
their corresponding slip directions are identified,
along with the shear strains associated with these
systems. The generalized Schmid’s law is
obtained using a tensor transformation to sum
the contributions to each of the twelve shear
stresses from the stressessij along the cubic axes
of the fcc crystal. This generalized Schmid’s law
for the critical resolved shear stress tns on each of
the twelve fcc slip systems is:

Fig. 1 Representation of Schmid’s critical resolved
shear stress criterion: t

ns
= s cos l cos j = k
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tns ¼ ln1ls1s11 þ ln2ls2s22 þ ln3ls3s33 þ ln1ls2s12

þ ln2ls3s23 þ ln3ls1s31 þ ln2ls1s21 þ ln3ls2s32

þ ln1ls3s13

(Eq 2a)

or

tns ¼
X3
j¼1

X3
i¼1

lnilsjsij (Eq 2b)

where lni and lsj are the direction cosines of the
angle between the particular slip plane normal n
and the ith cubic axis and the direction cosine
of the angle between the particular slip direc-
tion s and the jth cubic axis. Equation 2(a) can
also be written using the summation convention
that the repeated indices i and j are summed
from 1 to 3, or:

tns ¼ lnilsjsij (Eq 2c)

These direction cosines can again be found
from the dot products lni = n̂ � îi and lsj = ŝ � îj.
Calculating the generalized Schmid’s law for
the ð111Þ½0�11� system considered previously
gives:

ln1 ¼ ln2 ¼ ln3 ¼ 1ffiffiffi
3
p and

ls1 ¼ 0; ls2 ¼ � 1ffiffiffi
2
p ; ls3 ¼ 1ffiffiffi

2
p

and the generalized Schmid’s law for this system
becomes:

tns ¼ 1ffiffiffi
6
p ð�s22 þ s33 � s12 þ s23 � s32 þ s13Þ

Since s23 = s32, this reduces to:

tns ¼ 1ffiffiffi
6
p ðs22 þ s33 � s12 þ s13Þ

This ð111Þ½0�11� system is designated as �a1 by
Bishop and Hill (Ref 4, Table 1), whose proce-
dure will subsequently make use of all 12 of
these generalized Schmid’s law expressions.
Notice that the critical resolved shear stress
reduces to the same result calculated previously
for uniaxial tension along the [001] direction if
only s33 is applied.

Taylor Model

G.I. Taylor (Ref 7) noted that the isostress
model used by Sachs to calculate the uniaxial
yield stress of an isotropic fcc aggregate in
terms of the critical resolved shear stress k
failed to satisfy the strain compatibility require-
ments among grains for plastic deformation of
an isotropic material deformed in uniaxial ten-
sion. These isostrain uniaxial tension require-
ments are that, for a given plastic strain de
along the length l of a single crystal, the normal
strains along two axes perpendicular to l are
equal to �de/2 (from constancy of volume
requirements), and all shear strains are equal
to zero. Taylor then proceeded to calculate the
uniaxial yield stress of an isotropic fcc aggre-
gate in terms of the critical resolved shear stress
using his isostrain model, which is described
next.
Taylor’s approach sought to determine the

crystallographic shear strains resulting from
the operation of a particular set of five indepen-
dent slip systems that will accommodate the
uniaxial tension isostrain requirements imposed
along the primed axes associated with a partic-
ular fcc crystal orientation. The first step is to
find the plastic strain increments referred to
the cubic axes of an fcc single crystal resulting
from the imposition of the plastic strains
imposed along primed specimen axes. If the
imposed strain increments along the primed
specimen axes are designated as dek0l0 using
the summation convention, the strain incre-
ments along cubic axes can be written in terms
of these imposed strains as:

deij ¼ lik00 ljl0dek0l0 (Eq 3)

The results of this isostrain requirement for uni-
axial tension along various orientations can
then be used to relate the plastic strains along
the cubic axes and the contributions of each of
the twelve possible slip systems (four <111>
planes each containing three {110} slip direc-
tions), that is:

deij ¼
X4
n¼1

X3
s¼1

linljsdens (Eq 4a)

where dens is 1 of 12 true plastic strains asso-
ciated with the operation of particular slip system
with slip plane normal n̂ and a slip directionŝ.
The true shear strain dens is equal to ½ the simple
shear strain gns, which contains a rotation equal
to (½) dgns. This relationship between crystallo-
graphic or simple shear, pure or tensorial shear,
and rotation is shown in Fig. 3. Using the nomen-
clature of Bishop and Hill contained in Table 1,
the relationships between the five independent
components of strain referred to the cubic axes
and the12 crystallographic simple shear strains
ai (Eq 4a) become:

de11 ¼ 1ffiffiffi
6
p ð�2a2 þ 2a3 � 2a5 þ 2a6 � 2a8 þ 2a9

� 2a11 þ 2a12Þ

de22 ¼ 1ffiffiffi
6
p ð�2a1 � 2a3 þ 2a4 � 2a6 þ 2a7 � 2a9

þ 2a10 � 2a12Þ

de33 ¼ 1ffiffiffi
6
p ðþ2a1 þ 2a2 � 2a4 � 2a5 � 2a7 � 2a8

� 2a10 þ 2a11Þ

de12 ¼ 1ffiffiffi
6
p ðþa1 � a2 þ a4 � a5 � a7 þ a8 � a10 þ a11Þ

de23 ¼ 1ffiffiffi
6
p ðþa2 � a3 � a5 þ a6 þ a8 � a9 � a11 þ a12Þ

de31 ¼ 1ffiffiffi
6
p ðþa1 þ a3 þ a4 � a6 þ a7 � a9 � a10 þ a12Þ

(Eq 4b)

Since there are five independent components of
strain eij along the cubic axes (reduced from six by
the constancy of volume requirement de11 + de22
+ de33 = 0), at least five slip systems (a’s) must
operate for Eq 4(b) to be inverted to find the
amounts of shear on particular slip systems that
must operate to accommodate the strains imposed
along the cubic axes. This requirement for the
simultaneous operation of five independent slip
systems to accommodate an arbitrary strain state
in an fcc crystal was first pointed out by vonMises
(Ref 8). Since one can find more than one set of
five independent shear strains to accommodate a
given imposed strain state, the solution for eij in
terms of ai (Eq 4b) is not unique.
Taylor selected the particular set of five inde-

pendent crystallographic simple shear strains ai
that accommodated the imposed macroscopic
strain state ek0 0l0 with a minimum of the total
shear strain (or shear strain energy):

X5
i�1

ai

Therefore, to calculate the value of the uni-
axial yield stress for an isotropic fcc crystalline
aggregate using Taylor’s isostrain minimum

Fig. 2 Schematic representation of Bishop-Hill slip
system notation

Table 1 Slip system notation used by Bishop and Hill for cubic crystals

Slip plane (or direction) (111) ð�1�11Þ ð�111Þ ð1�11Þ

Slip direction (or plane) ½01�1�½�101�½1�10� ½0�1�1�½101�½�110� ½01�1�½101�½�1�10� ½0�1�1�½�101�½110�
Shear strain a1, a2, a3 b1, b2, b3 c1, c2, c3 d1, d2, d3
Slip system designation (a1), (a2), (a3) (b1), (b2), (b3) (c1), (c2), (c3) (d1), (d2), (d3)
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shear criterion, one starts by imposing the plastic
strain increment dell = de along the sample ten-
sile axis and�de/2 along two axes perpendicular
to this axis. This strain state referred to the sam-
ple axes is then transformed to the cubic axes of
the fcc crystal using Eq 3. The particular set of
five independent crystallographic shear strains
ai that accommodate the imposed strains is found
next by looking for a set of five ai’s that satisfy
Eq 4(b) and, at the same time, minimize the total
crystallographic shear:

X5
i�1

ai

Knowing the minimum total crystallographic
shear for a particular crystal, one can find the
value of the uniaxial yield stress in terms of
the critical resolved shear stress k by equating
the strain energy from slip to the external work
done:

k
X5
i�1

ai ¼ sde

or

s ¼ k
X5
i�1

ai=de ¼ Mk

where M, the ratio of the sum of the crystallo-
graphic shears to the uniaxial axisymmetric
extension resulting from these shears, is the
Taylor factor. More generally, M is defined as
the sum of the crystallographic shears per unit
effective strain.
Averaging the results for M over the stereo-

graphic triangle using this isostrain procedure,
Taylor predicted that the uniaxial yield stress
of an isotropic fcc aggregate is equal to 3.06k.
Taylor’s minimum shear criterion was initi-

ally based on intuition but was later shown by
Bishop and Hill (Ref 4, 5) to be rigorously cor-
rect and equivalent to their procedure described
subsequently. Taylor also did not address the
question as to whether or not one could find
stress states that will simultaneously reach the
critical resolved shear stress k on at least five
independent slip systems while remaining below

k on the remaining systems, a question that again
was addressed subsequently by Bishop and Hill
(Ref 4, 5). Even if such stress states could be
found, however, the issue of stress compatibility
across grain boundaries remained. Nevertheless,
Taylor’s isostrain model remains a significant
advance in crystal plasticity and is also currently
used as the basis for several numerical codes
capable of calculating Taylor factors for arbitrary
imposed strain states rather than just axisymmet-
ric deformation.

Bishop-Hill Procedure

Like that of Taylor (Ref 7), the procedure of
Bishop and Hill (Ref 4, 5) and Bishop (Ref 6) is
an isostrain model. However, their stress-based
approach sought to directly find stress states that
could simultaneously operate at least five inde-
pendent slip systems. Bishop and Hill began by
examining the generalized Schmid’s law
requirements for operation of the 12 {111}
<110> fcc slip systems. They chose to describe
this yielding in terms of the new stresses:

A ¼ s22 � s33;B ¼ s33 � s11;C ¼ s11 � s22;

F ¼ s23;G ¼ s31; and H ¼ s12

(Eq 5)

which leads to the 12 (24 with negatives) criti-
cal resolved shear stress expressions given in
Table 2.
These 12 yield expressions (24 with nega-

tives) can be plotted in three separate three-
dimensional stress spaces having coordinates
A, G, and H; B, H, and F; and C, F, and G.
The yield condition for a particular slip system
is represented by a plane in one of the three
three-dimensional stress spaces. These planes
make equal angles to the three coordinate axes;
their intersection forms three separate octahe-
dral, as shown in Fig. 4. The intersection of
these planes along lines and at corners repre-
sents polyslip stress states. One notes that there
are two types of polyslip stress states: one that
is situated at the vertex of an octahedron (points
x1 and x2 in Fig. 4) and the other that lies on a
line oriented at 45� to two coordinate axes
(points y1, y2, y3, and y4). The former will

simultaneously operate four slip systems, the
latter two. Hence, any polyslip stress state that
simultaneously operates at least five slip sys-
tems will actually operate six or eight. Slip will
be activated on eight slip systems if the stress
state is located at two vertices (e.g., points x1
and x2) or at one vertex and two 45� lines
(e.g., points x1, y1, y2). Six systems will be acti-
vated if the stress state is located along three
45� lines (e.g., points y1, y3, and y4). (One ver-
tex and one 45� line would violate the condition
that A + B + C = 0.) A summary of all permis-
sible polyslip stress states is given in Table 2.
The three cases considered previously corre-
spond to stress states �2, �12, and �16. As
can be shown with reference to the octahedral
in Fig. 4, stress state �2 will operate the eight
slip systems �(a2), (a3), �(b2), (b3), �(c2),
(c3), �(d2), and (d3); stress state �12 will oper-
ate the eight systems �(a2), (a3), �(b2), (b3),
�(c2), (c3), �(d1), and (d3); and stress state
�16 will operate the six systems �(b2), (b3),
�(c1), (c2), �(d1), and (d3). A similar examina-
tion of the remaining polyslip stress states in
Table 3 will show that the stress states 1 to 12
simultaneously operate eight slip systems,
while stress states 13 to 28 operate six.
The particular state of stress that acts to

accommodate an imposed state of strain can
be found by selecting from the 28 (56 with
negatives) permissible fcc polyslip stress states
shown in Table 3, which shows the particular
stress state that maximizes the external work
done. This principle of maximum work was
first derived rigorously by Bishop and Hill
(Ref 4, 5), who also showed it to be equivalent
to the minimum shear approach taken earlier by
Taylor (Ref 7). The increment of work done,
with reference to the cubic axes, is:

dW ¼ s11de11 þ s22de22 þ s33de33 þ 2s12de12
þ 2s23de23 þ 2s31de31

(Eq 6a)

or, in Bishop-Hill notation:

dW ¼ �Bde11 þ Ade22 þ 2Fde23 þ 2Gde31 þ 2Hde12
(Eq 6b)

In the actual calculation procedure, the strain
increments deij along the cubic axes are first

Fig. 3 Decomposition of a simple crystallographic shear into a pure or tensorial shear plus a rotation

Table 2 Bishop-Hill shear stress
expressions

Slip system Yield expression

þ�(a1) A� Gþ H ¼ 	 ffiffiffi
6
p

k
þ�(a2) B� Hþ F ¼ 	 ffiffiffi

6
p

k
þ�(a3) C� Fþ G ¼ 	 ffiffiffi

6
p

k
þ�(b1) Aþ Gþ H ¼ 	 ffiffiffi

6
p

k
þ�(b2) B� H� F ¼ 	 ffiffiffi

6
p

k
þ�(b3) Cþ F� G ¼ 	 ffiffiffi

6
p

k
þ�(c1) Aþ G� H ¼ 	 ffiffiffi

6
p

k
þ�(c2) Bþ Hþ F ¼ 	 ffiffiffi

6
p

k
þ�(c3) C� F� G ¼ 	 ffiffiffi

6
p

k
þ�(d1) A� G� H ¼ 	 ffiffiffi

6
p

k
þ�(d2) Bþ H� F ¼ 	 ffiffiffi

6
p

k
þ�(d3) Cþ Fþ G ¼ 	 ffiffiffi

6
p

k
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written in terms of the imposed macroscopic
strain state dek0l0 and substituted into Eq 6(b).
The values of the 28 (56) permissible stress
states contained in Table 2 are then substituted
sequentially into Eq 6(b). That particular per-
missible stress state that maximizes dW for
the given imposed strain state will operate
the six or eight fcc slip systems that can accom-
modate this imposed strain.
Like Taylor before them, Bishop and Hill

used an isostrain assumption to calculate the
yield stress of an isotropic fcc crystalline aggre-
gate in terms of the critical resolved shear
stress k. Since, as shown by Bishop and Hill,
their maximum work and Taylor’s minimum
shear criteria are equivalent, not surprisingly
their value for the uniaxial yield stress of an iso-
tropic fcc crystalline aggregate was also 3.06k.

Bounds for Yield Loci from
Two-Dimensional Sachs and
Bishop-Hill Averages

The isostress and isostrain approaches to cal-
culating the uniaxial yield stress of an isotropic
fcc aggregate in terms of the critical resolved
shear stress k can be generalized to two dimen-
sions to calculate yield loci for single crystals
or ideal textural components (Ref 9). Individual
single-crystal yield loci can then be averaged to
calculate yield loci for crystalline aggregates.
These rather simple two-dimensional bounds
are often sufficient to answer engineering ques-
tions regarding texture hardening, for example.
The basic approach is again illustrated for fcc
metals deforming by rate-insensitive {111}
<110> slip, but this general approach is appli-
cable to other crystal structures with other slip
behaviors as well.
Isostress or lower-bound yield loci for sheets

having single-crystal orientation are found by:

� Applying a biaxial principal stress state along
the rolling and transverse directions of a
single-crystal or ideal texture component

� Calculating the resolved shear stresses on the
12 {111}<110> slip systems resulting from
this biaxial principal stress state applied along
the rolling and transverse directions

� Setting the 12 resolved shear stresses equal
to k, the critical resolved shear stress

� Plotting the 12 lines representing yielding in
the biaxial principal stress space

� Forming the lower-bound isostress yield
locus from the intersection of these 12 lines

In general, if the rolling, transverse, and
sheet normal direction are designated as r, t,
and p, the six independent macroscopic stress
components are srr, stt,, spp, srt, stp, and spr.
The stresses tns acting on the {111}<110>
slip systems can then be written in terms
of these macroscopic stresses using the
transformation:

Fig. 4 Generalized Schmid’s law plotted as octahedra using three separate coordinate systems

Table 3 Bishop-Hill stress states that simultaneously operate six or eight slip systems

Stress state number

Stress terms

A=
ffiffiffi
6
p

k B=
ffiffiffi
6
p

k C=
ffiffiffi
6
p

k F=
ffiffiffi
6
p

k G=
ffiffiffi
6
p

k H=
ffiffiffi
6
p

k

1 1 �1 0 0 0 0
2 0 1 �1 0 0 0
3 �1 0 1 0 0 0

4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

7 ½ �1 ½ 0 ½ 0
8 ½ �1 ½ 0 �½ 0
9 �1 ½ ½ ½ 0 0

10 �1 ½ ½ �½ 0 0
11 ½ ½ �1 0 0 ½
12 ½ ½ �1 0 0 �½
13 ½ 0 �½ ½ 0 ½
14 ½ 0 �½ �½ 0 ½
15 ½ 0 �½ ½ 0 �½
16 ½ 0 �½ �½ 0 �½
17 0 �½ ½ 0 ½ ½
18 0 �½ ½ 0 �½ ½
19 0 �½ ½ 0 ½ �½
20 0 �½ ½ 0 �½ �½
21 �½ ½ 0 ½ ½ 0
22 �½ ½ 0 �½ ½ 0
23 �½ ½ 0 ½ �½ 0

24 �½ ½ 0 �½ �½ 0
25 0 0 0 ½ ½ �½
26 0 0 0 ½ �½ ½
27 0 0 0 �½ ½ ½
28 0 0 0 ½ ½ ½
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tns ¼ lnrlsrsrr þ lntlststt þ lnplspspp þ 2lnrlstsrt

þ 2lntlspstp þ 2lnplsrspr

(Eq 7)

For example, for the ideal cube-on-corner tex-
ture, t is taken along ½1�10�, r is along ½11�2�,
and p is along [111]; the corresponding unit
vectors are:

t̂ ¼ 1ffiffiffi
2
p ð̂i1 � î2Þ; r̂ ¼ 1ffiffiffi

6
p ð̂i1 þ î2 � 2̂i3Þ; and

p̂ ¼ 1ffiffiffi
3
p ð̂i1 þ î2 þ î3Þ

Calculating the direction cosines using the
appropriate dot products and substitution into
Eq 7 give the expressions in Table 4.
A lower bound to the yield locus for this

ideal cube-on-corner crystal can be found
directly from the equations in Table 4 by
setting spp = srt = stp = str = 0. The operation
of each slip system will be governed by a line
in srr�stt space; the intersections of these lines
form the lower bound to the yield locus for the
ideal cube-on-corner crystal (Fig. 5).
A similar procedure is used to relate the strain

incrementsalong the rolling, transverse, andsheet
normal directions of the ideal cube-on-corner
orientation and the summed contributions from
the12 crystallographicshears,yielding:

derr ¼ 1

3
ffiffiffi
6
p ð�2b1 þ 2b2 � 3c1 þ c2 þ 2c3 � d1

þ 3d2 � 2d3Þ

dett ¼ 1ffiffiffi
6
p ðc1 � c2 þ d1 � d2Þ

depp ¼ 2

3
ffiffiffi
6
p ðb1 � b2 þ c2 � c3 � d1 þ d3Þ

dert ¼ 1

3
ffiffiffi
2
p ð�b1 � b2 þ 2b3 � c1 þ c3 � d2 þ d3Þ

detp ¼ 1=12ð�3a1 � 3a2 þ 6a3 � b1 � b2

þ 2b3 � c1 � 3c2 þ 4c3 � 3d1 � d2 þ 4d3Þ
depr ¼ 1

12
ffiffiffi
3
p ð9a1 � 9a2 þ 7b1 � 7b2 þ 3c1 � 5c2

þ 2c3 þ 5d1 � 3d2 � 2d3Þ
(Eq 8)

These strain-slip equations are used
subsequently.
An upper bound to the yield locus for this

same crystal is be found by:

� Imposing different ratios of the principal
strains err and ett

� Transforming these principal strains to the
cubic axes

� Using the maximum work principle to select
the Bishop-Hill stress state that operates the
slip systems necessary to accommodate this
strain imposed along the cubic axes

� Transforming these Bishop-Hill stresses to
the rolling (r), transverse (t), and sheet normal

(p) coordinate system and supplementing
these stresses with the condition that spp = 0

� Plotting the results in srr�stt space
Using the maximum work principle, the

resulting Bishop-Hill stress states for this crys-
tal to accommodate biaxial principal strains in
the ideal cube-on-corner crystal are No. 6, 24,
25, and 28, the specific stress state depending
on the imposed strain ratio. After performing
the transformation outlined previously, there
results the upper-bound yield locus shown in
Fig. 6.
Figures 5 and 6, together with the normality

condition (Ref 4, 5), are used to determine
bounds for the biaxial stresses needed to
enforce a specific strain state (in this case plane
strain) as well as to illustrate the physical dif-
ferences between these two bounds for the
plane-strain yield stress.
Applying the normality condition as shown

in Fig. 5, plane strain in the transverse direction
(de horizontal), one sees that the biaxial stress
state needed to initiate this deformation is:

srr ¼ stt ¼ 3/2
ffiffiffi
6
p

k

This stress state simultaneously operates two
branches of the yield locus; the first (horizontal)
branch of the yield locus initiates yielding on
systems �(b1), +(b2), +(c3), and �(d3); the sec-
ond on systems �(c2) and +(d1).
Before proceeding further, it should first be

noted that the strains derr and dett that result
from the operation of each particular system
are normal to their respective branch of the
yield locus. Focusing first on the horizontal
branch and letting slip occur by a unit amount
in any one of the systems �(b1), +(b2), +(c3),
and �(d3), the strain state from Eq 8 for each
of these four systems is:

derr ¼ �depp ¼ 2

3
ffiffiffi
6
p de and dett ¼ 0

which is normal to the horizontal branch. Simi-
larly, if slip occurs by a unit amount on either
system �(c2) or (d1), the resulting strain is:

derr ¼ �
ffiffiffi
6
p

3
; dett ¼

ffiffiffi
6
p

; and depp ¼ � 2
ffiffiffi
6
p

3

which again is perpendicular to its branch of the
yield locus. This two-dimensional normality
holds true even if the biaxial principal stresses
activate systems that result in shear strains as
well as normal strains; that is, the principal
directions of stress and strain do not coincide.
Plane strain in the transverse direction of the

cube-on-corner crystal is achieved by combining
the strain vectors normal to the two branches
of the yield locus to achieve the strain state
derr = 0, dett = 1, and depp =�1. This is achieved
by adjusting the amounts of shear on the opera-
tive systems to be:

b1 ¼ d3 ¼ �
ffiffiffi
6
p

8
; b2 ¼ c3 ¼

ffiffiffi
6
p

8
; c2 ¼ �

ffiffiffi
6
p

2
; and

d1 ¼
ffiffiffi
6
p

2

Substituting these values into Eq 8 results in
plane strain in the transverse direction, since
derr = 0, dett = 1, and depp = �1. However, only
two of the shear strains, dert and detp, vanish;
the remaining shear strain (depr) is equal to:

15
ffiffiffi
2
p

8

In order to impose a state of transverse plane
strain in the absence of shear strain on this
cube-on-corner crystal, it is necessary both to
alter the levels of srr and stt and to apply an
additional shear stress spr. After transforming
Bishop-Hill stress state No. 6:

s12 ¼
ffiffiffi
6
p

k

to the r, t, and p coordinate system and imposing
the condition that spp = 0, one finds that:

srr ¼
ffiffiffi
6
p

3
k;stt ¼ 5

ffiffiffi
6
p

3
k;spr ¼ � 2

ffiffiffi
3
p

3
k; and

spp ¼ srt ¼ stp ¼ 0

By substituting these stresses into Eq 8, one can
verify that the critical resolved shear stress is

Table 4 Stress transformation in Bishop-Hill notation

Slip system Shear stress expression

þ�(a1) �1/ 2stp þ 1/2
ffiffiffi
3
p

spr ¼ 	
ffiffiffi
6
p

k

þ�(a2) �1/2stp � 1/2
ffiffiffi
3
p

spr ¼ 	
ffiffiffi
6
p

k

þ�(a3) stp ¼ 	
ffiffiffi
6
p

k

þ�(b1) � 2

3
ffiffi
6
p srr þ 2

3
ffiffi
6
p spp � 2

3
ffiffi
2
p srt � 1/6stp þ 7

6
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(b2) 2

3
ffiffi
6
p srr � 2

3
ffiffi
6
p spp � 2

3
ffiffi
2
p srt � 1/6stp � 7

6
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(b3) 4

3
ffiffi
2
p srt þ 1/3stp ¼ 	

ffiffiffi
6
p

k

þ�(c1) � 1ffiffi
6
p srr þ 1ffiffi

6
p stt � 2

3
ffiffi
2
p srt � 1/6stp þ 1

2
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(c2) 1

3
ffiffi
6
p srr � 1ffiffi

6
p stt þ 2

3
ffiffi
6
p spp � 1/2stp � 5

6
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(c3) 2

3
ffiffi
6
p srr � 2

3
ffiffi
6
p stt þ 2

3
ffiffi
2
p srt þ 2/3stp þ 1

3
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(d1) � 1

3
ffiffi
6
p srr þ 1ffiffi

6
p stt � 2

3
ffiffi
6
p spp � 1/2stp þ 5

6
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(d2)
1ffiffi
6
p srr � 1ffiffi

6
p stt � 2

3
ffiffi
2
p srt � 1/6stp � 1

2
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

þ�(d3) � 2

3
ffiffi
6
p srr þ 2

3
ffiffi
6
p spp þ 2

3
ffiffi
2
p srt þ 2/3stp � 1

3
ffiffi
3
p spr ¼ 	

ffiffiffi
6
p

k

236 / Fundamentals of the Modeling of Microstructure and Texture Evolution

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



reached simultaneously on systems �(a1), (a2),
�(b1), (b2), (c1), �(c2), (d1), and �(d2). Plane
strain in the absence of shear strain can be
achieved if the amounts of shear on these oper-
ative systems are:

a1 ¼
ffiffiffi
6
p

6
; a2 ¼ �

ffiffiffi
6
p

6
; b1 ¼ �

ffiffiffi
6
p

2
; b2 ¼

ffiffiffi
6
p

2
; c1 ¼ d1

¼
ffiffiffi
6
p

4
; and c2 ¼ d2 ¼ �

ffiffiffi
6
p

4

Thus, for the ideal cube-on-corner orientation,
transverse plane strain in the absence of shear
stress is accompanied by the additional shear
strain depr; transverse plane strain in the
absence of shear strain, on the other hand,
requires the additional shear stress spr. Hence,
in neither case do the principal directions of
stress and strain coincide. This lack of coinci-
dence of the principal directions is not
restricted to the cube-on-corner orientation. It
should also be pointed out that the aforemen-
tioned solution for the amounts of shear needed
to accommodate transverse plane strain in this
ideal cube-on-corner orientation is not unique.
Hence, the accompanying rotations leading to
textural changes are not unique as well.
There are various ways in which the slip

behaviors of multiple-crystal orientations can
be combined to find yield loci for crystalline
aggregates. One such average is the original
yield locus for an isotropic fcc polycrystalline
aggregate calculated by Bishop and Hill (Ref
5). Their averaging process rounded the edges
that resulted from the intersections of the lines
governing the operation of specific slip systems
and resulted in a yield locus that is midway
between the Tresca and the von Mises locus.

Since the Bishop-Hill procedure is based on
an isostrain model (violating stress continuity
among grains), this yield locus is an upper
bound to the actual locus.

Recent Developments

The lack of a unique prediction of operative
slip systems resulting from the rate-insensitive
Bishop-Hill procedure was remedied by using
a rate-sensitive model, first introduced by
Hutchinson (Ref 10). An example of a com-
puter code that incorporates rate sensitivity is
the widely used Los Alamos polycrystal plastic-
ity (LApp) code (Ref 11, 12). The LApp is a
modified Taylor isostrain model that incorpo-
rates not only rate sensitivity but also grain
shape and relaxed constraints (Ref 12).
Several slip behaviors other than <111>

{110} slip in fcc metals have been studied in
some detail. It should again be pointed out that
<111>{110} slip in fcc metals is equivalent to
<110>{111} slip in body-centered cubic (bcc)
metals (often referred to as restricted glide),
since this only involves switching the identities
of the angles l and f and hence leaves
Schmid’s law unchanged. Another approach to
modeling bcc slip behavior is pencil glide,
where slip is assumed to occur with equal ease
on the most highly stressed planes containing
the <111> slip directions (Ref 13). This slip
plane relaxation has resulted in a change of
the Taylor factor for an isotropic crystalline
aggregate from 3.06 for bcc restricted glide to
2.73 for bcc pencil glide (Ref 14). The plastic
deformation of hexagonal close-packed (hcp)
crystals has also been studied (Ref 15, 16).

Modeling the plastic behavior of hcp metals is
inherently more complicated, because deforma-
tion typically occurs by twinning in addition to
slip (Ref 12).
While most current computer modeling

efforts are isostrain based (Taylor or Bishop
and Hill), many problems, especially those
associated with surface behavior, are better
described using simpler crystallographic
approaches. A case in point is the characteriza-
tion of surface roughening during plane-strain
plastic deformation of aluminum alloy sheet
(Ref 17). Orientation imaging and scanning
electron microscopy of individual surface
grains were used to characterize surface rough-
ening resulting from the presence of both slip-
banded valley-forming grains and nonslip-
banded hill-forming grains. What was found
was that slip-banded valley-forming grains cor-
related with Schmid factor-based unconstrained
measures rather than constrained measures
based on the Taylor factor. This is but one
example of the caution needed to select the
plasticity model appropriate to the problem
being addressed.
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Self-Consistent Modeling of
Texture Evolution
David Dye, Imperial College, London, United Kingdom

Introduction

When considering the macroscopic proper-
ties of a polycrystalline metal or alloy, the tex-
ture (Ref 1), that is, the crystal orientation
distribution, is the primary contributor to elastic
and plastic anisotropy arising from the anisot-
ropy of single crystals. Of course, the grain
morphology and microstructural arrangement
of phases will also often be important. There-
fore, it is often desirable to be able to measure,
represent, and model textures and their evolu-
tion due to materials processing operations such
as metal forming, heat treating, and casting.
Self-consistent models are a particular class

of models in continuum micromechanics, that
is, the field concerned with making predictions
of the properties and evolution of aggregates
whose single-crystal deformation behavior is
known. The simplest estimates of elastic prop-
erties are those that assume equal strain in all
the grains in the aggregate (Voigt, 1887) or
equal stress (Reuss, 1929). Sachs (1928) and
Taylor (1938) extended the approach from elas-
ticity to plasticity, with Sachs applying the first
slip system to reach its critical resolved shear
stress and Taylor requiring all grains to undergo
the same, macroscopic, strain.
Eshelby’s solution to the elastic problem

around an ellipsoidal inclusion via a Green’s
function analysis (Ref 2) then allowed a revolu-
tion, with the invention of the self-consistent
method elaborated by Kröner (Ref 3) for elas-
ticity and then for plasticity by Hill (Ref 4)
and Hutchinson (Ref 5).
The foundation-stone of the approach is the

solution of the strain in an ellipsoidal single
crystal c embedded in a homogenous effective
medium (Fig. 1). The strain rate in the ellipsoid
_ec is constant and given by:

_ec ¼ Ac
_e ¼ ðL
 þ LcÞ�1ðL
 þ LÞ _e (Eq 1)

where the medium strain rate is _e; Ac is a con-
centration tensor, and L;Lc, and L* are the
stiffness of the medium, crystal, and the overall
constraint, respectively. L* depends solely on

the medium and grain shape and can be
obtained by integration (Ref 4–6):

L
 ¼ 
�1 � L (Eq 2)


ijnm ¼ 1

4p

ðp
y¼0

ð1p
f¼0

Ûimknkj þ Ûjmknki

�
þÛinkmkj þ Ûjnkmki

�
sin y dy df ðEq 3Þ

where Û is given by LijklÛkmkjkl ¼ dim; k1 ¼
sin y cos f=a1; k2 ¼ sin y sin f=a2, and k3 =
cos F/a3. y and F are spherical co-ordinates
for the ellipsoid, while the ai are the semi-
lengths of the ellipsoid axes.
A self-consistent model is then constructed

by finding the strain in every grain in the aggre-
gate and then assigning the average to the
medium to obtain an estimate for the medium
stiffness L:

L ¼< LcAc > (Eq 4)

The solution is then iterated until a stable
estimate of L is found. Therefore, both stress
and strain compatibility are satisfied in the
average sense.
Plasticity within each grain is modeled using

a viscoplastic flow rule to obtain the instanta-
neous (tangent) stiffness of the grain, yielding
a viscoplastic self-consistent (VPSC) model.
For example (Ref 7), a nonlinear viscous res-
ponse can be assumed:

_gs ¼ _g0
ms

ks
0
k

tsc

� �n

(Eq 5)

where _gs is the shear rate on slip system s,
ms

ks
0
k ¼ 
s is the resolved shear stress on the

slip system from the applied deviatoric stress
s0 and Schmid tensor m, tc is a threshold
stress, _g0 is a reference shear strain rate, and
n is the rate law exponent. The Schmid tensor
is calculated from the (unit) slip plane normal
vector n and the (unit) vector in the slip direction
or Burgers vector b from ms

ij ¼ 1/2ðnibj þ njbiÞ
and is by definition symmetric and traceless.

The overall strain rate in the grain is then
given by:

_ei ¼ _g0
XS
s¼1

ms
im

s
j


sc

ms
ks
0
k


sc

� �n�1( )
s0j (Eq 6)

¼ L
cðsecÞ
ij s0j (Eq 7)

where the sum is over all the slip systems s, and
Lc(sec) is the secant viscoplastic compliance
modulus of the grain.
The instantaneous or tangent modulus in

Eq 1 and 2 is then found to be (Ref 7):

Lc ¼ Ltg
ij ¼ nLsec

ij (Eq 8)

by performing a Taylor expansion in the vicin-
ity of the current point or the secant modulus.
The grains will rotate during the deformation
process, giving rise to texture change. This
rotation _!ij has three components: that due
to the macroscopic distortion _�ij, which is the
antisymmetric component of the applied distor-
tion tensor; the rotation of the Eshelby ellipsoid
from the Eshelby rotation tensor P; and the
rotation of the crystal lattice due to slip:

_oij ¼ _�ij þ�ijklS
�1
klmn _emn �

X
s

1

2
ðbinj � bjniÞs _gs

(Eq 9)

where S is the Eshelby tensor (Ref 2). The
attraction of this type of modeling is that

Fig. 1 Schematic of the Eshelby inclusion, highlighting
the symbols used. Many grains are inserted as

the inclusion, and the average is used to estimate the
stiffness of the surrounding medium.
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polycrystal flow can be modeled using only
three fitting parameters, _gs; 
s and n, per slip
mode. Of course, other single-crystal plasticity
models can be treated within the approach. In
addition, these parameters can be constrained
to conform to relationships for the temperature
and strain-rate dependence, where these are
known.
One example is the elastic-plastic self-con-

sistent modeling approach, where grain rotation
is neglected, but conventional elastoplasticity is
treated as the flow rule (Ref 8). It is common
practice to use such a model when studying
the operative deformation mechanisms during
the elastic-plastic transition and the intergran-
luar strains that arise, measured by neutron or
synchrotron x-ray diffraction (Ref 9–11).

Measuring and Representing
Textures

Textures, that is, crystal orientation distribu-
tions, are traditionally measured using labora-
tory x-ray diffraction. Here, only a summary
overview is given. The variation in intensity
of an elastic scattering peak {hkl} or {hkil} is
measured as a function of sample orientation,
(o, f). Because a grain orientation is defined
by three angles (F, c1, c2), three or more peaks
must be measured in order to collect sufficient
information about the orientation distribution
function (ODF) (Ref 12, 13). The ODF is then
reconstructed from the measured data by a
function-fitting method, for example, fitting a
spherical harmonic description or via the
WIMV approach (Ref 14, 15).
When lab x-ray data are used, the data must

be corrected for variation in the scattering
geometry with incident angle in the reflection
mode, which ultimately leads to adsorbtion at
high incident angles; therefore, measurements
are not usually made at incident angles greater
than 80�. This reduces the amount of data asso-
ciated with each reflection, leading to the usual
practice of using the four most intense, nonre-
dundant peaks from each phase. When using
the spherical harmorics approach, the produc-
tion of “ghosts” associated with underdetermi-
nation of the problem at high angles is often
problematic, and therefore, the WIMV approach
is usually preferred. Often data will be symme-
trized during the ODF fitting process in line with
the known sample and crystal symmetry and
partial, mutually consistent pole figures then
plotted, for example, quadrants for fourfold
sample symmetry.
Neutron diffraction may also be used for

texture measurement. Here, sampling volumes
are typically in the range of 1 to 20 mm3. Lab
x-ray measurements, in comparison, only mea-
sure those grains in the surface few tens of
micrometers illuminated by the diffraction spot,
which may be �5 mm in diameter. Therefore,
particularly for large-grained materials, neutron
diffraction measurements are preferred because
many more grains will typically be measured.

On a conventional constant-wavelength diffrac-
tometer, the principle is still the same, with the
sample being rotated through every symmetric
angle. The ODF is then reconstructed as for
lab x-ray measurements but without the prob-
lem of ghosts.
A more direct method is electron backscatter

diffraction (EBSD). Here, the Kikuchi lines
obtained from backscattered electrons in the
scanning electron microscope (SEM) are used
to analyze the orientation of a grain under the
electron beam. If scans are performed over a
large enough area relative to the grain size to
obtain a reasonable statistical sampling—
maybe 103 grains—then the macroscopic tex-
ture may be measured directly. Of course, this
is only a side effect of measurement of the local
misorientations, and a good field emission SEM
and sample preparation are required, but with
modern EBSD equipment and computer analy-
sis being capable of approximately 102 EBSD
pattern measurements per second, obtaining
complete textures in a few hours in this fashion
is now possible, compared to �4 h for lab x-ray
measurements or �12 h for neutron measure-
ments at a reactor source.
One newer method is the use of a time-of-

flight neutron diffractometer with large detector
coverage (Ref 16). Here, diffraction data are
obtained over a broad d-spacing range across
a number of orientations simultaneously,
thereby obtaining many incomplete pole figures
simultaneously. Rotation of the sample is then
used to partially fill these pole figures. The
large number of diffraction peaks collected
mean that complete ODFs can be collected with
only six sample rotations, in approximately
30 to 60 min. The ODFs are obtained by simul-
taneous fitting of the diffraction data from each
detector for each sample setting in a Reitveld
analysis program such as MAUD (Ref 17) or
GSAS (Ref 18), usually using the spherical
harmonic approach. This method is only in
widespread use at the HIPPO and GEM dif-
fractometers at Los Alamos and ISIS, United
Kingdom, but could be more widely applied,
for example, at the SNS.
Finally, at synchrotron x-ray facilities, the

use of area detectors for high-energy diffraction
from engineering samples has become increas-
ingly popular, where complete diffraction rings
can be collected in transmission. If enough dif-
fraction rings are collected, it again becomes
possible to reconstruct the entire orientation
distribution by Reitveld refinement (Ref 19),
here without rotating the sample. Because satis-
factory patterns can be collected in times as
short as 100 ms, this allows the real-time evolu-
tion of textures to be characterized, for exam-
ple, during deformation processing and heat
treatment.
When presenting pole figures, customarily

equal-area projections are used such that,
visually, an average multiple of random devia-
tion of 1 is obtained. Similarly for ODFs, spher-
ical equal-area representations are generally
preferred (Ref 14). For analyzing textures, the

general aim is to use a software that can treat
data from all five of the measurements
described previously for random sampling
grids, and that will output orientation distribu-
tions both graphically and numerically. Three
sets of software are in widespread use: popLA
(Ref 15), which takes the form of a suite of rou-
tines originally written at Los Alamos; BEAR-
TEX (Ref 12); and the simultaneous Reitveld
and texture code MAUD (Ref 17). The GSAS
Reitveld refinement code is also often used for
simultaneous fitting of transmission diffraction
spectra by spherical harmonics (Ref 18),
although popLA or some other software must
then be used for visualization.
An ODF can be inputted into a self-consistent

texture evolution problem as a starting parame-
ter in two ways: either a random or gridded set
of orientations can be tracked and each assigned
a weight corresponding to the frequency in the
ODF, or alternatively, the starting set of orienta-
tions can be sampled from the measured ODF
Generally, the prior approach is taken because
it ensures that all possible orientations are trea-
ted in the simulation, even if they do not form
a significant component of the starting texture.
The final set of rotated grain orientations and
weights must then be manipulated back into an
orientation distribution function, for example,
using popLA.

Predictions of Texture Evolution

Single-Phase Materials Deforming by Slip.
Compared to Taylor-type deformation models,
VPSC models are far more successful in pre-
dicting texture evolution (Ref 7). In particular,
for realistic assumptions about the operative
deformation mechanisms, even in single-phase
face-centered cubic (fcc) materials, where the
deformation anisotropy is relatively low, Taylor
models tend to overpredict the sharpness of the
textures that result, whereas self-consistent
models provide softer interactions and hence
more realistic textures (Ref 20). However, it
should be noted that the textures predicted
remain slightly sharper than those observed
experimentally.
For simulations of recrystallization, the

stored energy must be known and will vary
according to the amount of deformation in
grains in different orientations; hence, polycrys-
tal models of deformation can be very useful. In
bcc iron, VPSC modeling has been used to
determine the amounts of strain, again yielding
qualitatively different results to a Taylor full-
constraints approach; a VPSC model predicts
that the g-fiber ({111} rolling plane) is softest,
whereas a Taylor model predicts that the a-fiber
(< 110 > rolling direction) is softest at the end
of rolling (Ref 21).
Deformation textures observed due to torsion

deformation at both room temperature and at
264 �C in fcc nickel and nickel-cobalt alloys
of varying stacking fault energy (SFE) have
also been modeled using the VPSC approach
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(Ref 22) (Fig. 2). Here again, VPSC models
performed much more satisfactorily than Taylor
models, particularly with updating of the grain
shapes during deformation. However, it was
found that, regardless of whether twinning was
incorporated in the model, the subdivision of a
grain into cell blocks, controlled by slip planar-
ity, resulted in the activation of additional slip
systems, and therefore, some of the details of
the textures of low-SFE materials could not be
reproduced.
The VPSC models have also been used to pre-

dict the yield surface (R-ratio, etc.) in rolled
Al5019 sheet, in both the H48 and O temper con-
ditions (Ref 23), again showing much better
agreement than a full-constraints (Taylor)
model. Here, it was found that grain shape was
not particularly critical to the results obtained,
but that when the material was annealed, the pre-
diction was less accurate, presumably due to
some details around the recrystallization
process.
The approach has even been used to determine

the deformation mechanisms operative in iron
at pressures representative of the Earth’s core
from the textures produced in high-pressure
experiments using diamond anvil cells at an
x-ray synchrotron (Ref 24).
Generally, it appears that there is a consensus

that VPSC models predict deformation textures
well where there is an absence of change in the
micromechanisms that operate during deforma-
tion. This point has been made rather elegantly
by Engler (Ref 25), who examined copper-man-
ganese alloys, which do not change in SFE with
manganese addition and therefore where partial
dislocations and twinning are not involved, and
still found that the textures change in character,
due to, for example, short-range ordering lead-
ing to planar slip and shear band formation as
yield strength increases. However, some
aspects of this change, such as an alteration in
work-hardening rate, can be included in a
VPSC model. Where these effects are absent,
for example, in AA1050 with a high SFE and
low solute content, then the textures produced
by both shear and tension of sheet material
can be reproduced satisfactorily (Ref 26).
The VPSC approach has also been applied to

the earing problem in cup-drawing of AA3104,
successfully predicting the ear profiles as a
function of initial texture after cold rolling
subsequent to initial hot rolling (Ref 27)
(Fig. 3). Finite-element (FE) models using sim-
plified anisotropic behavior were used to derive
the stress and strain boundary conditions.
There have been some attempts to include

the effect of grain-to-grain coupling within the
VPSC approach. Here, a second ellipsoid is
placed in the effective medium (Ref 28), allow-
ing interaction between crystals placed on each
site (Ref 29). This, then, allows grain interac-
tions to be modeled in a so-called grain co-rota-
tion scheme in Al7554 (Ref 30), which
particularly affect the evolution of low-angle
misorientations and, overall, act to soften the
textures produced by compression testing.

Grain subdivision during high shear proces-
sing (equal-channel angular extrusion, or
ECAE) has also been incorporated into the
VPSC approach (Ref 31), rationalizing the
effect of different routes on the effectiveness
of grain refinement and the changes in grain
morphology in fcc aluminum. This work was

continued in copper (Ref 32), and again FE
simulations were found to be helpful in
providing the input deformation history to the
texture simulation; here, the grain co-rotation
scheme (Ref 30) was found to be helpful in
enforcing the soft coupling between adjacent
grains. The evolution of bcc textures during

Fig. 2 (a) Texture (plotted in Rodrigues’ space) produced in initially untextured high-purity nickel following room-
temperature torsion to a strain of 4.0, compared to (b) Viscoplastic self-consistent (VPSC) and (c) Taylor

full-constraints models. Source: Ref 22

Fig. 3 Simulation of earing using a viscoplastic self-consistent model. (a) Finite-element model used to provide the
boundary conditions. (b) Experimental and (c) modeled normalized earing profiles (h*) as a function of

prerolling amount. Source: Ref 27
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ECAE has also been modeled using the VPSC
approach (Ref 33), as has the evolution of texture
in pure aluminum (Ref 34). Finally, in the ECAE
of initially untextured powder metallergy beryl-
lium, deforming primarily by < c + a > slip at
elevated temperatures, the textures could be
reproduced in form, but the overall texture
strengths were found to be too strong; due to
the nature of the strain path, basal < a > slip
was largely suppressed (Ref 35).
Grain-size dependence in the flow law has

also been examined using a one-site VPSC
model in copper, both with a single grain size
and with a bimodal mixture of coarse (10 mm)
and fine (0.7 mm) grains (Ref 36). A Hall-Petch
dependence could be incorporated in the flow
rule and the model then used to design bimodal
microstructures of tailored strength and ductil-
ity. An obstacle hardening law has also been
implemented to simulate irradiation hardening
in ferritic steels (Ref 37), with a measured
initial texture.
Single-Phase Materials with Twinning.

Twinning results in significant reorientations
of individual grains and therefore significant
texture changes despite the small amount of
deformation that twinning can accommodate
(Ref 38). Therefore, twinning has been the sub-
ject of significant effort within the self-consis-
tent modeling community, particularly in the
technologically important zirconium and tita-
nium systems, as well as in brasses, Hadfield
steels, zinc, and magnesium. More recently, this
has become of importance in examining
twinning-induced plasticity steels. However,
twinning is difficult to model because:

� The factors controlling the stress state that
induces twinning are not well understood.

� The potential for multiple twin orientations
in a single grain gives rise to a potential
bifurcation in the number of grains in the
problem.

� The effect of twin boundaries on the
subsequent micromechanics of a twinned
gain are nontrivial. The effect of the twin-
ning event itself on the strain in the parent
grain are clearly important and yet, until
recently, undetermined.

The original VPSC model (Ref 7) included a
description of twinning based on the volume
fraction transfer concept. There, twinning is
assumed to be associated with a critical stress
and gives rise to an associated twin strain. When
twinning occurs, volume fraction (weight) is
reassigned between the twinning grain and the
corresponding twinned orientation, avoiding
the bifurcation problem. Qualitatively, this
approach was successful in reproducing the
observed textures in near-alpha Zircaloy-2,
much more so than a Taylor full-constraints
model. In addition, the model was used to exam-
ine the texture evolution during the final rolling
of Zircaloy-4 tube (Ref 39), with the result that
the main features of the texture were repro-
duced, but the magnitudes were overpredicted.

Another approach is the preferred twin reori-
entation (PTR) scheme, where a grain is trans-
ferred to a new orientation when its overall
twin fraction reaches 50%, using the most
active twin orientation. This, then, allows the
hardening due to twinning to be modeled by
changing the flow law to account for the addi-
tional boundaries, in a fashion that accounts
for the ease with which some dislocations will
pass through the twin boundary compared to
others (Ref 40). Here, the simulation correctly
reproduced the hardening response of a
Hadfield steel and the increase in strength of
the twinned regions.
The PTR model has also been applied to the

texture evolution of magnesium-lithium and
magnesium-yttrium (Ref 41), where the
increase in < c + a > slip activity with alloy-
ing, similar to that observed with aluminum
additions in a-titanium, was successfully
detected and employed to rationalize the
changes in texture evolution observed during
plane-strain compression. This work has been
extended to AZ31B (Mg-3Al-1Zn wt%),
finding that the high tensile ductility observed

in many magnesium alloys could only be
explained by the presence of < c + a > slip
as well as tensile twinning, as observed in
transmission electron microscopy and inferred
using a polycrystal model calibrated against
the observed texture evolution (Ref 42)
(Fig. 4). In scenarios where magnesium is
found to twin very significantly, such as the
tensile testing of AM20 (Mg-2Al-0.5Mn-0.2Zn
wt%), the textures can also be reproduced
remarkably accurately (Ref 43).
In beryllium, which is highly anisotropic and

which twins very easily at room temperature
and high strain rates, VPSC models have also
been used to rationalize the observed texture
changes during in-plane and compression
deformation, both with and without an initial
rolling texture (Ref 44). The factor 2 strength
variations observed were correctly predicted,
although again, the texture changes were
slightly overpredicted.
More recently, following Kalidindi (Ref 45)

and Salem (Ref 46), a composite grain (CG)
flow model has been implemented for twinning
in the VPSC framework (Ref 47), (Fig. 5).

Fig. 5 Electron backscatter diffraction image of twinned zirconium. In the composite grain model, the twins are
modeled explicitly within the grain, defining various microstructural parameters such as the twin thickness,

orientation relationship, and so on. Source: Ref 47

Fig. 4 Texture evolution due to tensile testing of magnesium alloy AZ31B rolled sheet to a strain of �0.11;
comparison between model and experiment. Source: Ref 41
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There, an approach is taken that is more similar
to that taken for martensitic transformations;
the twin lamellae are treated explicitly within
the micromechanical model for the individual
grain, such that effects such as the mean free
path between twins, the requirement for strain
compatibility across the composite grain, the
rise in Hall-Petch hardening, and the require-
ment for geometrically necessary dislocations
can then all be included in the model. The
result is that the detail of the hardening and
texture response of rolled zirconium to in-plane
(IPC) and through-thickness compression
(TTC) experiments, as well as mixed IPC-TTC
load paths, is much improved at temperatures
(76 K) where twinning is the dominant concern.
Two-Phase Aggregates. Many materials are

composed of dual-phase composites, such as
duplex steels and a + b titanium alloys. There-
fore, it is desirable to be able to model such
situations within codes that aim to predict tex-
ture evolution. The simplest way to perform
this would be to incorporate both phases as
individual grains within the homogenous
medium, but such an approach would ignore
the grain interactions that are central to the
texture evolution.
The two-site VPSC model, where two inclu-

sions are modeled within the medium
(Ref 29), was developed for this purpose. It
was first applied to Ti-6Al-4V, where there
exists a Burgers relationship ð0002Þa k ð110Þb;½1210�a k ½111�b between the two phases (Ref
48). The effect of the grain interaction was to
promote prismatic slip over basal slip in the
a-phase, minimizing the discontinuity in distor-
tion across the habit plane. However, the
concentration of flow into the low-volume-frac-
tion b-phase resulted in an overly strong texture
in the bcc phase.
The model has also been applied to powder

metallurgy silver-nickel and copper-iron blends,
with no orienation relationship between the two
phases (Ref 49), finding that, if the compatibility
requirement between the two sites was treated as
a fitting parameter, reasonable agreement
between the textures could be obtained. Iron-
copper blends were examined in more detail by
Commentz (Ref 50), finding that the two-site
VPSC model predicted the observed textures
best for copper (soft) inclusions in an iron (hard)
matrix, rather than the reverse, but in all cases,
the texture strengths tended to be overestimated.
Semiatin (Ref 51) has also developed a self-

consistent model for the hot working of
equiaxed a/b Ti-6Al-4V, focusing on the use
of power law viscoplasticity where the
strengths of each phase are composition depen-
dent, based on the temperature dependence of
the volume fractions and compositions from
thermodynamic models and experimental
observations, with physically-based activation
energies and stress exponents. The model suc-
cessfully reproduced the flow behavior
observed during hot working.
The CG approach has also been taken to

model the deformation of copper-niobium

multilayers, where perfect strain compatibility
between the grains must be satisfied (Ref 52),
reproducing the form and magnitude of the
textures resulting from rolling. Here, the inter-
faces are incoherent, and therefore, there is no
dislocation coupling between the phases.
Deformation twinning observed in the

a-phase of Ti-6Al-4V during high-temperature
(800 �C) ECAE has also been modeled,
although only using a single-phase VPSC
model (Ref 53). The observed a-textures could
be reproduced in form and magnitude, although
the exact texture pattern was not reproduced,
presumably due to the absence of the b-phase.
The single-site VPSC formulation has also

been adapted to model pearlitic and bainitic
steels (Ref 54), incorporating the micromechani-
cal effect of the pearlite lamellae into the hard-
ening formulation and performing an Eshelby
analysis to account for the effect of carbides in
upper bainite. The mechanical properties and
effect of torsion on the texture anisotropy were
successfully reproduced.
Coupling to Finite-Element Models. In

many situations, such as rolling, the strain paths
within the material are known, but more gener-
ally, as in forging, the strain paths must be
computed by means of a FE model and will
vary spatially throughout the part being pro-
duced. In principle the textures that evolve will
influence the deformation behavior, and there-
fore, the texture evolution model should be
incorporated within the FE model rather than
be treated as a postprocessing operation. Given
that a single strain-step in a VPSC model can
be calculated quite quickly on modern compu-
ters (on the order of 20 ms), this would still
allow for a typical 10,000-element FE simula-
tion to be run in a tractable period of time,
particularly given parallel computing of the
VPSC step. Indeed, this relatively rapid com-
putation time is a major attraction of self-
consistent models over competing approaches,
such as crystal-plasticity finite-element model-
ing (CPFEM), which are more usually applied
to studying the detail of grain interactions.
Some initial steps in this direction have

already been made, with the interfacing of a
VPSC model with an explicit FE code
(Ref 55, 56). The spatial variation component
of the problem studied, the response of pure zir-
conium bent beams, presented no additional
challenges beyond the interfacing of the code
compared to the authors’ other work on texture
simulations of similar strain paths in zirconium.
Variational Formulations. As pointed out

by Castañeda and others (Ref 57–59), other
bounds can be deduced than the Voigt and
Reuss approaches, especially the Hashin-
Strikman (H-S) bounds, which make use of a
variational approach to determine the bounds
on the behavior of nonlinear composites. A
key finding is that, for very anisotropic crystals,
the self-consistent approach may violate the
H-S bounds. This has led to the development
of self-consistent models that take account of
the second-order field fluctuations within the

grains, variously termed the affine formulations
(Ref 60), the variational self-consistent appro-
ach of Gilormini (Ref 61), the second-order
approach (Ref 62), or based on fast Fourier
transforms (Ref 63). Generally, it is found that
previous estimates of texture evolution and
overall strength from the conventional, tangent
self-consistent approach are accurate for low-
anisostropy cubic materials, are in reasonable
agreement for moderately anisotropic hexago-
nal close-packed metals such as titanium and
zirconium, but are less robust for strongly
anisotropic materials such as ice. It should be
emphasized that these issues are only of signif-
icant concern for very high strength anisotropy.
However, it is expected that over time, these
variational approaches will be used more
widely for texture simulations.
Recrystallization. Because the plastic strain

energy can be estimated from the deformation
system activity during a polycrystal simulation
(Ref 21), and because this is one of the
major driving forces for recrystallization, the
output from a VPSC model can be used in a
subsequent recrystallization model to simulate
recrystallization textures subsequent to plastic
deformation. This has been performed, allow-
ing significant insight to be gained into the tex-
tures observed in minerals (Ref 64).
Other Texture Simulation Approaches.

It should be mentioned that there are other
approaches to texture simulation than the self-
consistent family of models. One research
thread in particular has focused on developing
Taylor-type models. Here, the full-constraints
(FC) Taylor theory (same strain in all grains)
has led to the relaxed-constraints approach
(relaxing a few of the strain components) and
subsequently to multigrain relaxed-constraints
models (ALAMEL or GIA) models. These are
significantly more successful at predicting tex-
ture evolution in both interstitial-free steels
and AA5182 than Taylor FC models (Ref 65).
An alternative approach is to model the

grains explicitly in a FE code, as in the CPFEM
approach (Ref 66–69). These approaches are
generally very successful at modeling deforma-
tion textures, especially if each grain is mod-
eled using multiple elements in order to allow
for strain variations within each grain. How-
ever, they are of order 1000� more computa-
tionally expensive (Ref 66). They are
reviewed in the following article, “Crystal-
Scale Simulations Using Finite-Element
Formulations” in this Volume.

Concluding Remarks

Self-consistent models have been developed
over the last 15 to 20 years to model deforma-
tion textures, evolving from the starting point
of Taylor FC models, based on the Eshelby
inclusion approach. They are computationally
quick and can be implemented into macroscale
FE simulations of components. Many success-
ful examples of self-consistent models
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compared to real textures can be found in the
literature, although micromechanical processes
that tend to reduce the level of texture develop-
ment should be taken into account. They can be
implemented rather simply by fitting to the
macroscopic flow curve with few fitting para-
meters, or additional physics can be included
by reference to the actual material structure,
thermal and strain-rate dependence of the
deformation mechanisms, and so on. More
recently, enhancements have been proposed to
the approach that improve the behavior for
strongly anisotropic materials.
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3. E. Kröner, Berechnung der Elastischen
Konstanten des Vielkristalls aus den Kon-
stanten des Einkristalls, Z. Phys., Vol 151,
1958, p 504–518

4. R. Hill, Continuum Micro-Mechanics of
Elastoplastic Polycrystals, J. Mech. Phys.
Solids, Vol 13, 1965, p 89–101

5. J.W. Hutchinson, Elastic-Plastic Behavior
of Polycrystalline Metals and Composites,
Proc. R. Soc. (London) A, Vol 319, 1970,
p 247–272

6. D. Dye, H.J. Stone, and R.C. Reed, A Two
Phase Elastic-Plastic Self-Consistent
Model for the Accumulation of Micro-
strains in Waspaloy, Acta Mater., Vol 49,
2001, p 1271–1283

7. R.A. Lebensohn and C.N. Tomé, A Self-
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Crystal-Scale Simulations Using
Finite-Element Formulations
P.R. Dawson and D.E. Boyce, Cornell University

SOLID METALLIC MATERIALS typically
are crystalline, existing with well-defined lat-
tice structures. The lattices possess certain sym-
metries dependent on the packing arrangements
of atoms. Accompanying the symmetries are
anisotropies of the mechanical properties, both
elastic and plastic, of the individual crystals.
Anisotropy is evident even at the continuum
scale in aggregates of crystals having preferred
orientations of the crystal lattices, known
as crystallographic texture. The behaviors
observed during processing of metallic solids
are influenced by the presence of the aniso-
tropic properties. Further, processing affects
the anisotropy by altering the crystallographic
texture and other features of the microstructural
state.
To model the processing of metallic materi-

als effectively, especially those aspects of a
process that are strongly influenced by anisot-
ropy, the properties inherited from the crystal
structure must appear explicitly in the model
formulation. Such aspects include the evolving
state of the material during processing as well
as its condition subsequent to processing. Con-
stitutive models posed at the crystal scale are
intended to quantify the behaviors that derive
from the crystalline structure of the material.
The coefficients of the elastic stiffness reflect
the crystal symmetry directly. The equations
for plastic flow are constructed from the prem-
ise of slip occurring on close-packed planes
in close-packed directions. Both relations
exhibit the anisotropy present at the crystal
level and together provide a physically-moti-
vated description of a crystalline material
behavior. The anisotropic behavior at the crys-
tal level implies that stress and deformation is
not uniform over the volume of a loaded poly-
crystalline aggregate. The ability of crystal to
carry load depends on the spatial orientation
of its lattice, so in an aggregate of crystals dis-
playing a range of orientations, there exists a
range of properties in relation to the load.
Finite-element formulations offer a powerful
methodology for dealing with this complexity.
The properties can vary spatially according to

the domains of the crystals and can incorporate
the observed elastic and plastic behaviors. Over
the past two decades, it has become the domi-
nant method for simulating processing of metal-
lic materials.
The goal of this article is to introduce the

reader to finite-element simulations in which
single-crystal properties provide the basis for
the constitutive model, to lay out the basic
equations that need to be solved, and to provide
examples illustrating the types of simulations
amenable to this approach. Two physical size
scales are considered. In the smaller, crystal
scale, the crystals themselves are discretized
with finite elements. A group (or aggregate) of
crystals is represented by a mesh in which each
element is part of a (or an entire) single crystal.
Depending on how finely resolved the crystals
are, the direct interactions of hundreds to tens
of thousands of crystals can be modeled in this
way. However, modeling thousands of crystals
still accounts for only a small piece of material,
and ultimately, the practical application of
polycrystal modeling is at the larger, continuum
scale. This is the scale of actual components or
parts with elements of the finite-element mesh
being much larger than individual crystals of
the material. At this level, the material
description can no longer include detailed
interactions of every crystal but instead must
approximate the net effect of the crystal-scale
behavior. At each computational point in the
body (e.g., each quadrature point in a finite
element), an entire aggregate of crystals is
modeled but in a way that is only weakly
coupled to the continuum scale.
The two scales are shown in Fig. 1. In

Fig. 1(a), the polycrystal is being modeled.
Each constituent crystal is modeled geometi-
cally by one or more elements, and properties
are computed directly from the single-crystal
slip model. The continuum scale is illustrated
in Fig. 1(b). There, the body is subdivided into
finite elements, with each element deriving its
properties from a polycrystal model based on
relatively simple rules for the crystal interac-
tions. For both the crystal and continuum

scales, basic frameworks of the formulations
are presented and then illustrated with represen-
tative examples. The examples illustrate typical
issues that can be addressed at each scale by
modeling. At the crystal scale, issues often cen-
ter around the influence of the polycrystalline
microstructure on a material behavior. Simula-
tions at this scale can combine morphological
(size and shape) and topological (grain or phase
connectivity) features with the anisotropy of
both the elastic and plastic properties. Using
this capability, one can examine grain interac-
tion effects on load sharing, strain hardening,
and damage initiation at the level of individual
grains embedded in a polycrystal. At the contin-
uum scale, it is possible to investigate how
forming effects the development of microstruc-
tural attributes such as the crystallographic tex-
ture, as well as how attributes such as the

Fig. 1 Schematic diagrams indicating the characteristic
sizes of crystals relative to the entire body being

modeled. (a) Crystal scale. (b) Continuum scale
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texture influence the outcome of a forming pro-
cess. Examples of each include texture evolu-
tion in rolling or extrusion and earing or
localized thinning in the forming of textured
sheet metal. In addition, one can directly intro-
duce anisotropy accompanying texture into
simulations designed to assess the impact of
factors such as residual-stress distributions or
orientation dependence of stiffness and strength
on the service performance of a component.

Crystal Elastoplasticity—Theory,
Methods, and Applications

Metals are capable of deforming elastically
and plastically by a number of different physi-
cal mechanisms. Plastic flow occurs by differ-
ent combinations of slip, twinning, and
diffusion, depending on the regime of tempera-
ture and stress (or strain rate). A processing
window can be defined in terms of the active
ranges of strain rate and temperature, which in
turn determines the dominant deformation
modes. That processing window here is limited
to one in which slip is the dominant mode of
plastic deformation and is characterized by
moderate strain rate and moderate homologous
temperature (Ref 1).
The following notation convention is

employed: plain fonts are used for scalars, math
bold fonts are used for vectors, and math sans
serif fonts are used for higher-order tensors or
matrices. Examples of a scalar, a vector, and a
tensor are, respectively: a, a, and a. In addition,
lower-case variables associated with either the
stress or the motion apply to quantities at the
crystal scale, while upper-case letters apply to
quantities at the continuum scale. A superscript
0 refers to the deviatoric part of a tensor, and a
superposed dot indicates material time
differentiation.
Elastic and Plastic Behaviors of Single

Crystals. An elastoplastic deformation within a
single crystal consists of elastic and plastic parts,
as well as a rotation. Within the specified proces-
sing window, the plastic deformation occurs
through crystallographic slip between atomic
planes of the crystal lattice. The elastic deforma-
tions are associated with lengthening or
shortening of the interatomic distances. The
equations for the elastic and plastic behaviors
are presented first separately. This is followed
by a discussion of the kinematic framework
needed to splice the elastic and plastic responses
into a compatible motion. The elastic response
follows a linear relation (Hooke’s law):

t ¼ ce (Eq 1)

where c the tensor containing elastic moduli for
the appropriate crystal symmetry (Ref 2), and
e is the elastic strain. (More precise definitions
of the strain and stress relative to deformed
and undeformed configurations follow.) The
Kirchhoff stress, t, is related to the Cauchy

stress, s, through t = bs, where b = det(I + e),
and I is the second-order identity tensor.
The plastic shearing rate on the a-slip sys-

tem, _ga, is related to the crystal stress by the
power law relation (Ref 3):

_ga ¼ _g0
jtaj
ga

� � 1
m

sgnðtaÞ (Eq 2)

where ga is the slip system strength, _g0 is a ref-
erence shear rate, and m is the rate sensitivity of
slip. The resolved shear stress, ta, is the plastic
work rate conjugate to _ga and is the projection
of the deviatoric part of the Kirchhoff stress,
t0, on the a-slip system as:

ta ¼ trðpat0Þ where

pa ¼ symðTaÞ ¼ symðba �maÞ (Eq 3)

where T
a is the Schmid tenor, formed from the

product of the vector, ba, the slip direction, and
the vector, ma, the normal to the slip plane,
associated with the a-slip system (Ref 4).
The slip system strength, ga, evolves accord-

ing to the following hardening rule:

_ga ¼ h0

gsð _gÞ � ga

gsð _gÞ � g0

� �n

_g (Eq 4)

where:

gsð _gÞ ¼ g1
_g
_g1

� �m0

and _g ¼
X
a

j _gaj (Eq 5)

Here, _ga is the net shear strain rate in the crys-
tal, gsð _gÞ is the saturation hardness, and h0, g0,
n, g1, _g1, and m0 are slip system hardening para-
meters. In the basic form of the crystal-plastic-
ity model, the slip system strengths are taken to
be the same.
Central to the behavior of crystalline materi-

als is the anisotropy associated with the elastic
and plastic behaviors. The elastic moduli and
the slip systems derive their values in part from
geometric attributes of the crystal lattice. Thus,
it is essential to specify the orientation of the
crystallographic lattices in space with respect
to a reference. A number of options are avail-
able to parameterize the lattice orientation.
The one chosen here is the angle-axis parame-
terization of Rodrigues, as described by Frank
(Ref 5, 6):

r ¼ n tan
f
2

(Eq 6)

where n is the rotation axis, and f is the angle
of rotation about this axis. A Rodrigues vector
specifies the rotation needed to take base vec-
tors aligned with the reference axes to coinci-
dence with axes embedded with the lattice of
a crystal in its spatial orientation. The funda-
mental region for cubic crystal structure is
depicted in Fig. 2(a). Fundamental regions are
subregions of orientation space, constructed to
contain only one of every set of orientations
that are equivalent under crystal symmetries.

Consequently, these are free of the ambiguity
associated with assigning crystals to orienta-
tions taken from all of orientation space. The
location of the surfaces of the fundamental
region are defined by the crystal symmetries.
The orientations of crystal axes are shown for
several orientations lying along one line
through the fundamental region in Fig. 2(b).
One can see that these orientations are different
only by rotation about a single axis and that the
end points are symmetrically equivalent orien-
tations. Lines through the fundamental region
constitute crystallographic fibers, and for the
case of the Rodrigues parameterization, fibers
are always straight lines.
When the lattice orientations of a population

of crystals are not uniformly distributed over
the fundamental region, that population is said
to have preferred orientation or texture. Mathe-
matically, this is represented by an orientation
distribution function (ODF), A(r) (Ref 7). The
ODF is defined over an appropriately reduced
fundamental region of orientation space. More
precisely, the ODF describes the local crystal
density over the fundamental region, so that the
crystal volume fraction enclosed within region
Ofr of the fundamental region is given by:

vf ¼
ð
Ofr

AðrÞdO (Eq 7)

where dO ¼ ffiffiffiffiffiffiffiffiffi
detg
p

dr1dr2dr3 is a volume ele-
ment of orientation space, and g is the metric
tensor of the space. A(r) is normalized to satisfy

Fig. 2 Fundamental region for cubic symmetry crystals
showing several orientations differing only by

rotations about (a) a 001 axis of rotation and (b) a �111
axis of rotation. The crystal axes are shown in gray
scale. The �111 axis of rotation is colored red.
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the condition that its integral over the funda-
mental region is unity.
Kinematic Framework for Deforming

Crystals and Polycrystals. The two modes of
straining, elastic and plastic, jointly must pro-
duce a single compatible deformation. As
depicted in Fig. 3, this is accomplished by a
multiplicative decomposition of the deforma-
tion gradient f. A multiplicative decomposition
is, in essence, a sequence of deformations. In
this case, the plastic slip occurs first, followed
by a rotation, and ending with the elastic
stretching. The time interval for the process is
shrunk toward a limit of zero, rendering the rate
form of decomposition. The individual contri-
butions to the deformation thus are occurring
simultaneously over the course of a complete
deformation history. However, the intermediate
configurations are generated and retained.
One intermediate configuration distinguishes
the current configuration of the body from one
that would be obtained by removing the stress.
The change between this unloaded configuration
and the current configuration defines the elastic
strains. The rate form also includes terms that
accommodate purely rotational motion, or spins,
that must appear for the kinematics to be consis-
tent in the presence of geometric nonlinearities
from large strains and rotations. The three-part
decomposition is written as:

f ¼ f[f?f] ¼ v[r?f] (Eq 8)

where f
♯ is the purely plastic part of f arising

from slip; f? is the lattice rotation, which may
be written as r?; and f♭ is the elastic part of
f (Ref 8). (Superscript symbols ♭, ♯, and ? refer
to mapping over a change of configuration.) The
deformation gradient f♯ can be used to define an
intermediate configuration, B̂, which is a relaxed
configuration obtained by unloading without
rotation from the current configuration B. Using
this interpretation of B̂, the symmetric left elastic
stretch tensor, y♭, is introduced. For the case of
small elastic strains, v♭ = I + e

♭, where ke♭k
� 1. From this decomposition, the kinematics
then are expressed in rate form as:

‘ ¼ _ff
�1 ¼ dþ w (Eq 9)

where d is the deformation rate tensor, and w is
the spin tensor, expressed in the current

configuration B. These terms may be split into
spherical and deviatoric parts, respectively, as:

trðdÞ ¼ trðe _[Þ (Eq 10)

and

d0 ¼ e
_[0 þ d̂]0 þ e[0ŵ] � ŵ]e[0 (Eq 11)

w ¼ ŵ] þ e[0d̂]0 � d̂]0 e[0 (Eq 12)

Here, d0 and e♭
0
are the deviatoric components

of d and e
♭, respectively. The “̂:” superscript

indicates mapping forward by r
? according to:

d̂]0 ¼ r?d]0r?T and ŵ] ¼ r? w]r?T (Eq 13)

to define the plastic deformation rate tensor, d̂]0,
and the plastic spin tensor, ŵ], in the relaxed
configuration B̂.
The viscoplastic flow rule is derived from the

crystallographic slip and is defined as:

l̂] ¼ d̂]0 þ ŵ] ¼ _r?r?T þ
X
a

_gaðTaÞ (Eq 14)

The assumed slip systems for the face-centered
cubic crystals, for example, are the 12 systems
with (110) directions and h111i normals. The
symmetric and skew symmetric parts of the
plastic velocity gradient, d̂]0 and ŵ], respec-
tively, are defined as:

d̂]0 ¼
X
a

_gap̂a and ŵ] ¼ _r?r?T þ
X
a

_gaq̂a

(Eq 15)

where q̂a is the skew part of b̂a � m̂a.
The lattice orientation evolves as a conse-

quence of the spin and is given by:

_r ¼ v ¼ 1

2
vþ ðv � rÞrþv� r (Eq 16)

where

v ¼ vect ŵ] �
X
a

_gaq̂a
 !

(Eq 17)

Refinements to the Single-Crystal Consti-
tutive Equations. The crystal constitutive equa-
tions presented here, especially those describing
the plastic deformation by slip, are quite basic.
They capture the fundamental observations that
slip occurs on close-packed planes in close-
packed direction and that the strength is elevated
by strain hardening. Nevertheless, they can be
improved upon in a variety of ways.

� Competing deformation mechanisms: Twin-
ning and phase transformations can be
incorporated by extending the kinematics to
include additional deformation mechanisms
that are driven by the crystal stress (Ref 9, 10).

� Kinetics of plastic flow: The simple power
law relating the slip system shear rate to

the resolved shear stress can be generalized
to include dependence on the resolved nor-
mal stress and to allow other functional
forms, such as an exponential behavior,
that can capture real aspects of slip beyond
that possible using a simple power law
(Ref 11, 12).

� Hardening rules: The modified form of the
Voce law can be extended to include the
influences of the various stages of hardening
and the details of the distribution of slip.
Other factors that influence the strength,
such as grain or slip domain size, can be
introduced (Ref 13, 14).

In contrast to extending the basic formula-
tion, it is possible to simplify it by neglecting
some aspects of the behavior. For example, by
neglecting the elastic response, the kinematic
decomposition can be reduced to one having
slip followed by the lattice rotation. The
computational requirements for integrating the
constitutive equations (consistently updating
the stress over an elastic-plastic deformation)
are lessened substantially because the only
mode of deformation is the plastic one. Such a
simplification is useful for large strain deforma-
tions under monotonic loading, such as occur in
many forming operations. It is not useful for
cyclic loading applications.
Crystal-Scale Finite-Element Formulation.

Various avenues are available to analysts for
incorporating the constitutive equations for
the elastic and plastic behaviors of single crys-
tals in finite-element formulations. The ave-
nues range from using commercial packages
that accommodate custom routines for consti-
tutive models to building special-purpose soft-
ware with capabilities designed particularly
for modeling polycrystals. Employing com-
mercial codes is a popular choice because the
analyst can focus attention on the material
and its behavior rather than the methods
needed to solve a boundary-value problem.
Subroutines are publicly available that inter-
face with well-known commercial codes (Ref
15). Developing custom software can be more
expensive in many respects but offers the flex-
ibility and control not afforded through inter-
faces with commercial packages. Such
software often is found in research environ-
ments where new or different approaches are
explored prior to their widespread acceptance
(Ref 16). Another possibility is the use of
niche codes that are more mature than research
codes but are not intended as general purpose
nor may not be publicly distributed (Ref 17).
Crystal elastic-plastic models have been suc-
cessfully implemented and applied within all
these avenues.
Here, the salient points of one finite-element

formulation that forms the basis of a custom-
purpose research code are summarized. Results
presented in sections that follow were obtained
with this formulation. For the crystals scale, a
weighted residual is formed on the equilibrium
equation as:

Fig. 3 Elementary kinematic decomposition for motion
at the crystal level with plastic flow occurring

via slip
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Ru ¼ �
ð
B

tr ðs0T gradcÞdB þ
ð
B
p divcdB

þ
ð
@B

t�cdGþ ð
B
i�cdB

where c are vector weighting functions, t is the
traction vector, i is a body force per unit vol-
ume, B is the volume of the body, and @B is
its surface. The deviatoric Cauchy stress, s0,
and mean stress (negative of the pressure, p)
sum to the total Cauchy stress:

s ¼ s0 � pI (Eq 18)

Traction or velocity is specified over the bound-
ary, @B.
The stress is replaced ultimately with the

velocity field through introduction of the consti-
tutive equations and the kinematic relation
defining the velocity gradient. The first step in
this process is to introduce a difference expres-
sion for the elastic strain rate as:

e
_[

n o
¼ 1

Dt
e[
n o

� e[0

n o� �
(Eq 19)

This is separated into the volumetric part:

�p ¼ kDt
b

trfdg þ k
b
tr e[0

n o
(Eq 20)

and the deviatoric part:

d0f g ¼ 1

Dt
e[0
n o

þ d̂]
� �þ ŵ]


 �
e[0
n o

� 1

Dt
e[00
n o

(Eq 21)

After removing the volumetric portion of the
elastic response in Eq 1, the resulting relation
for the deviatioric response may be inverted to
obtain:

e[0
n o

¼ c0½ ��1 
 0f g (Eq 22)

and combining it with a relation obtained from
the merger of Eq 2, 3, and 15:

d̂]
� � ¼ ½m�ft0g
where ½m� ¼

X
a

fðta; gÞ
ta

� �
fpagfpagT (Eq 23)

results in a matrix equation for the stress in
terms of the total deformation rate:

fs0g ¼ ½s� fd0g � fhgð Þ (Eq 24)

where:

s½ ��1¼ b
Dt

c0½ ��1þb m½ �

and hf g ¼ ŵ]

 �

e[0
n o

� 1

Dt
e[00
n o

ðEq 25Þ

Equations 20 and 24 are substituted into Eq 18 to
eliminate the explicit appearance of the stress.
The trial functions are introduced for the

velocity, leading to a matrix equation for the
nodal point velocities at the end of a time step.

This is a nonlinear system, involving the elastic
strain at the end of the time step as well as the
velocity, that is solved iteratively. The lattice
orientations and slip system strengths are
updated over the time step by integrating Eq
16 and 4 numerically.
2.5 Virtual Sample Instantiation. All finite-

element simulations of polycrystalline samples
are carried out on a mesh in which the individual
elements are associated with crystals. A mesh
having a specified assignment of crystal attri-
butes to particular finite elements is referred to
as a virtual sample. It represents one of many
possible ways that crystals may be arranged
within a volume of the material. The methods
to create virtual samples range from quite simple
to very complex, depending on which of the
microstructural attributes, and to what degree,
are being replicated. Perhaps the most simplistic
is to define a mesh of regularly shaped elements
and to each of these assign a crystal lattice orien-
tation randomly from a uniform distribution.
From there, one can build virtual polycrystals
that include aspects of the grain size and shape
distributions, lattice orientations that are drawn
from nonuniform distributions (textures), spatial
correlations of lattice orientation, and phase
topologies, including anisotropic distributions
of the continuity. Commonly employed methods
use tesselations, both regular and irregular, to
define the grain geometry and direct mapping
of three-dimensional images obtained from
experimental characterization (for example, by
serial sectioning).

2.6 Postprocessing for Comparison to
Experiments. Comparison to experiment is crit-
ical to gaining confidence in the fidelity of simu-
lation. This is true both when new methods are
under development and when new applications
emerge. Experiments involving in situ loading
of specimens in facilities capable of x-ray and
neutron diffraction measurements provide data
at the scale of crystals. Elastic (lattice) strains
can be inferred from shifts in diffraction peaks
under changes in the local stress state. Simula-
tion results can be analyzed to extract data equiv-
alent to that obtained from diffraction peaks.
Besides comparisons of lattice strains, one also
can examine texture evolution from changes in
the peak intensity and strain hardening from
changes in the peak width.
The basic steps of this postprocessing opera-

tion are laid out in Fig. 4. The first step in the
postprocessing operation is to determine which
subset of the orientations should be considered
active when simulating a particular diffraction
peak. Any element whose orientation (account-
ing for crystal symmetries) is such that the
designated crystal plane normal lies within a
solid angle, O, of the scattering vector is consid-
ered to be active in contributing to the simulated
diffraction peak. Experimentally, only those
crystals that align with the scattering vector to
a high degree of resolution will contribute to
the peak. Even with tens of thousands of ele-
ments, the simulations cannot produce the
degree of resolution comparable to the experi-
ment, so typically, a larger resolution angle, O,

Fig. 4 Postprocessing finite-element simulation data for comparison to diffraction data
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is specified in the simulations than is set by the
slit dimensions of the diffractometer. The reso-
lution angle should be as small as possible to
maximize the fidelity to the experiment but at
the same time large enough to provide meaning-
ful statistics. The lattice strains, given by the
elastic strain tensor, are averaged over that set
of crystals. The component of the average strain
tensor in the direction of the specified plane nor-
mal (scattering vector) is then available for com-
parison to experiment. Further, changes in the
numbers of elements found to align with the
scattering vector associate with changes of the
peak intensity; similarly, changes in the average
slip system strength for those elements may be
compared with the evolving peak width.
Example 1: Elastic Strains within Grains.

The simulation results for the response of a
stainless alloy are compared to experimental
data taken by neutron diffraction. Figure 5
shows the tensile specimens, undeformed and
deformed, used in the in situ loading experi-
ments. Only the central portion of the gage sec-
tion of the specimen was discretized, using
approximately 56,000 elements: Each finite ele-
ment of the mesh is an eight-noded brick and is
treated as an individual crystal and so is
assigned initial values for its own orientation,
slip system strength, and elastic strain tensor.
All of these state descriptors are free to evolve
during the course of the simulation. The crystal
lattice orientations were initialized by sampling
the ODF for the specimen material. The initial
value of slip system strength was taken to be
constant across all elements, and the initial
value of the elastic stretch tensor was taken as
the identity (corresponding to zero initial lattice
strain). With this level of resolution, the simula-
tions capture stress variations between crystals.
However, because the order of the elemental
interpolation is low (trilinear velocity field

within crystals), stress fluctuations around dis-
locations are not modeled explicitly. A full
description of the experiments and simulations
is given in Ref 18 together with values of the
constitutive model parameters.
These samples were loaded in tension to the

point of strain localization, with several unload-
ing/reloading episodes being performed at
fairly regular intervals. Although the macro-
scopic loading condition is simple tension, the
responses of the individual crystals vary from
the nominal stress due to the anisotropy in the
elastic and plastic behaviors. The goal of the
simulations is to demonstrate the ability of the
crystal-based formulation to capture the varia-
tions in stress at the scale of individual crystals.
Also shown in Fig. 5 is the finite-element

mesh of the gage section of the specimen
together with several subsets of the crystals in
the sample. Here, each element is a distinct crys-
tal and is colored according to the axial compo-
nent of its elastic strain. As is evident, the more
compliant the crystal direction, the greater the
strain, on average. These subsets of crystals cor-
respond to different Bragg conditions for which
there exists lattice strain measurements. The
comparison is shown in Fig. 6 for the most
(200) and least compliant (222) sets of crystals
while the specimen remains under load and after
it has been unloaded. Strains under load increase
with the overall strain of the sample as a conse-
quence of strain hardening. Recall that strain
hardening is incorporated via evolution of the
slip system strength. The ordinate scale of the
two plots differs by a factor of 2, showing the
pronounced difference in elastic strains among
crystals with compliant or stiff orientations rela-
tive to the loading axis. After unloading, the
crystals do not return to an unstrained state but
rather exhibit significant residual strains. On
average, these are positive (extension) for the

(200) set of crystals and negative (compression)
for the (222) set of crystals. Nonzero elastic
strains indicate the presence of residual stresses

Fig. 5 Tensile specimen loaded to the point of failure.
(a) Photographs of the samples in the

undeformed and deformed conditions. (b) Finite-element
mesh of the gage section of the mesh showing axial
strains. One insert shows the full mesh, while the others
show only those crystals satisfying the indicated Bragg
condition for an axial scattering vector.

Fig. 6 Comparison of the computed and measured axial lattice strains. (a) 200 crystals. (b) 222 crystals. Experimental points are shown with estimated error bars.
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at the crystal scale. Thus, even for the case of
simple tension, the heterogeneity of deformation
at the crystal scale induces residual stresses fol-
lowing plasticity. The simulations capture these
trends well.
In addition to the positions of Bragg peaks

changing under load, the peak profiles evolve
with deformation. A connection between the
broadening of the Bragg peaks and the evolu-
tion of the slip system strength is anticipated
because both the peak width and the strength
can be related to the dislocation density. Specif-
ically, both are proportional to the square root
of the dislocation density, so that a direct
dependence is expected. For the stainless
steel experiments discussed here, a correlation
between the experimental peak width and the
simulated strain hardening has been drawn
(Ref 19). In computing the correlation, the con-
tribution to peak broadening from variations in
crystal lattice strain is subtracted from the total
increase in peak width (lattice strains within a
grain give rise to a peak shift; when there is a
spread in lattice strains over the grains within
a diffraction volume, the net effect of the strain
variations is an apparent broadening of the
peak). The difference is attributed to the dislo-
cation density increase and correlated with it,
using:

fðyÞbd ¼ b1 þ b2g

 (Eq 26)

where bd is the dislocation-based increase in the
peak width, and g* is the normalized slip system
strength (computed as the ratio of the average
slip system strength in the diffracting crystals
to the initial slip system strength). The plot of
the dislocation-based broadening, bd, after scal-
ing by the cosine of the Bragg angle to account
for diffraction geometry, versus the normalized
slip system strength is shown in Fig. 7. The cor-
relation is good beyond the initial stages of hard-
ening once the normalized slip system strength,
g*, exceeds approximately 1.2.
Example 2: Bulk Texture Evolution. The

evolution of texture during processing has
received considerable attention from modelers
in the past. One application of particular inter-
est is the texture evolution that accompanies
the rolling of face-centered cubic metals. The
rolling textures may be studied by comparing
the relative strengths of ideal texture compo-
nents, which, in terms of the ODF, is the value
of A(r) at specified values of r. The copper-type
texture is comprised principally of the copper,
brass, and S components. The brass-type tex-
ture is dominated by the brass and Goss compo-
nents. The positions of these ideal components
in the Rodrigues fundamental region (Ref 20)
are shown in Fig. 8. Finite-element formula-
tions at the crystal scale facilitate the study of
the influence of the deformation heterogeneity
on the predicted textures. These predictions
can be compared and contrasted to those
from alternative approaches, such as applying
mean field assumptions of isostrain or isostress
conditions.

Here, the predicted textures obtained from
two different slip system hardening assump-
tions, isotropic and latent hardening, are com-
pared; a more complete description of the
results is given in Ref 21. Isotropic hardening
is given by the relatively simple hardening
model shown in Eq 4. For anisotropic harden-
ing, an interplanar latent hardening law elevates
the slip system strength as a consequence of
plastic straining. This hardening model causes
slip on one plane to strengthen systems on other
planes more than it strengthens systems sharing
that plane. The model implemented conforms to
a simple Voce (Ref 22) hardening format:

_ga ¼ ho

ðgs � gaÞ
ðgs � goÞMab _gb (Eq 27)

where ga, gs, go, ho, and Mab are hardening
parameters. For the complete set of slip sys-
tems, Mab constitutes a matrix of coefficients.

Mab = a when the a slip system shares the
same slip plane with the b slip system. Like-
wise, Mab = b when the a slip system does
not share a slip plane with the b slip system.
The latent hardening ratio (LHR) is then
defined as b/a. If the LHR is greater than
unity, slip on a given slip plane hardens slip
systems on other planes at a higher rate than
it hardens itself; if the LHR is unity, the isotro-
pic hardening assumption is recovered. Latent
hardening rules influence the morphology of
the single-crystal yield surface. The changing
yield surface in turn affects slip system activa-
tion and lattice reorientation velocities in the
polycrystal, thus influencing texture evolution.
Experimental data have shown that LHRs
can be as high as 2.0 but more often are
approximately 1.4 (Ref 4).
Simulations were performed at three LHRs:

1.0, 1.4, and 1.8. To obtain the single-crystal
hardening parameters appearing in Eq 27, the

Fig. 7 Correlation of the normalized slip system strength, t, with evolution of peak width for crystals having various
crystallographic directions aligned with the specimen transverse direction
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Fig. 8 (a) Location of face-centered cubic rolling components in the Rodrigues fundamental region. (b) Coordinates
of rolling components in Rodrigues space. The existence of orthorhombic sample symmetry results in multiple

ideal component locations in orientation space. Note: <r1,r2,r3> directions correspond to the <TD,RD,ND>
(transverse, rolling, normal) directions of a rolling process.

Crystal-Scale Simulations Using Finite-Element Formulations / 251

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158309


macroscopic response of each LHR was
matched to an experimental stress-strain curve
for brass subjected to tensile loading. Matching
the macroscopic response was important for
two reasons. First, it was important to be sure
that the samples exhibited realistic mechanical
responses. Second, for the effects of latent
hardening to be studied, the specimens needed
to be under similar stress levels. Because LHRs
affect the net strengthing of the crystal, each
LHR must have different single-crystal harden-
ing parameters to match the given stress-strain
curve. Otherwise, the texture differences
may have been attributed to the differences in
macroscopic stress state. Greater detail regard-
ing the choice of hardening parameters is
provided in Ref 21. The elastic moduli are
those of pure copper.
Simulations were performed using a virtual

polycrystal constructed of an arrangement of
space-filling dodecahedra, with each represent-
ing a single grain, as shown in Fig. 9. Each
dodecahedral grain is made up of 48 higher-
order, tetrahedral elements. Discretization at
the subgrain level enables spatial variation of
the deformation within the grain. The virtual
specimens shown in Fig. 9 contain 81,000 tetra-
hedral elements and 1098 full dodecahedral
grains. It should be noted that there are a num-
ber of partial grains on the surface that are
required to create the full cube shown in
Fig. 9(a). Lattice orientations were assigned to
all the elements in the mesh from a random
sample drawn from a uniform (untextured) ori-
entation distribution. All the elements within a
crystal were assigned the same initial orienta-
tion, although those orientations could evolve
independently thereafter.
The virtual specimens were placed under

plane-strain compression, which can be consid-
ered an idealized rolling operation. In an actual
rolling operation, frictional constraints applied
by the rolls as well as the geometric constraint
of the workpiece itself prevent deformation in
the transverse direction (TD, parallel to the
rolls). The deformation is then limited to the
rolling direction (RD, the extension direction)
and the normal direction (ND, the compression
direction). This results in plane strain at the
macroscopic level, although deformation can
occur in TD within the polycrystal. Initially,

each virtual sample was deformed to a target
effective strain (typically, 30%) at a strain rate
of 0.001s�1. Effective strain is defined as
e ¼ Ð ddt, where d is proportional to the second
invariant of the symmetric part of the velocity
gradient:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
d : d

r

Orientation distribution functions were deter-
mined and plotted in Rodrigues orientation
space for three different effective strains: 10,
20, and 30% (Fig. 10a,b, and c, respectively).
Qualitatively similar textures result for all three
LHRs. At all of the strain levels, the develop-
ment of a standard rolling texture is evident,
with regions of high orientation density devel-
oping along the a and b fibers. By an effective
strain of 10%, the crystals are beginning to
align themselves along these fibers. At a strain
of 20%, a rolling texture pattern has emerged;
at a strain of 30%, the rolling texture is well
established.
The effects of latent hardening on texture

development at low strains are too subtle to be
seen from a simple visual comparison of the
resultant ODFs. Difference orientation distribu-
tion functions (DODEs) allow the ODFs to be
compared in greater detail. A DODF is simply
a subtraction of one ODF from another:

dAðrÞ12 ¼ AðrÞ1 �AðrÞ2 (Eq 28)

A peak in a DODF indicates that the likelihood
of there being crystal lattices corresponding to
the peak orientation is higher in the material
state represented by A(r)1 than in the material
state represented by A(r)2 (Eq 28). Figure 11
shows the DODF between a LHR of 1.8 and a
LHR of 1.0 at a strain level of 30% for the
finite-element simulations (Fig. 11a) and for
simulations based on an isostrain assumption
(Fig. 11b). In the finite-element simulations,
the higher LHR mainly leads to an increase in
strength along the a-fiber but does not corre-
spond to an equivalent increase along the
b-fiber. This indicates that latent hardening is
affecting the direction of reorientation. The
crystals are migrating to different regions of
orientation space rather than simply arriving in

the same location at a faster rate. The increase
in the strength of the a-fiber, without a
corresponding increase in the b-fiber, indicates
that a brass texture is forming. In contrast, the
isostrain assumption gives opposite trends to
those produced when heterogeneous deforma-
tions are allowed within the finite-element
framework. The finite-element virtual polycrys-
tal captures the combined effects of latent

Fig. 9 Virtual specimen. (a) Full mesh discretization
with 81,000 elements. (b) Mesh showing 1098

full dodecahedral grains. Crystals are colored according
to position to aid in visualization.

Fig. 10 Resultant orientation distribution functions from sample 1 with a latent hardening rate of 1.4 at effective strains of (a) 10% (b) 20% and (c) 30% after 5� Gaussian
smoothing. MUD, multiples of uniform distribution
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hardening and heterogeneous deformation over
the polycrystal on the formation of brass
textures.

Application to the Continuum Scale

Engineering components typically are much
larger in volume than can be modeled using
methods that resolve every grain. Yet, the plas-
tic deformation mechanisms are ones of slip
and twinning that are modeled well with consti-
tutive equations rooted at the crystal scale. It is
possible to devise methodologies that retain
benefits of a crystal-scale theory in a formula-
tion appropriate for continuum-scale simula-
tions by making assumptions that link the
motion and stress between the two scales. In
this section, one such methodology is presented
in which the scales are linked by assuming that
every crystal in a volume associated with a con-
tinuum point experiences the same deformation
gradient as the continuum point. Other assump-
tions are possible, however, although space lim-
its their review.
Polycrystal Behavior. For the continuum-

scale model, the material properties derive from
orientational averages over a representative
volume of single crystals associated with con-
tinuum points throughout the domain. Contin-
uum-scale quantities of stress (S) and velocity
gradient (L) are defined for a volume, B, con-
taining a population of crystals by integrating
tractions, t, and the velocities, u, over the vol-
ume surface, @B. For the stress:

S ¼ 1

B
ð
@B

x� tdG (Eq 29)

and for the velocity gradient:

L ¼ 1

B
ð
@B

n� udG (Eq 30)

where x is the position, and n is the surface
normal. For sufficiently smooth distributions
of stress and velocity gradient, these surface
integrals can be converted to integrals over the
volume. Again, for the stress:

S ¼ hsi ¼ 1

B
ð
B
sdB (Eq 31)

and for the velocity gradient:

L ¼ hli ¼ 1

B
ð
B
‘‘dB (Eq 32)

Using theODF, a change of variables can be intro-
duced to map these integrals to the fundamental
region. For any of the fields, including the stress
and velocity gradient, an average is given by:

F ¼ hfi ¼
ð
Ofr

AðrÞfðrÞdO (Eq 33)

In this way, the crystal-scale quantities link to
their continuum-scale counterparts, as shown
schematically in Fig. 1b. Applying such averag-
ing to constitutive equations from the crystal scale
provides formulae for the mechanical properties.
Finite-Element Formulation for Contin-

uum Scales. As pointed out in the section
“Crystal-Scale Finite-Element Formulation” in
this article, several avenues are possible for
implementing particular constitutive equations
in finite-element formulations. The same com-
ments apply to continuum-scale constitutive
models based on averaged behaviors of poly-
crystals. Again, the formulation used in a cus-
tom-purpose research code is presented
because it illustrates the main features needed
in any of the approaches. Note that the formula-
tions for the crystal-scale and continuum-scale
responses are similar, except that the continuum
formulation uses averaged quantities associated
with the motion, stress, and properties. Simi-
larly, for the continuum scale, the weak form
of equilibrium is written as:

Ru ¼ �
ð
B

tr ðS00T gradCÞdB þ
ð
B
P divC dB

þ
ð
@B

T �CdGþ
ð
B
JJ �C dB

where C are vector weighting functions, T is
the traction vector, J is a body force per unit
volume, B is the volume of the body, and @B
is its surface. The continuum Cauchy stress
has been decomposed into a pressure, P, and
a deviatoric part, S0:

S ¼ S0 �PI (Eq 34)

A matrix equation for the deviatoric stress in
terms of the deformation rate, now for the con-
tinuum quantities, results in the same fashion as
for the crystal scale. This gives:

S0f g ¼ S½ � D0f g � Hf gð Þ (Eq 35)

To evaluate the stiffness, [S], from the
corresponding crystal quantities, the continuum
velocity gradient is partitioned among the crys-
tals in the aggregate. Such an assumption is
known as a linking or mean field hypothesis.
An isostrain assumption is one possibility that
equates the deformation field of the individual
crystals with that of the polycrystal (Ref 23).
Enforcing this condition ensures that inter-
granular compatibility and global equilib-
rium is satisfied but not local equilibrium
(Ref 24–26). The specific condition used is
l = L, giving:

S½ � ¼ s½ �h i Hf g ¼ s½ � hf gh i (Eq 36)

From this point, the crystal-scale and continuum-
scale formulations are quite similar. The numer-
ical solution gives the nodal velocities as a func-
tion of time, together with the history of the
elastic strain, lattice orientations, and slip system
strengths. For the continuum formulation, how-
ever, there is an aggregate of crystals at each
continuum point where properties are evaluated
with an associated distribution of lattice orienta-
tions and the single-crystal properties.
Alternatives within the Continuum-Scale

Formulation. The continuum-scale formulation
outlined in this article possesses the necessary
basic elements to simulate the response of a
material that displays anisotropy in its strength
due to the influence of crystallographic texture.
That anisotropy may evolve in concert with
evolution of texture with deformation. Alterna-
tives to the particular choices made for many
aspects of the formulation do exist, of course.
A few of those are listed as follows:

� In lieu of performing averages over an
aggregate of crystals to obtain the plastic
stiffness in Eq 35, one could employ a yield
surface: a surface in stress space that defines
the stress necessary to induce plastic flow.
Functions that define yield surfaces range
from extensions of the isotropic model pro-
posed by von Mises to piecewise polynomial
representations that employ parametric map-
pings of elementary patches to form a com-
plete surface (Ref 27).

� The representation of the state and its evolu-
tion can be tackled in a variety of ways. The
state descriptors (texture and slip system
strength, in this case) can be defined locally
at quadrature points within the finite ele-
ments or as entire fields over the body or
workpiece. If the definition is strictly local,
then the evolution equations for the state
descriptors at each quadrature can be
integrated independently of those at other
quadrature points. In contrast, if the repre-
sentation of state is done using fields defined

Fig. 11 Difference orientation distribution function for
a latent hardening rate (LHR) of 1.8 minus

LHR 1.0 for (a) finite-element virtual polycrystal with 5�
Gaussian smoothing and (b) Taylor assumption. MUD,
multiples of uniform distribution
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over the full body, then global methods may
be needed. Galerkin-weighted residual
approaches work well in this regard.

� As with the crystal-scale formulation, it is
possible to simplify the formulation by
neglecting the elastic response, thereby gain-
ing substantial computational advantage.
Such a simplification may be valid under
loadings in which the straining is dominated
throughout the application by the plastic
response. Issues of texture evolution and
shape changes can be addressed effectively
in many large-deformation forming opera-
tions under this simplication.

Example 3: Residual Stresses from
Bending. The continuum-scale formulation is
illustrated with the calculation of stress distri-
butions in a stainless steel component (the same
material, AL6XN, discussed in example 1.) The
component has a “U” shape with tabs for the
application of opposing loads, applied horizon-
tally in the picture (Fig. 12). Under this loading,
the component acts as a curved beam, develop-
ing macroscopic gradients in the stress and
strain distributions when its ends are pulled in
opposite directions. The state of loading resem-
bles that of pure bending but also includes an

axial component that arises from loading the
specimen with a set of opposing forces. The
finite-element mesh for a symmetric half of
the specimen at the macroscopic scale is shown
in Fig. 12. This mesh contains a total of 1548
elements, with each element having assigned a
total of 128 crystal orientations to define the
texture within it. The initial values for the
orientations were defined from a random sam-
pling of a measured ODF. Again, there exist
measurements of crystal lattice strains obtained
by neutron diffraction to serve as a basis of
comparison.
The measured loading sequence, shown in

Fig. 13, was applied to the macroscopic mesh.
The complete sequence included a total of 7
unloading/reloading episodes, as well as a final
unloading sequence. This history was sufficient
to produce plastic deformations along the center-
plane where the moment is highest, imparting a
permanent shape change to the specimen, as
shown in Fig. 12. The macroscopic stress

distributions in the loaded and unloaded condi-
tions of the final unloading episode are shown
in Fig. 14.
Elements in the macroscale mesh are compa-

rable to, but somewhat smaller than, the
experimental diffraction volumes. From the
macroscopic scale results, loading histories for
elements along the centerplane were extracted,
as shown in Fig. 15. Specifically, the velocity
history of the surface of a macroscopic element
was imposed on the corresponding surface of
the crystal-scale mesh, thereby forcing the
boundary of the polycrystal to move in the
same way as the boundary of the macroscopic
element. Figure 16 shows one of the crystal-
scale meshes. It contains 1000 elements with
each element corresponding to an individual
crystal; the complete mesh, or polycrystal, coin-
cides with one of the elements along the center-
plane of the macroscopic mesh. Figure 15 shows
the history of 15 elements adjacent to the center-
plane. These span the same cross section as

Fig. 12 (a) Photograph of undeformed and deformed
component. (b) Undeformed and deformed

meshes for the component

Fig. 13 Load history on bending specimen. Scale is in seconds; hold times for diffraction measurements have been
omitted.

Fig. 14 Normal stress components at the initiation (left) and conclusion (right) of the final unloading episode
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examined experimentally, although the centroids
of the simulation and experimental diffraction
volumes do not exactly coincide.
Comparisons between measured and com-

puted lattice strains are shown for the final
complete unloading episode. For both the
loaded and unloaded states, lattice strains for
004 crystals are shown in Fig. 17 and strains
for 222 crystals are shown in Fig. 18. One can
readily see the bending profile expected for a
plastic hinge of a strain-hardening material in
the loaded state and the subsequent residual
profile for the unloaded state. The computed
strains are somewhat higher, but the difference
between the loaded and unloaded states com-
pares well between experiment and simulation.
The 004 strains are considerable larger (factor

of 2) than the 222 strains, a trend that is cap-
tured by the simulation. Probably the most
notable difference between simulation and
experiment is the sharpness of the computed
profile near the neutral axis in the unloaded
state. This trend is much more muted in the
experiment. The size of the diffraction volume
may influence this difference. By averaging lat-
tice strains in adjacent elements, the results cor-
respond to enlarging the diffraction volumes in

the simulations. As expected, these compare
more closely to experiments.
Example 4: Deformation of a Welded

Joint. Another example at the continuum-scale
formulation is the simulation of the deformation
of a tensile specimen having a weld in the center
of its gage section. The simulation mimics one
case in a set of physical experiments that were
conducted on specimens cut from a plate having
a double-pass friction stir weld. This example,

Fig. 15 Deformation gradient histories extracted from
the continuum-scale simulation and applied

to the crystal-scale meshes corresponding to diffraction
volumes along the specimen centerplane. Scale is in
seconds; hold times for diffraction measurements have
been omitted.

Fig. 16 Diffraction volume (microscopic) finite-
element mesh for the bending specimen

simulations. Upper image shows the undeformed mesh;
the lower image shows the final mesh, where color
indicates relative magnitude of the xx component of
stress.

Fig. 17 Comparisons of measured and computed lattice strains for crystals having a 004 direction aligned with the
specimen x-direction. Loaded and unloaded states are shown.

Fig. 18 Comparisons of measured and computed lattice strains for crystals having a 222 direction aligned with the
specimen x-direction. Loaded and unloaded states are shown.
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while relatively simple in geometry, illustrates
several aspects of modeling at this scale. One
aspect is the initialization of the mechanical state
of the material. Another is the impact of aniso-
tropic properties on the deformation. A third
aspect is how the deformation induces evolution
of the state, which, for polycrystalline materials,
includes the evolution of the texture. Changing
texture implies evolving mechanical properties,
especially in the strength anisotropy. This exam-
ple illustrates how simulations can loosely cou-
ple the continuum and crystal scales.
In the experiments, several samples were cut

from the welded plate with their tensile axes
aligned with the plate TD. The welding process
leaves a strong structural heterogeneity in the
material, as can be seen in Fig. 19. Each sample
exhibited a unique cross section, as can be seen
in Fig. 20. Discussion of the motivation behind
the experimental design, as well as the simula-
tion of all of the specimens, can be found in
Ref 28. Results are presented only for one of
the samples, which had an initial cross section
of 3.94 by 3.34 mm.
Electronic backscatter diffraction maps were

completed in both the weld zone and the base
metal for the purpose of initializing the texture.
These are shown in Fig. 21 for both the weld
zone and the base metal in terms of a Rodrigues
parameterization of orientation. The base metal
exhibits no strong texture components and exhi-
bits a peak value only slightly higher than the
value for a uniform distribution. In the weld
zone, the material exhibits a diffuse cube tex-
ture. Grain sizes generally are much smaller in
the weld zone than in the base metal. Micro-
hardness measurements were taken over the
weld zone and regions of the base metal adjoin-
ing it. These indicated that the mixing asso-
ciated with the welding process substantially
hardened the material in the weld zone.
Initializing the state of the material involves

specifying the initial texture and slip system
strength for the continuum-scale formulation
discussed here. The welding process leaves a
weld zone that is distinct from the base metal
but relatively uniform within itself. The transi-
tion from the weld zone to the base metal is
quite sharp. Thus, for the simulation, two zones
are considered, base metal and weld zone, each
with uniform properties. The initial textures in
the weld zone and base metal were specified
by the measured ODFs. The initial slip system
strength distribution was qualitatively estimated
from the microhardness maps.
The multiscale methodology used in the simu-

lations is illustrated in Fig. 22. The figure shows
the simulated specimen before deformation on
the left and after deformation on the right. Cer-
tain elements were selected from the base metal
and the weld zone, and the volume contained in
each of these elements was tracked over the
entire continuum-scale simulation. Then, each
of these elements was discretized with 8000 ele-
ments, with each element representing an indi-
vidual crystal to define the crystal-scale model.
Additional simulations were performed on each

crystal-scale model. The motion of the contin-
uum-scale element provided boundary condi-
tions for the crystal-scale model. The figure
shows the element shape and slip system hard-
nesses from the initial condition through the four
peak load levels for the crystal-scale specimens.
The load-extension record is presented in

Fig. 23. The experimental record consists of the
data points connected by dashed lines indicating
the sequence of measurements. The simulation

has many more data points for the load-extension
history, but only points corresponding to experi-
mental measurements are highlighted. A single
set of material parameters was chosen to match
the experimental extension records at the specified
loads, effectively using this macroscopic experi-
mental data to calibrate the work-hardening para-
meters of the model.
Comparisons of the final shapes of each spec-

imen are presented in Fig. 24, showing contour
plots of specimen thickness and line plots of in-
plane edge profile. Due to physical limitations
of the coordinate measuring system used, the
measured thickness profiles do not extend to
the edge and are shown as the top rectangles
in the contour plots. The simulated data are pre-
sented directly below and show the entire spec-
imen. The line plots contain both experimental

Fig. 19 Micrograph showing base metal and stirred regions within the friction-stir-welded microstructure

Fig. 20 Initial geometry for the tensile specimen cut from the welded plate. Shaded region shows approximate
location of stirred zone depicted in Fig. 19.

Fig. 21 Orientation distribution functions shown on
the surface and coordinate planes in

Rodrigues space. Scale is in multiples of the uniform
distribution (MUD). (a) Base metal. (b) Weld zone

Fig. 22 Slip system hardnesses for micro and macro
simulations. Left-most image is the initial

geometry and state of the specimen at the continuum
scale; right-most image is the final geometry and state of
the specimen at the continuum scale; central images are
crystal-scale polycrystals depicting the evolution of
hardness within the weld zone (upper set) and in the
base material (lower set).
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and simulated results. The relative amount of
deformation between the welded zone and the
base metal is a key feature of the deformed
shape. For the simulations to capture this fea-
ture, the qualitative estimates of the initial slip

system hardness distribution derived from the
microhardness measurements were refined.
The simulations are compared to the diffrac-

tion experiments, looking in particular at the
evolution of the texture in the base metal.

Comparisons to lattice strains are available in
Ref 28. The simulated ODF for the base metal
at the end of the loading sequence is presented
in Fig. 25; note that the peak value is nearly
twice that of Fig. 21. The welded material
experiences very little deformation early in the
experiment, and its texture just begins to change
in the last load levels, so it is not presented. In
the experiment, four reflections were measured.
The experimental results show the relative
change in intensity for each hkl and are plotted
as the the ratio of the integrated intensity to the
original integrated intensity of the undeformed
specimen. The simulations use the ratios of the
number of crystals in the diffraction condition
to the number before deformation. A cutoff
angle of 5� is used to ensure that enough crystals
were in the diffraction condition. For the (311)
direction, with high multiplicity, 337 crystals
out of 8000 were lit up initially. The lowest ini-
tial count was for the (004) direction with only
117 crystals in the simulated diffraction condi-
tion. The (222) direction began with 205 lit-up
crystals, and the (220) direction had 127.
Figure 26 compares the simulated relative

peak intensities in the base metal with the
experimental ones. Overall, the simulations
captured the changes well. The strongest
changes are in the (222) reflection, which
increases the most, and in the (220) reflection,
which decreases significantly. Both behaviors
are captured well by the simulations. The other
two reflections, (311) and (004), show less
change both in experiment and simulation.
The simulation matches the (004) results well
for the first several measurements but does not
catch the downturn in the experimental data
near the end. For the (311) reflection, both data
sets remain relatively flat, but the simulation
results are consistently lower.

Summary and Conclusions

This article is devoted to explaining how
crystal plasticity is implemented within finite-
element formulations. Two physical length
scales are considered. The first is that of crys-
tals in which the computational domain is a
polycrystal consisting of thousands of crystals.
Finite elements constitute individual crystals
or parts of a crystal. The second scale is that
of an engineering component with characteris-
tic dimensions far larger than that of any single
crystal within it. In this case, the volume of an
element from the finite-element mesh is consid-
erably greater than that of a polycrystal used to
evaluate effective properties. The overall theo-
retical formulation involving anisotropic elastic-
ity and restricted slip plasticity (also anisotropic)
captures many aspects of the observed behaviors
of materials under mechanical loading. These
include:

� Elastic anisotropy from individual crystals
� Stress distributions within and among

crystals

Fig. 23 Load-extension record for sample 3 showing the measured and computed loads. The experimental loads do
not follow the dotted lines; the lines are provided only to aid the reader in following the sequence of load

measurements.

Fig. 24 Comparisons of simulated and experimental deformed profile. The upper images show contours of thickness
for experiment and simulation over the full specimen (the grid of measured values did not extend to the edge

of the specimen, however). The lower image shows computed and measured values of the profile along the midplane of
the specimen.
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� Dependence of the plastic flow on crystallo-
graphic orientations

� Influence of strain hardening
� Evolution of texture over large plastic

strains

Through four examples, the capabilities of
formulations are illustrated at these two length
scales, with the intention of demonstrating suc-
cessful application of each formulation to gain-
ing a better understanding of several important

issues. At the crystal scale, the simulations of
in situ diffraction experiments give insight into
how polycrystals collectively respond to load-
ing, showing for crystals within a polycrystal
the dependence on interactions with neighbor-
ing grains as well as on crystal lattice orienta-
tion itself. The simulations at this scale also
were used to investigate whether or not latent
hardening together with grain-to-grain hetero-
geneity of deformation could be responsible
for the emergence of a brass-type texture. These

simulations demonstrated how hardening
assumptions manifest themselves in texture
evolution differently, depending on how grain
interactions are modeled. At the continuum
scale, the simulations of bending were used to
illustrate the inclusion of plastic anisotropy
due to the presence of crystallographic texture.
Macroscopic residual-stress distributions were
computed, and through weak coupling to the
crystal scale, compared directly to diffraction
measurements. Finally, the modeling of a spec-
imen cut from a friction-stir-welded plate
demonstrated how the state of a material with
very strong pre-existing microstructure varia-
tions can be characterized and used to initialize
simulations of deformations that further alter
the microstructure and promote substantial spa-
tial gradients of the strain field.
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Cellular Automaton Models of
Recrystallization
C.H.J. Davies, Monash University, Australia

CELLULAR AUTOMATA are a subset of
so-called finite-state machines and have appli-
cation in disciplines as diverse as computer-
generated imagery of crowd, flock, and swarm
behavior through tools to optimize parameters
in complex multiparameter models, to the sim-
ulation of microstructural evolution. The study
of cellular automata (CA) is a discipline in its
own right, and the reader is referred to other
sources (Ref 1) for a survey of the mathematics
of CA. The power of the approach lies in its
fundamental simplicity. A cellular automaton
is essentially a collection of rules governing
system behavior replicated over an array that
may contain many instances of the rules in one,
two, or three dimensions. Each instance inter-
acts with its neighbors in a predefined manner,
and thus, the global behavior emerges from
interactions at a local scale.
Thus, for example, flock behavior is not

explicitly programmed into a simulation but
rather results from a rule which determines that
each member of the flock must avoid its nearest
neighbors while maintaining a given speed.
From this simple rule evolves the flocking
behavior that one marvels at when witnessing
a large flock of birds or school of fish. In micro-
structural simulations, rules that govern the
interactions of microstructural subunits (which
are given a length scale that is some appropriate
factor smaller than the smallest relevant micro-
structural feature) may be based on the
exchange of dislocations in a simulation of
solid-state microstructural evolution, from
which the Avrami equation for recrystallization
kinetics is “rediscovered.”
An important point is that the philosophy

underlying the CA approach mimics our appre-
hension of the physical world. Bird “A” does
not know what trajectory bird “B” is taking sev-
eral meters away in the same flock, but their
movements are somehow connected. Similarly,
grain “X” does not know that grain “Y” is
recrystallizing some tens or hundreds of micro-
meters away in a block of metal, but their
behavior can be connected through the kinetics
of recrystallization. It is this localization of the

rules that distinguish CA simulations (and other
representational simulations such as Monte
Carlo simulations) from mean field analytical
models and models employing a homogeneous
effective medium.
This article examines how CA can be applied

to the simulation of static and dynamic recrys-
tallization. It describes the approach and how
it has evolved since the early 1990s. The frame-
work elements necessary for an operational cel-
lular automaton are described, with the aim of
providing the reader with an understanding of
the necessary terminology, but will not provide
algorithms for constructing a cellular automa-
ton. Other references (e.g., Ref 2) contain more
detailed information on CA algorithms and pro-
vide the reader with the necessary detail to
write their own cellular automaton code. The
importance of calibration with experimental
data and integrated multiscale modeling (com-
bining a cellular automaton with finite-element
models) is highlighted with respect to recrystal-
lization simulations and, in particular, multi-
phenomena models. The evolution of the field
from regular to irregular CA and future out-
looks are also addressed.

The Cellular Automaton Method

Cellular automata operate at mesoscopic
length scales on the order of subgrains and grains
for the simulation of recrystallization but can be
coupled with simulations at other length scales
to produce powerful multiscale models. Cellular
automata can be used in two ways:

� As a conventional simulation engine, which
requires input data and can interpolate
within the domain of the data and, to some
extent, extrapolate beyond that domain

� As an inverse engine, wherein the CA is
used to perform “what if?” virtual experi-
ments, the results of which are only com-
pared to the final results of an experiment

The first approach is used, for example, where a
simulation is required to assist with exploring

options for processing a material, whereas the
second can be used to test hypotheses about
the physical phenomena underlying recrystalli-
zation—perhaps the sites for nucleation or the
effect of local texture distribution on the recrys-
tallization. It is often the case that the two
extreme cases are combined: Assumptions are
made about nucleation in a simulation that is
used to explore a domain of known data.
The algorithms for simulation of recrystalliza-

tion using CA are fairly well established, and any
of several can be used to determine the kinetics
of a recrystallizing microstructure. The Johnson-
Mehl-Avrami-Kolmororov (JMAK) relationship
is “rediscovered” from two- and three-dimen-
sional simulations that are not explicitly pro-
grammed with a JMAK exponent; in fact, this
rediscovery should be seen as one of the tests of
validity of any new CA algorithm. In this regard,
CA simulations reveal little more about the pro-
cess of recrystallization thanwas known 70 years
ago. The power of the approach is that the local
spatial evolution can be coupled with the tempo-
ral evolution, but to include the spatial compo-
nent, the CA needs experimental data. There
are four or five steps in the CA simulation of
recrystallization, and each is examined in this
article:

1. Defining the CA framework
2. Generating the initial microstructure
3. Distributing nuclei of recrystallized grains
4. Growing the recrystallized grains
5. Updating the dislocation density, which is

implemented for simulations of dynamic
recrystallization or in situations where sig-
nificant static recovery occurs concurrently
with static recrystallization

The Cellular Automaton Framework

The CA framework consists of the size of the
CA, the order (dimensionality), the interaction
domain (neighborhood), and the boundary con-
ditions. In this description the term size of the
CA should be thought of as interchangeable
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with the number of elements or cells, whereas
the term scale of the CA is used for the calibra-
tion of CA dimensions to physical dimensions.
For microstructural simulations, we are usually
only interested in two- or three-dimensional
order are of interest because of their correspon-
dence to the methods of imaging or represent-
ing bulk microstructures. The upper limit on
the size of a cellular automaton is fixed by com-
puter storage capacity, but rarely is this limit
reached. It is more likely to be governed by
the pragmatic measure of the time required to
run the simulation, and this is dictated by com-
puter clock speed and programming language
(whether the language is interpreted or com-
piled).The lower limit to the number of ele-
ments is determined by the phenomenon to be
simulated and the boundary conditions. The
size and scale of the CA must be sufficient to
capture the microstructural variation in the
physical system. Too few cells in the array will
introduce errors because the microstructure
and/or the texture is inadequately represented.
This is especially a problem with the nucleation
of recrystallized grains: Too few nuclei lead to
errors in the kinetics and the texture resulting
from the simulation. Once the size and order
of the array are prescribed, a cellular automaton
framework requires a neighborhood definition,
which specifies the cells in an array that are
permitted to interact with one another, and the
boundary conditions prevailing at the edges
(faces in three dimensions) of the array.
Typical regular neighborhoods on a square

lattice are the von Neumann, Moore, and mod-
ified-Moore types (Ref 3) (Fig. 1), all of which
can be described in two dimensions, as in the
figure, or extended without much effort to three
dimensions. Hexagonal (triangular) neighbor-
hoods may be employed, as well as irregular
neighborhoods (Ref 2), which are discussed
later in this article. Each neighborhood yields
a characteristic grain shape prior to impinge-
ment that is believable to a lesser (von Neu-
mann) or greater (modified Moore) extent
(Fig. 2).
In many cases, a CA simulation of recrystal-

lization uses periodic boundary conditions at
each edge (two dimensional) or face (three
dimensional) so that the CA wraps around on
itself, which, for a two-dimensional CA, results
in the plane of the CA lying over a torus. Peri-
odic boundary conditions are appropriate for
near-isothermal (or constant heat/cooling rate),
near-isostrain situations. For example, a two-
dimensional CA representing microstructural
evolution on an RD-TD plane of a rolled plate
or sheet may not suit all situations (the RD-
ND plane of a rolled plate)(Ref 4). (Following
convention, the principal axes of a rolled plate
are the rolling direction (RD), transverse direc-
tion (TD), and normal direction, or (ND.))
In such cases, one or both periodic boundaries
must be relaxed to mirror boundary conditions
(the cells at the edge reflected), and this intro-
duces errors that depend on the size of the
simulation (Ref 5, 6).

Early CA simulations of recrystallization
use a two- (Ref 3, 7, 8) or three-dimensional
(Ref 9, 10) CA to simulate recrystallization in
a homogeneous medium and are essentially
aimed at verifying the technique for use in
solid-state simulation and exploring the limits
of the framework. The simulations are run
under the assumptions of the JMAK theory:

� Randomly distributed and homogeneous
nucleation

� Either site saturated or constant nucleation
rate

� Constant and isotropic growth rate

Compared to the well-known JMAK results, the
kinetics of recrystallization are adequately
reproduced, apart from minor deviations at the
start and end of recrystallization, which reflect
the oft-overlooked fact that the JMAK equation
is a limit for an infinitely large number of
grains, rather than an equality (Ref 6). The
characterization of the deformed structure as a
homogeneous medium implies a mean field
effect of the surroundings on the growth of

recrystallized grains, something that is known
to be a gross approximation but is consistent
with JMAK theory. This work demonstrates
that under the assumptions of the theory, the
JMAK exponent does not depend on the type
of neighborhood used (Ref 3, 8).

Fig. 1 Neighborhood definitions. (a) von Neumann
neighborhood. If (i,j) is the index of the

central cell, neighbors are (i�1,j), (i+1,j), (i,j�1), (i,j+1).
(b) Moore neighborhood. Neighbors are (i�1,j), (i+1,j),
(i,j�1), (i,j+1), (i�1,j�1), (i+1,j�1), (i+1,j�1), (i+1,j+1).
The modified-Moore neighborhood operates over two
time-step intervals, alternating between the diagonal
from top left and the diagonal from top right.

Fig. 2 Microstructures resulting from differing neighborhood definitions. (a) von Neumann neighborhood. Note the
strong dependence of the orientation of grain boundaries on the neighborhood definition. (b) Modified-Moore

neighborhood. Simulations times are arbitrary time steps.
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Once the framework of the CA is established,
the CA must be scaled to physical lengths and
times. This is achieved both through the gener-
ation of the initial microstructure (length) and
through the rules for nucleation and growth
(length and time).

Generating the Initial
Microstructure

How the initial microstructure is incorporated
into the simulation is a philosophical question
as well as a practical one. The microstructure
can itself be the result of a simulation or model,
or it can be captured in an explicit manner from
experimental data. Simulations of the micro-
structure can be more compact, whereas explicit
data capture can be more realistic, and the mod-
eler must decide what level of information is
necessary to capture the essential features to be
modeled. For example, the kinetics of dynamic
recrystallization of copper (Ref 11) and austenite
(Ref 12) can be largely reproduced without the
inclusion of any texture information. The advan-
tage of the CA approach is that phenomena such
as necklace-type microstructures and oscillations
in the flow stress curve emerge as a result of the
simulation, rather than being explicitly pro-
grammed, and are more easily modeled than by
analytical means. Such geometrical CA are used
(Ref 11, 13) to confirm—it is emphasized, with-
out explicit programming of the event—the
observations of Sakai et al. (Ref 14) that if the
initial grain size is greater than twice the
steady-state grain size, then the flow stress curve
will exhibit multiple peaks as a result of dynamic
recrystallization. Careful consideration of the
length scale is important to the success of a simula-
tion. The scale, usually defined by the distance
between cell centers, must be such that the area
(volume) is representative of the microstructure
and microstructure distribution (grain size and
texture) yet not so great as to mask phenomena of
interest.
Seeding Algorithms. The simplest technique

for simulating the starting microstructure is to
generate a geometry using a seeding algorithm
based on a cellular automaton (or a Monte
Carlo) simulation, which requires input of the
number density of grains (Ref 11, 15). Seeding
the initial microstructure has the advantage that
it can be grown in two or three dimensions but
may lack other microstructural state informa-
tion, such as texture and dislocation density.
The dislocation density can be included for
static recrystallization by distributing a known
average dislocation density over the simulation
field. Genetic algorithms are employed to dis-
tribute the dislocation density over the synthetic
microstructure (Ref 16), but this approach is in
its infancy; presumably, the technique could be
extended to include texture distributions. Not-
withstanding their simplicity, such starting
microstructures are useful for investigating
the geometric features of recrystallization
(Ref 11, 15).

Because crystallographic texture plays such a
large role in recrystallization, it is often desir-
able to start with a more complete description
of the microstructure. Texture can be
incorporated by statistical sampling of data
and subsequent mapping on the CA (Ref 17),
by direct import of data from electron backscat-
tered diffraction (EBSD) in the scanning elec-
tron microscope (Ref 18), or by coupling the
CA simulation with a spatially discrete defor-
mation simulation such as a finite-element or
crystal-plasticity simulation (Ref 19–22). Each
of these techniques is discussed in the follow-
ing paragraphs.
Sampling and Mapping Techniques. Statis-

tical sampling methods can reproduce faithfully
the volume fraction of dominant texture com-
ponents, although they can significantly sharpen
the discretized texture compared to the experi-
mental measurement (Ref 17, 23), and this can
adversely affect the kinetics of the simulation
and the resultant texture. This problem is not
exclusive to CA simulations. Orientations can
then be assigned to grains according to the vol-
ume fraction of each texture component. How-
ever, this does not reproduce the correlated
grain-boundary character distribution (GBCD),
which may be important for microstructures in
which texture banding is prevalent and/or
important in the recrystallization process (for
example, in warm-rolled steels). Preserving
the GBCD in conjunction with the volume
fraction of texture components mapped from
statistical sampling is much more challenging
and requires the manipulation of the texture
until the GBCD of the simulation matches the
experimental GBCD to a given predefined tol-
erance (Ref 24). Adding a correlation with
grain-size distribution further increases the
complexity of the task, and, as far as the author
knows, this three-way correlation has yet to be
accomplished.
Importing data directly from EBSD experi-

ments does away with the need to correlate tex-
ture, misorientation, and grain size, because this
information is a result of the experiment
(Ref 18). Furthermore, the scale of the CA
can be coupled to the scale of the EBSD image
(Ref 25). However, EBSD data are often imper-
fect and must therefore be processed before
being used as input to a simulation. Decisions
must be made about the completion of grain
boundaries, minimum viable grain sizes (based
on numbers of pixels), and the errors associated
with limitations of the spatial and angular reso-
lution inherent to the experiment (Ref 26). Cru-
cial for a recrystallization simulation is the need
to make some assumption about the stored-
energy distribution based on the EBSD pattern
quality (Ref 27). The EBSD maps are maps
on a surface, albeit one that can be sectioned
from deep inside a sample, and implicit in the
use of EBSD data as the starting microstructure
for a simulation is acknowledgment of the two-
dimensional nature of the data. However, three-
dimensional EBSD data obtained by serial sec-
tioning using focused ion beam field emission

gun scanning electron microscopy (FIB-FEG-
SEM) are becoming more common (Ref 26),
but the issues of translating the often imperfect
data to the simulation persist. As a conse-
quence, EBSD maps themselves (rather than
the secondary data that can be derived from
EBSD experiments) are perhaps best used for
validation of a simulation rather than as the
input microstructure.
Cellular Automata Coupled with Defor-

mation Simulations. Coupled simulations
(Ref 12, 20, 25, 28) circumvent the issues of
recasting or correcting data derived from imag-
ing techniques. The broad principle is the same
in each case: The phenomena that govern recrys-
tallization, such as the stored energy/dislocation
density, are calculated from a finite-element
or texture model and are passed to the CA.
Assumptions made in the deformation model
necessarily influence the microstructural model.
Finite-element (Ref 10, 28) and crystal-

plasticity finite-element (Ref 22, 25) methods
have been used to generate input data upon
which the CA subsequently operates to simulate
static recrystallization (Fig. 3). Translation of
the finite-element information to the CA is
accomplished by mapping the finite-element
mesh onto the CA grid. (Ref 22, 28) However,
it is important to note that the mapping of the
finite-element mesh onto the CA grid is not
one-to-one, and thus, there is an averaging of
data in one or both directions of data transfer.
A practical requirement in these coupled models
is that the CA cell spacing is smaller than the
finite-element node spacing, and this means that
clusters of CA cells adopt the same macroscopic
state variables as one another, based on the dis-
tribution of the finite-element nodes (Ref 22).
The consequences of this are remarked upon by
Raabe and Becker (Ref 22), but there does not
seem to have been a systematic study of the sen-
sitivity of the microstructural model to differ-
ences between the spacing of finite-element
nodes compared to CA cells. For example, early
finite-element/CA-coupled models successfully
embedded the CA wholly within a single ele-
ment. Gottstein’s group (Ref 21) use the grain
interaction model as the starting point for simu-
lations of static recrystallization, and simple
dislocation models can be embedded in the CA
to simulate both dynamic dislocation evolution
and static recovery (Ref 10–13). Updating of
the dislocation density is explored later.

Nucleation and Growth of
Recrystallized Grains

Nucleation and growth are captured in transi-
tion rules that determine how cells in the array
change their state and include the initialization
of recrystallization (nucleation rules), and how
cells respond to like and unlike cells in their
neighborhood (growth rules). Temporal calibra-
tion enters the simulation through these transition
rules.
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Probability of Nucleation. The transition
rule that dictates the probability of nucleation,
PN, is governed by the equation:

PN ¼
�
NYdt

NCA

(Eq 1)

where N
� Y is the nucleation rate, and NCA is the

number of cells in the cellular automaton, with
dt the time step. The nucleation rate may be a
global rate or specific to a texture component
(Ref 29) and/or location such as a grain bound-
ary or grain-boundary triple point. Of course,
this texture- and site-specific information
requires additional experimental detail and con-
ditional statements in the simulation code.
Nucleation of recrystallization in a CA simu-

lation is generally accomplished by an imposed
rule based on a cell achieving a critical disloca-
tion density (Ref 12, 20, 25) set by the modeler.
This critical dislocation density can be calcu-
lated (Ref 12, 20) based on the analytical mod-
els of Sandstrom and Lagneborg (Ref 30) or set
at some fraction of the maximum dislocation
density. Alternatively, the nucleation rate can

be characterized as a function of processing
parameters, such as the Zener-Hollomon
parameter, and strain and used as direct input
to the CA simulation (Ref 31). In each case,
the nucleation criterion is not derived from a
model of nucleation per se but rather is a proxy
for events as yet poorly characterized that lead
to the observation at the mesoscale of a new
strain-free grain. Mukhopadhyay et al. (Ref 21)
have used a CA simulation in passing in an
inverse manner to test three nucleation scenarios
and found a noticeable difference between the
three scenarios, without comment on the applica-
bility of each. Analytical models that are quanti-
tatively site specific (Ref 32) are eminently
suitable for CA simulations (Ref 33, 34).
The probability of growth PG, is, in its sim-

plest form:

PG ¼ vdt

sCA
(Eq 2)

where v is the interface migration rate, and sCA is
the cell center-to-center distance. The probability
of growth can be rendered unity (certain

transformation of an unrecrystallized cell to a
recrystallized state) by appropriate selection of
the time step, dt. Similar to the nucleation rules,
growth rules can depend on a specific texture
component (e.g., measurements made on texture
“classes,” (Ref 29) or based on high-mobility
40� <111> boundaries in face-centered cubic
metals, (Ref 10) and the stored energy of the
region into which the newly recrystallized grain
is growing. A key advantage of CA over other
representational simulation approaches is that a
cellular automaton can be readily calibrated
directly to experimental timescale through the
interface velocity entering the numerator of the
equation governing the probability of growth,
and to experimental lengths by ascribing a length
to the cell dimensions that enter the denominator
of the same equation.
Interface migration is incorporated into the

transition rule representing the probability of
growth in a neighborhood (Eq 2), and in this
respect, one is not tracking a moving boundary,
as such, but rather the expansion of a cluster of
cells with the same orientation. The boundary is
defined by the orientation difference (as it is

Fig. 3 Comparison of simulated and experimental grain-size distribution for each texture class arising from recrystallization in AA1050. (a) Cube class. (b) Random class. (c) Rolling
class. (d) All classes combined. Source: Ref 29 with permission from Elsevier
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in Monte Carlo simulations, Ref 35) rather than
as a surface (as is the case in vertex simula-
tions). Interface migration rates can be success-
fully determined directly from experimental
data using the Cahn-Hagel approach (Ref 29),
with good correlation between experimental
and simulated microstructures (Fig. 4). How-
ever, it is preferable to use a more indirect
approach, because the Cahn-Hagel approach
requires that a migration rate be determined
by texture component class. Interface migration
remains largely based on the relationship
between the migration rate, v, and the mobility,
M, and driving pressure, P (Ref 36):

v ¼MP (Eq 3)

where the mobility is an Arrhenius rate expres-
sion varying with temperature, T:

M ¼M0 exp � Qb

RT

� �
(Eq 4)

where M0 is a pre-exponential constant, Qb is the
activation energy, R is the gas constant, and T is
absolute temperature. The driving pressure is
either expressed as a direct function of dislocation
density (Ref 21) or of the energy of low-angle
boundaries (Ref 36). In either instance, solute
or Zener drag can be included as an additive term
in the driving pressure relationship (Ref 21, 25).
Interface migration models are heavily reli-

ant on assumptions regarding the mobility of
boundaries (in particular), but this is one area
in which CA models can be used to test those
assumptions by a comparison of simulated and
experimental results.
Updating the Dislocation Density. In many

cases, it is necessary to also include a model
for the evolution of the parent microstructure
during recrystallization, either because of sig-
nificant recovery during static recrystallization
(e.g., Ref 10, 17) or because of dislocation
evolution during dynamic recrystallization
(Ref 11, 12). Concurrent recovery during static
recrystallization can also be incorporated in
time-dependent form for a dislocation density,
r, at time, t (Ref 17):

r tð Þ ¼ r0� exp � t

t0

� �
(Eq 5)

where r0 and t0 are constants. This reduces the
driving pressure as the simulation progresses and
effectively captures the recrystallization behavior
in, for example, aluminum alloys (Ref 10).
A single-variable internal-state evolution

equation can be used in the case of dynamic
recrystallization to calculate the local dislocation
density, r, as it varies with strain, e (Ref 11, 12).
In the absence of recrystallization, the disloca-
tion density evolves with strain in the form:

dr
de
¼ k1 � k2r (Eq 6)

or

dr
de
¼ 1

bd
þ k1

ffiffiffi
r
p � k2r (Eq 7)

where k1 and k2 are constants. The values of
these constants are calculated by analyzing the
work-hardening curves from experimental stud-
ies on the relevant material (Ref 11, 12) based
on common procedures (Ref 37, 38). Once a
recrystallized nucleus forms, its dislocation
density is reduced catastrophically to zero
before continuing to evolve in the following
time step. Using this approach, Ding and Guo
(Ref 11) have been able to achieve close agree-
ment between simulation kinetics and grain
sizes and experimental data in copper. Yazdi-
pour et al. (Ref 12) have achieved similar
agreement in steels.
In the case of dynamic recrystallization, CA

coupled with conventional finite-element models

rely on the two-way coupling of the CA and
finite-element model at each finite-element
Gauss point (Ref 20), in contrast to the one-way
coupling used in simulations of static recrystalli-
zation. State variables determined by the finite-
element model are distributed across the CA,
and the consequent mechanical response of the
CA as a result of microstructural evolution is
handed back to the finite-element model (Ref
20). In this way, the finite-element and CA mod-
els can be updated as deformation progresses,
and dynamic recrystallization can be simulated
(Fig. 5). Reminiscent of the mapping of CA and
finite-element grids in static recrystallization,
where the finite-element grid captures multiple
CA cells with an element (Fig. 6), the situation
in coupled dynamic recrystallization simulations
is more difficult, and artifacts of visualization

Fig. 5 Recrystallization modeling. (a) Original undeformed cellular automaton (CA) grain structure in gray and the
recrystallized grains in black. (b) Ratio of the recrystallization nuclei cells to the total number of cells

within a CA attached to one Gauss point. Source: Ref 20 with permission from The Royal Society and the author

Fig. 4 The cellular automaton finite-element (CAFÉ) model of hot rolling of steel. (a) Slab exiting the rolling gap after
it has been rolled at 30% reduction in thickness. (b) Initial cellular automaton microstructure with equiaxed

grains. (c) Microstructure near the slab surface within box “O” after rolling. Note grains elongated in the rolling
direction. Open regions, such as those shown by the encircled examples, are because grain-boundary continuity is
not enforced across element boundaries. Source: Ref 20 with permission from The Royal Society and the author
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(but not state variables) can be introduced
(Fig. 5).

Developments in Cellular
Automaton Simulations

Developments in CA simulations have largely
focused on algorithm developments that allow
the CA to store data more efficiently or to exe-
cute more efficiently. The cellular operator or
adaptive CA model extends the basic CA by
introducing adaptive scaling to the model, and
this allows a significantly higher misorientation
resolution to be simulated. Although relatively
new at the time of writing, the scalable CA
would seem to lend itself to more accurate mod-
eling of nucleation but for the dearth of physi-
cally realistic nucleation models.
Irregular Cellular Automata. Another

exciting development in CA algorithms is the
irregular CA, introduced by Janssens (Ref 39)
and adopted by others (Ref 12). Instead of a

fixed neighborhood definition, the irregular
CA defines a neighborhood as a capture radius
over a random grid. In this way, the CA algo-
rithm is also altered in a subtle but significant
way so that cells are captured by the central cell
of the neighborhood, rather than the central cell
being captured by cells in its neighborhood, the
so-called inverse updating rule (Ref 40). The
inverse updating rule enables the CA to subse-
quently model curvature-driven boundary
migration (grain growth) and thereby to incor-
porate several grain topology models in the
one simulation, unlike hybrid models (Ref 41)
that combine Monte Carlo and CA approaches.
Thus, CA algorithms are relatively well

developed, and with the introduction of scalable
CA (Ref 21) and irregular random CA (Ref 39,
40), all the tools exist for multiscale, multiphe-
nomena models. Mesoscopic length-scale CA
simulations are effectively coupled to macro-
scopic simulations and models, and the key
developments in CA are therefore likely to be
in the submodels at the microscopic length

scale—those that describe nucleation, interface
migration, recovery, and precipitation.
Nucleation and growth of recrystallizing

grains are governed in conventional CA by the
probabilities of occurrence of the events (Eq 1,
2), and these require the CA to be coupled to
analytical submodels. Significant experimental
and computational effort is necessary to develop
nucleation models and interface migration mod-
els. One can speculate that submodels could
develop along a number of paths. As was
remarked upon earlier, the advantage of CA
simulations is that they allow the global rules
to be “rediscovered” from local interactions in
much the same way as mean-field rate equations
are conventionally derived from real experimen-
tal data. The inconsistency then is that the sub-
models that govern dislocation generation,
recovery, precipitation, interface migration, and
the nucleation of recrystallized grains are mean-
field models. Scalable CA (Ref 21) would appear
to allow the modeler to introduce at least some
measure of local interaction concurrently to
phenomena that operate and can be simulated
at different length scales, such as CA simulations
(as opposed to analytical models already
incorporated into through-process models) of pre-
cipitation and precipitate coarsening (Ref 21, 42),
concurrent with recrystallization simulations.
Such a multiscale multiphenomena model would
be philosophically attractive, but thismust be tem-
peredwith the question accompanying anymodel-
ing activity: Is any further insight gained by
investing the significant resources required to
accomplish this task? Thus, in tandem with these
philosophically attractive models, development
of appropriate analytical models will continue,
and these will not be exclusive to CA. Increased
routine use of FIB-FEGSEMwill lead to advances
in the models governing nucleation and interface
migration. Increasing computer storage and mem-
ory capacity will facilitate both approaches.

Summary

Cellular automaton simulations are a class of
simulation tools that allow global behavior to
emerge from local interaction rules in much
the same way that recrystallization is perceived
to occur in real systems. Unlike other simula-
tion methods at the mesoscopic length scale,
they are readily coupled to spatio-temporal
rules and data determined by experimental
observation. As a consequence, CA are able to
be coupled to simulations and models across
multiple length scales and offer the opportunity
to be used in an inverse manner to test theories
and assumptions underlying the microstructural
phenomena contributing to recrystallization. As
CA have become more sophisticated, one can
expect them to be used to test the assumptions
about the physical phenomena contributing to
recrystallization, by a combination of rule-test-
ing and validation by comparison with experi-
mental data.

Fig. 6 Two-dimensional simulations of primary static recrystallization in a deformed aluminum polycrystal on the
basis of crystal-plasticity finite-element data. The figure shows the change in both microtexture (upper

images) and dislocation density (lower images), which was derived from the value of the accumulated
crystallographic shear, as a function of the annealing time during isothermal recrystallization. The white areas in the
lower images indicate a stored dislocation density of zero; i.e., they are recrystallized. The black lines in both figures
indicate misorientations above 15�, and the thin gray lines indicate misorientations between 5� and 15�, regardless of
the rotation axis. The orientation image given in the upper figures represents different crystal orientations by different
gray levels. The simulation parameters are: annealing temperature, 800 K; site-saturated nucleation conditions;
kinetic instability criterion, misorientation above 15�; thermodynamic instability criterion, dislocation density larger
than 70% of the maximum occurring value; maximum occurring driving force, 1 MPa; activation energy of the grain-
boundary mobility, 1.46 eV; pre-exponential factor of the grain-boundary mobility, M0 = 8.3 � 10�3 m3N�1s�1; and
mesh size of the cellular automaton grid (scaling length), lm = 61.9 mm. The images show a crystal in the following
states of recrystallization: (a) 0, (b) 3, (c) 13, and (d) 22%. (Figures (e) to (h) from the original are omitted.) Source:
Figure and caption text reproduced from Ref 22 with permission of IOP Publishing Ltd. and the author
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Monte Carlo Models for
Grain Growth and Recrystallization
Mark Miodownik, King’s College London, United Kingdom

COMPLEX MODELS of microstructural
evolution are required to predict texture, misori-
entation distribution, and grain-size distributions
of a final rolled or extruded product. However,
there is a major difficulty: Microstructural evo-
lution is a many-variable, multiscale problem,
and even such apparently simple phenomena
such as grain growth and recrystallization are
still not well understood. For instance, boundary
energy and boundary mobility are not smooth
functions of boundary misorientation, or bound-
ary plane, or composition, or temperature
(Ref 1). It is not just that the boundaries are com-
plicated entities, the grain structures themselves
are three-dimensional (3-D) interconnected
boundary networks whose evolution cannot be
deduced solely from the individual behavior of
an average boundary. Explicitly including the
topology of the boundary network into models
is important because the misorientation of a
boundary of a growing grain is defined not only
by its crystallography but also by the crystallog-
raphy of the grain into which it is growing. This
article focuses on one method for doing this, the
Monte Carlo Potts model, which is typically
used to model grain growth, Zener-Smith pin-
ning, abnormal grain growth, and recrystalliza-
tion, as shown, for example, in Fig. 1.
This article is set out in the following way:

First, the basics of the model are introduced,
giving the reader enough information to per-
form their own simulations and a flavor of what
the Potts model is capable of modeling; the
importance of gaining practical experience of
simulations as a way of understanding the
emergent behavior of such Monte Carlo sys-
tems cannot be emphasized enough. A section
then deals with how to incorporate experimen-
tal parameters and how to validate the model
by comparing the observed behavior quantita-
tively with theory. Industrial applications of
the model are dealt with next, covering aniso-
tropic grain growth, abnormal grain growth,
grain growth stagnation, and recrystallization.
Finally, an algorithms section is included to
give the reader a wide selection of efficient
Potts algorithms, such as boundary-site models,

Fig. 1 Potts model simulation of the microstructural evolution of a silicon steel. Grains that are part of a <110> fiber
parallel to the sheet normal, within 15� of the <110> axis, are shown in light gray; <111> fiber grains are

shown in white; and <100> fiber grains are shown in dark gray. Source: Ref 2
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n-fold way models, and parallel models, which
are needed to simulate large-scale industrial
applications.

The Method

The Potts model simulates the effects of
interface energy on the topology of boundary
networks. Figure 2 shows the evolution of such
system simulated using the Potts model. In this
simulation, the grain boundaries are associated
with an isotropic excess energy, which has a
profound influence on the network topology
because it implies that in two-dimension 2-D
the number of boundaries impinging on a ver-
tex is always equal to three. In other words,
only triple points with 120� vertex angles are
stable (Ref 3). Fourfold and higher vertices, if
formed, will always dissociate into the relevant
number of triple points. This topological law
comes out of the model, rather than being
imposed on it, which is one of the remarkable
features of the model that make it so attractive.
Other implications of modeling the interface
energy of a network of boundaries are discussed
later in the article. First, the basics of the model
are discussed.
The Monte Carlo Potts model is a general-

ization of the Ising model (Ref 4–6). The state
of the system is discretized into a regular
array of lattice sites and is described in terms
of the set of Q crystallographic orientations,
which are associated with each lattice site,
si 2 {0, Q}, where i labels the lattice site. The
system defines a boundary between unlike
orientations and no interface between like
orientations.
In the most basic Potts model, the Q orienta-

tions can be represented as integers. In the iso-
tropic case, the energy associated with the
boundaries between orientations is described
by an energy function, g, of the form:

gðsi; sjÞ ¼ 0 for si ¼ sj
J
2

for si 6¼ sj


(Eq 1)

where i represents a site, j is its neighbor, and
J(>0) is an interfacial energy constant of the
system. Thus, the energy of the system can be
written as a sum over the spatial distribution
of the orientations, called a Hamiltonian, as
follows:

E ¼
XN
i¼1

Xz
j¼1

gðsi; sjÞ (Eq 2)

where N is the total number of lattice sites in
the system, and z is the maximum number of
neighbors. The definition of neighbor orienta-
tion depends on the dimension and co-ordina-
tion of the lattice, which is covered later. It is
the reduction of interface energy that drives
the microstructural evolution shown in Fig. 2.
The energy function may also include a vol-

ume energy term associated with a volume

driving force, H(>0), which lowers the energy
of one type of orientation relative to the other:

E ¼
XN
i¼1

Xz
j¼1

gðsi; sjÞ �H
XN
i¼1

si (Eq 3)

where the H term represents a sum over orienta-
tions si = 1. J scales with the interfacial energy
of the system in which the single crystal has
zero energy; all polycrystalline states have pos-
itive energy that scales with the total boundary
area. H may represent stored energies that
arise in the case of deformed structures and so
provide a driving force for recrystallization.
Dynamics. Microstructural evolution is

simulated by using a Monte Carlo method to
sample different states of the system. The
method is extremely simple in principle: Choose
a site at random, propose a change in orientation,
calculate the change in energy, DE, associated
with that orientation swap, and accept or reject
the change based on DE. There are two main
methods for performing such dynamics. The first
is Glauber dynamics, where the orientations are
unconserved. A lattice site is chosen at random,
a new orientation is proposed for the site, a
DE is computed, and the change is accepted or
rejected depending on a probability transition
function P(DE). The second method deals with
situations where the volume fraction of each
orientation type is conserved; it is called
Kawasaki dynamics. Here, a lattice site is cho-
sen, a neighboring site is chosen, and then a
swap of the orientations is proposed. Again, the
DE is computed, and the change is accepted or
rejected depending on P(DE).
Both Glauber and Kawasaki dynamics

require the definition of the probability transi-
tion function. There are two common choices:
the metropolis function:

P ð�EÞ ¼
1 if DE � 0

exp
��E

kTs
if DE > 0

(
(Eq 4)

and the symmetric function:

P ð�EÞ ¼ 1

2
1� tanh

�E

2kTs

 �
(Eq 5)

where kTs defines a thermal energy of the sim-
ulation; it is analogous to the thermal energy
of experimental systems but is not directly
related. The choice of the probability function
has no effect on the thermodynamics of the sys-
tem, although the choice of the functional form
of P(DE) does slightly affect the dynamics of
boundary motion.
The time required to attempt a single orienta-

tion swap, whether successful or unsuccessful,
is defined arbitrarily as t. On average, it takes
Nt to visit each site on the simulation lattice
once; this is defined as one Monte Carlo time
step, or 1 MCS (Ref 4).
Simulation Variables. In 2-D simulations,

hexagonal or square lattices are used to discre-
tize space, as shown in Fig. 3. In a simple square

Fig. 2 Microstructural evolution of an initially random
distribution of spins on a two-dimensional

square lattice using the Potts model, periodic boundary
conditions, metropolis spin dynamics, and kTs = 0.5.
The initial configuration of spins was set by allocating
each lattice a random spin of si 2 {0, Q}.
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lattice, a site may be defined to have only the
four first-nearest neighbors, labeled 1 to 4 in
Fig. 3(a), but more often, the eight first- and
second-nearest neighbors, shown in Fig. 3(a),
are used. In the triangular lattice, the six first-
nearest neighbors, shown in Fig. 3(b), are
sufficient. In 3-D, the simple cubic lattice is
commonly used with the 26 first-, second-and
third-nearest neighbors, as shown in Fig. 3(c).
The choice of neighbor co-ordination strongly
affects the type of boundary shapes that are
favored in the system. In 2-D square lattices,
boundaries with planes 0�, 45�, and 90� are
strongly favored and can cause facets to form.
These low-energy facets obviously have a corol-
lary with the faceting of atomic planes, and
although they can be studied by similar techni-
ques, they are problematic when using the
model to simulate isotropic boundary shapes,
because they impose an anisotropy into the
simulations. There are a number of ways of miti-
gating against these lattice effects. First, some
lattices and neighbor co-ordinations have less
intrinsic anisotropy. For instance, the triangular
lattice in 2-D, using the six first neighbors, has

the lowest anisotropy of any 2-D regular lattice
(Ref 7), and the simple cubic lattice, using 26
nearest neighbors, is the most effective in 3-D.
Another method to mitigate against the
unwanted influence of the lattice is to not have
one at all by using a random lattice (Ref 8).
There exists a set of lattice sites that lie at

the boundaries of the simulation area/volume.
These sites must be treated differently than the
internal sites of the lattice. In the case where
the boundaries represent the edge of the
simulated system, these sites will have fewer
nearest neighbors. They may also have a solid/
liquid or a solid/gas surface energy associated
with them, or they may have a certain concen-
tration of solute imposed on them as a boundary
condition (Fig. 4a). Another type of commonly
used boundary condition is that of mirror
boundary conditions. In this case, the sites on
a boundary are mirrored, so that the neighbor
shell of the boundary site is comprised of those
defined by a reflection transformation (Fig. 4b).

For example, in a 2-D square lattice, a mirror
boundary condition applied at the x = 0 bound-
ary simulates the effect that the orientations for
all sites x < 0 exactly mirror those for x > 0.
Perhaps the most popular type of boundary
condition is a periodic boundary condition.
In this case, the edges of the simulation effec-
tively wrap around and contact the opposite
edges, creating a toroidal simulation area in
the 2-D case. These boundary conditions are
relatively simple to impose; it simply involves
assigning the nearest neighbors of each edge
site to the opposite boundary edge (Fig. 4c).
The boundary conditions for the simulation
volume are usually implicitly encoded in the
function that returns the neighbor sites of each
site. A variant of the periodic boundary condi-
tion is the skew-periodic boundary condition.
In this case, the edges of the simulation wrap
around, but at the boundary, a vector displace-
ment parallel to the boundary is imposed
(Fig. 4d). This type of boundary condition is
used when simulating flat boundaries that have
a nonperpendicular intersection angle with a
simulation area/volume boundary.
Boundary Energy. So far, boundaries have

been treated as if they are isotropic interfaces,
and Fig. 2 shows the general result of simula-
tions carried out with such underlying assump-
tions. To perform simulations relevant to
experimental systems, g needs to be implemen-
ted as a function of the crystallographic misori-
entation across the boundary. This is relatively
straightforward because it only requires the
modification of Hamiltonian. The simplest
way to begin to understand how these systems
behave is to introduce a new identifier that,
along with the orientation, is associated with
each lattice site. Thus, each lattice site has both
an orientation identifier, si, and a component
identifier, Zi. The component identifier carries
information necessary to calculate the aniso-
tropic nature of the boundary, while the orienta-
tion identifier continues to be used to calculate
whether a particular site is on a boundary. The
reason for not considering the full crystallo-
graphic complexity of real grain structures at
this stage is that even this small increase in
complexity has an enormous impact on micro-
structural evolution of the systems, and so, it
is worth observing such effects. In such a sys-
tem, the Hamiltonian becomes:

E ¼
XN
i¼1

Xz
j¼1

gðsi; sj;Zi;ZjÞ (Eq 6)

This Hamiltonian represents only the bound-
ary energy of the system and so implicitly
assumes that the bulk free energy of each com-
ponent is the same, but their boundary energy is
different.
This changes the equilibrium condition at the

nodes (where three or more boundaries meet).
If these are to remain in a state of local equilib-
rium and maintain the equilibrium angles
defined by the boundary energies, then

Fig. 4 Different types of boundary conditions used
in the Potts model. (a) Surface boundary

condition. (b) Mirror boundary condition. (c) Periodic
boundary condition. (d) Skew-periodic boundary condition

Fig. 3 Different types of lattice and the neighbor co-
ordination used in the Potts model. (a) Two-

dimensional (2-D) square lattice. (b) 2-D triangular
lattice. (c) Three-dimensional simple cubic lattice
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neglecting torque forces, the angles at the nodes
in 2-D are given by the relation:

g1
sinf1

¼ g2
sinf2

¼ g3
sinf3

(Eq 7)

where gi are boundary energies, and fi are the
angles at the triple point, as illustrated inFig. 5(a).
What this means in practice is that triple points
are no longer thermodynamically constrained to
be 120�. Not just that, but triple points in 2-D
and quadijunction points in 3-D are no longer
the only stable node configurations. This makes
possible a vast array of different boundary net-
work morphologies. Figure 5(b) shows how a
node is represented in the Pottsmodel on a square
lattice. Note that the triple-point angles are dis-
crete quantities that depend not just on boundary
energies but also on the type of lattice.
The simplest such system that can be consid-

ered is a polycrystal with only two types of
component, A and B; three types of boundary,
A-A, B-B, and A-B; and three boundary
energies, JAA, JBB, and JAB, which gives:

gðsi; sj;Zi;ZjÞ ¼

0 in the grain interiors

(si ¼ sj;Zi ¼ Zj)
JAA
2

for A-A boundaries

(si 6¼ sj;Zi ¼ Zj = A)
JBB
2

for B-B boundaries

(si 6¼ sj;Zi ¼ Zj = B)
JAB
2

for A-B boundaries

(si 6¼ sj;Zi 6¼ Zj)

8>>>>>>>>>>><
>>>>>>>>>>>:

(Eq 8)

The behavior of the system can be easiest
understood by considering the the dimension-
less parameters RA = JAA/JAB and RB =
JBB/JAB. When RA = RB = 1, the system is iso-
tropic. When RA = RB > 1, the relative energy
of the A-B boundaries decreases in relation to
the A-A and B-B boundaries; thus, during evo-
lution, the system will try to minimize the area
or length of A-A and B-B boundaries in favor
of A-B boundaries and so minimize the energy
of the system. Figure 6 shows how the system
self-organizes into a mosaic structure that mini-
mizes the length of A-A and B-B boundaries.
The mosaic structure is itself then able to
coarsen in a self-similar manner. Figure 7

shows the equilibrium structures formed under
a variety of other conditions. If RA = RB > 1,
the A-A and B-B boundaries are favored over
A-B boundaries, and the system self-orders to
segregate the A and B components and thus
minimize boundary energy. Figure 7(b) shows
such a structure, which orders the A component
and the B component into separate enclaves and
can be contrasted with Fig. 7(a), which shows
the random distribution of A and B components
that comes in the isotropic case when RA = RB

= 1. Figure 7(c) shows what happens when RA

> RB; the system gets rid of the high-energy
A-A boundaries altogether. Figure 7(d) shows
another example of mosaic-type structures that
are formed when RA = RB < 1.0. Figure 7(e)
shows another example of RA > RB, but this
time where gBB = gAB. Here, the A-component
grains are not removed, because it is only the
A-A boundaries that are high energy; however,
they do become an isolated component. Figure
7(f) shows the effect of using kTs = 0 with
anisotropic energies. Because of the high lattice
pinning present, the structure shows a very high
degree of planarity in the low-boundary planes
that are at 45� to the simulation lattice.
Note that in many of these 2-D anisotropic

energy systems, four grain junctions (quadri-
junctions) are possible. The angles at which
boundaries meet in a quadrijunction are not
uniquely determined by an energy balance.
Instead, the angle of a grain corner in a stable
quadrijunction must be greater than or equal
to the angle of the same corner in the triple
junction formed when the quadrijuction fluctu-
ates into two triple junctions. This angular flex-
ibility has an important effect on the kinetics.
Systems in which quadrijuntions are unstable
undergo normal grain growth. When quadrijun-
tions are stable (due to the ratios of RA and RB),
grain growth can stop due to the flexibility of
these junctions to change their angles and
thus eliminate boundary curvature (Ref 9). Both
greater number of texture components and
more realistic energy functions, such as the
Read-Shockley function, can be incorporated
into the model, as is shown later.
Boundary Mobility. To simulate the case

where themobility is also a function of the bound-
ary character, m (si, sj, Zi, Zj), the probability

transition function is modified so that the proba-
bility of a orientation swap is proportional to
the mobility of that boundary. The metropolis
probability transition function then becomes:

P ð�EÞ ¼ p0 if DE � 0

p0 exp
��E
kT if DE > 0


(Eq 9)

where p0 ¼ mðsi;sj;Zi ;ZjÞ
mm

, and mm is the maximum
mobility in the system.

Fig. 5 Relationship between boundary energy and node angle. (a) Continuum system. (b) Monte Carlo Potts model.
Each grain orientation is represented by a different gray scale; the boundaries are sharp, being implicitly

defined between sites of different orientations. (c) Implementation of components and spins into the model

Fig. 6 Evolution of microstructure during a Potts
model simulation of a two-component system

in which the initial distribution of components is equal
and RA = RB = 0.5. The A and B components are
differentiated by the gray scale. The simulation was
performed using a square (1,2) lattice, Glauber
dynamics, metropolis transition probability function, and
kTs = 0.
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For the simplest model system with two
components, A and B, p0 is reduced to a simple
binary function:

mðsi; sj;Zi;ZjÞ ¼

0 in the grain interiors

(si ¼ sj;Zi ¼ Zj)

MAA for A-A boundaries

(si 6¼ sj;Zi ¼ Zj ¼ A)

MBB for B-B boundaries

(si 6¼ sj;Zi ¼ Zj ¼ B)

MAB for A-B boundaries

(si 6¼ sj;Zi 6¼ Zj)

8>>>>>>>>>><
>>>>>>>>>>:

(Eq 10)

When MAA = MBB = MAB, the system becomes
isotropic, and normal grain growth is observed.
In the case where MAA = MBB < MAB, the A-B
boundaries have a higher mobility than the A-A
and B-B boundaries, which means that isolated
A or B grains grow rapidly if they have a size
advantage over their neighbors. Equally, if they
do not have a size advantage and are not favored
to grow, the mobility advantage acts to shrink
these grains. In systems where one component
is initially in the minority, this leads to a phe-
nomenon called abnormal grain growth, where
the minority component grows to become the
majority component (Fig. 8). More sophisticated
mobility functions can be incorporated into the
model to simulate the effect of temperature
gradients, because mobility of interfaces is often
a function of temperature.
Note that increasing temperature does not

increase the mobility of the boundaries. This
is obvious from the form of probability transi-
tion functions, where the intrinsic mobility of
the boundaries is set at kTs = 0. Thus, tempera-
ture just serves to roughen the boundaries and
so prevent lattice effects. How then is the effect
of “real” temperature simulated? It is done by
making the intrinsic mobility m(si, sj) a function
of real temperature, Tr.
Pinning Systems. Figure 9 shows the evolu-

tion of the microstructure for a Potts model sim-
ulation using Glauber dynamics for component
A and where component B was inert. Note how,
in the initial stages, the microstructure of compo-
nent A evolves, but then boundary motion
becomes increasingly slow until the microstruc-
ture becomes pinned. The incorporation of an
inert component does not require any modifica-
tion of the Hamiltonian of the system; it requires
only the modification of the Potts algorithm so
that sites of the inert component never undergo
orientation or component swaps. Note that there
is no explicit implementation of any pinning
mechanism or pinning force. The pinning is a
complex emergent phenomenon that arises out
of the interaction of many parts of the system
(Ref 10). By using Kawasaki dynamics, coarsen-
ing of second-phase arrays can be simulated.
Once again, the phase volume fractions are
conversed, but unlike the pinning simulations,
the A-A, A-B, and B-B boundaries have different
energies.
The theory of pinning and the ability of Potts

model simulations to capture the physics of real

pinned systems are dealt with more fully later.
For the moment, it should be noted that incor-
porating pinning phases into the model is rela-
tively straightforward, and many different
pinning-phase morphologies can be modeled.
Figure 10 shows the wide range of pinning-
phase morphologies and pinned structures pos-
sible in Potts model simulations. However,
performing simulations at nonzero Ts allows
boundaries to depin from particles thermally,
especially when they are small. Also, it should
be noted that the physics of pinning are

dimensionally dependent, which means that
2-D and 3-D pinning are very different phe-
nomena (Ref 10, 11). This is important when
using these simulation techniques to understand
real microstructural phenomena such as Zener-
Smith pinning.
Stored Energy. The Potts model can be used

to simulate the effect of a volume stored
energy. In this case, the state of each cell is
described by a crystallographic orientation and
scalar variable that describes the stored energy.
Thus, the Hamiltonian for the system becomes:

Fig. 7 Effect of anisotropic boundary energy on microstructure during grain growth of a two-component system in
which the initial distribution of the A and B components was equal. (a) RA = RB = 1, kTs = 0.75; the

isotropic case. (b) RA = RB = 1.5, kTs = 0.75. (c) RA > RB, RA = 1, RB = 0.67, kTs = 0.75. (d) RA = RB = 0.5, kTs = 0.
(e) RA > RB, RA = 1.5, RB = 1, kTs = 0.75. (f) RA = RB = 1.3, kTs = 0. The simulations were performed using a square
(1,2) lattice, Glauber dynamics, and metropolis transition probability function.
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E ¼
XN
i¼1

Xz
j¼1

gðsi; sjÞ þ hi (Eq 11)

where hi represents the stored energy term for
each site and:

gðsi; sjÞ ¼ 0 in the grain interiors
J
2

at the grain boundaries


(Eq 12)

In the simplest system, every site is allocated
the same stored energy, hi = H, and so, the ratio
of H/J determines the behavior of the system.
For low values of H/J, normal grain growth is

observed, but as H/J increases, the stored
energy term dominates. Figure 11 shows the
microstructural evolution of such a system in
which each grain in an initial equiaxed grain
structure is assigned a uniform level of stored
energy. As the boundaries move, driven both
by the stored energy driving force and the cur-
vature driving force, they sweep out areas of
zero stored energy. This enhanced boundary
motion gives some grains an advantage, and
they grow to consume the others. Once all the
stored energy is consumed, the system reverts
to normal grain-growth behavior. The ratio of
the stored energy and the interfacial energy is
a crucial variable in the system. Differential

boundary energies and mobilities can also be
employed. If the stored energy of the system
is very large compared to the interfacial energy,
then boundary growth becomes chaotic.

Incorporating Experimental
Parameters into the Potts Model

Textures and Misorientation Distribu-
tions. It is essential to capture real textures
and misorientation distributions in the Potts
model if it is to simulate the behavior of real
experimental systems. For 2-D simulations, the
most straightforward way of doing this is to
incorporate the microstructural information and
the crystallographic information directly from
the electron backscatter diffraction (EBSD) data
set. Typically, this means that each lattice site in
the simulation is allocated a unique orientation
number, and a table is created that correlates
the orientation number with the Euler angles
corresponding to the crystallographic orientation
of the grain. A normal Potts model simulation
can then be performed, with the crystallographic
information of each lattice site being used to plot
the evolution of microstructure and development
of textures. Now, the sites no longer are allocated
integers but instead a discrete crystallographic
orientation, Oi. In such as system, the Hamilto-
nian becomes:

E ¼
XN
i¼1

Xz
j¼1

gðOi;OjÞ (Eq 13)

Although this modification seems straightfor-
ward enough, there are some important issues.
First, in such EBSD maps there is a good deal
of noise that corresponds to some pixels being
identified as single-site grains when, in fact,
they are more likely to be a site whose orienta-
tion was incorrectly measured. This kind of
noise may not be due just to incorrect measure-
ment; in the case of deformed microstructures,
the dislocation and other defects may be asso-
ciated with low-angle subboundaries. Also,
because the map is a 2-D section of a 3-D
microstructure, some topological features may
appear to be noise when, in fact, they are the
tip of a grain protruding into the 2-D section.
For these and many other reasons, importing a
microstructure into a Potts model often requires
a clean-up filter to be applied so that these
effects can be mitigated and features that are
not going to be included in the model can be
removed. However, it is obvious that using
these filters can also distort the data set, in some
cases changing the fundamentals of the micro-
structure to be studied.
These 2-D microstructure maps are extracted

from a small volume of the material. This vol-
ume is represented in the model only through
the boundary conditions. Thus, choice of the
boundary conditions is important when
performing simulations and also when inter-
preting the results. Choosing periodic boundary

Fig. 8 Evolution of microstructure during a Potts
model simulation of a two-component system

in which the initial distribution of components is
unequal and the A-B boundaries have a mobility
advantage: fB = 0.05, MA = MB = 1, MAB = 100. The A
and B components are differentiated by the gray scale.
The simulation was performed using a square (1,2)
lattice, Glauber dynamics, metropolis transition
probability function, and kTs = 0.75.

Fig. 9 Potts model simulation carried out on a square
lattice, using Glauber dynamics and kTs =

0.75. The second phase has an unchangeable index and
so pins the primary phase. The simulations were
performed using a square (1,2) lattice, Glauber
dynamics, metropolis transition probability function, and
kTs = 0.75.
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conditions is not an option, because there will
not be continuity across the simulation bound-
aries. The choice of mirror or free-surface
boundaries is available; both have implications.
Furthermore, the fact that a 2-D simulation is
being performed of a 3-D phenomenon must
also be taken into account. The upshot of these
factors is that extreme care should be taken
when carrying out and interpreting such simula-
tions. The best practice is to carry out a large
number of simulations using a large number
of different input microstructures and to mea-
sure the evolution of average characteristics,
for example, the average texture, misorientation
distribution function (MDF), grain size, and so
on. It is when these averaged quantities are
compared with experimental results that mean-
ingful conclusions and predictions may be
drawn.
There are no routine methods for extracting

the necessary 3-D information from experi-
ment. It is possible to combine EBSD with
serial sectioning, but this is a very labor-inten-
sive task and still leaves the problem of how
to extrapolate between the sections. The 3-D
x-ray tomography methods have recently
become possible using high-energy focused

synchrotron x-ray sources (Ref 12), but, at the
moment, the resolution is low, and again, the
method is not widely available.
Another approach to this problem is to use

computation methods to reconstruct an equiva-
lent 3-D microstructure with the grain size,
grain size distribution, texture, and MDF,
because obtaining these characteristics of the
3-D microstructure from experiment is straight-
forward (Ref 13). The first step is to obtain a
3-D microstructure with the right grain size
and grain-size distribution. This is done by
using a 3-D Potts model and anisotropic mobil-
ity to grow an appropriate microstructure using
trial and error. This is easy for equiaxed micro-
structures and less easy for more complicated
microstructures. Next, the experimental texture
is discretized into Q orientations and allocated
randomly to the orientations of the grains of
the 3-D microstructure. This produces a 3-D
microstructure with the correct texture but ran-
dom MDF. This MDF is calculated and quan-
tized into nb bins, such that Sk is the number
of boundaries with misorientations between
kDy and (k + 1) Dy, k = 0, 1, . . ., nb. A system
Hamiltonian is defined as the sum of the
squared differences between Sm

k and Sexp
k :

Hmdf ¼
Xk¼nb

k¼0
Sm
k � Sexp

k

� 	2
(Eq 14)

where Sm
k defines the MDF of the model, and

Sexp
k defines the experimental MDF. HMDF is a

state variable providing a measure of the differ-
ence between the model MDF and the experi-
mental MDF. It is equal to zero when the
model MDF and the experimental MDF are
identical. A Monte Carlo algorithm can be used
to minimize HMDF and, in doing so, construct
the desired MDF. The method is as follows.

Fig. 11 Effect of stored energy on an evolving
microstructure. An initial equiaxed grain

structure is assigned uniform levels of stored energy (H/J
= 0.8), indicated by a gray scale. Strain-assisted
boundary motion occurs, which mimics abnormal grain-
growth behavior. The simulation was performed using a
square (1,2) lattice, Glauber dynamics, metropolis
transition probability function, and kTs = 0.

Fig. 10 Illustrating the different types of pinning-phase morphology that can be simulated in Potts model
simulations. (a) Square particles (2 � 2 sites). (b) Aligned rods (10 � 1 sites). (c) Immobile grains

(average size 10 sites). (d) Dispersoids (1 site). The simulations were performed using a square (1,2) lattice, Glauber
dynamics, metropolis transition probability function, and kTs = 0.75.
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Two grains are chosen at random, and the
HMDF due to swapping their orientations is cal-
culated. The probability p(HMDF) that the swap
is accepted is a metropolis function (Ref 13).
This swap method is effective and produces a

starting 3-D microstructure with a texture and
MDF that are identical to the experiment (Fig.
12). It is not elegant. More ambitious ways of
reconstructing 3-D microstructures from 2-D
metrics that integrate the microstructure genera-
tion, texture generation, and MDF optimization
steps into one step have been proposed. Unfor-
tunately, none yet have been shown to work.
Progress on 3-D x-ray methods may make the
swap method redundant in the future (Ref 12).
Incorporating Realistic Energies and

Mobilities. Read and Shockley (Ref 14)
derived an analytical expression for the energy
(per unit area) of a low-angle grain boundary
comprised of a regular array of dislocations.
The boundary energy can be expressed as a
function of the misorientation:

g ¼ g0yðA� ln yÞ (Eq 15)

The parameters g0 and A are related to elastic
constants and properties of the dislocation
cores: g0 sets the overall energy scale, and A
adjusts the angle of the maximum grain-bound-
ary energy. For large-angle grain boundaries,
this model would not be expected to be valid,
because the dislocation cores would overlap
substantially, and their interaction could not
be neglected. Nevertheless, this formula has
been successfully fit to experimental grain-
boundary energies for wide misorientation
angles. Thus, a normalized version of Eq 15

can be used to model the functional form of a
general grain boundary in the Potts model:

JRS ¼ J0
y
ym

� �
1� ln

y
ym

� � �
(Eq 16)

where ym is the misorientation angle that results
in the maximum boundary energy of the sys-
tem. Experimentally, it is observed to lie
between 10� and 30�, depending on the system
(Ref 15). The grain-boundary energy function
for the Potts model then becomes:

gðOi;OjÞ ¼ 0 in the grain interiors ðOi ¼ OjÞ
JRS=2 for boundaries ðOi 6¼ OjÞ


(Eq 17)

Clearly, in most real systems, mobility is also
a function of the boundary character: m(Oi, Oj).
Thus, the probability transition function must
be modified so that the probability of an orien-
tation swap is proportional to the mobility of
that boundary. The metropolis probability tran-
sition function then becomes:

P ð�EÞ ¼ p0 if �E � 0

p0 expð��E=kTsÞ if �E > 0


(Eq 18)

where p0 ¼ mðOi; OjÞ=mm, and mm is the maxi-
mum mobility in the system. Note that these
are normalized mobilities measured from
experiment and have a wide range of functional
forms. Obtaining these data from experiment is
often nontrivial, and, like boundary energies,
these mobilities may also be a function of
boundary plane (especially in the case of twins)
as well as composition.

Although the implementation of the Read-
Shockley energy function seems to be a
straightforward extension of the model to
change the boundary energy, it has another
implicit effect, which is to change the node
angles of the boundaries. This changes the
boundary curvature acting on a boundary and
thus the driving force on that boundary. If sys-
tems with a continuous range of boundary ener-
gies, and thus a continuous range of node
angles, are to be simulated, the discrete nature
of the simulation lattice must not affect these
angles.
One way to check this is to consider a model

geometry, such as that shown in Fig. 13 of a
system with a constant driving force for motion
and in which the triple points have invariant
geometry. A similar approach is taken by
experimentalists studying boundary and triple-
point mobility (Ref 15). The grain structure is
columnar, with two grains, B and C, capped
by a third grain, A. Boundary conditions are
periodic in the x-direction and fixed in the
y-direction. There are two boundary misorienta-
tions in the system: y1 is the misorientation
angle of the A/B and A/C boundaries, and
y2 is the misorientation angle of the B/C bound-
aries. There are two triple junctions in the sys-
tem, and the geometry is arranged such that
these two are identical and symmetric: from
Eq 7, the equilibrium junction angle where y1
is the energy of the A/B and A/C boundaries,
and y2 is the energy of the B/C boundaries.
The driving force acting on the boundary is

g2/D. Assuming that the driving force is propor-
tional to the velocity of the boundary, the
boundary velocity in the y-direction is:

Fig. 12 (a) Three-dimensional equiaxed microstructure grown using the Potts model. (b) Graph showing the desired
and the achieved misorientation distribution functions (MDFs) generated by discretizing a texture, allocating

orientations to the grains, and then using the swap method to achieve the desired MDF. Source: Ref 10

Fig. 13 Boundary geometry used to validate the
Q-state Potts model for anisotropic grain

growth. Boundary conditions are continuous in the
x-direction and fixed in the y-direction. The boundary
between grain A and grains B and C is the only
boundary that moves. y1 is the misorientation between
grains A and B and also between grains A and C. y2 is
the misorientation between grains B and C. The
equilibrium angle of each triple point, f12, is defined by
the ratio of the boundary energies that intersect at the
triple point, g(y1) and g(y2).
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dy

dt
¼ m1g2

D
(Eq 19)

where m1 is the intrinsic mobility of the A/B
and A/C boundaries.
To examine the validity of the Q-state Potts

method, a nominal g2 is set, and dy/dt is
measured with time. By finding the regime in
which dy/dt is constant and using Eq 19, the
effective g2 can be extracted. Figure 14(a) com-
pares the measured g2 to the nominal g2. It can
be seen that for large g2 (i.e., high misorienta-
tions), there is good agreement between the
simulation and the theory. However, as
g2 decreases, a deviation from theory is
observed; the effective g2 becomes constant as
the nominal g2 continues to decrease. This devi-
ation occurs around g2 = 0.4g1, corresponding
to a misorientation angle y2 = 2� when y1 = 15�.
This behavior has its origin in the discrete

nature of the lattice. As y2 becomes smaller rel-
ative to y1, the equilibrium triple-junction
angle, f12, becomes larger until it approaches
180� and the A/B and A/C boundaries become
nearly flat. Because junction angles must be
changed by the addition or removal of an entire
step in a discrete lattice, small differences in the
junction angle cannot be resolved. That is, at
some point, the last step is removed, the bound-
ary becomes flat, and the triple-junction angle
cannot change with further decreases in g2.
Because the triple-junction angle defines
boundary curvature, it also defines the driving
force. Thus, if this angle becomes invariant at
some g2, so does the driving force acting on
the boundary. This effect is unavoidable in
these discrete lattice simulations and hence is
a limit to the range of anisotropies that the
model can simulate. For simulations on the
square lattice, the limit is reached at approxi-
mately g2 = 0.4g1, when f12 = 157�; larger
triple-junction angles cannot be resolved.
Note that this effect limits only the maximum

triple-junction angle and thus the range of
boundary energies (anisotropy) that may be

resolved. It does not limit the absolute value
of the boundary energy. For example, a system
of y = 1� boundaries, each with energy g =
0.25, has 120� triple junctions and can be suc-
cessfully simulated by the Q-state Potts model.
The triple-junction limitation must be consid-
ered only if a higher angle boundary (in this
case, y � 4�) must be included in the system.
The limitation on energetic anisotropy does

not affect the model ability to simulate nonuni-
form boundary mobility. Because mobility is
independent of curvature, it is unaffected by tri-
ple-junction angles. Figure 14(b) shows the lin-
ear relationship between mobility and velocity
in the Q-state Potts model over 4 orders of
magnitude (Ref 16).

Applications

Grain Growth. In 2-D networks formed
through the action of the minimization of iso-
tropic surface energy, the average number of
boundaries per grain is six. Therefore, the only
stable network is a hexagonal array of grains,
where each grain has six neighbors, and the
120� vertex angles at the triple points can be
satisfied by straight boundaries. These bound-
aries having no curvature have no net force act-
ing on them and so remain static. Any networks
that deviate from this regular array inevitably
contain some grains with less than six sides
and some with more than six sides. If the triple
points maintain their 120� angles, then the array
must contain curved boundaries. Curvature-
driven migration then causes the system to
evolve. The boundaries of grains with less than
six sides are concave (curved toward the center
of a grain), and so, boundary migration makes
these grains shrink. Grains with more than six
sides have convex boundaries, and so, these
grains grow. In other words, the competing
requirements of space filling and surface ten-
sion cause large grains to grow and small grains
to shrink. This forms the basis of a remarkable

law proposed by von Neumann (Ref 3), which
states that the growth rate of a 2-D cell with
area, A, and Ns sides is given by:

dA

dt
¼ cðNs � 6Þ (Eq 20)

where c is a constant. This result has been
shown to be correct for both 2-D soap froths
and 2-D grain structures (Ref 17) and has
recently been generalized to 3-D (Ref 18).
Although it is obvious that the self-organiz-

ing behavior of the Q-state Potts model resem-
bles the phenomenon of grain growth, as
shown in Fig. 2, the question arises: How
closely do the simulations compare to the
experimental measurements of grain growth?
Experimentally, it is observed that the grain-
size distribution, when normalized by the aver-
age grain size, remains constant during grain
growth. This means that even though some
grains grow, while others shrink, the grain
ensemble remains self-similar. This type of
phenomenon is called normal grain growth.
The grain-size distribution and the topological
distribution derived from 3-D Potts model
simulations of isotropic grain growth are also
observed to be time-invariant and in agreement
with experimental data (Ref 5).
The rate at which the average size increases

is another parameter by which experimentalists
measure normal grain growth. The kinetics of
grain growth are characterized by the parabolic
equation:

Rn
av �Rn

0 ¼ A
gg
t (Eq 21)

where R0 is the initial grain size, and Agg is a
constant. The grain-growth exponent, n, has
been the focus of much of the debate in the
grain-growth community. Hillert’s theoretical
derivation (Ref 19) gives n = 2, but most
experiments show grain-growth exponents
much greater than this; typically, the values
lie between n = 2.5 and n = 4. It has been
argued that impurity effects may be responsible
for the deviation from the ideal value. How-
ever, even data from a wide range of ultrapure
metals show considerable deviation from n = 2.
The 3-D Potts model simulations of isotropic
grain growth show grain-growth exponents in
the range of 2< n< 2.5. The measured exponent
depends on many variables of the system but
importantly on the size of the system, kTs, Q,
and the initial distribution of the grain size.
Issues about why the grain-growth exponent
is so sensitive to these variables have yet to be
definitely resolved.
Anisotropic Grain Growth. Figure 15

shows the evolution of such a system using
realistic textures, misorientation distributions
using Read-Shockley energies, and anisotropic
mobilities in which the initial microstructure
has a strong texture <100> cube texture. The
system undergoes normal grain growth, which
causes a tightening of the texture. The bound-
aries are colored to show their misorientation,

Fig. 14 (a) Measured g2 versus nominal g2 for Potts model simulations of boundary motion in the system illustrated
in Fig. 13; kTs = 0.5. (b) Measured m1 versus nominal m1 for Potts model simulations of boundary motion in

the system illustrated in Fig. 13 with m2 = 1
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with black being high misorientation and white
being low misorientation. Note how all the
high-misorientation boundaries (dark colored)
are removed from the system during grain
growth, with all the boundaries becoming white.
This causes a reduction in the average misori-
entation and a narrowing misorientation distri-
bution. This effect is observed experimentally
and is due to the high-energy boundaries being
replaced by low-misorientation boundaries.

Turning off anisotropic mobility and performing
the same set of simulations with Read-Shockley
energies and uniform mobilities reveals that
mobility has little effect on the texture changes,
and the energy function is the dominant factor
(Ref 20).
The coincidence site lattice (CSL) descrip-

tion of grain boundaries is a geometric model
based on the fact that, for certain misorientation
rotations, a fraction 1/S of atomic lattice sites
will be coincident. The resulting boundary is
termed a CSL boundary and is characterized
by S. Exact CSL boundaries are seldom
observed in general materials, because the
CSL relationship requires three independent
boundary degrees of freedom to assume partic-
ular values. Brandon (Ref 21) introduced the
concept of an acceptance criterion, which
admits a wider range of CSL boundaries. Mis-
orientations with angular deviations of less than
DyS = 15�/S1/2 from the true CSL misorienta-
tion are assumed to be within the S CSL.
The Read-Shockley derivation requires that

the array of boundary dislocations be spaced
uniformly by some multiple of the Burgers vec-
tor, b. A CSL boundary can be viewed as a sec-
ondary array of dislocations with spacing b/S
imposed on this primary array. As such, the
contribution to the grain-boundary energy from
the CSL can be modeled:

dJ� ¼ � J0
� 1� dy

dy�
1� ln dy

dy�

� �h in o
for dy < dy�

0 for dy �dy�

(

(Eq 22)

where dy is the misorientation angle between the
true CSL rotation and the actual grain-boundary
rotation, dyS parameterizes the width of the
energy well and is given by the Brandon crite-
rion, and J0 determines its depth, which main-
tains consistency with the non-CSL boundary
model in Eq 16. The total energy of a boundary
in this system is thus given by the sum of Eq 16
and 22. Note that for non-CSL boundaries, the
contribution from Eq 22 is zero; Fig. 16(a) shows
the form of such an energy function.

This type of simulation shows some interest-
ing differences between modeling the full 3-D
crystallographic orientations of a crystal and
the 2-D crystallographic orientation (Ref 22).
In the latter case, each grain requires only a
scalar index to denote its orientation, and the
misorientation y is then easily calculated as a
sum. In such a system, energy cusps of CSL,
as shown in Fig. 16(a), have a profound effect
on grain growth, with the produced MDF mir-
roring the energy function and a large fraction
of the boundaries forming multijunctions, as
shown in Fig. 16(b). However, if the same
simulations are carried out in which each grain
requires three Euler angles to denote its orienta-
tion, then the evolution is very different. The
extra degrees of freedom that exist in Euler
space mean that the chances of forming a
boundary within the CSL limit become much
smaller. The vast majority of boundaries that
are classified as CSLs do not have significantly
reduced energy; in fact, 95% of nominal S5
boundaries have energy within 5% of the ran-
dom, high-angle boundary energy. Even if the
misorientation angle of the generic CSL is close
to that of the exact CSL, the axis need not be
close to the true axis. Therefore, most nominal
CSL boundaries have energy near that of non-
CSL boundaries and should not be morphologi-
cally enhanced during grain growth (Ref 22).
Abnormal Grain Growth. Under certain

conditions, grain growth breaks down, and a
small percentage of grains grow abnormally to
consume the microstructure. Where these
abnormal grains come from, or what causes
them to form, is still an open research question,
but what is clear is that, by its very nature,
abnormal grain growth is a statistical process.
One cannot point to a particular grain and
determine whether it will grow abnormally;
rather, one can predict a probability that it will
do so. The reason for this unpredictability is
that the growth of a grain depends also on the
growth of its neighbors, which, in turn, depends
on their neighbors and so on. This means that
simulations of abnormal grain growth must be

Fig. 15 Evolution of microstructure during a Potts
model simulation of anisotropic grain

growth of a single-texture component, using Read-
Shockley energies and uniform mobilities. The
simulation was performed using a square (1,2) lattice,
Glauber dynamics, metropolis transition probability
function, and kTs = 0.5.

Fig. 16 Potts model simulation of anisotropic grain growth. (a) Relationship between misorientation distribution
function (MDF) of the evolved system and the energy function. (b) Two-dimensional microstructure

growth showing the multijunctions that form with highly anisotropic energy functions
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large enough to capture these rare events. The
rarer the event, the larger the simulation must
be. The alternative to performing very large
simulations is to carry out many smaller

simulations; either way, it is important to statis-
tically sample the system.
Figure 17 shows the time evolution of an

anisotropic system with Read-Shockley ener-
gies and anisotropic mobilities. The gray scale
of the boundaries is proportional to their mis-
orientation; thus, the darker boundaries have
higher misorientation. Initially, the grains
undergo normal growth, in which they remain
relatively uniform in size, but the average
boundary misorientation decreases. However,
in this particular simulation, one subgrain
begins to grow discontinuously. This subgrain
has an orientation far from the mean, so that
the mean misorientation of its boundaries is
larger than average, as indicated by its light
boundaries in Fig. 17. As it grows, its high mis-
orientation boundaries come to dominate the
system, and the average boundary misorienta-
tion increases. In texture space, an initial tight-
ening of texture is observed during normal
growth, followed by a shift to a new texture
as the abnormal grain envelops the system.
The growth rate of the abnormal subgrain, as

calculated from the Mullins and Rollett (Ref
23) theory, is plotted against its actual growth
rate, as measured in the simulation in Fig. 18.
At early times, stochastic effects cause the data
to be quite noisy, and at late times, when the
abnormal subgrain has consumed much of the
system, finite-size effects become important.
However, the agreement is good at intermediate
times, indicating that the abnormal subgrain is
growing as predicted by theory. This compari-
son with theory shows that when abnormal sub-
grains appear, they behave as they should, but
theory does not explain how many such events
should be expected. Is the observed occurrence
of abnormal events reasonable?

One of the virtues of computer simulation is
the ability to decouple physical parameters to
help determine underlying mechanisms. In the
simulations of abnormal subgrain growth dis-
cussed previously, both boundary energy and
mobility varied with misorientation, and no
stress or surface effects were included. Thus,
boundary energy, mobility, or both are impli-
cated in abnormal growth. To determine which,
simulations were performed with uniform
boundary mobility and Read-Shockley ener-
gies, in which case abnormal growth is not
observed. If simulations are run with a gently
varying mobility function of Read-Shockley
energies, again, no abnormal growth occurs.
However, when a highly anisotropic mobility
function is used with boundary energy constant
and uniform, abnormal growth occurs as before.
Further simulations have shown that to observe
abnormal growth in these highly textured sys-
tems, it is necessary and sufficient to have some
very high mobility boundaries available to the
system. With this knowledge, a model for the
abnormal growth process that predicted nucle-
ation rates was developed and compared with
experiment (Ref 16). The effect of texture gra-
dient on grain growth using the same MDF
and energy and mobility functions was also
investigated. Figure 19 demonstrates an exam-
ple of such a simulation, which shows an abnor-
mal grain growing rapidly through a texture
gradient, until it meets grains of a similar orien-
tation, at which point it slows down, and nor-
mal grain growth occurs.
Recrystallization. Figure 20 shows an

example of a 3-D Potts model simulation of
recrystallization in an extruded aluminum rod.
There are many important issues that must be
dealt with to model recrystallization correctly.
Clearly, the microstructure, texture, and misori-
entation distribution are important, as is the
overall macroscopic shape of the sample, as
shown in Fig. 20. However, perhaps the most
important variable is the stored energy and its
correlation with the microstructure. This is not
only because the stored energy is the main
driving force of recrystallization but also
because the nature and density of the stored
energy determine the nucleation rate.
Stored energy is the main driving force in

recrystallization, but in general, it is not easy
to measure. Recently, the pattern quality of
EBSD Kikuchi images has been used as an
index of the work-hardening state and hence
the dislocation density on a local scale. At best,
this is an accurate qualitative indication of the
distribution of stored energy in the system. It
is also, of necessity, a 2-D measure. When
importing these structures, the pattern quality
is turned into the scalar variable, hi, describing
the local stored energy. An alternative way of
modeling the distribution of stored energy is
to perform simulations of plastic deformation
and take the output of these simulations as the
input for the Potts model simulations. These
polycrystal-plasticity simulations are notori-
ously difficult to perform accurately, but they

Fig. 18 Time rate of change in the size of an
abnormally growing subgrain normalized

by the mean size of the normal subgrains. The solid line
is for the abnormal grain shown in Fig. 17, and the
dotted line gives the results of the analytical theory of
Rollett and Mullins (Ref 23) for the same subgrain. At
intermediate times, the agreement between theory and
simulation is excellent, indicating that the abnormal
growth is driven by an energy and/or mobility
advantage, as predicted by the theory. MCS, Monte
Carlo time step

Fig. 17 Evolution of microstructure during a Potts
model simulation of anisotropic grain

growth of a single-texture component, using Read-
Shockley energies and anisotropic mobilities to show the
emergence of an abnormal grain
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do have the advantage that the variables which
describe the deformed state are known. Once
again, these can be converted into the scalar
quantities, hi, needed by the Potts model.
Once the structure has been imported into the

model, the next problem concerns the nucle-
ation criteria to produce strain-free nuclei in
the structure. The simulations shown in Fig.
20 were performed with site-saturated surface
nucleation, which means that all the nuclei
were allocated to sites on the surface at the
beginning of the simulation, and recrystalliza-
tion occurred as a result of growth and compe-
tition between these nuclei. The precise
nucleation model is extremely important in
these simulations, because it dictates the final
grain size and the texture of the simulations.
Thus, great care must be taken when imple-
menting and interpreting the nucleation model.
The growth part of the model, which really is

the only part of such simulations that concerns
the Potts model, affects only the kinetics of

grain growth. It has been mentioned before that
there are no absolute length and time scales in
Potts model simulations. Determining critical
length and time scales is not usually a problem,
although this cannot be done a priori but must
be performed by some calibration procedure,
which involves measuring the starting grain
size in sites and equating this to the imported
grain size measured in micrometers. The
annealing time can be calibrated in a similar
manner. However, users of the Potts model
should be aware that there is a difficulty with
the kinetics of the simulations, as mentioned
in the section “Stored Energy” in this article.
The driving force for growth is not proportional
to the stored energy, and the boundaries are all
driven forward with equal force. Thus, the
kinetics are unlikely to be accurate even when
the calibrations have been carried out, unless
boundary velocity is independent of driving
force. Rollett and Raabe have proposed a
hybrid model of recrystallization that involves

the coupling of the Potts model with a cellular
automaton (CA) to get around this problem
(Ref 24). This model is ideal if the aim is to
model recrystallization and the subsequent
grain growth in a single simulation, but in gen-
eral, CAs are more appropriate for modeling
recrystallization than Monte Carlo models
(Ref 24).
The Zener-Smith pinning theory describes

how second-phase particles hinder the motion
of grain boundaries during microstructural evo-
lution. The theory has been used to explain a
wide range of microstructural phenomena, such
as grain-growth stagnation and abnormal grain
growth. Incorporating particles into metal
alloys and ceramics to control grain size during
thermomechanical processing is row standard
industrial practice. Figure 21 shows the shape
of the boundary being pulled away from a par-
ticle in two different systems: a TiN particle in
steel and the Potts model. The origin of the pin-
ning force is the extra energy required to create
the dimpled boundary shape, and, as can be
seen from Fig. 21, the Potts model appears to
work well qualitatively. However, it is not
enough for the model to appear to give the right
shape; the correspondence must be quantified.
If the particle is incoherent with the matrix,

and the interface tension, g, at the boundary-
particle interface is isotropic, this results in an
angle of p/2 at the boundary-particle interface.
Under these circumstances, the boundary

Fig. 19 Evolution of microstructure during a Potts
model simulation of anisotropic grain

growth in a texture gradient, using Read-Shockley
energies and anisotropic mobilities. The simulation was
performed using a square (1,2) lattice, Glauber
dynamics, metropolis transition probability function, and
kTs = 0.5.

Fig. 20 Series of snapshots from a Potts model
simulation of an extruded aluminum rod

recrystallizing with site-saturated surface nucleation. The
light gray indicates a recrystallized grain; the dark-gray
grains are unrecrystallized. The system is a 50 � 50 �
200 cylinder, with periodic boundary conditions in the
axial (z) direction. Source: Ref 6

Fig. 21 Boundary/particle interaction. (a) TiN particle
interacting with a carbon steel grain

boundary. (b) The simulation was performed using a
square (1,2) lattice, Glauber dynamics, metropolis
transition probability function, and kTs = 0.5.
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exhibits a characteristic dimple shape, which is
a minimal surface described as a catenoid of
revolution. Hellman and Hillert (Ref 25)
derived the catenoid boundary shape as a
function of zo, the distance between the particle
center and the spherical boundary cap
(Fig. 22a):

zo ¼ a bþ cosh�1
�

a

� �1=2
� �

a
1� 1� a

�

� �1=2
 !" #

(Eq 23)

where y is the bypass angle, r is the particle
radius, r is the radius of the boundary
curvature, a = r sin y cos y, and b = sec y
cosh�1 (cosec y).

Figure 22(b) shows the comparison between
the Potts model and the theoretical predictions.
The pinning force can be calculated by measur-
ing the derivative of the energy with distance
traveled by the boundary. The only complica-
tion with this is knowing the distance of the
boundary, because locally it changes shape dra-
matically. Thus, these calculations require large
simulations to be carried out in which the local
dimple is a small perturbation on the overall
boundary shape. Figure 22(c) shows the nor-
malized force (F/Fp) versus normalized dis-
placement (zo/r) for the model and theory.
Note that boundary detachment occurs at a
bypass angle of 70�; this means that although
the maximum pinning force is independent of
r/r, the point of boundary detachment, the
“stickiness” of a particle/boundary interaction,
is not.
What these simulations show is that the Potts

model gives good agreement with the theoreti-
cal curve, although there is disagreement with
the details of boundary detachment. This pro-
vides confidence to scale up the model and look
at the effect of arrays of particles on grain
growth. Figure 23(a) shows a snapshot of a sim-
ulation carried out to investigate the effect of
volume fraction of particles on grain growth.
By carrying out a systematic study of the effect
of volume fraction on pinned grain size, it is
possible to plot the relationship and compare
with the experiment. Figure 23(b) and (c) show
that the Potts model does a good job of describ-
ing the phenomenon (Ref 11). As a result of the
effectiveness of the method, there is now quite
a bit of interest in using the method to study
abnormal grain growth in the presence of
particles.

Algorithms

The simplest algorithm for implementing the
Potts model is called the vanilla algorithm. This
involves setting up the initial conditions of the
lattice, then choosing a random change to an
orientation (to one of the Q other orientations)
at a random lattice site and accepting or rejecting
the change based on the change to the total
energy of the system, DE, computed via the

relevant Hamiltonian. Glauber or Kawasaki
dynamics can be employed using the metropolis
or symmetric probability functions. The time
required to attempt a single orientation swap,
whether successful or unsuccessful, is defined
arbitrarily as t, and so, 1 MCS is defined as N-
attempted flips. This vanilla algorithm requires
several decisions to choose the site and the new
orientation, which are fundamentally random. It
should be emphasized that for large lattices and
large run times, this requires the generation of a
large number of random numbers. If the source
of these random numbers has a low repeat signa-
ture or does not distribute the random number
uniform on {0, 1}, then artificial patterns of
behavior that are not due to curvature driving
forces will be observed.
This vanilla algorithm is sufficiently fast for

small 2-D systems. However, to use the model
to simulate industrially relevant applications,
as outlined in the previous section, large 3-D lat-
tices and long simulation times are required.
Such work usually requires the use of speed-up
algorithms. This section presents three such
algorithms, each of which uses a different
speed-up strategy. All of them have their advan-
tages and disadvantages, and so, it is ultimately
for the user to decide which is best to employ.
The boundary-site algorithm is the simplest

of the speed-up algorithms. It relies on the fact
that when simulating interface migration, it is
only the boundary sites that are important.
The swaps that occur within the domains are,
in fact, problematic, because they represent a
nucleation event that, for most applications, is
unphysical. Excluding these events by using
kTs = 0 has the problem of causing lattice
effects. The boundary-site algorithm is similar
to the vanilla algorithm, but it excludes these
events a priori, even at finite temperatures.
The algorithm is much more efficient for simu-
lating boundary migration than vanilla Potts
algorithms, because, in most systems of inter-
est, the boundary sites are not only the most
important sites but also in the minority. Thus,
by excluding nonboundary sites from potential
orientation swaps, more central processing unit
time is spent on simulating boundary migration.
There are many ways of ensuring that only

boundary sites are sampled for potential orienta-
tion swaps, each of which has an associated
computational overhead and memory allocation
implications. The easiest way is to modify the
vanilla Potts model so that after a site is selected
at random, a neighbor check is performed, and if
the site is found not to be a boundary site, time is
incremented and a new site selected. Further effi-
ciency gains can be obtained by maintaining a list
of the boundary sites and only picking sites from
that list. Themaintenance of this list has a compu-
tational overhead associated with it, and so, the
overall efficiency of the algorithm depends on
the boundary-site/interior-site ratio of the system.
In this case, incrementing the time is also more
complicated, because the algorithm must accu-
rately calculate the effective time, tb, associated
which each attempted boundary-site swap. In

such a simple algorithm, tb is equal to the number
of boundary sites in the list divided by N.
Further speedup can be obtained by only

allowing boundary sites to swap to an

Fig. 22 (a) Schematic of the formation of a dimple
during grain-boundary bypass of a particle.

r, radius of the particle; r, radius of the boundary
curvature; y, boundary bypass angle; g boundary surface
tension; gAP and gBP, the two particle/boundary surface
tensions; and yo, distance of the boundary from the
particle center. (b) Comparison of the dimple shape
produced by a Potts model and theory. (c) Comparison
of the pinning force produced by a Potts model and
theory
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orientation of one of their neighbors. Once
again, this is more physically realistic in that
it rules out the boundary nucleation events that
can occur at finite temperatures. Choosing one
orientation randomly from the set of available
neighbor orientations again has implications
for tb. The effective speedup is different for
each site and depends on its neighborhood.
Because this algorithm is actually doing some-
thing slightly different from the vanilla Potts,
an exact quantitative match is not relevant.
However, a check should always be performed
with every new code to make sure that grain
growth obeys von Neumann laws, with an
invariant normalized grain-size distribution
and an average grain size that obeys a parabolic
growth law.
A speed-up algorithm that exactly corre-

sponds to the vanilla Potts model is known as
the n-fold way algorithm and was first devel-
oped by Bortz et al. (Ref 27). The algorithm
eliminates all unsuccessful orientation swap
attempts a priori, so that all orientation swaps
result in domain evolution. It requires a list of
all possible successful orientation swaps to be
compiled, along with their transition energies,
DE. An activity pi = P (DEi) of the N possible
orientation swaps is defined (Ref 27) with the
total system activity, A, as given by:

An ¼
XN
i¼1

pi (Eq 24)

Each site is visited with a probability
weighted by its activity, an effective orientation
swap is performed, the site and its neighbors
are re-evaluated, and pi is updated.
In the conventional Potts model, the simula-

tion is incremented after each attempted orien-
tation swap. In the n-fold way, each
orientation swap is successful, so the time
increment must be scaled by the average time

between successful flips in the vanilla
algorithm. This time increment is:

�t ¼ �ðt=AnÞ lnR (Eq 25)

where R is a random number uniformly
distributed on the interval (0,1). This time
increment decreases as the total system activity
decreases, reflecting an increased efficiency of
the algorithm. Hassold and Holm (Ref 4) have
shown that using this type of n-fold way algo-
rithm results in identical simulation dynamics
in substantially less computation time. The
algorithm is efficient in the case where either
kTs = 0 or when kTs 6¼ 0, when all orientation
swaps are confined to the boundary sites. For
other cases, the increase in computational effort
involved in compiling and updating lists of the
active sites usually outweighs the advantages
of the algorithm.
The Potts algorithm does not readily paralle-

lize in the obvious way of assigning each of
P processors a subset of the lattice sites. This
is because two or more processors may pick
adjacent sites. If this occurs, then, when the
two processors attempt to calculate DE for an
orientation swap, they will each do so using
incorrect information about neighboring orien-
tations (each other). This violates the detailed
balance that demands that two or more sites
may not be flipped simultaneously if their inter-
action affects the Hamiltonian. A valid paralle-
lization method is to use a checkerboarding
approach in which each processor simulta-
neously attempts to swap orientations in a
subdomain in which all sites share no neighbors
with other subdomains.
Checkerboarding involves assigning each

lattice site one of a finite set of flavors. For
example, Fig. 24(a) shows a 2-D square lattice
checkerboarded with two flavors: those denoted
with circular symbols and those with triangular
symbols. This can be used to perform Potts

model simulations using first-nearest neighbors,
because each of the circle sites has no nearest
neighbors that are circles. Similarly, each of
the triangular sites has no nearest neighbors that
are triangles. Thus, instead of picking sites ran-
domly, all the circle sites can be updated simul-
taneously without the result of any flip attempt
affecting the other circle sites. This is also true
for the triangular sites. Algorithmically, a loop
over the flavors replaces the need to randomly
pick sites and thus removes the possibility that
two processors may try to flip to adjacent sites.
The checkerboarding method can be applied

to 2-D square lattices using first- and second-
nearest neighbors, but in this case, four flavors
of lattice sites are needed to ensure that simul-
taneous updating does not invalidate detailed
balance. In 2-D triangular lattices using first-
nearest neighbors, three unique flavors are
needed. In 3-D using the 26 first-, second-,
and third-nearest neighbors, eight flavors are
needed. By using checkerboarding, P proces-
sors can be most efficiently employed if the lat-
tice is subdivided into P contiguous domains.
Each processor also must store a copy of the
narrow strips (2-D) or planes (3-D) of the lat-
tice sites that immediately adjom its subdomain
and are actually owned by neighboring proces-
sors. The important point is that the processors
are all synchronized to update the same flavor
of lattice site. This algorithm is highly parallel,
with the only communication cost being the
local exchanges of boundary orientations betw-
een neighboring processors. These exchanges
also serve as synchronization points in the loop
over flavors to ensure that all processors work
on the same flavor at the same time. In practice,
as long as the processor subdomains are of rea-
sonable size, the communication costs are only
a few percent of the total run time, and thus, the
algorithm can simulate large lattices with paral-
lel efficiencies of over 90% (Ref 28).

Fig. 24 Checkerboarding of lattices. (a) Two-
dimensional (2-D) square lattice using only

first-nearest neighbors. (b) 2-D square lattice using first-
and second-nearest neighbors. (c) Sharing of an interface
strip allows two processors to simultaneously update
their sites using checkerboarding.

Fig. 23 (a) Snapshot of a pinned microstructure in a Potts model simulation of Zener pinning on a 400 � 400 � 400
lattice, using particles with sizes 3 � 3 � 3. (b) Comparison of pinned grain size with experimental data.

Source: Ref 26
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Final Remarks

The aim of this article has been to give an
introduction to the Potts model and a practical
guide to programming and performing simula-
tions. The beauty of the Potts model is that is
a simple way to model complex systems by
modeling local physics, in particular, the effect
of surface tension phenomena on the develop-
ment and evolution of microstructure. At all
times, it has been important to compare the
model with theory and experimental data; this
instinct is essential to any modeler. It is easy
to make a model yield pretty pictures that
appear to have a correspondence with a “real”
phenomenon, but quantification of the simula-
tion is the only way to use the model as a
method to gain physical insights and under-
standing. Finally, it is important to note that a
model is just that, a model, and the benefit of
it is as much to guide the experiment and to
hone the intuition about physical phenomena
as it is to make predictions. The major role of
computer models is to reduce the number of
experiments that must be carried out and to
highlight what variables are key to understand-
ing the results. The Potts model should be seen
in this light; it is a guide to the intuition. Above
all, it is a medium of communication between
experimentalists and theoreticians.
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Network and Vertex Models for
Grain Growth
L.A. Barrales Mora, V. Mohles, G. Gottstein, and L.S. Shvindlerman,* Institut für Metallkunde und Metallphysik,
Aachen, Germany

NETWORK MODELS and their applications
for the simulation of various physical phenom-
ena related to grain-boundary migration are
reviewed. The implementation of typical two-
and three-dimensional network models is intro-
duced and comprehensively detailed. The imple-
mentation of such models is subdivided into
three steps: acquisition and discretization of the
microstructure, formulation of the equation of
motion, and implementation of the topological
transformations. To demonstrate the predictive
power of network models and their flexibility,
prominent examples of the simulation of physi-
cal phenomena are presented, that is, the simula-
tion of two- and three-dimensional normal
grain growth, grain growth in the presence of
an extrinsic driving force, and the effect of a
finite mobility of boundary junctions on grain
growth.
Various models have been used for the

simulation of grain-boundary migration and
related phenomena, in particular, grain growth
and recrystallization, notably Monte Carlo
(Ref 1–4), phase field (Ref 5, 6), and network
models (Ref 7–24). However, models based on
cellular automata (Ref 25, 26), finite elements
(Ref 27), and molecular dynamics (Ref 28)
can also be found in the literature. Among
them, the network models stand out for the clar-
ity of the physics used for the description of
grain-boundary migration. The network models
received their name from the procedure in
which the microstructure of a polycrystal is
abstracted, because the only required informa-
tion in these models is the interfacial topology
of the microstructure. These models have been
referred to in different terms, for example, ver-
tex model (Ref 11, 12, 20), partial differential
equation model (Ref 21), surface evolver model
(Ref 29), and so on, but all of them belong to
the category of network models.

History of Development

The first reported attempt of a network model
is due to Fullman in 1952 (Ref 7), who simulated
grain growth in a two-dimensional (2-D)
polycrystal. He represented a 2-Dmicrostructure
(cellular pattern) only by its triple junctions.
Then, the evolution of the microstructure results
only from the movement of the triple junctions
whose velocities were calculated manually from
the line tension and length of the three adjacent
grain boundaries. The model was picked up in
1983 by Weaire and Kermode (Ref 8, 9), who
developed a rather complex algorithm based on
the continuous equilibration of the topological
network through the displacement of the triple
junctions. Interestingly, in this model the displa-
cements of the triple junctions were not directly
calculated but only adjusted to obtain the values
of the dihedral angles and grain areas at each
simulation step. More akin to Fullman’s
approach, Soares et al. (Ref 10) developed a
model for the simulation of grain growth, with
the difference that they neglected the curvature
of the grain boundaries and calculated the dis-
placement of the triple junctions only from
the line tensions of the adjacent grain boundaries.
Frost et al. (Ref 30) also considered the curvature
of the grain boundaries by defining them as an
array of nodes. In their model, the velocities of
these nodes and thus their displacements were
calculated from the local curvature. However,
the displacements of the triple junctions were
not calculated but only adjusted to attain the
equilibrium dihedral angle. This simple modifi-
cation generated the possibility of directly
simulating grain-boundary migration.
A different approach was considered by

Kawasaki et al. (Ref 11), who represented the
microstructure by only their triple junctions,
called vertices, in a manner similar to the

approaches of Fullman (Ref 7) and Soares et al.
(Ref 10). However, in the approach of Kawasaki
et al., the velocities of the triple junctions
resulted from the solution of a system of
Lagrangian equations for the dissipation of the
potential energy (stemming from the interfacial
energy) of a microstructure through the move-
ment of the triple junctions. As in the previous
models, the equilibrium at triple junctions had
to be enforced because of the constraints
imposed by straight grain boundaries. To
improve the accuracy of the approach and to
address curvature-driven boundary motion,
Weygand et al. (Ref 18) introduced nodes (vir-
tual vertices) along the grain boundary that per-
mit the representation of curved elements and
thus do not have to enforce equilibrium at triple
junctions. Due to its simplicity, the vertex
approach has remained popular, and some other
implementations have been proposed to over-
come the limitations of straight grain boundaries.
In particular, Maurice and Humphreys (Ref 19),
based on an idea by Svoboda (Ref 31), formu-
lated what they called an explicit curvature-
driven vertex model. In their approach, the cur-
vature of the grain boundaries was approximated
by circular arcs and subsequently used to
calculate the velocity and displacement of the
triple junctions. An advantage of this formula-
tion is that it can be easily extended to three
dimension (3-D), because it only relies on the
positions of the triple junctions in 2-D or quadru-
ple junctions in 3-D and the grain-boundary
energy.
Owing to the difficult implementation of the

topological transformations that take place in
the course of grain growth, only a few 3-D
network models have been developed so far.
Prominent examples are Brakke’s surface
evolver (Ref 29) and the 3-D vertex model by
Fuchizaki et al. (Ref 16).
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All of these previously mentioned models or
modifications thereof have been used in a vari-
ety of applications pertinent to grain-boundary
migration. The most prominent applications
are detailed in a subsequent section, but to
begin with, the implementation and the pro-
blems of typical 2-D and 3-D network models
are comprehensively addressed in the following
section. This implementation can be subdivided
into three parts: initialization and discretization
of the microstructure, equation of motion, and
topological transformations.

Initialization and Discretization of
the Microstructure Model

Initialization of the Microstructure. The
generation of a microstructure in a numerical sim-
ulation code is crucial for every simulationmodel.
In 2-D, the microstructure can be obtained even
from experimental sampling by light optical or
electron microscopy, notably by orientation
microscopy via electron bockscatter diffraction
in a scanning electron microscope and digitiza-
tion of the information (Fig. 1). In 3-D, the prob-
lem is more complicated, because there are very
few real 3-D observation techniques available so
far. Generally, the experimental methods only
allow the analysis of small sample volumes and

thus are often not representative for the entire
microstructure of a specimen (Ref 32–35).
An alternative to experimental 3-D sampling

is the reconstruction of a 3-D microstructure
from numerous successive 2-D slices of the sam-
ple (serial sectioning) (Ref 36–38). The neces-
sary effort for this task is, nevertheless,
enormous if the acquisition is conducted manu-
ally. Fortunately, automated 3-D orientation
microscopy has recently become available, facil-
itating this task (Ref 39–42). However, the infor-
mation provided by these methods normally
does not include the grain boundaries (i.e., does
not provide the microstructure as a topological
network) but discretizes only the grains as small
pieces of volume with a uniform orientation. For
several simulation models, such as cellular auto-
mata, phase-field models, Monte Carlo models,
and so on, this information is sufficient because
they require the discretization of the volume,
precisely through small volume elements. Con-
versely, for the network models, this information
is neither adequate nor sufficient, because they
demand a determination and discretization of
the grain boundaries, that is, curves in 2-D and
surfaces in 3-D. Additionally, for the simulations
of the topological network information about the
grains and their orientation, they require number
and position of the triple and quadruple junctions
and the misorientation relationships across the

grain boundaries. Special algorithms that allow
the extraction of these data and the identification
of the topological elements can be used. How-
ever, they are rather complicated and require
substantial computational efforts (Ref 43).
The numerical alternative is the use of tessella-

tions. A tessellation (also called mosaic) is a reg-
ular arrangement of polygons (2-D) (regular in
the sense that there are no gaps or overlaps
between the elements of the tessellation), polyhe-
dra (3-D), or polytopes (n-dimensional) that com-
prises a determined space. A tessellation can be
bounded or unbounded, depending on the spa-
tial-boundary conditions. There are several tes-
sellations in nature, for example, a polycrystal
or the honeycomb of a beehive (Ref 44).
For a simulation of grain growth, so-called

Voronoi tessellations can be used and are
extensively described in the literature (Ref 4,
11, 12, 18). This kind of tessellation is simple
and provides the necessary information for the
simulation of grain growth with network mod-
els, that is, the topological network. However,
existing algorithms for the construction of the
tessellation are either complicated or slow; a
naı̈ve implementation can result in both. An
efficient implementation is not a trivial task
and demands some programming skills. For a
detailed description of the different methods
for the construction of Voronoi tessellations,
refer to Ref 45 and 46.
The concept of Voronoi tessellations was

introduced more than a century ago (Ref 47).
The formal definition is rather simple: Given a
defined (not necessarily finite) space, S, let
P = {p1, p2,. . ., pn} be a set of points within
S, which are called partition sites (Ref 45). A
partition of the space is obtained by assigning
every point to its nearest site. All points
assigned to pi form a Voronoi region V(pi),
which is also referred to as a Voronoi polygon
(in 2-D and in a bounded space) (Ref 45). The
V(pi) consists of all points that are at least as
close to pi as to any other site, explicitly

V pið Þ ¼ x : pi � xj j � pj � x
�� ��8j 6¼ i

� �
(Eq 1)

Evidently, the sites compete for the largest
region possible. Those points that belong to
more than one site form the borders for each
Voronoi region; in 2-D this border is a line,
whereas in 3-D it is a surface. The set of all
these borders forms the Voronoi diagram.
In Fig. 2, a 2-D Voronoi tessellation is shown.
This tessellation was generated by ten sites in
a bounded space S (Fig. 2a). Each site has influ-
ence over a limited region of the space S, and
each region is bounded by straight lines that
form a polygon (Fig. 2b). An example of a
bounded 3-D Voronoi tessellation can be seen
in Fig. 3.
In polycrystalline materials, a Voronoi region

can be associated with a grain or crystal, and
the Voronoi diagram represents the grain
boundaries. This method renders the topology
of the tessellation and therefore lends itself as
an input for network models. The main problem

Fig. 1 Titanium microstructure electron backscatter diffraction (EBSD). (a) EBSD mapping of pure titanium.
(b) Discretization in a topological network for the simulations

Fig. 2 Concept of tessellation in a space, S. (a) Randomly generated partition sites (p1 . . . p10) for the Voronoi
tessellation. (b) Corresponding Voronoi diagram. Model in color
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with Voronoi tessellations is that they do not
yield realistic grain-size distributions. To over-
come this difficulty, some modifications to the
original Voronoi tessellation have been pro-
posed (Ref 48). For instance, the radical plane
method for the packing of spheres allows the

partitioning of space by considering the size
associated with a site, and thus, it is capable
of mimicking an arbitrary size distribution. This
mosaic differs from a Voronoi tessellation in
the definition of the planes delimiting the
regions of the tessellation. It can be noticed

from Eq 1 that for a Voronoi tessellation, this
plane intersects in the midpoint between two
sites (bisecting plane), which results in tessella-
tions with a narrow size distribution because all
Voronoi regions tend to have similar grain sizes
despite randomly distributed sites. Conversely,
in the radical plane method, the boundaries
are defined by the set of points with equal
power k2 with respect to two spheres or circles
(Fig. 4a). The power of point Q with respect
to circle C1 in Fig. 4a is defined as
k21 ¼ P1Q

2 � r21. For instance, the points fulfill-
ing the condition k21 ¼ k23, that is,
P1Q

2 � r21 ¼ P3Q
2 � r23, form the radical line

for the circles C1 and C3 (Fig. 4a). This line is
perpendicular to the center line at Q. It can also
be noticed that for touching spheres, the radical
plane is tangential to the spheres (Ref 49). This
causes the cells of the tessellation to have a size
similar to that of the spheres, and thus, the size
distribution of the spheres essentially determines
the size distribution of the tessellation (Fig. 4b).
The topological properties of the radical plane
construction are the same as for the Voronoi tes-
sellation; that is, a vertex belongs to four cells
(quadruple junction), an edge to three (triple line),
and a face to two cells (grain boundary). Hence,
tessellations are excellent tools for the generation
of microstructures to be used in simulations.
Discretization of 2-D Grain Boundaries.

For the discretization of 2-D and 3-D grain
boundaries, it is necessary to first define the res-
olution, that is, the necessary minimal length.
This length not only serves the purpose of
defining the density of the grain boundaries
(Fig. 5) but also triggers the topological trans-
formations, as addressed later. Because the res-
olution remains constant during a simulation,
operations that reduce or increase the density
of nodes composing the grain boundary mustFig. 3 Three-dimensional Voronoi tessellation. Model in color

Fig. 4 (a) Definition of the plane delimiting a cell. The solid lines represent the radical planes; the hashed line denotes the bisecting plane. (b) Tessellation obtained with the radical
plane method. The size of the cells matches approximately the size of the circles. Model in color
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be implemented. For instance, assume a given
resolution Dr. Once the spacing between next-
neighbor nodes of a grain boundary falls below
the critical size of 0.5Dr, the corresponding
segment loses any physical meaning for the
simulation and can be deleted. This procedure
is illustrated in Fig. 5(b), where the segment lm
has reached a length less than the critical size
and therefore is deleted. This requires the dele-
tion of point l and the relocation of point m to
the midpoint, m0, of the original segment lm.
The inverse operation is shown in Fig. 5(c),

where the segment no has a length larger than
2Dr. In order to keep an essentially uniform
distance between nodes, a new node, p, at the
midpoint of the segment is introduced. As seen
in Fig. 5(c), the segment no is now replaced by
the two segments np and po, both of which
have approximately a length of Dr. It is stressed
that the first operation (shortening) is absolutely
necessary. This is because the numerical error
increases when the nodes approach each other,
and, depending on the solver of the equation
of motion, this can lead to either large devia-
tions from the real solution or critical slowing
down of the simulation. It is also noted that
the shortening operation triggers the necessary
topological transformations, since a grain
boundary with a length equal to Dr has zero
node density, and thus, its shortening represents
the formation of a quadruple junction. By

contrast, the second operation is less important
to be implemented, because the density of nodes
along the grain boundary does not drastically
affect the results of the simulations (Ref 50).
Discretization of 3-D Grain Boundaries.

In the 3-D case, the grain boundaries are internal
surfaces and can be discretized into triangular
facets. In the 2-D case, grain boundaries and triple
junctions constitute the microstructure, while in
3-D an additional elementmust be added, namely,
the quadruple junction. A quadruple junction is
the geometrical point where four grains meet. In
addition, grain boundaries and triple junctions
now require a 3-D description; that is, a grain
boundary is represented by a surface, and the tri-
ple junction now has the character of a line. All
these elements are shown in Fig. 6.
The procedure for the discretization depends

on how the initial input was provided. Such
input must deliver the spatial positions of the
grains (center of mass), the grain boundaries
enclosing it, and the coordinates of the vertices
conforming the grain boundaries. If any of this
information is missing, a construction of the
grain arrangement becomes impossible. If this
information is available, the first step is to dis-
cretize the grain boundaries in triangular facets.
The choice of the triangle as the minimal sur-
face element is because this geometrical ele-
ment is the only one with all corners on the
same plane (i.e., all corner points of the triangle

are coplanar). The selection of other surface
elements is possible, but the calculation of
velocity of such elements and the topology are
more complicated, because for more complex
geometries, some of the corners of the discretiz-
ing element may be noncoplanar.
The grain boundaries are first discretized by

a segmentation of the faces of the polyhedra
that are generated by the Voronoi tessellation.
For this, it is necessary to first calculate the
geometric centroid O of the grain boundaries
in order to construct the triangular facets. In
Fig. 7, a polyhedron and the discretization pro-
cedure of its faces are shown. The first step is
depicted in Fig. 7(b). Fuchizaki et al. (Ref 16)
and Weygand et al. (Ref 18) discretized the
grains only as shown in Fig. 7(b). However,
the subdivision of the grain boundaries in only
these coarse triangular facets cannot adequately
represent the curvature of the grain boundaries.
To overcome this problem, a recursive and

continuous segmentation in further triangular
facets is introduced. As in the 2-D case, a minimal
length Dr of the edges of the triangular facets is
first defined. This length is not only necessary
for the discretization of the grain boundaries but
is also required for triggering the topological
transformations. The procedure for the segmenta-
tion of the facets is as follows. When the distance
between two vertices is larger than 2Dr, a new
vertex in the middle of the segment is introduced,
and the facets attached to the edge are then split
into two. The procedure is repeated until all edges
have a length of approximately Dr. In Fig. 8, an
arbitrary grain boundary, whose shape corre-
sponds to a regular hexagon, is discretized in tri-
angular segments that are generated from the
edges and the geometric centroid of the hexagon
(Fig. 8a). Because the length of all edges is much
larger than 2Dr, a new vertex (denoted by “1” in
Fig. 8b) is introduced on one of the edges of the
grain boundary. Correspondingly, the facet is sec-
tioned into two new triangles (dotted line connect-
ing 1 to O); the same operation is repeated for all
edges, for example, 2 and 3. Thereafter, the diag-
onals from O to the vertices of the edges are split
(4 and 5), and finally, the first edge introduced at
the beginning of the segmentation procedure is
sectioned (6). The repetition of the process leads
to the discretization of the grain boundary, as
shown in Fig. 8(c). The length of all edges is
now very close to Dr. It is stressed that the

Fig. 5 Resolution of grain boundary. (a) Continuous grain boundary. (b) Discretization of the grain boundary with a
low resolution and (c) with a high resolution. The operations for the elimination of grain-boundary segments

and introduction of new nodes, respectively, are shown.

Fig. 6 Discretized boundaries of a grain and their
junctions with adjacent grains. Model in color

Fig. 7 Sequence of the discretization procedure. (a) Original polyhedron. (b) Grain after the introduction of the first
triangular facets. (c) After sequential segmentation. Model in color
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procedure described here is only one ofmany pos-
sible segmentation procedures (Ref 29).
This segmentation procedure can be used to

increase the density of triangular facets (and
nodes) when a surface expands, similar to the
2-D case when the length of a grain-boundary
segment increases and is then split (Fig. 5c).
Conversely, a procedure to eliminate triangular
facets once they have shrunk below a critical
size is necessary as well. This process of facet
elimination is the fundamental mechanism for
the reduction of the grain-boundary area and
for triggering the topological transformations
when certain conditions are met.
To explain facet elimination, refer to Fig. 9

(a), which shows a hexagonal surface that has
been discretized into regular triangular facets.
Consider the facets attached to the edge e1, that
is, the triangles Dmno and Dmnp. Due to attrac-
tion forces, the points m and n approach each
other (Fig. 9b). The distance between them
becomes eventually smaller than 0.5Dr, which
is the condition set to trigger facet elimination.
As the length of the edge e1 tends to zero, so
does the area of Dmno and Dmnp. For this rea-
son, it is now possible to remove these facets.
The point q located at the midpoint of e1
replaces the vertices m and n (i.e., the length of

the edge e1 is set to zero). The attached facets
are removed and replaced by the edges en1 (oq)
and en2 (pq), as shown in Fig. 9(c) by the dotted
lines. A topological transformation can be trig-
gered when the facet elimination procedure
meets determined conditions that alter the topol-
ogy of the system. In the current case, only two
facets are involved (highlighted in Fig. 9a and b),
because the edge e1 lies on the grain boundary.
However, if the considered edge belongs to a tri-
ple line, then three facets (lying on the three
adjacent grain boundaries) are involved.

Equation of Motion

Equation of Motion for the 2-D Model. In
the 2-D implementation of the model, the equa-
tion of motion for the grain boundary and for
the triple junctions is considered separately.
A grain boundary moves with a velocity (V):

� ¼ mgb p (Eq 2)

where mgb is the grain boundary mobility, and
p is the driving force. For the general case when
more than one driving force is applied to the
grain boundary, the velocity reads:

� ¼ mgb

Xn
i

pi (Eq 3)

Because the capillary driving force
p ¼ T � k, owing to grain-boundary curvature,
is intrinsic for polycrystals, separating it out is
recommended:

� ¼ mgbTkþmgb

Xn�1
i

pi

¼ mgbk gþ @2g
@j2

� �
þmgb

Xn�1
i

pi (Eq 4)

where k is the curvature of the grain boundary,
and T is the line tension, which is the sum of the
grain-boundary energy, g, and its second deriv-
ative with respect to the inclination angle, j,
which defines the spatial orientation of the
grain boundary. It is noted that the boundary
energy and mobility depend on grain-boundary
misorientation.
Consider the grain boundary in Fig. 10. The

variables used in Eq 4 are also indicated.
To explicitly define Eq 4, only the curvature
of the grain boundary is needed. The curvature
can be calculated from the local geometry at
each point bi along the grain boundary with
the adjacent points bi�1 and bi+1 (Ref 23, 51).

Fig. 8 Adding Triangular facets. (a) Arbitrary grain boundary after initial discretization. (b) The distance between two points cannot be larger than twice the predefined critical
distance Dr. (c) Result after the segmentation procedure

Fig. 9 Facet elimination process that takes place once a facet edge is smaller than the critical size. (a) Initial grain boundary. (b) Distance between two nodes is less than 0.5Dr.
(c) Grain boundary after the elimination of the short edge and thus of the adjoining facets
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The path vector or tangential vector describes
the position of a discretizing point of the grain
boundary with respect to the global coordinate
system. In Fig. 10, the components of this vec-
tor are tx and ty, and hence, the vector normal to
the boundary at point bi is (�ty,tx). The normal
velocity is then given by:

~�n ¼ �tx
ty

� �
mgbk gþ @2g

@j2

� �
(Eq 5)

In some cases, it is inconvenient to explicitly
calculate the curvature (e.g., irregular grain
boundaries), so instead, Eq 5 is reduced to a
more fundamental expression reflecting only
the fact that the capillary driving force stems
from the line tension of the grain boundary.
This also permits the possibility of taking into
account the stiffness of the grain boundary. In
Fig. 11, the forces exerted on a node of the
grain boundary are shown. Apparently, these
forces stem from two sources: the line tension
of the boundary and the torque, M, experienced
by a boundary segment due to the anisotropy of
the energy with the inclination angle (Ref 52,
53). The velocity of a node can be determined
from the sum of the acting forces:

� ¼ mgb

~F1 þ ~F2

� �
�s12

�
Xn
i

Mi jð Þ=�si

2
4

3
5

� mgb g ~u1 þ~u2ð Þ= �s1 þ�s2ð Þ �
Xn
i

Mi jð Þ=�si

" #

(Eq 6)

where the vector ~u is the unit vector of ~si:

~ui ¼ ~si
sik k (Eq 7)

and the sum of the unit vectors ð~u1 þ~u2Þ
defines the direction of motion. The torque
M(j) is the first derivative of the energy with
respect of the inclination angle:

M jð Þ ¼ � @g
@j

(Eq 8)

As seen in Ref 52 and 53, Eq 6 is equivalent
to Eq 5 but with the advantage that, by avoiding
the calculation of the curvature, it is possible to
consider the dependency of grain-boundary
energy on misorientation and inclination.
The equation of motion of the triple junction

can be calculated in a very similar way. The
velocity of the triple junction is given by the
product of the triple-junction mobility and the
sum of forces acting on the triple junction:

~�tj ¼ mtj

Xn
i

~Fi
gb þ~pi

� �
(Eq 9)

where the line tensions, ~Fi
gb, of the boundary

and any external force, ~pi, exerted on the triple
junction have been separated; mtj is the triple-
junction mobility. As for the equation of motion
for the grain boundaries, it is possible to expand
Eq 9 to include the forces ~FMi

acting on the tri-
ple junction due to the torque:

~Fgb ¼
Xn
i

gi �~ti
�si

þ ~FMi
¼
Xn
i

gi �~ti �M jð Þi�~ni

�si

(Eq 10a)

where ~t and ~n are the tangential and normal
unit vectors, respectively, at the triple junction
of a grain-boundary segment. In terms of the

Fig. 11 Schematic representation of the forces at a node of a grain boundary. (a) Tensile forces. (b) Each rigid grain-
boundary segment experiences a torque due to the anisotropy of the grain-boundary energy with the

inclination angle, which can be substituted by a pair of forces applied at the ends of the boundary segments (nodes).

Fig. 10 Discretized grain boundary. t0 represents the
tangential vector to the boundary at point bi;

vn is the normal velocity at bi; and tx and ty are the
trajectory/path vectors along the boundary. As seen in the
sketch in the right side of the figure, the angle y represents
the misorientation of the grain boundary (orientation
relationship of the neighboring grains) whereas j is the
spatial position of the grain boundary (inclination).

Fig. 12 Triple junctions, (a) Variables used for calculation of triple-junction velocity. (b) The torque caused by the
dependency of the grain-boundary energy on the inclination angle induces another force to be

considered at the triple junction
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variables depicted in Fig. 11 and 12, Eq 10(a)
can be rewritten as:

~Fgb ¼
Xn
i

gi � txi
tyi

� �
�M jð Þi�

nxi

nyi

� �
�si

(Eq 10b)

It is noted that the sign of the torque, M,
determines the direction of the normal vector
~n. In turn, Ds is the length of a segment of
boundary i adjacent to the triple junction (Fig.
12). The application of Eq 9 will lead to an
equilibrium of forces at the triple junctions.
For instance, under isotropic conditions, the
dihedral angles between grain boundaries will
be 120�, and thus, no motion of the triple junc-
tion will occur. However, the motion of the
curved grain boundary introduces a perturba-
tion of the equilibrium of forces that conse-
quently leads to motion of the triple junction.
It is stressed that in this model, the motion of
the triple junctions does not result from artifi-
cially enforcing an equilibrium of the dihedral
angles, but instead, the equilibrium angle will
be attained by the displacement of the triple
junction (Ref 54).
Equation of Motion for the 3-D Model.

The elemental discrete unit for 3-D grain
boundaries is a triangle. The surface of such a
triangle exerts a force on its vertices to decrease
its area. These forces at vertices (nodes) arise
from the surface tensions of the triangular
facets that adjoin the respective vertex and can
be calculated from the local geometry (Ref 23).
Figure 13 shows a vertex and the facets

attached to it. The force Ff1 exerted by the
shaded facet f1 on the vertex P0 is given by:

~Ff1 ¼
g
2
�~s0 � ~s1 �~s0ð Þ

~s1 �~s0k k (Eq 11)

where, as in the 2-D case, g is the grain-boundary
energy, and~s0,~s1,~s2 are the edge vectors of the
triangular facet, which are fully determined by
the position of its vertices (P0, P1, and P2), as
indicated in Fig. 13.
The sum of the forces over all facets attached

to a vertex leads to the net force:

~Fsum ¼ g
2
�Xn
i¼1

~s0i � ~s1i �~s0ið Þ
~s1i �~s0ik k (Eq 12)

with n being the total number of facets meeting
at P0. Then, the velocity of the vertex reads:

~� ¼ meff�~Fsum ¼ 1

Df
�~Fsum (Eq 13)

where meff is the effective mobility of the vertex,
and Df is the drag factor, which is defined as:

Df ¼ An

mgb

þ �s

mtl

þ 1

mqp

(Eq 14)

where mgb, mtl, and mqp are, respectively,
the grain-boundary, triple-line, and quadruple-
junction mobilities; Ds is the mean spacing of

vertices on a triple line; and An is the projected
area of the surrounding facets perpendicular to
the direction of motion. Depending on the posi-
tion of a node, it can be affected by more than
one mobility. For instance, a vertex acting as
a quadruple junction has its own mobility, but
its motion also causes a displacement of small
portions of the attached triple lines and grain
boundaries. Therefore, their respective mobili-
ties must be considered as well as indicated in
Eq 14. The motion of a node lying on the sur-
face of a grain boundary causes exclusively a
grain-boundary displacement. In such case, the
triple-line and quadruple-junction mobilities
are regarded as infinite.
The discretization of internal surfaces by tri-

angular facets also permits the calculation of
the metrics of a grain with simple vector opera-
tions. These geometrical properties of a grain
are relevant to an analysis of 3-D grain growth,
as addressed in subsequent sections.

Topological Transformations

The topological properties of the crystals
change during the course of grain growth
because they lose faces (grain boundaries),
edges (triple lines), and vertices (quadruple
junctions). One fundamental operation during
grain growth that triggers a change of the topol-
ogy of a polycrystal is the loss of a triangular
grain boundary. When a triangular grain bound-
ary collapses, the edges shared with other
grains are deleted, and the Euler formula is no
longer valid, because the collapsing grain
boundary produces an edge with more than
three grain boundaries. (The Euler formula
gives a general formulation of 3-D topological
networks with a specific number of grains, g,
grain boundaries, f, triple lines, e, and quadru-
ple junctions, v, and reads e + g = f + v. Ref
55). Consequently, the topological order must
be restored. For this, new triangular grain
boundaries are created, and edges with multiple
adjoining grain boundaries are reconnected
until the topology is restored; that is, the Euler
formula is valid again. This structuring is called
topological transformation.

In nature, this is managed simply by atomic
rearrangements to generate the configuration
with the lowest energy. This problem is auto-
matically taken care of in Monte Carlo and
phase-field models because these models follow
the steepest gradient of the free energy.
Because the microstructure in network mod-

els is only represented by connected points,
the collapse of a boundary means that the dis-
tance between two triple junctions approaches
zero. When this occurs, the network must be
reconnected in order to minimize the free
energy. The most difficult part of the imple-
mentation of network models is the program-
ming of the topological transformations. The
basic transformations are, however, well docu-
mented (Ref 56), and their implementation has
succeeded to a great extent (Ref 15, 16, 20,
24). There are a finite number of transforma-
tions only if the grain-boundary energy is con-
stant (isotropic case). If the energy of the
grain boundaries is not uniform (anisotropic
case), the occurrence of a transformation will
depend on the energetic equilibrium of the
grain boundaries attached to an edge. A trans-
formation will only take place if it represents
a decrease of the free energy of the system.
In an anisotropic system, the Euler formula is
not valid anymore, because multiple junctions
can be stable, even if only for a very short time.
Basic Topological Transformations in 2-D.

For an implementation of 2-D vertex models,
normally only two topological operations must
be considered (Ref 11): neighbor switching
(Fig. 14a) (usually denoted as T1) and triangle
elimination (T2) (Fig. 14b). These operations
are triggered when the distance Ds between tri-
ple junctions falls below a certain predefined
critical value, e. Operation T2 is not necessary
because it can be achieved by successive appli-
cations of T1 to the boundaries of the triangular
grains. However, this operation is normally
implemented because it reduces the complexity

Fig. 13 Three-dimensional grain with grain boundaries
discretized in triangular facets. The forces at

triple junctions result from the surface tensions of the
attached facets.

Fig. 14 Two-dimensional topological transformations.
(a) Neighbor switching, T1. (b) Triangle

elimination, T2
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of the model, whereas the topology of the net-
work remains intact.
It is emphasized that T1 introduces a non-

physical procedure by avoiding the formation
of a quadruple junction. Usually, such junctions
are unstable and automatically split into two tri-
ple junctions and a new boundary. However,
under anisotropic conditions, where the ener-
gies of the grain boundaries can vary, this
may not be the case.
To overcome this problem, it is possible to

allow the formation of the quadruple junctions
and to formulate a rule that will determine
whether the split is energetically favorable.
The procedure is as follows. Once a quadruple
junction is formed, the forces, ~fi, exerted on
the junction by each attached grain boundary
are calculated. The largest sum of the forces
of two adjacent grain boundaries of a grain,
denoted as ~Fij, allows determining the direction
of the split. However, if the formation of the

new grain boundary leads to an increase of free
energy of the system, the quadruple junction is
considered stable. This procedure is schemati-
cally shown in Fig. 15.
Basic Topological Transformations in 3-D.

For an illustration of the basic topological
transformations in 3-D, the grain system is
shown in Fig. 16. This system is composed of
six grains, but only two of them are shown.
The rectangular grain boundary between them
is used to exemplify the basic topological
transformations.
There are three basic topological transforma-

tions in the 3-D case: triple-line collapse, grain-
boundary collapse, and grain collapse. A triple-
line (e1) collapse occurs when the distance
between two quadruple junctions (v1 and v2 in
Fig. 17a) approaches zero, provided that the
grain boundaries attached to the triple line e1
have more than three sides. Once the triple line
collapses, the point vn1 is formed (Fig. 17b),

which connects nine grain boundaries and five
grains and thus violates the Euler formula.
The operation necessary for the restoration of
the topology is shown in Fig. 17(c). A new tri-
angular grain boundary (formed by vn1, vn2, and
vn3) is introduced, and the topological net is
reconnected to this new element.
The second operation takes place when a tri-

ple line (formed by va and vb in Fig. 17d) of a
triangular grain boundary collapses. This event
leads to the formation of a quadruple line (vn-
vm) that, as in the 2-D case, must split into
two energetically favorable triple lines. This
operation is achieved by introduction of the
necessary triangular facets that split the grain
boundaries, as shown in Fig. 17(f).
The collapse of a tetrahedral grain does not

represent an alteration of the topology, because
this event leaves the topology of the network
intact. However, grains with more than four
faces can also instantly collapse if their size is
comparable to the minimal size allowed in the
simulation. The collapse of such grains does
not leave an intact topology, and thus, more res-
toration operations must be applied (Ref 57).

Applications

2-D Normal Grain Growth Simulation
(Fig. 18, 19, 20). Grain growth is a phenome-
non that frequently occurs in nature. In any
event, the properties of the topological network
and their change during the evolution of grain
growth are of interest. In fact, the first network
models (Ref 30) were developed for the study
of soap froths (Ref 58). Many characteristics
of the networks can be studied or measured by
means of computer simulations, in particular,
the grain-size distribution, the kinetics of grain
growth, and the topological properties. More-
over, simulation of normal grain growth offers
an easy method for the validation of theoretical
models, which usually assume isotropy of
grain-boundary energy and mobility. Under

Fig. 15 Quadruple junction. (a) A quadruple junction is allowed to form; the forces ~f1; ~f2; ~f3; ~f4 and ~fij ¼ ~fi þ ~fj are
calculated. (b) If the split of the quadruple junction leads to an increase of the free energy of the system, the

quadruple junction is a stable configuration. Fig. 16 To demonstrate topological transformations, a
small system is used. Six grains fill the shown

cube; in the figure, only two of them are shown, but the
remaining grains completely fill the space. GB, grain
boundary. Image in color

Fig. 17 Fundamental topological transformations. (a)–(c) Triple-line collapse: (a) original configuration, (b) collapse
of the triple line e1, and (c) restoration of the topology by the introduction of a new triangular grain

boundary. (d) and (e) Grain-boundary collapse: (d) configuration prior to the collapse, and (e) collapse and formation
of a quadruple line (vn-vm). (f) Restoration of the correct topology by introduction of the necessary triangular facets
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such assumption, the phenomenon is sometimes
denoted as ideal normal grain growth. For
instance, for ideal normal grain growth, para-
bolic kinetics, a scaling regime, and the fulfill-
ment of the von Neumann-Mullins equation
are expected. In fact, in a comprehensive inves-
tigation, Maurice (Ref 59) studied the behavior
of several network models and confirmed that
all of them essentially meet these requirements.
For a rough impression of such simulations,

Fig. 18 shows two snapshots of the simulated
evolution of a polycrystal for different times
during grain growth. A distinct coarsening of
the grain arrangement can be observed in
Fig. 18(b), and it can be anticipated that the
simulation reaches a scaling regime because
the microstructural evolution shown in Fig. 18
seems to reveal self-similarity also noticeable
in the invariance of the grain size distribution
with time (Fig. 20). Self-similar growth is char-
acterized by the temporal evolution of the aver-
age grain size, �D, as a power law (Ref 12),

namely, �D � t1=2. This follows from the
assumption that the growth rate 1

2
d �D
dt

� �
of a

grain is proportional to 1/R, where 1/R is the
grain-boundary curvature, and R � �D. Thus,
integration yields a parabolic growth law (Ref
60). Consequently, the evolution of the mean
grain area, �A � �D2, with time follows a linear
function, as seen in Fig. 19. While all known
network models predict linear kinetics for the
mean grain area, they predict different slopes,
_�A, ranging from 0.5mgbg (Ref 7) up to 20mgbg
(Ref 10), with mgbg � _�A � 2mgbg for most of
the models (Ref 8, 11, 12, 18, 61). This is
because the slope depends strongly on the fea-
tures of the simulation model. However, the
largest deviations are to be expected in models
that do not consider the curvature of the bound-
aries at all (Ref 10). The scaling regime is
defined by the invariance of the grain-size dis-
tribution with time. All network models have
shown such behavior and reveal only slight dif-
ferences in the shape of the grain-size

distribution. An example for a simulated
grain-size distribution for a microstructure with
initially 10,000 grains is given in Fig. 20. The
distribution remains the same, even if only
5000 and 2500 grains are left.
Because different implementations of the

network models can lead to different results
for the kinetics or grain-size distribution, the
compliance with the von Neumann-Mullins
relation (Ref 62) is a more definite test for a
model. This relationship associates the growth
rate (dA/dt) of a 2-D grain to only the number
of sides of that grain, which is also referred to
as the topological class, n (Ref 62):

dA

dt
¼ mgbg

�

3
n� 6ð Þ (Eq 15)

The equation simply means that the growth
rate of the grains does not depend on the shape
or the size of a grain but only on its topological
class. Because this relation is an exact analyti-
cal solution for the growth rate, it must be
obeyed by any simulation model. In Fig. 21,
the simulated growth rate is plotted as a func-
tion of the topological class, n. The result is a
straight line with an intersection at n = 6, as
expected from Eq 15. The linear fit of the simu-
lations yields a slope of 1.0452mgbg. The calcu-
lated slope from the von Neumann-Mullins
relation is 1.047mgbg; hence, the deviation is
below 1%. This accuracy denotes that the phys-
ics of grain growth have been accurately imple-
mented in the network model. The largest
deviations are found for grains with only three
sides (n = 3) and grains with high topological
class (n > 9). This is caused by numerical arti-
facts, because when a grain becomes very
small, the curvature of its grain boundaries
can no longer be properly represented. Because
large grains (high n) are surrounded by many
small grains, they are more prone to suffer
deviations. For the same reason, large grains
are also short-lived during a simulation,
because the surroundings change rapidly and
alter the topology of these grains. It is stressed,
however, that the von Neumann-Mullins rela-
tion must be observed at any time and by any
grain. The symbols in Fig. 21 correspond to

Fig. 18 Evolution of a simulated topological network during grain growth for two different times, ta and tb,
where ta << tb

Fig. 19 Evolution of the mean grain area, A, with time. The results show a linear dependence of A with time.
Correspondingly, the mean grain size, D, follows a parabolic behavior, D � t1=2. Source: Ref 61

Fig. 20 Invariance of the grain-size distribution with
time. Source: Ref 23
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more than one million measurements taken for
all grains of a microstructure during the whole
grain-growth simulation.
Simulation of 3-D Normal Grain Growth.

The simulation of 3-D grain growth with net-
work models presents a considerable challenge,
and, in fact, only a few attempts can be found in
the literature. With such models, one can study
the same properties for 3-D topological net-
works as addressed for 2-D approaches.
The mean grain size �D ¼ 2R is still expected

to grow proportionally to t1/2, and thus, R2

should yield a linear relationship with time.
This has been corroborated by simulations of
the few existing 3-D network models (Ref 16,
20, 57). Unfortunately, a comparison of these
simulations is not possible, because details of

the simulations are usually not given in the
references, but different slopes, _�A, are also
expected for the same reasons cited in the pre-
vious section. In Fig. 22, the grain-growth
kinetics taken from (Ref 20) are shown. The
symbols in this figure denote the simulation
data, whereas the straight line is a linear fit with
a slope of approximately 1.53 mgbg.
The 3-D grain-size distribution also reaches a

steady state (Ref 16, 20, 57). The results
(Fig. 23) not only attest to a self-similar growth
of the grains but also prove that the shape of the
steady-state grain-size distribution is essentially
independent of the 3-D network model used.
This means that the shape of the distribution
is characteristic for ideal 3-D grain growth.
However, it is stressed that the agreement of

these distributions from simulations with exper-
imental results is rather poor. This is normally
attributed to pinning factors and anisotropy of
the grain-boundary properties (Ref 20), but a
convincing proof is still missing.
As seen in the previous section for 2-D grain

growth, it is possible to relate the growth rate of
grains to their topology (Eq 15, the von Neu-
mann-Mullins relation, Ref 62) under the
assumption of isotropic grain-boundary energy,
g, and mobility, mgb. For the 3-D case, several
theoretical approaches have addressed this
problem. Two different kinds of approaches
can be distinguished:

� Approaches derived under the assumption
that the volume evolution of grains within a
topological class can be accurately described
by an average value for the whole class

� Approaches that express the exact volume
rate of change of grains as a function of their
particular geometry

The only independent variable of the former
models is the topological class, whereas the lat-
ter use the metrics of single grains. The models
of Mullins (MU) (Ref 63), Hilgenfeldt et al.
(HI) (Ref 64), and Glicksman-Rios (GR)
(Ref 65) belong to the first category, whereas
the models of Cahn and MacPherson-Srolovitz
(CMS) (Ref 66, 67) fall into the second cate-
gory. The latter approach is considered an exact
3-D extension of the von Neumann-Mullins
equation and is also the analytical solution for
the growth rate, in this case, of 3-D grains.
Network models lend themselves to an easy

calculation of all necessary geometrical proper-
ties of the grains in a polycrystal for an evalua-
tion of the CMS equation (Ref 24). This
equation can be used to validate grain-growth
models because it must be obeyed by any grain
undergoing grain growth. In Fig. 24, an exam-
ple with three different grains taken from a
polycrystal simulation is shown. The symbols
in this figure were extracted from the simula-
tions; the solid lines were calculated with the

Fig. 21 Comparison of the simulation results with theoretical predictions of the von Neumann-Mullins relation taken
from Ref 61

Fig. 22 Three-dimensional grain-growth kinetics with A = pR2. Source: Ref 20

Fig. 23 Three-dimensional grain-size distributions.
The distributions for different times, t0 and

t1, demonstrate self-similarity. Three different network
models are compared. All of them show a similar grain-
size distribution.
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CMS relation. The simulations show a remark-
ably good agreement with the predictions of
the equation.
The CMS equation points out that there can-

not be a constant growth rate for a given topo-
logical class. Hence, grains with the same
number of grain boundaries may exhibit differ-
ent growth rates, depending on the difference
between the mean width of the grain and the
length of the triple lines, which change from
grain to grain. However, other approaches indi-
cate that the volume of grains within a topolog-
ical class tends to change with an average
constant rate for that class. The volume rate of
change as a function of the topological class is
plotted for all relations in Fig. 25 and compared
to simulation results. It is evident that grains
within a topological class can have various
growth rates, because they may have different
metrical properties in the same instant. All
approaches show a very good agreement with
the simulated mean value of each topological
class. This has been confirmed independently
by network model simulations by various
authors (Ref 20, 57) and even in phase-field
simulations (Ref 6).
Grain Growth under the Action of an

External Force. Grain growth is intimately
related to grain-boundary migration and there-
fore susceptible to the same factors that affect
the movement of the grain boundaries. Notably,
the various factors that cause grain-growth stag-
nation are related to some kind of impediment
of grain-boundary motion. Grain-boundary
motion can be caused by many different driving
forces. In general form, any gradient of an
intensive thermodynamic variable generates a
driving force, for example, a gradient of tem-
perature, pressure, density of defects, or energy
density (Ref 68). In the context of grain growth,
only capillary forces are usually considered,
due to grain-boundary curvature. However, the
action of other driving forces can considerably
affect grain-microstructure evolution. For
example, experiments on polycrystalline tita-
nium samples (Ref 69–71) showed that anneal-
ing in a magnetic field can substantially modify
crystallographic texture evolution during grain
growth. In metals with low crystal symmetry,
a magnetic field induces an orientation-depen-
dent magnetic energy density, Em, in a crystal:

Em ¼ 1

2
m0H

2� (Eq 16)

where m0 is the vacuum permeability of the free
space, H is the magnetic field strength, and w is
the magnetic susceptibility.
A grain boundary is the interface between

differently oriented crystals. Therefore, a grain
boundary will experience a driving force to
move toward the direction of the highest mag-
netic energy density:

pm ¼ 1

2
m0��H2 cos2 y2 � cos2 y1

� 	
(Eq 17)

Fig. 24 Growth rate for three different grains in a polycrystal. The solid lines were calculated with the Cahn-
MacPherson-Srolovitz equation. The symbols were obtained from the simulations. Source: Ref 24

Fig. 25 Comparison of different approaches for prediction of three-dimensional growth rate. The agreement of the
considered network simulation with all approaches is remarkable. Source: Ref 24
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Here, �� is the difference of the susceptibil-
ities parallel, �k, and perpendicular, �?, to the
basal planes; and y is the angle between the
c-axis and the magnetic field direction. To con-
sider the action of a magnetic field in a network
model, it is only necessary to add Eq 17 as a
driving force in Eq 4.
As an example, grain growth in the presence

of an extrinsic driving force was investigated
experimentally on rolled titanium samples
(Ref 69–71) and by network model simulations.
In these experiments, the titanium samples were
annealed in a magnetic field oriented in such a
way that the growth of grains with certain
orientations was preferred over others. The
simulations started from a discretized orienta-
tion mapping of the titanium sample, and the

physical parameters were set to match the
experimental conditions. The texture and
grain-growth kinetics obtained from the simula-
tions were compared with the experimental
results (Fig. 26).
The initial texture (Fig. 26a) was character-

ized by two symmetrical peaks about the rolling
direction. In terms of Euler angles, these corre-
spond approximately to the orientations {j1 =
180�, F = 35�, j2} and {j1 = 0�, F = 35�,
j2}. The simulated texture evolution showed
excellent agreement with the experimental
results (Fig. 26c). The intensity of the compo-
nent {j1 = 0�, F = 35�, j2} decreased with
increasing time (Fig. 26c) because the magnetic
field was directed almost parallel to this compo-
nent (Fig. 26c). In the absence of a magnetic

field, the texture showed no relevant changes
in its evolution with time (Fig. 26b), as
expected.
The change of the texture was accompanied

by specific kinetics of the various texture com-
ponents. For instance, the favored component
had much faster kinetics than that of the disfa-
vored component and the overall kinetics
(Fig. 27). The applied field forced the disfa-
vored grains to grow more slowly and thus
caused a size advantage of the favored grains
over the disfavored ones. Also, the simulated
kinetics showed good agreement with the
experimental results (Ref 70).
In the example presented here, grain growth

was affected by the introduction of an addi-
tional magnetic driving force. Such force
can be used to drive the migration of grain
boundaries, however, only in magnetically
anisotropic materials. A more versatile method
is the use of mechanical stresses. During mate-
rials processing, grain growth usually occurs
concurrently with the application of stresses.
This can and has been simulated by means of
network models (Ref 72) also. For this pur-
pose, finite-element modeling simulation was
used to calculate the introduced elastic energy
density of the grains and was coupled with
vertex simulations to simulate boundary
migration and therefore the progress of grain
growth (Ref 72).
Grain Growth in Systems with Finite

Mobility of the Boundary Junctions. A poly-
crystalline aggregate is a system composed of
grains, grain boundaries, triple lines, and qua-
druple junctions. For a long time, it was
assumed that the only element affecting grain-
boundary migration was the grain boundary
itself. Triple lines and quadruple junctions were
not taken into account and were considered
unimportant. However, in recent years, several
theoretical and experimental studies (Ref 73,
74) have demonstrated that triple lines can have
kinetics different from the adjoining grain
boundaries; that is, triple lines can possess a
finite mobility and therefore can drag grain-
boundary motion. The study of the kinetic prop-
erties of a system of connected boundaries is
only possible in the course of steady-state
motion. Steady-state motion can be achieved
in very few configurations, though (Fig. 28).
This is because the driving force for the motion
of the system is still the curvature of the bound-
aries, so that a steady-state motion requires a
specific geometry of the configuration. Two
steady-state geometries have been studied (Ref
75) for the 2-D case (Fig. 28a, b). Steady-state
motion for the 3-D case (Fig. 28c) has recently
been addressed by network model simulations
(Ref 24).
The controlling quantity of connected grain-

boundary systems is the dimensionless parame-
ter L that characterizes the influence of a finite
triple-junction mobility on the evolution of the
system. For systems with triple junctions, L =
Ltl is given for the geometry in Fig. 28(a) by:

Fig. 26 Titanium annealed in amagnetic field. (a) {0002} pole figure for the titanium sheet sample corresponding to the
initial texture. (b) and (c) Simulated pole figures after 10min annealing at 750 �C for a two-dimensional titanium

polycrystal. (b) without field. (c) In a magnetic field (field direction is indicated by a white cross). (d) Experimentally
determined texture after magnetic annealing. RD, rolling direction; TD, transverse direction. Source: Ref 70
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tl ¼ mtl � r
mgb

¼ 2y
1� 2 cos y

(Eq 18a)

and for the configuration in Fig. 28(b) by:


tl ¼ mtl � r
mgb

¼ � ln sin y
1� 2 cos y

(Eq 18b)

The parameter Lqp, which defines the influ-
ence of a quadruple-point mobility, mqp, on
the migration of the grain boundaries, reads:


qp ¼ mqp � r2
mgb

¼ � ln sin y
1þ 3 cos y

(Eq 18c)

where mtl is the triple-line mobility, mgb is
the grain-boundary mobility, mqp is the quadru-
ple-point mobility, r represents the grain size,
and y is the contact angle at the junction (Fig.
28). A consequence of a finite triple-line and
quadruple-point mobility is the change of the
boundary shape, as illustrated in Fig. 29 for
2-D systems. Experimental investigations in
zinc tricrystals and aluminum polycrystals have
confirmed the predicted change of the grain-
boundary shape (Ref 74). In the case of a finite
quadruple-junction mobility, a similar shape
change of the grain boundaries has been
demonstrated (Ref 76).

The network models are able to reproduce
these features very well (Ref 23, 50, 76, 77)
and thus can be used for the simulation of grain
growth in polycrystals under the influence of a
finite junction mobility (Ref 76). The simula-
tion results fully agree with the theoretical pre-
dictions for the motion of such systems (Fig.
30). Because the mobilities of grain boundaries,
triple lines, and quadruple points are explicit
variables in network models, such simulations
easily lend themselves to a study of junction
effects.

Summary

Network models are very efficient tools for
the simulation of grain growth and related phe-
nomena because they are able to essentially
reproduce the physics governing grain-bound-
ary migration. These models, unlike thermody-
namic models like monte carlo or phase-field
models, are fully scalable and hence offer the
possibility of a direct comparison with experi-
ments and analytical approaches. The main fea-
ture of network models is that they require as
input the topological network that builds up a

Fig. 27 The overall kinetics for conventional and magnetic annealing do not show any significant differences. This is
caused by a superposition of the kinetics of the favored component with the kinetics of the disfavored

component.

Fig. 28 Steady-state motion. (a) and (b) Two
geometries of grain-boundary systems with

triple junctions. (c) Quadruple junctions where steady-
state motion can be observed

Fig. 29 Simulated grain-boundary shapes for two-dimensional systems for different values of Ltl
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microstructure. Such input can be numerically
generated by means of special algorithms for
the construction of tessellations, for example,
Voronoi and radical plane mosaics, or by digiti-
zation of experimental data. The use of a topo-
logical network allows deriving the equations
of motion from the local geometry of the grain
boundaries. However, it also introduces the
necessity to implement topological transforma-
tions to correctly handle the changes of topol-
ogy that take place during grain growth.
Network models are very flexible and can be

used to simulate various phenomena where
boundary migration plays a relevant role. While
in the current contribution this was illustrated
with simulations of 2-D and 3-D normal grain
growth, grain growth in the presence of an
extrinsic driving force, and the effect of a finite
mobility of boundary junctions on grain
growth, it is stressed that many more cases
can be studied with these models, for example,
grain growth in the presence of second-phase
particles (Ref 78), columnar grain growth (Ref
79), and subgrain growth during recrystalliza-
tion (Ref 80).
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Phase-Field Microstructure Modeling
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Fundamentals

The collection of a hierarchy of structural
and chemical nonuniformities (imperfections
or defects) in solids constitutes materials micro-
structure that, in turn, determines materials
properties. Well-known examples of the struc-
tural defects include dislocations and homo-
and heterophase interfaces, while typical exam-
ples of the chemical defects include concentra-
tion variation across heterophase interfaces
(such as precipitates) and impurity segregation
at various structural defects. Stacking faults,
twin boundaries, antiphase domain boundaries,
grain boundaries, and ferromagnetic and ferro-
electric domain walls belong to the category
of homophase interface. The length scales at
which these variations occur define the length
scales of a microstructure.
Field Description of Microstructure. A

field description of the structural and chemical
nonuniformities seems to be an intuitive and
natural way to define a microstructure. In the
phase-field approach, the two types of nonuni-
formities are characterized by two types of con-
tinuous fields: conserved and nonconserved
order parameters. Typical examples of the con-
served order parameters include concentration
of a chemical species, density, and molar vol-
ume in a multicomponent and multiphase sys-
tem. Examples of the nonconserved order
parameters include long-range order parameters
for atomic ordering, inelastic displacement or
inelastic strain (eigenstrain or transformation
strain) for dislocations, martensitic particles
and microcracks, and magnetization and polari-
zation for ferromagnetic and ferroelectric tran-
sitions. These order parameters are continuous
fields (functions of position, r, e.g., f(r, t))
and are referred to as phase fields in the
phase-field method. A graphic plot of the order
parameter fields produces pictures that are sim-
ilar to the ones typically observed under a
microscope. Because a microstructure is an
ever-evolving feature toward thermodynamic
equilibrium, the descriptors f generally include
time, t, as the variable.
Total Energy Functional and Variation. A

field description of microstructure involves a

large number of variables (one or several for
each spatial coordinate, r, with each one
regarded as a degree of freedom). An effective
way to formulate their time evolution (the kinet-
ics of microstructure change) is to define a total
energy of the system and derive the kinetics
along the steepest descent path of the total energy
with respect to these degrees of freedom.
Formally, the total energy is written as:

E ¼ E½fðr; tÞ� (Eq 1)

Since the independent variable f is itself a
function (of the spatial coordinate), E is
regarded as a functional. In the framework of
thermodynamics, E is directly related to one
of the free energies subject to given external
constraints. Normally, a material is under a
constant pressure and temperature; thus, E is
the Gibbs free energy. The steepest descending
direction of the total energy is given by deriva-
tives of E with respect to each field variable and
constitutes the thermodynamic driving force for
the change of that variable at each location.
When an unconstrained system is in a thermo-
dynamic equilibrium, all the derivatives iden-
tically become zero. (The equilibrium state of
a constrained system is slightly modified with
the use of Lagrange multipliers. For example,
by mass conservation, a solid solution reaches
equilibrium when the derivatives become
uniform in the space. The uniform constant is
the Lagrange multiplier. However, the deriva-
tives of the corresponding grand function, for
example, Eq 31 in a later section, are iden-
tically zero.) Because E is a functional, the
derivatives are regarded as functional deriva-
tives in the calculus of variations (any calculus
of variations textbook may be referred to for
mathematical background). While E is a scalar
quantity, its variational derivative:

dE=dfðr; tÞ (Eq 2)

is a d-dimensional vector, where d is the total
degrees of freedom of the system.
Kinetics of the Conserved Field and the

Generalized Diffusion Equation. When a
microstructure is represented by a spatial distri-
bution of the solute concentration, the field

variable can be defined as the mole fraction of
the solute:

f ¼ Xðr; tÞ (Eq 3)

Naturally, for a multicomponent alloy, the field
can be defined as a set of n� 1 composition fields,
f = {Xi(r, t), i = 1,. . ., n� 1}, where n is the total
number of chemical species, among which only
n � 1 are independent because of the constraint:

Xn

i¼1 Xi � 1

According to gradient thermodynamics (Ref
1–3), when nonuniformities in composition
and structure exist in a heterogeneous system,
the free energy of the system depends not only
on local composition and structure but also on
their spatial variations. Thus, the total chemical
free energy of a system of nonuniform concen-
tration may be formally written as (Ref 3):

Echem ¼ Echem½Xðr; tÞ� ¼
ð
fðX;rX;r2X; . . .Þdr

(Eq 4)

With symmetry considerations and taking
only the leading nonvanishing term in the con-
centration gradient, Eq 4 reduces to:

Echem ¼
ð
V �1m fmðXÞ þ kmrX�rX½ �dr (Eq 5)

where fm is the molar free energy of a
corresponding homogeneous material of com-
position X. The subscript m stands for molar
(per mole) quantities. The second term in the
bracket takes into account the actual spatial var-
iation (gradient) of X, where the gradient coef-
ficient km (in a unit of J � m2 � mol�1) is
related to the second derivatives of f in Eq 4
(see Eq 2.7 in Ref 3). Vm is the molar volume.
For brevity, the independent variables r and
t in X in Eq 5 are dropped from here on.
If an existing spatial distribution of solute is

not in thermodynamic equilibrium (an example
of nonuniform solute in thermodynamic equi-
librium is segregation at a grain boundary), its
temporal evolution follows the Cahn-Hilliard
generalized diffusion equation:
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1

Vm

@X

@t
¼ r �MrVm

dEchem

dX
(Eq 6)

where M is the mobility (in a unit of J�1 � mol2� m�1 � s�1). It is easy to verify that from Eq 5
(assuming Vm is independent of spatial
location):

Vm
dEchem

dX
¼ @fm

@X
� 2kmr2X (Eq 7)

Recall that Dm = @fm/@X is commonly
regarded as the diffusion potential or exchange
potential (a difference between the chemical
potential of solute and solvent atoms), thus:

�~m � �m� 2kmr2X (Eq 8)

is written as a generalized diffusion potential,
with the second term on the right as a gradient
correction. With that, Eq 6 can be rewritten as:

1

Vm

@X

@t
¼ �r�J (Eq 9)

and

J ¼ �Mrð�~mÞ (Eq 10)

Equations 9 and 10 give the conventional
form of the diffusion equation, with J being
the diffusion flux (in a unit of mol � m�2 � s�1)
defined in a laboratory frame of reference.
Kinetics of Nonconserved Fields and

Structural Relaxation. When a microstructure
is characterized by structural nonuniformities
in a material, a set of nonconserved order para-
meters are used in phase-field models. The
number of order parameters is determined by
the degrees of freedom of the structure. For
example, three order parameters are needed
for describing the Ni3Al intermetallic (g0) phase
to produce all four antiphase domains in an L12
ordered crystal structure (Ref 4–6).
The functional formulation for a structurally

nonuniform system in the phase-field method
is similar to that for a chemically nonuniform
system presented previously (Eq 3–5), where
Eq 3 is replaced by:

f ¼ Zðr; tÞ (Eq 11)

to distinguish the structural (nonconserved)
fields from the compositional (conserved) fields.
A subscript could also be assigned to Z if there
are multiple fields, or it could be written in a
tensor form for generality. The structural order
parameters usually do not satisfy conservation
law the way mass and concentration do, and
they follow a different type of kinetic equation,
known as the time-dependent Ginzburg-Landau
equation or the Allen-Cahn equation:

@Z
@t
¼ �L dEchem

dZ
(Eq 12)

Here, the unit of the kinetic coefficient L is
J�1�m3�s�1�

The Role of the Gradient Term—Interface
Property and Curvature. When the diffusion
potential in the phase-field model (Eq 8) is
compared to the conventional Fickian diffusion
equation, there is a correction term for the pres-
ence of a gradient in the composition field.
The gradient term is a major feature in phase-
field models where the field representation of
microstructure results in a unified description
of multiple phases and a smooth transition from
one phase to another. (This is compared to con-
ventional moving-boundary diffusion models in
which the diffusion solution is solved separately
for individual phase domains and bounded by
explicit conditions along the interphase
boundaries.)
Physically, the spatial (nonlocal) interaction

represented by the gradient term in gradient
thermodynamics of nonuniform systems arises
in a continuum limit transition from its discrete
counterparts (Ref 7, 8) or from microscopic the-
ories in statistical mechanics (for example, Ref
9, 10). It accounts for the change in atomic
bonding from one location to its neighboring
locations. In phase-field models where the
phase fields are physical order parameters, min-
imization of the total free energy determines the
balances between the local free energy term
that prefers an infinitely sharp interface and
the gradient energy term that prefers an infi-
nitely diffusion interface. Such a balance regu-
lates the interface profile and gives interface
energy (s) and width (w):

s ¼ 2V �1m

ðf2

f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�fðfÞ

p
df (Eq 13)

w ¼ 2ðf2 � f1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=�fmax

p
(Eq 14)

where the quantities f1, f2, Df(f), and Dfmax

are defined in Fig. 1.
In some phenomenological phase-field mod-

els, typically those evolved from solidification
models, the gradient term does not appear on
every defined phase-field variable. For example,
the gradient terms on concentration fields are
neglected without further necessity (Ref 11) or

even with a particular purpose to separate the
chemical contribution to the interface property
(Ref 12).
With either physically and phenomenologi-

cally defined phase fields, the gradient term
provides another important feature in two- or
three-dimensional space: the interface curvature.
This can be seen more clearly in the expansion:

r2f ¼ @2f
@r2
þ d� 1

r

@f
@r

(Eq 15)

It can be seen (Ref 13) that the second term
on the right contributes to local interface veloc-
ity, a term in proportion to (d � 1)/R, where R
is the local radius of curvature of the interface,
and d is the dimension of the space. Note that
▽2f is proportional to the variational derivative
of the gradient energy term (e.g., Eq 5, 7).
Equation 15 implies that the gradient term con-
tributes to the driving force from both the varia-
tion of phase field across the interface, @2f/@r2,
and the local radius of curvature, R. The interface
curvature is the important driving force for grain
growth and coarsening (Gibbs-Thomson effect).
Microscopic versus Coarse-Grained Phase-

Field Models. Equations 13 and 14 show that
interfaces in phase-field models have finite
equilibrium widths, unique chemical and struc-
tural variations within them, and the associated
interfacial energies. When applied at the natural
(typically microscopic) length scales of a given
defect (such as an individual dislocation, inter-
face, or nucleating precipitate), the phase-field
model has a unique advantage over the sharp-
interface models in predicting the fundamental
properties of the defect, such as its equilibrium
size and energy (Ref 3), and the critical config-
uration and activation energy of a nucleus
(Ref 14) rather than using them as inputs. These
phase-field models may be regarded as the
microscopic phase-field models.
To take advantage of the ability of a phase-

field model to predict fundamental properties
of defects, it is essential to choose well-defined
physical quantities as the order parameters in a
phase-field model (Ref 3, 14–16). This seems to
be straightforward in certain cases (such as the

Fig. 1 Graphs describing energy function. (a) Schematic of an equilibrium phase field (f) across an interface
(shadowed range) along the spatial coordinate r. (b) Free energy density. The excess energy Df (f) between

f1 and f2, which are the equilibrium phase-field values at the two sides of the interface, contributes to the interface
energy.
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examples mentioned previously) but could be
nontrivial and difficult to do or even be more
convenient not to do so in some other cases,
such as solidification and grain growth (Ref
17, 18). In solidification, for example, an infi-
nite number of order parameters may be
required for a rigorous characterization of the
structure of the liquid phase (Ref 17, 19). In
this case, a simple phenomenological order
parameter was introduced to distinguish liquid
from solid (Ref 17). Phase-field models formu-
lated with phenomenological order parameters
are generally regarded as numerical techniques
to avoid boundary tracking in describing evol-
ving microstructures of complex geometries,
although the physical origin of the order para-
meters may still be traced to the transition from
microscopic picture to continuum limit (Ref 19).
It remains a challenge to define physically rigor-
ous but mathematically tractable order para-
meters in solidification and grain growth so that
a physical rather than phenomenological free
energy model can be formulated and the funda-
mental properties of the solid-liquid interfaces
and grain boundaries can be predicted by using
the phase-field method. Some of the order para-
meters introduced in atomistic simulations to
identify these interfaces (Ref 20, 21) could be
further explored for such purposes.
In phase-field models where phase fields are

phenomenological order parameters or in
coarse-grained phase-field models where the
length scales of interest far exceed boundary
or dislocation core width, the gradient terms
still produce similar diffuse profiles of the order
parameters across an interface or a dislocation
core. However, these profiles no longer repre-
sent real structures of the defect. The models
retain their advantages over the sharp-interface
models in treating complicated geometrical and
topological changes of large-defect ensembles
during microstructural evolution (such as den-
dritic solidification, grain-growth and domain
coarsening, dislocation network formation and
coarsening, and various phase transformations)
(Ref 17, 18, 22–24). Their applications have
offered many invaluable insights into the
sequence of microstructural evolutions and
mechanisms of pattern formation in many mate-
rial systems during various material processes.
However, the models lose the intrinsic ability of
a diffuse-interface model to predict the funda-
mental properties of these defects. Moreover,
the phenomenological and coarse-grained
phase-field models provide quantitative rate
information only by matching phase-field model
parameters to the standard sharp-interface mod-
els at the asymptotic limit of zero interface width
(Ref 11) or, more recently, in the so-called thin-
interface limit (Ref 25). Quantitative phase-field
simulations at coarse-grained mesoscale levels
have since been carried out extensively with the
new thin-interface analyses (Ref 25–28). Some
simple techniques (Ref 29, 30) based on physical
arguments of equivalent driving forces were also
developed to relax the restriction on the interface
thickness. In addition, adaptive algorithms (Ref

31, 32) and new data structures (Ref 33, 34) have
also been developed to increase the computa-
tional efficiency of quantitative phase-field
simulations.
Long-Range Elastic Interactions. Heteroge-

neous phase distribution in solids can cause a
long-range elastic strain field that varies at the
scale of the microstructure (Ref 4, 35, 36).
Even in a single-phase domain, spatial variation
of the composition can also induce strains if the
solute differs in atomic size from the solvent.
The elastic deformation that accommodates
the misfit in crystal lattices (due to lattice para-
meter, crystal structure, or orientation differ-
ence) of adjoining phases/domains to form
coherent or semicoherent interphase bound-
aries, known as coherency strain, can play a
significant role in solid-state phase transforma-
tions. Its effects range from precipitate mor-
phology (e.g., equilibrium shape, habit planes)
and spatial arrangement to the overall driving
force for the transformation. In addition,
because a nucleating phase may possibly adopt
a metastable structure with low-energy coherent
interfaces with the parent matrix, the final tran-
sition to the stable phase structure is controlled
by the coherency strain energy and its interplay
with the interface energy.
In phase-field models for solid-state phase

transformations and dislocations, the coherency
elasticity problems are treated in the framework
of Eshelby (Ref 37, 38) using the general theory
of phase-field microelasticity by Khachaturyan
and Shatalov (Ref 4, 39–41), formulated upon spa-
tial distribution of the stress-free transformation
strain (SFTS) field:

eTijðrÞ ¼
X
p

eTijðfpðrÞÞ (Eq 16)

as a linear combination of individual phase
fields, labeled as subscript p, that contributes
to transformation strains. As a simplification,
it may be approximated as:

eTijðrÞ ¼
X
p

eT0ij ðpÞfpðrÞ (Eq 17)

where eT0ij ðpÞis the coefficient of the linear
term in a Taylor expansion of eTijðfpðrÞÞ with
respect to fp. In the case of the concentration
field (fp = X), this is known as Vagard’s law.
The phase-field microelasticity theory of Kha-
chaturyan and Shatalov treats the elasticity prob-
lem in a variational approach by formulating the
total elastic energy as a functional of the SFTS
fields:

Eel ¼ 1

2

ð
drCijkleTijðrÞeTklðrÞ þ

V

2
Cijkl�eij�ekl

� �eij

ð
drCijkleTklðrÞ

� 1

2

ð
��dgð2�Þ3 ni~sT

ijðgÞ�jkðnÞ~sT 

kl ðgÞnl ðEq 18Þ

with sT
ij ¼ CijkleTkl, ½��1�jk ¼ niCijklnl, and

n ¼ g=jgj. Here g is a reciprocal space vector.

~sT
ijðgÞ ¼

Ð
drsT

ijðrÞ expð�ig�rÞ is the Fourier
transform of sT

ijðrÞ. The separation of the
homogeneous strain �eij (the mean value of
eTijðrÞ) gives flexibility for treating various
boundary conditions of the elasticity problem
(Ref 4, 42, 43).
Through Eq 16, the elastic energy becomes a

sole functional of the phase fields, fp, just as
the chemical free energy given in Eq 4. It is
thus possible to compute the total driving force
as a combination of the chemical and elastic
energies:

dðEchem þ EelÞ
dfp

(Eq 19)

which are the variational derivatives of the total
energy with respect to the same set of phase
fields {fp}. This provides phase-field models
with an ability for self-consistent handling of
multiphase, multivariant coherent microstruc-
tures with interplay among the chemical free
energy, interfacial energy, and elastic energy
(for example, see review in Ref 36).
The contributing phase fields to SFTS or

inelastic strain in general can be any crystalline
defects, including solute clusters, precipitates,
dislocations, and so on. Their mutual elastic
interactions are accounted for through the cou-
pling in Eq 16. The Khachaturyan-Shatalov
microelasticity theory was also extended to
treat inhomogeneous (position-dependent)
elastic modulus (Ref 43–46), which further
extends the applications to include cracks
and voids (Ref 47), free surfaces (Ref 48),
elasticity-induced rafting (Ref 49, 50), and
so on.

Modeling Nucleation

Because the majority of solid-state phase
transformations are first-order phase transfor-
mations, modeling microstructure evolution
typically proceeds along the route of nucle-
ation, growth, and coarsening, either focusing
on one stage or treating them as concurrent pro-
cesses (Ref 51). The phase-field governing
equations treat both conserved (Eq 6) and non-
conserved (Eq 12) fields, corresponding to
incongruent (involving long-range diffusion)
and congruent (such as atomic ordering, grain
growth, massive and martensitic transformation,
and plastic deformation) processes, respectively.
Meanwhile, the curvature contribution due to
the gradient term (Eq 15) gives the driving force
for precipitate and domain coarsening.
Nucleation needs separate handling, because

both phase-field kinetic equations (Eq 6, 12)
imply a nonpositive time-derivative of the total
energy, that is, d(Echem + Eel)/dt � 0. This
excludes any activation process, which requires
a temporary increase in the total energy. In the
phase-field method, nucleation has been imple-
mented mainly in two ways: (1) numerically
solving the stochastic phase-field equations with
additional Langevin force terms (Ref 52–58),

Phase-Field Microstructure Modeling / 299

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



and (2) an explicit nucleation algorithm that
stochastically seeds nuclei in an evolving
microstructure according to the nucleation rates
calculated as a function of local concentration,
stress, and temperature (Ref 59). The Langevin
force approach is self-consistent with the phase-
field method, and the effect of coherency strain
energy, which plays an important role in the
relaxation process of the fluctuations, is
accounted for automatically. Nevertheless, the
quantitative use of Langevin force terms in
describing first-order phase transitions requires
microscopic degrees of freedom, which confines
both length and time scales of the simulation
(Ref 60). Thus, the present use of the Langevin
approach for nucleation in mesoscale micro-
structural simulations is qualitative in nature,
and its applications are limited to site-saturation
conditions (Ref 54–58). The explicit algorithm is
computationally more efficient and has been
applied successfully in concurrent nucleation
and growth processes under either isothermal
or continuous cooling conditions (Ref 59, 61,
62).
Langevin Force Approach. The approach is

an analog to the treatments for Brownian
motion in statistical mechanics, which mimics
the thermal perturbation forces from the envi-
ronment. The Langevin force terms are incorpo-
rated directly into the phase-field dynamics
equations, that is:

1

Vm

@X

@t
¼ r�Mr dðEchem þ EelÞ

dX
þ xXðr; tÞ

(Eq 20)

@Z
@t
¼ �L dðEchem þ EelÞ

dZ
þ xZðr; tÞ (Eq 21)

The Langevin force terms, in their simplest
forms, are assumed uncorrelated in both space
and time. This requires their first and second
moments to satisfy:

xXðr; tÞh i ¼ 0; xZðr; tÞ
� � ¼ 0

xXðr; tÞxXðr0; t0Þh i ¼ �2kBTMdðt� t0Þr2dðr� r0Þ
xZðr; tÞxZðr0; t0Þ
� � ¼ 2kBTLdðt� t0Þdðr� r0Þ

(Eq 22)

and yields a Gaussian distribution. In discrete
forms, the Langevin force terms may be emu-
lated with a random number generator. For
example, if {r: ri, i = 1,. . .}represents a series
of computer-generated Gaussian-distributed
random numbers that satisfy hri i = 0 and
hririi = dii, then (Ref 63, 64):

xZðtn; rmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTL=ðld�tÞ

q
r (Eq 23)

xcðtn; rmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTM=ðld�tÞ

q
r�r (Eq 24)

where Dt is the time step, l is the grid size, d is
the dimensionality of the space, and r is a
d-dimensional vector, with each component being
an independent Gaussian random number ri.

At a metastable state, the balance between the
perturbing Langevin force, x, and the restoring
force, d(Echem + Eel)/df, determines the fluctua-
tion amplitude of the phase fields according
to the fluctuation-dissipation theorem (Ref 65).
Nevertheless, unlike in second-order phase tran-
sitions where the correlation length is typically
much greater than the atomic spacing, nucleation
involves thermal fluctuations at atomic scales,
which limits the level of coarse-graining that a
phase-field model typically performs.
Explicit Nucleation Algorithm. The explicit

nucleation algorithm (Ref 59) is an alternate
approach that circumvents some difficulties
encountered in the Langevin force approach,
in particular, at a length scale much greater than
the correlation length (typically, the size of
a critical nucleus). By evaluating the local
nucleation rate as a thermally activated process:

Jðr; tÞ ¼ J0ðr; tÞ expð��F 
ðr; tÞ=kBT Þ (Eq 25)

nucleation events are explicitly introduced
through a probabilistic Poisson seeding process
at a probability (Ref 59):

P ðr; tÞ � 1� expð�Jðr; tÞ�V�tÞ (Eq 26)

where P is the probability of forming a critical
nucleus in a volume, DV, and a time interval,
Dt, which are predefined according to the length
and time scales of the model. Once a location is
determined to be transformed, the phase fields
are updated correspondingly to reflect the
formation of nuclei in the matrix.
The explicit nucleation algorithm does not

specify how to compute DF* in Eq 25, the acti-
vation energy of nucleation. This gives the flex-
ibility to choose any nucleation theory for the
model. In the classical nucleation theory for
homogeneous nucleation, for example:

�F 
 ¼ asd=ð�fV Þd�1 (Eq 27)

where s is the interface energy, and �fV is the
per-volume driving force for nucleation, which
is usually formulated as a function of phase field,
f(r), and temperature. a = 16p/3 for a spherical
nucleus in three dimensions (i.e., d = 3), and
a = p for a circular nucleus in two dimensions
(d = 2). Note that both s and �fV are position
dependent and can incorporate location-dependent
interaction energy terms that constitute defect-
assisted (heterogeneous) nucleation.
Incorporation of Elastic Energy. When a

nucleating phase differs sufficiently in crystal
lattice from the matrix phase, coherency strain
energy must be incorporated into the nucleation
driving force, �fV , in Eq 27. The chance of
forming a completely incoherent interface
between a critical nucleus and matrix is rare
because of the usually high nucleation barrier
associated with an incoherent interface. Coher-
ency strain energy modifies the chemical
driving force for nucleation and also sometimes
results in formation of metastable phases in the
course of precipitation. Formally:

�fV ¼ �fchemV þ�Eel½f
ðrÞ�=V0 (Eq 28)

can be written as a sum of the chemical contribu-
tion and the elastic contribution,withV0 as the vol-
ume of the nucleus. However, the elastic energy
of a nucleus in an elastically anisotropic solid,
DEel[f*(r)], given by Eq 18, depends on configu-
ration of the critical nucleus,f*(r), which itself is
determinedbyminimizing the total (chemical plus
elastic) energy. In other words, it is impossible to
write a per-volume elastic energy, in general, that
is independent of the size of the nucleus, as is done
for the chemical energy. Additionally, the elastic
energy also includes long-range interaction betw-
een the nucleus and pre-existing microstructure
and thus cannot be formulated simply as a func-
tion of the local values of the phase fields. How-
ever, under circumstances where the pre-existing
microstructure is much greater in size than the
critical nucleus, it is shown (Ref 66) that the elas-
tic energy can be approximated as a product of the
nucleus volume, V0, and a per-volume coefficient
that is a function of pre-existing microstructure
but independent of V0:

�Eel½f
ðrÞ� � �Eel½f0ðrÞ þ�f
ðrÞ�
� �fel½f0ðrÞ��V0 ðEq 29Þ

where f0(r) represents the configuration of the
pre-existing microstructure, and Df*(r) is the
configuration of an isolate nucleus. This
approximation retains the convenience of using
Eq 27 with:

�fV ¼ �fchemV þ�fel½f0ðrÞ� (Eq 30)

The computation of Df el[f0(r)] is straight-
forward and can be made rather efficient (Ref
64, 67). As an example, Fig. 2 shows snapshots
of microstructures simulated with the Langevin
force approach and the explicit nucleation algo-
rithm, using the same set of model parameters.
Calculation of Activation Energy and

Critical Nucleus Configuration. The energetics
of nucleation may be treated on a more general
basis using the phase-field method (Ref 14). Note
that the total energy functional, Eq 1, is defined
not only for an arbitrary microstructure but also
for a critical nucleus, or a critical nucleus in an
arbitrary microstructure. As a critical nucleus,
the phase-field configurationf*(r) is in an (unsta-
ble) equilibrium state and must satisfy:

d�½f
ðrÞ� ¼ 0 (Eq 31)

as a necessary condition, with F � E � lC.
C = C[{fp}] represents additional physical con-
straints on the phase fields, and l = {lt}is the
Lagrange multiplier of each respective con-
straint. The solution for the critical nucleus is
a saddle point on the high-dimensional surface
of F and is the maximum on the minimum
energy path (MEP) that connects the starting
metastable state and the final transformed state.
Because the independent variables are now
values of a continuum field, instead of a single
variable of radius in the classical nucleation
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theory, the critical nucleus is treated in a much
more general and rigorous way that also takes
into account the shape, orientation, and profile
of the nucleus and its long-range interactions
with any stress-carrying pre-existing defects.
This is the basis of the nonclassical nucleation
theory of Cahn and Hilliard (Ref 14). With
f*(r), the activation energy can be calculated:

�F 
 ¼ E½f
ðrÞ� (Eq 32)

and used to compute the nucleation rate in Eq 25.
This approach allows for the elimination of the
assumption made in the preceding section for
treating coherent nucleation; that is, the criterion
that pre-existing chemical and structural nonuni-
formities be much greater in length scale than the
critical nucleus is not required anymore.
However, the analytical solution f*(r) is

rather complex to obtain, except for a few sim-
ple cases (Ref 4, 68). This is due to the very
high dimensional space that F is usually asso-
ciated with. Because f*(r) corresponds to
unstable stationary points, the conventional
phase-field dynamic equations governed by
total free energy minimization are incapable
of obtaining the exact solution, even with the
use of Langevin force terms.
The nudged elastic band (NEB) method (Ref

69–71) has been a reliable approach in theoretical

chemistry and condensed matter physics for
finding saddle points. To search for the solu-
tion f*(r), the NEB method generates a chain
of replicas (nodes) of microstructural config-
urations that approximately pass the saddle
point and applies the “force” on node i as
(Ref 72):

Fi ¼ Fs
i jk þ F

p
i j? (Eq 33)

It is a sum of a spring-type force, Fs
i , deter-

mined by the relative distance between adjacent
nodes and a potential force, F

p
i � �d�=dfi,

determined by the total energy surface. The
subscripts k and ? stand, respectively, for the
parallel and perpendicular component of the
forces resolved on the local tangent of the node,
which is evaluated from the energy F of the
node and its immediate neighbors along the
chain (Ref 72). Each node, except for the two
fixed ends, is relaxed iteratively subject to the
force, Fi, which is simultaneously updated,
until the chain converges. For problems of
stress-driven nucleation and nucleation in phase
transformations, the original NEB method was
found to be inefficient, because the last node
(the final transmission state) could be very far
from the saddle point, and too many nodes were
required to describe the downhill portion of the
MEP. A so-called free-end modification to the

NEB method greatly improves the efficiency
(Ref 73, 74) by allowing the last node, N, to
be a nonminima, which furthermore moves to
swing the band to improve its posture. The
force on node N is:

FN ¼ Fs
N;N�1 �

Fs
N;N�1�Fp

N

F
p
N �Fp

N

F
p
N (Eq 34)

where Fs
N;N�1 is the spring force between node

N � 1 and node N.
The procedure for using the NEB method

with the phase-field method may be illustrated
in Fig. 3 with the same example of two-dimen-
sional cubic ! tetragonal transformation (Ref
16). First, run a conventional phase-field simu-
lation with Langevin force constantly applied
to the cubic matrix until the tetragonal precipi-
tate phase emerges and becomes stable, even
after the Langevin force is turned off. The
amplitude of the Langevin force could be
increased artificially to accelerate the nucle-
ation process but keep the simulation stable.
Second, take the configuration of the supercriti-
cal tetragonal phase as the end node of the NEB
chain, and assign the first node as a homoge-
neous parent (cubic) phase; run the NEB relax-
ation subject to the force Fi specified in Eq 33
and 34. The combination of the two steps
allows a more reliable search for the true saddle

Fig. 2 Microstructures modeled with the Langevin force approach and the explicit nucleation algorithm. Simulated coherent nucleation in a cubic! tetragonal transformation in
two dimensions by (a–c) the Langevin force approach and (d–f), explicit nucleation algorithm approach. Reduced time (t) is shown. (Model output images are in color.)

Source: Ref 64
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point for a critical nucleus without the artifacts
due to ad hoc assumptions on the end-node
configuration.

Modeling Growth and Coarsening

The deterministic phase-field kinetic Eq 6
and 12 cover both growth and coarsening, with
the driving force being the functional variation
of the total free energy and the kinetic rate in
proportion to the driving force. These equations
can be reduced to sharp-interface equations of
domain (precipitate or grain) growth and coars-
ening (for example, see Ref 75). For a spherical
domain, for example, they can be reduced,
respectively, to (Ref 13):

dR

dt
¼ 2LkZZs

s
H � LkZðd� 1Þ

R
(Eq 35)

dR

dt
¼ D

R

dX
�X
� ðd� 1Þd0

R

� �
(Eq 36)

where s is the interfacial energy,

D ¼ V 2
mMðd2fm=dX2Þ is the diffusivity,

d0 ¼ V 2
msðd� 1Þ=ðd2fm=dX2Þ=ð�XÞ2 is the

correlation length, DX = Xb � Xa is the misci-
bility gap, and dX is the concentration supersat-
uration. The growth rate, dR/dt, for a
nonconserved field (Eq 35) reproduces a linear
kinetic law under a constant external field, H,
or a parabolic kinetic law for pure curvature-
driven kinetics (in grain growth, for instance),
depending on which of the two terms is domi-
nant at the right-hand side (RHS) of the equa-
tion. For conserved fields such as solute
composition, the growth law can be parabolic,
driven by supersaturation, dX, or cubic, driven
by curvature, governed respectively by the two
terms on the RHS of Eq 36. The second term
is what underlies coarsening kinetics.
Apart from these basic features, applications of

the phase-field method for modeling microstruc-
tural evolution in alloy systems of practical inter-
ests face a number of difficult challenges. Some of
them include resolving the intrinsic multiscale

nature of a microstructure (e.g., domain size and
boundary width) and handling of multicomponent
diffusion in multiphase systems. (The time scale
is associated with the length scale.)
Simulation Length Scale. According to

Eq 13 and 14, the interfacial width and energy
are determined by the interplay between the
local free energy (in particular, Df) and the gra-
dient energy. When applied at a microscopic
length scale (�nm), the phase-field models pre-
dict equilibrium boundary widths that corre-
spond to their natural values (typically of the
order of nanometers, depending on particle size
and temperature). When applied at coarse-
grained length scales (e.g., �mm), however,
the phase models yield interfacial widths far
exceeding their natural values. The interfacial
regions in a phase-field model must be numeri-
cally smooth (several grid-size wide, regardless
of the actual grid size) to ensure the accuracy in
evaluation of the gradient terms. If the local
chemical free energy model is formulated based
on an available thermodynamic database, such

Fig. 3 Use of the nudged elastic band (NEB) method with the phase-field method. (a–c) Microstructural evolution during a cubic ! tetragonal transformation in two dimension
simulated by Langevin dynamics of the phase-field method. (b) Supercritical configuration at an earlier moment of (a). Using this as the end configuration in the NEB

calculation gives the nucleation barrier (e) and the critical nucleus configuration (in the dashed circle in d), with the one-dimensional cross-sectional profile given in the inset,
which is compared to a near-critical configuration (c) that is traced back from (b) in the Langevin dynamics. (Model output images are in color.) Source: (a–e) Ref 16
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as the Calculation of Phase Diagrams (CAL-
PHAD) database, which fixes the Df values in
Eq 13 and 14, the interfacial energies required
to keep a diffuse interface at �mm length scales
will be several orders of magnitude higher than
their physical values (Ref 29). This will signifi-
cantly alter the driving force for microstructure
evolution, in particular at early stages of a phase
transformation, where microstructural evolution
is dominated by nucleation events, and at later
stages, where microstructural evolution is
dominated by coarsening events.
To decouple boundary width with physically

meaningful boundary energy in the diffuse-inter-
face model so that the phase-field method can be
coarse-grained to an arbitrary length scale without
encountering unrealistically high interfacial ener-
gies, Kim et al. (Ref 12) proposed a new way of
treating interfaces. In their formulation, the inter-
face region is treated as a homogeneous mixture
of the adjacent phases (a, b,. . .) characterized,
respectively, by phase compositions (Xa, Xb,. . .),
and the diffusion potentials of each phase compo-
sition are required to be equal; that is, @fa/@Xa =
@fb/@Xb =. . ., where fa = fa(Xa), fb = fb(Xb). . .,
are the free energies of the respective phases. The
latter constraint corresponds to a parallel-tangent
construction and gives rise to a force (diffusion
potential) balance condition among constituent
phases in thermodynamics. Such a treatment,
combined with the absence of gradient terms on
the composition field, completely removed the
contribution of the composition profile across an
interface to the interface energy (Fig. 4).Anearlier
model by Tiaden et al. (Ref 76) produces the same
feature at a dilute solution limit.
Multicomponent Diffusion. The phase-field

kinetic equations for conserved fields (Eq 5, 6)
can be extended directly to handle multicompo-
nent diffusion. Since, by definition, the n com-
positions of an n-component system are
subject to the constraint:

Xn
i¼1

Xi ¼ 1 (Eq 37)

there are only n � 1 independent phase-field
equations. By eliminating (any) one component,
for example, Xn, using Eq 37, the molar free
energy becomes:

fm ¼
Xn
i¼1

miXi ¼
Xn�1
i¼1

miXi þ mnXn

¼ mn þ
Xn�1
i¼1
ðmi � mnÞXi (Eq 38)

where mi is the partial molar free energy (chem-
ical potential) of the i-th component. The multi-
component diffusion can thus be described by
coupled n � 1 equations:

1

Vm

@Xi

@t
¼ r�MijrVm

d
dXj

ð
fmdV

¼ Vmr�Xn�1
j¼1

Mijrðmj � mnÞ (Eq 39)

for i = 1, . . ., n � 1. Here, the gradient energy
term has been dropped, as in the solidification
models. The mobility coefficient in a multicom-
ponent equation is extended to a matrix. Both
fm and Mij are now functions of the composition
(X1, X2,. . ., Xn). Their values are typically
obtained from accessed thermodynamic and
mobility databases (Ref 77–83).
Multiphase-Field Method. Steinbach et al.

(Ref 84, 85) generalized the phase-field method
(Ref 11) to treat multiple (N > 2) coexisting
phases, each characterized by its local fraction,
Za(r, t). By this definition, the phase fields, Za,
follow an additional constraint:

XN
a¼1

Zaðr; tÞ ¼ 1 (Eq 40)

where Za has a value of unity in the bulk phase
a and zero in other phases. An intermediate
value between 0 and 1 occurs only in the
boundary (interface and multiphase junctions)
between the a phase and another phase(s).
A general multibody phase-field equation for
multiple phases was then decomposed into
pair-wise dual-interaction terms:

@Za

@t
¼ �

X~N
b¼1

Lab

~N

dEchem

dZa
� dEchem

dZb

 !
(Eq 41)

where ~N is the number of phases (labeled by b)
adjacent to phase a with values Zb between
(but not including) 0 and 1. The index b in
the summation only counts on those phases.
The kinetic coefficient L is now taken in the
form of a pair-wise coefficient between two
joining phases. Equation 41 was derived (Ref
85) in a variational framework with the use of
a Lagrange multiplier to account for the inter-
dependence among Za (Eq 40) and resolved a

previous issue of violation to interface stress
balance (Ref 84).
Incorporation of compositional fields to the

multiphase-field model was also developed in
a solidification application (Ref 76) and later
in the framework of Kim et al. (Ref 86) for
modeling eutectic solidification of a ternary
alloy. The methodology applies equally to
solid-state phase transformations and grain
growth (Ref 87).

Material-Specific Inputs—
Thermodynamic and Kinetic Data

The phase-field method has made its way to
industrial applications in recent years. Different
from fundamental studies that are interested in
generic prototype model systems, industrial
applications require the consideration of actual
materials systems. In general, tailoring of a
phase-field model to a specific alloy involves
matching a number of model parameters to
material-specific properties. Referring to Eq 5,
6, and 12, these model parameters include the
chemical free energy, fm, gradient coefficient,
km, kinetic coefficients M and L, and molar vol-
ume, Vm. To take into account elastic behaviors,
one will need additional parameters, such as
elastic modulus, lattice parameters, and lattice
correspondence between the precipitate and
matrix phases. The molar volume is usually
assumed to be constant or a linear function of
solute concentrations, with a typical value of
�10�5 m3/mol. The gradient coefficient, km,
can be determined by matching interface
energy and width to experimental values in
conjunction with the bulk free energy, fm, for
example, according to the relations in Eq 13
and 14. This leaves two important independent
model inputs: the chemical free energy and
the kinetic coefficients (mobilities).
The energy and mobility of most alloy sys-

tems possess rather complex dependence on
multiple field variables. For instance, a com-
mercial alloy may have more than ten chemical
elements, and the corresponding Gibbs free
energy and mobility matrix are both functions
of the concentration of these elements, in addi-
tion to temperature and pressure. To present
them in tractable forms for practical modeling,
one generally must (1) choose appropriate base
functions to represent these quantities, and (2)
determine the coefficients in the base functions
by fitting the free energy and mobilities to ther-
modynamic and mobility databases.
While the choice of an appropriate set of base

functions varies from application to application,
and a different choice could even be applied in
a mixed way, two types of approaches have been
use widely. The first approach is to adopt a poly-
nomial base function. It has been used in solidifi-
cation models to construct a free energy for
liquid and solid phases. One of the original forms
appears as (Ref 88):

Fig. 4 Free energy curves for individual a and b phases
(solid curves); Wheeler-Boettinger-McFadden

model (dotted curve); and Kim-Kim-Suzuki (KKS) model
(dashed curve). The chemical free energy contribution to
interface energy is graphically represented by the area
under the free energy curves and above the common
tangent (PQ) between Xeq

a and X
eq
b . In the KKS model,

the excess energy in the interface region is removed by
making the free energy equal to that of a two-phase
mixture (i.e., a straight line between P and Q). Source:
Adapted from Ref 12
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fðZ;mÞ ¼ 1

4
Z4 � 1

2
�m

3

� �
Z3 þ 1

4
�m

2

� �
Z2

(Eq 42)

The construction of the function is phenome-
nological and provides two local minima,
respectively, for a solid phase (at Z = 1) and a
liquid phase (at Z = 0) and a temperature-
dependent coefficient m that switches the global
minimum between the solid and liquid phases
as it varies above and below zero. In particular,
the coefficient m was explicitly linked to the
temperature as (Ref 11) (Fig. 5):

mðT Þ ¼ �b ¼ �Ld
2s

T � Tm

Tm
(Eq 43)

The coefficients associated with the free
energy of Eq 42 or 43 and with other phase-
field parameters (e.g., km and L) are fitted to
a combination of measurable physical para-
meters in the standard (sharp-interface) solidifi-
cation model, for example, interface energy,
latent hear, interfacial width, and the velocity
coefficient, by matching the phase-field
model to the standard sharp-interface model
(Ref 11).
In the phase-field models of solid-state struc-

tural transformations, the polynomial form is
often applied by following the Landau theory
(Ref 65). It is used to expand a free energy into
a power series and uses symmetry operations to
eliminate and combine terms. From the Landau
theory, the polynomial function typically takes
a form of 2-4 power series for second-order
phase transitions and 2-3-4 or 2-4-6 forms for
first-order transitions. Equation 42 is actually
in a 2-3-4 form. The phase-field variables trea-
ted in this framework are defined in a physical
context and are regarded as (long-range)
order parameters originated from order-disorder
transitions. An example of such is the free
energy of the disordered g phase and ordered
g0 phase of a binary nickel-aluminum alloy
(Ref 6, 61):

fðc;Z1;Z2;Z3Þ ¼
a1
2
ðc� c1Þ2 þ a2

2
ðc2 � cÞ

X3
i¼1

Z2
i

� a3
3
Z1Z2Z3 þ

a4
4

X3
i¼1

Z4
i

(Eq 44)

where (Z1, Z2, Z3) are three long-range order
parameters that account for four antiphase
domains of g0 phase at (1, 1, 1), (1, �1, �1),
(�1, 1, �1), (�1, �1, 1), and the disordered g
phase at (0,0,0). The coefficients are fitted to ther-
modynamic parameters that characterize both
equilibrium (e.g., equilibrium compositions) and
nonequilibrium (e.g., driving force of the phase
transformation) properties.
The second type of base functions is origi-

nated from solution models in chemical thermo-
dynamics and is typically applied to composition
fields. For example, a regular solution model for
a ternary alloy reads:

fðX1; X2; X3Þ ¼
X3
i¼1

XiG
0
i þ RT

X3
i¼1

Xi lnXi

þ
X3
i¼1

X3
j¼iþ1

XiXjL
00
ij ðEq 45Þ

This approach has been systematically
matured in the past decade within the CAL-
PHAD framework (Ref 89, 90), with successful
extension to multicomponent commercial
alloys and development of more sophisticated
models taking into account structural transfor-
mations (e.g., the cluster variation model, Ref
90). In the CALPHAD database, model para-
meters were systematically optimized by using
available experimental data and, more recently,
data from first-principles calculations. As an
example, the chemical free energy of a binary
g/g0 nickel-aluminum system (compared to
Eq 44, using a four-sublattice model) is given
as (Ref 91):

fðc;Z1;Z2;Z3Þ ¼ cg0Al þ ð1� cÞg0Ni þ cð1� cÞ
X3
i¼0

Lið2c� 1Þi

þ 4U1c
2ðZ2

1 þ Z2
2 þ Z2

3Þ
þ 12U4ð1� 2cÞc2ðZ2

1 þ Z2
2 þ Z2

3Þ � 48U4c
3Z1Z2Z3

þ 0:25RTfcð1þ Z1 þ Z2 þ Z3Þ ln½cð1þ Z1 þ Z2 þ Z3Þ�
þ ½1� cð1þ Z1 þ Z2 þ Z3Þ� ln½1� cð1þ Z1 þ Z2 þ Z3Þ�
þ cð1þ Z1 � Z2 � Z3Þ ln½cð1þ Z1 � Z2 � Z3Þ�
þ ½1� cð1þ Z1 � Z2 � Z3Þ� ln½1� cð1þ Z1 � Z2 � Z3Þ�
þ cð1� Z1 þ Z2 � Z3Þ ln½cð1� Z1 þ Z2 � Z3Þ�
þ ½1� cð1� Z1 þ Z2 � Z3Þ� ln½1� cð1� Z1 þ Z2 � Z3Þ�
þ cð1� Z1 � Z2 þ Z3Þ ln½cð1� Z1 � Z2 þ Z3Þ�
þ ½1� cð1� Z1 � Z2 þ Z3Þ� ln½1� cð1� Z1 � Z2 þ Z3Þ�g

(Eq 46)

with the long-range order parameters in Eq 44
being replaced by site fractions. The model
parameters g0Al, g

0
Ni, Li, U1, and U4 are obtained

by using the CALPHAD technique. The free
energy (Eq 46) has been applied directly in
phase-field modeling of microstructural evolu-
tion in nickel-aluminum (Ref 78). It was further
extended to multicomponent systems and used
in phase-field modeling by defining an individ-
ual set of order parameters for each element
(see review in Ref 92).

A combination of polynomial and CALPHAD
approaches has become an effective means for
treating multiphase systems of both structural
and chemical nonuniformities. In this approach,
the CALPHAD method provides the free
energy of each individual phase, fp (p =
1,2,. . .,N), and the polynomial is used to syn-
thesize all phases in a single function:

fðfXig; fZpgÞ ¼
XN
p¼1

ZpfpðfXigÞ

þ
XN
p¼1

XN
q¼pþ1

opqZpZq (Eq 47)

This treatment simplifies the task for coupling
different phases as well as multicomponent com-
positions. It inherits the flexibility of adjusting
interface properties through parameter opq and
the gradient coefficient km from solidification
models and, in the meantime, takes advantage of
accurate material-specific multicomponent free
energies by the CALPHAD method. With this
technique, construction of the Kim-Kim-Suzuki
(KKS) model for scaling the interface width and
thus the simulation length scale is also straightfor-
ward to implement (Ref 86). A similar approach
was applied to nickel-aluminum (Ref 80):

fðc;Z1;Z2;Z3;Z4Þ ¼ hðZ1;Z2;Z3;Z4Þfg0
þ ½1� hðZ1;Z2;Z3;Z4Þ�fg
þ ogðZ1;Z2;Z3;Z4Þ

(Eq 48)

where fg0 and fg are the chemical free energies
of the g0and g phases, respectively, and:

h ¼
X4

i¼1 ½Z
3
i ð6Z2

i � 15Zi þ 10Þ�

is an interpolation function with a value from
0 to 1, and a double-well function:

g ¼
X4

i¼1 ½Z
2
i ð1� ZiÞ2� þ a

X4

i¼1
X4

j>i
Z2
iZ

2
j

Note that in Eq 48 there are four phenomeno-
logical order parameters to represent the four
antiphase domains at (1,0,0,0), (0,1,0,0),
(0,0,1,0), and (0,0,0,1), instead of three physical
long-range order parameters in Eq 44 or 46.
The chemical mobility in multicomponent

diffusion (Eq 39) may be given as:

Mij ¼ 1

Vm

Xn
l¼1
ðdjl �XjÞðdlk �XkÞXlMl (Eq 49)

where Ml = Ml({Xi},{Zp}) is the mobility of
component l in a mixture of multiple phases
characterized by {Zp}. In general, it is depen-
dent on both composition and long-range order
parameters, for example (Ref 81):

Ml ¼Ma
l þMb

l � ðMa
l ÞZðMb

l Þ1�Z (Eq 50)

which is a combination of the atomic mobili-
ties, Ma

l and Mb
l , of a and b phases that can

be obtained from mobility databases.

Fig. 5 Free energy curves of Eq 42. The temperature-
dependent parameter m shifts the minimum

(stable phase) from liquid to solid as its value changes
from negative to positive.
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The mobility coefficient for the long-range
order parameters, L, characterizes the contribu-
tion of interface kinetics (due to either the
kinetic rate of atomic attachment on a physical
interface or an effect due to the finite width of a
mathematical-diffuse interface as compared to a
sharp-interface model). For solid-state phase
transformations, because the interface motion
is usually under a diffusion-controlled limit,
L can be determined at a vanishing kinetic
coefficient condition (Ref 86).

Examples of Applications

The following four examples illustrate some
aspects of phase-field modeling discussed thus
far. These examples include applications of
the phase-field method at the microscopic
length scale, with focus on understanding and
predicting fundamental properties of individual
defects, as well as applications at the coarse-
grained level, where collective behaviors of
complex microstructures subject to external
conditions are the main concerns. As the length
scale increases, the strategies for incorporating
changes to the definition of phase fields and
energy models and coupling of multiple crystal-
line defects in microstructure evolution are
demonstrated.
Example 1: Critical Nucleus in Cubic !

Tetragonal Transformation. The transition of
cubic to tetragonal phase involves changes in
crystal structure and symmetry, which intro-
duces elastic energy to the activation energy
of nucleation. From crystallographic symmetry,
there are three equivalent orientational variants
of the tetragonal phase forming in the
parent cubic phase matrix (Fig. 6), each charac-
terized by the stress-free transformation strain
(SFTS):

eT0ij ð1Þ ¼ e0

2 0 0

0 �1 0

0 0 �1

0
B@

1
CA;

eT0ij ð2Þ ¼ e0

�1 0 0

0 2 0

0 0 �1

0
B@

1
CA;

eT0ij ð3Þ ¼ e0

�1 0 0

0 �1 0

0 0 2

0
B@

1
CA ðEq 51Þ

where e0 is a scalar constant determined by the
change in the lattice constant e0 = (aC � aT)/aC.
The nonisotropic SFTS associated with each
variant results in a deviation of the shape of
the nucleus from a sphere. The equilibrium
shape is therefore determined by both interface
energy and elastic energy. Moreover, a nucleat-
ing embryo may adopt a composite configura-
tion that is formed by more than one variant.
The co-existing variants reduce the overall
SFTS of the embryo and therefore the distortion
to the parent matrix. This provides a possible
alternative to the critical nucleus configuration
if the reduction in the strain energy exceeds
the cost of the energy for creating extra inter-
faces between the variants in the embryo. To
study this behavior in more detail, a chemical
free energy was chosen:

fðZ1;Z2;Z3Þ

¼ �f0 0:1
X3
p¼1

Z2
p � 3:2

X3
p¼1

Z4
p þ 2:1

X3
p¼1

Z2
p

 !3
2
4

3
5

(Eq 52)

This is a typical Landau polynomial in 2-4-6
form for a first-order phase transition (see the
previous section) and gives local minima at
(Z1, Z2, Z3) = (0,0,0) for the parent cubic phase
and (þ�1,0,0), (0,þ�1,0), and (0,0,þ�1) for the

three variants of the tetragonal phase (Fig. 7).
The same free energy was also used for the
two-dimensional simulations in the section
“Modeling Nucleation” in this article. The same
procedure as in that section can be applied to
combine the phase-field model (the energetics)
and the nudged elastic band method to deter-
mine the saddle point on the total free energy
surface for the critical nucleus:

E ¼ E½Z1;Z2;Z3�
¼
ð

f þ kððrZ1Þ2 þ ðrZ2Þ2 þ ðrZ3Þ2Þ
h i

dV

þ Eel½Z1;Z2;Z3�
(Eq 53)

The total elastic energy, Eel, is given by Eq 17
and 18. An isotropic elastic modulus is used
so that any deviation of the critical nucleus
from a spherical shape is contributed by the
SFTS. The Poisson’s ratio is chosen as 0.3.
The isotropic gradient coefficient is k = 2.0.
To increase the contribution from the elastic
energy over the chemical energy, the following
dimensionless ratio is increased from 0.5 to 1.0:

x � me20=�f0 (Eq 54)

Here, m is the shear modulus.
The configurations of the critical nucleus at

various values of x are shown in Fig. 8. At a
small elastic energy contribution (x = 0.5), the
nucleus is formed by a single tetragonal variant
and has a nearly spherical shape because of the
(isotropic) interface energy. With increased x,
the nucleus switches to a two-variant composite
configuration as the reduction in the elastic
energy becomes increasingly significant to the
total energy reduction (Ref 16).
Example 2: Dislocation Core Structure.

Another application of the phase-field model
at the microscopic level is dislocation core

Fig. 7 Chemical free energy of cubic ! tetragonal transformation (Eq 52). (a) Free energy surface showing an
Z1 � Z2 cross section (0,0) for the cubic phase and (þ�1,0) and (0,þ�1) for the tetragonal phase. (b) Profile

along Z1 showing that the cubic phase is a metastable phase (a local minimum). The amplitude of the barrier (inset)
is determined by Df0. (Model output images are in color.)

Fig. 6 Three orientational variants in a cubic !
tetragonal transformation
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modeling (Ref 15, 93, 94). In the framework of
the Peierls model of dislocation (Ref 95), the
(inelastic) displacement field associated with a
dislocation is treated as a continuous variable
across the dislocation core. The energy asso-
ciated with a dislocation consists of a crystal-
line energy (or misfit energy) from the atomic
position disregistry (deviation from its location
in a reference perfect crystal):

Ecryst ¼
ð
dV

gðuðrÞÞ
d

(Eq 55)

and an elastic energy (Eq 18) with SFTS
replaced by the eigenstrain of dislocations:

eTij ¼ eTijðuðrÞÞ � ½uðrÞ � nþ uðrÞ � n�=2d (Eq 56)

In Eq 55 and 56, u is the inelastic displace-
ment vector, n is the normal vector of the slip
plane, and d is the corresponding interplanar
distance. g is the generalized stacking fault
(GSF) energy (Ref 96), which is typically calcu-
lated by ab initio methods or approaches based
on empirical interatomic potentials, such as the
embedded atom method. In dislocation models,
the crystalline energy has a role equivalent to
the chemical free energy, Echem, in phase trans-
formation modeling. To be consistent with the
Peierls model, the gradient term in a phase-field
model is removed because the counterbalance
between the elastic energy and the crystalline

energy automatically produces a diffuse dislo-
cation core profile at the microscopic length
scale considered here.
Figure 9 shows an example of the predicted

core structure of a 110h if111g -type superdislo-
cation in Ni3Al (g0). In this case:

n ¼ ½111�=
ffiffiffi
3
p

and:

d ¼ a=
ffiffiffi
3
p

where a is the lattice parameter. The GSF
energy, g, and the anisotropic elastic constants
are from Ref 97. With the balance between
the elastic energy (which prefers an infinitely
extended dislocation core) and the crystalline
energy (which prefers an infinitely compact dis-
location core), the dislocation core in equilib-
rium exhibits a fourfold extended structure, for
both edge and screw type, that consists of two
complex stacking faults (CSFs) and one anti-
phase boundary (APB), as shown in the inset
in Fig. 9. The core structures calculated by the
phase-field model are in good agreement with
the Peierls model, with the same input of g
and elastic constants.
Dislocation and g/g0 Microstructure Inter-

action. External loads on single-crystal nickel-
aluminum (g/g0) alloys cause activities of
dislocations in the g channels. The interaction
of these dislocations with the microstructure at

elevated temperatures leads to directional
coarsening (rafting) of g0 precipitates and influ-
ences the long-term creep behavior of the alloy
in its service life (Ref 98–103). Simulation of
the channel dislocation and g/g0 microstructure
is an example of integrating different defect
fields in a phase-field model. In the present
case, a conserved phase field is defined for the
solute (aluminum)concentration that charac-
terizes the diffusion process of g0 coarsening,
and a set of nonconserved slip displacement
fields are introduced to characterize disloca-
tions from all active slip systems.
Since the length scale relevant to coarsening

is associated with the typical diffusion field
and the size of precipitates (�102 nm), the
microscopic details such as dislocation core
structures must be coarse-grained by restoring
the use of the gradient term of the displacement
fields (Ref 104). The choice of the gradient
term coefficient is determined by making the
dislocation core numerically smooth (effective
core width approximately 20 nm) on the
mesoscale computational grid (with grid size
6.6 nm).
The elastic interaction between microstruc-

ture and dislocations is considered here as the
primary contributing factor to g0 rafting. In par-
ticular, the transformation strain (Eq 17) is writ-
ten as (Ref 105):

eTijðrÞ ¼
2ðag0 � agÞ

ðag0 þ agÞðceqg0 � ceqg Þ ½cðrÞ � ceqg �dij

þ
X
q

b0ðqÞ � nðqÞ þ nðqÞ � b0ðqÞ
2dðqÞ ZqðrÞ

(Eq 57)

The first term on the RHS of Eq 57 is from
the lattice misfit between the g (ag) and g0
(ag0) phases. dij is the Kronecker delta and
represents a dilatational strain tensor. ceqg and
ceqg0 are, respectively, the equilibrium concentra-
tions in the g and g0 phases. The second term,
similar to Eq 56, represents the inelastic strains
from individual slip systems (labeled by q),
each associated with the unit Burgers vector,
b0ðqÞ, and characterized by Zq. b0 is in a form
of a=2 110h i, with a as the lattice parameter. It
is noted that the two SFTS terms in Eq 57
account for not only the elastic interaction
among the respective defects (i.e., precipitate-
precipitate, dislocation-dislocation) but also
their mutual interactions through the total elas-
tic energy (Eq 18).
Depending on the Schmidt factor, the

response of each slip system of dislocations to
the external load is different: Under [100] uniax-
ial load, only eight of the twelve primary
1=2 110h if111g slip systems have a nonzero
resolved stress component. Additionally, the
coherency stress of the g/g0 microstructure fur-
ther differentiates the activities of the eight slip
systems in each of the three types of 110h i -ori-
ented g channel (for example, Fig. 10). The
resultant uneven distribution of slip systems in
each g channel causes unequal diffusion

Fig. 8 Transition of the critical nucleus from a single-variant to a two-variant configuration with increasing lattice
misfit. (a) x = 0.5. (b) x = 0.8. (c) x = 1.0. The corresponding nucleation barriers are shown in (d). (Model

output images are in color.)
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Fig. 9 Core structures of 110h if111gedge and screw dislocations in Ni3Al and a comparison with solutions from the Peierls model (courtesy of Professor Gunther Schoeck). Both
calculations used the same input of generalized stacking fault energy, g, and elastic moduli. b ¼ a=

ffiffiffi
2
p

, where a is the lattice parameter. CSF, complex stacking fault; APB,
antiphase boundary. (Model output images are in color.)

Fig. 10 Dislocations (shown as the boundaries between slipped and unslipped regions) in the g/g0 microstructure of �0.3% lattice misfit under 152 MPa [001] tensile stress.
Cross-sectional view on the slip plane for (b)1=2½101�ð�1�11Þdislocations and (c)1=2½011�ð�1�11Þdislocations. Both show uneven distribution in g channels. (Model output

images are in color.) Source: Ref 105
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(chemical) potentials in each channel under an
applied load, and thus, diffusion occurs differ-
ently. This difference results in some g channels
being closed up and others becoming wider, con-
sequently forming the plate (N)-type and elon-
gated (P)-type g0 morphologies (Fig. 11).

g0 Rafting during Creep Deformation. The
model of dislocation-microstructure interaction
in the last example can be extended to a larger
length scale close to experimental observations
of rafted g0 microstructures to account for sta-
tistical variations in the morphology and spatial
distribution of g0 precipitates and dislocations.
To do so, major modifications were made to
both dislocation and g/g0 microstructure models
(Ref 106).
First, the discrete description of dislocations

is extended to a continuum description of the
inelastic (plastic) deformation field. The phase
fields that were originally defined to character-
ize the inelastic displacement field of individual
dislocations on discrete slip planes are replaced
by new phase fields that describe plastic strain
fields distributed continuously in the space
(Fig. 12). The crystalline energy that originally
carries periodic interatomic potential with
respect to inelastic displacement (or disregistry)
is, by coarse-graining, converted to a constant
averaged potential energy that only renorma-
lizes the total energy.
Second, the g/g0 microstructure evolution

incorporates the model of Kim et al. (Ref 12)
(see the section “Modeling Growth and Coars-
ening” in this article) to allow treatment of

solute diffusion at an increased length scale
without artificially altering the driving forces
for precipitate growth and coarsening. Accord-
ingly, the chemical free energy for g/g0 phases
is chosen in a form of Eq 48, with four phenom-
enologically defined order parameters to char-
acterize the g and g0 phases and the four types
of antiphase domain in g0. While the individual
free energies of the g and g0 phases could have
been imported from the CALPHAD database
for specific alloys, only fitted parabolic polyno-
mials were used in this study, because the
simulated microstructure is in a coarsening
stage, where solute concentration variation in
g and g0 is nearly around the equilibrium com-
positions of each phase.
Figure 13 shows the simulated rafting micro-

structures at positive and negative lattice misfit.
The simulation linear dimension is 5 mm, with a
grid size of 20 nm. Besides the development of
similar N- and P-type rafting morphologies
under uniaxial load conditions, as in the previ-
ous example, the microstructure simulated at a
larger length scale shows a remarkable resem-
blance to those observed in the experiment
(Ref 103, 107–109) regarding both microstruc-
ture morphologies and time scale. Due to the
elastic interaction, it can be also seen that the
N-type microstructure appears to have more
regular alignment across rafted precipitates
compared to the P-type microstructure, at the
same level of external load and lattice misfit.

Summary

Fundamental issues of phase-field theory and
its applications, both as physical and phenome-
nological models, are discussed. Examples
show that when used at the microscopic level,
phase-field models can be applied to understand
and predict fundamental properties of extended
defects such as interfacial width and dislocation
core size, chemical and structural variations
within the defects and the associated defect
energies, as well as activation energy for defect
nucleation, which is in contrast to sharp-inter-
face models where the fundamental properties
of defects are model inputs rather than outputs.
When applied at various coarse-grained levels,
the phase-field models lose their abilities to
predict defect energies and sizes but gain the
ability to deal with the collective behavior of
a large ensemble of both chemically and
mechanically interacting defects, retaining their
advantages over the sharp-interface models in
treating complicated geometrical and topologi-
cal changes. Some of the important issues in
dealing with complex alloy systems are
addressed, including linking to material data-
bases and the limitations and technical difficul-
ties associated with length scales. Examples
show that multiscale modeling within the
phase-field method may approach real-world
complexity, such as rafting and creep deforma-
tion in superalloys.

Fig. 11 Formation of N-type raft at (a) 3.6 h and (b) 10.7 h in an alloy with �0.3% lattice misfit, and formation of
P-type raft at (c) 3.6 h and (d) 7.2 h with +0.3% lattice misfit under 152 MPa tensile stress (s) along the

[001] direction. The coordinate system is the same as in Fig. 10. (Model output images are in color.) Source: Ref 105

Fig. 12 Discrete dislocations and a continuum field of
the inelastic (plastic) strain field (dotted and

shadowed regions) that yields the same plastic
deformation at a coarse-grained length scale (much
greater than dislocation core size). (Model output images
are in color.)
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Modeling of Microstructure Evolution
during Solidification Processing*
Ch.-A. Gandin, Ecole Nationale Superieure des Mines de Paris
I. Steinbach, Ruhr-University Bochum

Introduction

Modeling of structure formation in casting of
alloys involves several length scales, ranging
from the atomic level (10�10–10�9 m) to the cast-
ing dimensions, i.e. themacroscopic scale, (10�2–
1 m). Intermediate length scales are used to define
the microstructure of the growing phases (i.e.,
10�7–10�4 m, e.g., dendritic or eutectic patterns)
and the grain structure (i.e., 10�4–10�2 m, e.g.,
equiaxed and columnar grains). This article con-
centrates on these intermediate length scales,
where transport phenomena govern the spatial
and temporal evolution of the structure. To calcu-
late this evolution, conservation equations are
written for each individual phase (liquid or solid),
with the most challenging aspect being the treat-
ment of the interfaces between phases and the
nonequilibrium condition of the liquid metal dur-
ing the solidification state.
The microstructure of a casting can consist of

different grains of the same thermodynamicphase,
distinct by orientation, or different phases of one
alloy, distinct by composition and atomic struc-
ture. Within one grain metallic alloys also show
a microstructure caused by segregation patterns
due to the dendritic growth instability of the
growth front. Figure 1(a) presents a longitudinal
cross section of a 0.17 m (7 in.) Al-7wt%Si cylin-
drical ingot. The grain structure is revealed by the
various gray levels.Elongatedcolumnargrains are
present at the bottom of the casting, while a more
isotropic grain size is observed at the top. Only
magnification of the grains toward the top of the
casting reveals the dendritic nature of the equiaxed
microstructure made of the a-aluminum phase
(Fig. 1b). Further magnification would reveal the
lamellas of the eutecticmicrostructure, where sili-
con is solidified as a second thermodynamic phase
together with the a-aluminum phase. It is located
between dendrite arms and formed from the inter-
dendritic liquid at the end of solidification.
As details of the microstructure cannot be

resolved at the macroscopic scale of the

casting, models have been developed to deter-
mine an average grain size of the equiaxed
grains and the extent of a columnar zone (Ref
1, 2). These models are based on averaging pro-
cedures to write conservation equations for a
two-phase mixture made of solid and liquid.
These equations are solved at the scale of the
casting using a control volume (CV) or finite
element (FE) method. The results of such mod-
els are average grain sizes, and possibly aver-
age dendrite arm spacings, within the casting.
It consequently does not directly provide a
map of the structure. The typical representative
elementary volume (REV) of such macroscopic
scale method is shown in Fig. 1. It contains
several grains or phases that are not resolved
on the macroscopic scale.
The cellular automaton (CA) method was

first developed to model the macrostructure in
casting by resolving each individual grain.
The grains are defined by envelopes, drawn
around a dendritic structure, and the entire
grain structure of a casting can be computed.
This is possible by considering a smaller
REV, whose typical size is shown by the large
highlighted square in Fig. 2(a) and its magnified
view in Fig. 2(b). As a consequence, the den-
dritic structure cannot be resolved and is
approximated by microscopic models. Special
algorithms have to be designed to integrate the
evolution of the volume fraction of the phases
present in the REV over time, as well as to inte-
grate the kinetics of the development of envel-
opes defining the grains.
An even smaller REV must be used to com-

pute the detailed dendritic or eutectic micro-
structure within the grains. The typical REV
of such a microscopic scale method is shown
by small squares in Fig. 2(b). The phase field
(PF) method is now very popular (Ref 9–15)
because of its profound thermodynamic basis.
Although only small portions of the grain struc-
ture can be computed, the PF method offers
the possibility of simulating directly the

development of the solid/liquid interface,
including its kinetics, pattern formation, and
microsegregation with a limited number of
approximations.
While this article focuses on a presentation

of the CA and PF methods that represent the
state of the art for modeling macrostructure
and microstructure, several other methods are
under development. One could cite the level-
set method (Ref 16) and the pseudo front track-
ing method (Ref 17) for modeling interface
development, as well as other forms of the front
tracking method to simulate the growth of the
boundary defined between a mushy zone and
the melt (Ref 18).
Before examining the technical details, it is

worth noting that all models for microstructure
formation on different scales rely on an indica-
tor function that gives the phase state at a spe-
cific point in space and time. On the
macroscopic scale it is usually the fraction of
solid (fs) that has the value 1 in solid, 0 in liquid
and values 0 < fs < 1 in the two-phase region,
the so-called mushy region. This indicator func-
tion can be mapped to the local temperature
only under conditions close to equilibrium
solidification. In most cases, however, it will
be an independent variable, the time evolution
of which depends on the nucleation and micro-
scopic growth conditions (see, e.g., Ref 19). In
the CA model, a discrete indicator function ISn
is used to distinguish between the mushy zone
and the liquid (for details see below) that char-
acterize the state of one REV, that is, one cell.
A changing value of the indicator function
between two adjacent REVs defines the bound-
ary between the solidifying mush and liquid.
Applying a kinetic model for the motion of this
boundary then determines the growth of the
grain structure. The liquid outside a grain enve-
lope has to stay in an undercooled state until the
local REV is captured by a growing envelope,
or an appropriate nucleation condition is ful-
filled. The PF method, finally, uses the PF

*Reprinted from Ch.-A. Gandin and I. Steinbach, Direct Modeling of Structure Formation, Casting, Vol 15, ASM Handbook, ASM International, 2008, p 435–444
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variable F(x,t) as an analogue to fs, where the
intermediate values 0 < F < 1 characterize the
interface between solid and liquid. Again the
phase state changes only at the position of the
interface if no nucleation condition is defined in
the bulk liquid or solid. Variation of the PF vari-
able through the interface reflects the nature of a
diffuse interface at the atomistic scale. Using
these indicator functions, all models are able, with
a different level of sophistication, to account for
nonequilibrium phenomena that characterize a
typical solidification process and are reflected in
the complex rules of microstructure formation.
This article starts from the microscopic scale

with principles and applications of the PF

method. Then, using the mesoscopic scale of
individual grains, the CA model is introduced
as a computationally efficient method to predict
grain structures in castings. Finally, the coupling
of the CA to macroscopic calculation of heat,
flow, and mass transfers in castings and applica-
tions to realistic casting conditions is discussed.

Direct Microstructure Simulation
Using the Phase Field Method

A phase field Fa(x) is an indicator function of
the real space coordinate x, indicating that the
material at this coordinate exists in the state

of the phase a if Fa(x) = 1, or in some other
(not a) phase if Fa(x) = 0.* The transition
between one phase and another is assumed steep,
but continuous. The transition region thus char-
acterizes the interface between the phases that
is “diffuse” instead of a sharp jump between
the phases. During a phase transformation this
interface moves by converting the thermody-
namically unstable phase into a more stable
phase; the description of this interface motion
is the main goal of the method. The idea of a dif-
fuse interface dates back to van der Waals (Ref
20), who intensively thought about the forces
between atoms and molecules. It is well accepted
today that the solid/liquid interface in a metallic
system can be described as a diffuse transition
on a width of several atomic distances. In
numerical calculations using the PF method,
however, the width of the interface Z is mostly
taken to be large compared to its true physical
dimension, but small compared to the scale of
the microstructure r that has to be resolved.
The justification to do so lies in the invariance
or the PF equation (for constant outer fields
and to the first order in Z/r) against rescaling
of the interface (Ref 11). In the case of coupling
the PF to diffusion fields, the effect of noncon-
stant diffusion fields inside the interface on the
kinetics of the transformation and the redistribu-
tion of solute has to be considered. A rigorous
way to treat this problem was developed by
Karma and coworkers (Ref 9, 10) for binary
alloys in the dilute solution limit. For the general
case of multicomponent multiphase alloys this
correction scheme still deserves to be adapted.
The general aspects of the PF method are only
briefly outlined. For a more complete review see
(Ref 21).
In general, a PF model starts from an appro-

priate thermodynamic function. For solidifica-
tion under constant pressure, the Gibbs free
energy F is used. It is the integral over the
free-energy density contributed by the interface
f IF and by the bulk thermodynamics, f TD:

F ¼
ð
fdx ¼

ð
dx f IF þ fTD
� 	

(Eq 1)

In the solid state an elastic contribution will
also be important (Ref 12) as well as magnetic
or electric contributions for certain systems.
From the principle of energy minimization,
the evolution equation of the PF and the
concentration are derived:

_�a ¼ �
X
b

mab
dF
d�a
� dF
d�b

� �
(Eq 2a)

_ci ¼
X
j

rMijr dF
dcj

(Eq 2b)

where mab is the mobility of the interface
between phase a and phase b, ci is the concen-
tration of component i and Mij the chemical
mobility matrix. The different PF models differ

(a)

(b)

Fig. 1 Ingot structure (a) as observed in a longitudinal cross section of a 0.17 m (7 in.) height Al-7 wt%Si cylindrical
casting. Distinction is possible between elongated columnar grains located in the bottom two-thirds of the

casting and the isotropic equiaxed grains in the top region. Magnification in (b) reveals the dendritic microstructure
of the alloy, with an interdendritic black region corresponding to a eutectic microstructure that is not resolved at this
scale. The size of the highlighted square would be typical of the representative elementary volume (REV) used to
solve conservation equations at the scale of the casting using a finite element method. Only one REV is represented
while the number of REV is defined to fully cover the domain of the casting to be modeled.

*In the context of thermodynamics the expression “phase
field” is also used to characterize a region of the composition
space of an alloy, where one specific phase is stable. The con-
cept therein is complementary; however, the approach to
determine a “phase field” is different.
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in the particular formulation, but agree in gen-
eral principle. The following formulation given
in (Ref 13) is used to find the particular form:

_�a ¼
X
b

mab


sab

�
�br2�a � �ar2�b

� �2

22ab
�a � �b
� 	#þ �

ab

ffiffiffiffiffiffiffiffiffiffiffiffi
�a�b

p
�Gab

�
(Eq 3a)

�Gab ¼ fa � fb � mi cia � cib

� �
(Eq 3b)

_ci ¼
X
j

rDij rcj �
X
a

cjar�a

 !" #
(Eq 3c)

where sab is the interfacial energy, Zab the
interface width, DGab the free-energy differ-
ence, and mi the generalized chemical potential
between phase a and b. The specific free-
energy density, fa, of phase a related to the con-
centration cia in phase a. The diffusivity matrix,
Dij, can be calculated from the chemical mobi-
lities of the individual components and the

thermodynamic factor @2f=@ cia@ cia. In the
interface it is dependent on the properties of
both phases that build the interface. For more
details and a sound derivation see Ref 13.
The term in square brackets in the PF (Eq 3a)

penalizes high curvature of the interface while
DGab drives the interface in direction of the
thermodynamic stable phase. In the diffusion
equation, the contribution proportional to the
gradient of the PF variable accounts for solute
redistribution at the interface. These equations
are usually solved with standard finite element
or control volume algorithms in the entire
calculation domain with the advantage that no
explicit tracking of the interface is necessary.
As the thermodynamic driving force DGab in
the PF equation depends on the local concentra-
tion and a moving interface redistributes solute
via the DF term, both Eq 3a and 3b are closely
coupled. The entire set of equations represents

the interaction between growth and diffusion
and interface curvature that naturally result in
the formation of dendritic microstructure during
metal solidification. Before giving examples,
it is useful to examine two further issues related
to solidification in casting processes: multicom-
ponent alloy thermodynamics and nucleation.

Multicomponent Alloy
Thermodynamics

During solidification any material separates
into two (or more) different phases: liquid and
solid (or different solid phases). The clear reason
is the minimization of the total Gibbs energy as
the sum of the Gibbs energies of the individual
phases weighted by the phase fractions. Neglect-
ing surface energy, the PF and concentration
equations described previously will tend to the
thermodynamic equilibrium as the minimum of
Gibbs energies. It is therefore natural to combine
a computational method for equilibrium calcula-
tion, the so-called CALPHAD method (Ref 22),
and the PF method. In CALPHAD databases the
Gibbs energies of the individual bulk phases fa
are tabulated as functions of the alloy composition

cia. The direct coupling between PF simulation
and CALPHAD calculation was first demon-
strated in Ref 23 and is described in more detail
in Ref 13 and 24. For alternative approaches
see Ref 25, 26. It must be stated clearly that
only a reliable description of the alloy thermo-
dynamics of the bulk phases enables a realistic
PF simulation in technical alloys.

Nucleation

Nucleation is not included in the general frame-
work of PF theory. Some authors (Ref 12, 27) pro-
pose models with strong thermal noise to
introduce random nucleation in a PF simulation.

However, it is well known that an interface in a
well-resolved PF simulation needs a minimum
of four to five numerical cells; thus the size of a
nucleus in an inoculated casting, the order of
which is lower than a micrometer, cannot be
resolved in a calculation of solidification struc-
tures of the order of several tens of micrometers.
To overcome this problem, a deterministic seed
densitymodel is incorporated,where adistribution
of heterogeneous seed particles is distributed over
the calculation domain without resolving them
explicitly. A seed is activated, if the local super-
cooling of a solid phase in the liquid matrix
exceeds the supercooling needed for a solid parti-
cle to growwhen its size corresponds to the size of
the seed particle (Ref 28). The growth of the
nucleus is handled analytically, and the solid frac-
tion is accumulated locally until its size can be
treated by the PF (Ref 24).

Equiaxed Solidification of a
Hypereutectic AlCuSiMg Alloy

During commercial alloy solidification, a
number of different phases nucleate. Nucleation
and growth are closely correlated, and the
whole process is governed by the competition
between external heat extraction and release of
latent heat. The latter may be considered in an
average over the calculation domain, as the heat
diffusion is typically 3 orders of magnitude
higher than the solute diffusion in the liquid
(Ref 24). Figure 3 shows four stages of solidifi-
cation of the commercial piston alloy KS1295,
where the main components Al, Cu, Si, and
Mg have been considered. The alloy composi-
tion is hypereutectic with respect to the alumi-
num-silicon eutectic composition. Cooling was
simulated by assuming a constant heat-extrac-
tion rate of 15 J/cm3, deduced from a macro-
scopic casting simulation of the piston, and
considering the release of latent heat during
solidification (Ref 21). First the primary silicon
particles nucleate from the melt (Fig. 3a) and
grow by depletion of silicon from the melt.
A second effect of nucleating the silicon parti-
cles first is that the melt is depleted of impuri-
ties that would serve as nuclei for the
a-aluminum phase. Also it is unlikely that
a-aluminum will nucleate on the silicon parti-
cles, as the crystal lattices of both phases are
quite different. So, the silicon particles continue
to grow and the melt is depleted of silicon far
below the eutectic composition.
In the calculation shown in Fig. 3(a), the

a-aluminum phase is nucleated in the corners of
the simulation box that, in this calculation, repre-
sents the area of one grain. Next, a rapid dendritic
growth of the aluminum phase is observed, while
nearly no eutectic aluminum-silicon is formed at
this stage. The solidification path is depicted sche-
matically in Fig. 4, which deviates from the equi-
librium path as a result of the suppression of
nucleation of the a-aluminum phase at the eutec-
tic point. In the melt, during the growth of the pri-
mary silicon particles, the silicon content falls

(a) (b)

Fig. 2 Schematic of a single grain (Ref 8) growing in a uniform temperature field is shown in (a). The square
highlighted in (a) shows a typical length scale for representative elementary volumes (REV) used by the

cellular automaton (CA) method. The two small squares in (b) show the typical scale for REV used by the phase field
(PF) method. Only one CA REV is shown although the number of CA REV is defined to fully cover the domain of the
casting to be modeled. Similarly, only two PF REV are shown while the number of PF REV is defined to cover a
domain of the casting representative of the microstructure to be modeled.
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significantly below the eutectic composition.
Then, after nucleation of the a-aluminum phase,
recalescence is observed and the concentration
close to the a-aluminum phase returns to the equi-
librium line. The silicon particles, on the other
hand, profit from the rejection of silicon from

the a-aluminum phase and continue to grow until
they are engulfed by the a-dendrite.
Also, tip splitting is observed (Fig. 3b). Figure 3

(c) shows the stage after nucleation of the copper
silicides in the interdendritic region, and Fig. 3
(d) shows the last stage of the simulation shortly
before termination of the solidification in the
eutectic point with secondary silicon nucleating.
This terminating eutectic phase, however, ismuch
finer than the primary phases and therefore cannot
be resolved in the present simulation.

Microsegregation in Steel

As a second example, consider the solidifica-
tion of a low-alloyed steel Fe-0.8%Mn-0.7%Si-
0.03%P-0.4%C. The emphasis of this simula-
tion is the microsegregation profile of phospho-
rus after complete solidification. Phosphorus in
steel today can mostly be eliminated through
proper purification. However, if there is resid-
ual phosphorus left, it is known to embrittle

the material and local accumulation should be
avoided. Because of the chemical interaction
between silicon, carbon, and phosphorus, the
full diffusion matrix including cross terms has
to be taken into account. The thermodynamic
and diffusion data rely on the TCFE3 and
MOB2 databases by Thermo-Calc Software.
The calculation starts from a single seed in the
corner of the calculation domain. Secondary
arms of the dendritic microstructure form with
a mean spacing of about 100 mm, resulting from
a high cooling rate of 0.2 K/s (0.4 �F/s).
Figure 5 shows the microsegregation profile

of the alloying elements before complete solid-
ification. The small bar in the figure shows the
position of a virtual energy-dispersive x-ray
spectroscopy (EDX) scan between two side
branches where the relative compositions are
shown for different times: immediately after
the last interdendritic liquid has solidified
locally, 50 s later, and 40 min later but at a tem-
perature still above g-a transformation. All
alloying elements segregate to the melt during
solidification, where phosphorous shows the
strongest relative segregation, while manganese
and silicon are nearly indistinguishable
(Fig. 6a). Directly after the last liquid has solidi-
fied at the location of the virtual EDX scan, car-
bon is forced to diffuse out of the interdendritic
region by the cross interaction with silicon
(Fig. 6b). Phosphorus follows on a longer time-
scale (Fig. 6c), showing an inverse segregation
in the solid compared to the primary segregation
during solidification, while silicon and manga-
nese are nearly immobile in the solid. In the
combined PF calculation of the solidification
structure, solute partitioning, and chemical diffu-
sion, a realistic picture of the distribution of
alloying elements in a casting can be drawn.

Direct Grain Structure Simulation
Using the Cellular Automaton
Method

A cellular automaton (CA) is a theoretical
concept to simulate the evolution of a complex
structure by cooperative action of autonomous
cells. Each cell acts according to the same
rules, but is dependent on the state of the neigh-
boring cells and the local evolutions of average
quantities. The rules come from microscopic
descriptions developed for the evolution of a
mushy zone (e.g., microsegregation) and can
be taken either from a PF simulation or from
analytical models (see below). For a PF simula-
tion, a typical domain would be the CA REV
cell (highlighted area in Fig. 2a shown
expanded in Fig. 2b), fully paved with PF
REV (small squares shown within Fig. 2b).
For a CA simulation, CA REV cells are over-
laid onto the domain shown in Fig. 1(a). A PF
simulation using a lattice defined to cover the
domain shown in Fig. 1(a) is out of reach
because of computer limitations. For that rea-
son, coupling of structure formation with a
macroscopic FE method solving mass, heat,

(a) (b)

(c) (d)

Fig. 3 Simulated solidification structure in a hypereutectic AlSiCuMg alloy in different stages. (a) Primary silicon
particles and a-Al dendrite nucleated in the corners. (b) Growth of the silicon particles and the a-Al

dendrite with engulfment of particles and tip splitting. (c) Precipitation of copper silicide particles. (d) Solidification
structure before eutectic termination. The calculation domain is 800 by 800 mm in a two-dimensional approximation.
Calculated by MICRESS
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and fluid flows has been developed at the scale
of the CA REV cells.
Figure 7 shows schematically the superimpo-

sition of the CA lattice on the same domain
used for a macroscopic finite element (FE).*
Each cell n is uniquely defined by the coordi-
nates of its center, Cn = (xn, yn), located in a
finite element mesh, F. Element F has NF

n

nodes, labeled nF
i in Fig. 7, which are locally

indexed from i = 1 to NF
n . In this study, NF

n

is equal to 3 for the triangular elements used.
For the purpose of exchanging information
from the FE nodes to the CA cells, linear inter-

polation coefficients, c
nF
1

n , are defined between
each node ni and a cell n. A variable available
at the nodes, xni

, can thus be used to calculate

an interpolated value at cell n, xn:

xn ¼
XNF

n

i¼1
c
nF
1

n xni
(Eq 4)

Similarly, when information computed at the
level of the cells of the CA grid, xn, is required
at the level of a FE node, xn, the following sum-
mation is performed:

xn ¼
1


n

XNn
n

i¼1
cnnixni (Eq 5)

where Nn
n is the number of cells n seen by node

n. For node nF
1 , it corresponds to all the cells

drawn in Fig. 7. This averaging procedure is
normalized by the summation over all interpo-
lation coefficients:


n ¼
XNn

n

i¼1
cnni (Eq 6)

Indices

The state index, ISn , is used to characterize
the phase and the neighborhood of a cell n.
It is defined as:

� Cell n is liquid: ISn ¼ 0.
� Cell n is no longer liquid and at least one of

its nearest neighboring cell, mi (i 2 [1, Nn]),
is still liquid ðISmi ¼ 0Þ: ISn ¼ þ1.� Cell n is no longer liquid, and neither is its
nearest neighboring cell, miðISmi 6¼ 0; i 2
½1; Nn�Þ: ISn ¼ �1.

where Nn is the number of cells defined in the
neighborhood of cell n. The Moore configura-
tion considering the first and second nearest
neighboring cells is used, yielding to Nn = 8.
The grain index, IGn , is used to track the

development of the mushy zone within cell n.
It is defined as:

� Cell n is liquid ðISn ¼ 0Þ: IGn ¼ 0.
� Cell n is no longer liquid ðISn 6¼ 0Þ, and the

mushy zone is still developing: IGn ¼ þ1
with gmn <1; gmn being the volume fraction
of the mushy zone in cell n.

� Cell n is no longer liquid ðISn 6¼ 0Þ, and its

mushy zone is fully developed: IGn ¼ �1
for gmn ¼ 1.

The CA model described hereafter is based
on rules to modify the state index, ISn , and the

grain index, IGn , associated with each cell n of

a square lattice with the goal to simulate the
development of the mushy zone upon
solidification.

Nucleation

It is assumed that nucleation of grains takes
place on heterogeneous particles present in
the melt as soon as a critical undercooling
is reached. Because such nucleation behavior is
only dependent on undercooling, it is considered
as an instantaneous nucleation law. A Gaussian
distribution is used to characterize the density of
heterogeneousparticles as a function of the critical
undercooling at which they are activated (Ref 19).
In order to initiate the solidification process

at the microscopic scale, nucleation sites are
randomly distributed among the cells of the
CA square lattice. A nucleation site contained
in cell n is characterized by a critical nucleation
undercooling, �T nucl

n , and a random crystallo-
graphic orientation, yn.
There are three tests performed to nucleate a

new grain in a cell n containing a nucleation site:

� The cell is still liquid: ISn ¼ 0.
� The cell temperature, Tn, falls below the

local liquidus temperature: Tn < TL(wn) with
TL (wn) = TM + mwn, where TM is the melt-
ing temperature of the solvent in the binary
phase diagram, m is a linear approximation
of the liquidus slope of the binary phase dia-
gram defined with the solute element, and
wn is the local composition of cell n. Tem-
perature Tn is calculated from a conversion
of the average enthalpy of cell n, Hn, consid-
ering a purely liquid cell (Hn ¼ CpTnþ
�l

sHf;Cp is the specific heat and �l
sHf is

the latent heat of fusion).
� The temperature of cell n, Tn, deduced by inter-

polation from the nodes nFi defining element
F in which cell n is located (Eq 4), must fall
below the critical temperature defined for

nucleation, Tn < TLðwnÞ ��T nucl
n . This is

of course only possible providing a nucle-
ation site was previously ascribed to cell n.

These tests are applied to all the cells con-
taining a nucleation site. If the three tests are
verified, the following actions are taken to
initialize the growth of the grain:

� The state index of cell n, ISn , is updated fol-
lowing the definitions given previously.
Consequently, the state index of all cells
defined in the neighborhood of cell n is also
updated.

� The grain index of cell n, IGn , is updated fol-
lowing the definitions given previously.

� The center of the growing shape of the newly
nucleated grain, Gn, is located at the center of
cell n, Cn. A square shape with main diagonals
corresponding to the preferential<10> direc-
tions of the dendrites stems and arms are initia-
lized with a very small size. Angle yn defines
the orientationof the [10] direction of the grain,

GnS
½10�
n , with respect to the Ox axis.

Fig. 5 Cross section of a dendritic microstructure in Fe-0.8%Mn-0.7%Si-0.03%P-0.4%C solidified at a cooling rate
of 0.2 K/s (0.4 �F/s). Calculated by MICRESS

*It is to be noticed that in Fig. 7 the FE mesh is a triangle
while it is a quadrangle in Fig. 1(a). However, both types
of elements are possible when coupling with the CA method.
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Growth

Unlike with the PF method, the development
of the solid/liquid interface is not directly mod-
eled by the CA method. Instead, only the devel-
opment of the grain envelope is simulated.
Since the growth kinetics required for determin-
ing the velocity of the envelope of the grains is
mainly based on diffusion in the liquid at a
length scale given by the radius of curvature
of the solid/liquid interface, it cannot be mod-
eled with a CA model.* Similarly, while one

could also take advantage of the PF Fa(x) indi-
cator and compute the volume fraction of solid
located within the CA REV. As stated before,
coupling is yet not achievable between the PF
and the CA methods. Thus, the CA method
makes use of growth kinetics theories and
microsegregation models to approximate growth
morphology and kinetics of the grain envel-
opes, as well as its internal fraction of solid.
Figure 8 schematizes the growth propagation

of the mushy zone from a cell n to a cell m.
Within one time step, the four half-diagonals

associated to the shape of cell n have grown
from center Gn. As a result, the mushy zone
has extended from the polygon delimited by
the white continuous thin lines to the polygon
delimited by the black continuous thin lines
and identified by the S

½ij�
n tips,

½ij� 2 ½01; 10; 10; 01�. Cell m was initially liq-

uid ðISm ¼ 0; IGm ¼ 0Þ, while the mushy zone

has developed in cell n ðISn ¼ þ1; IGn ¼ þ1Þ.
After the propagation of the mushy zone in cell
n, Cm is now engulfed by the growing

shape S
½ij�
n . Capture of cell m is thus achieved

by its neighboring cell n. The initial growing

shape associated to a cell m, S½ij�m (hashed area
delimited by a continuous bold lines), as well
as the position of the growth center of cell m,
Gm, are then calculated. Two other growing
shapes are schematized in Fig. 8 for cell m. Tips
S
½ij�min
m (gray area delimited by dashed bold

lines) represent the initial shape defined at a

former time when edge S
½01�
n S

½10�
n reached posi-

tion Cm, thus starting to engulf cell m. Tips

S
½ij�min
m thus define the minimum size associated

with the growth of cell m. When no movement
of the grain is accounted for, the center of this
first growing shape, Tm, is kept unchanged dur-
ing the entire time of the simulation. If growth
is maintained homothetic with respect to the
velocity in all <10> directions, the maximal
growing shape of cell m can be evaluated when
the mushy zone has propagated to all the neigh-
boring cells. In Fig. 8, this maximal growing

shape corresponds to tips S
½ij�max
m defined when

the center of the southeast neighbor of cell m is

reached by edge S
½01�
m S

½10�
m . All the neighboring

cells of m are then captured.
The current, minimal, and maximal growing

shapes, respectively S
½ij�
m , S

½ij�min
m , and S

½ij�max
m ,

are used to define the volume fraction of the
mushy zone, gmm , associated to cell m as:

y

O
x

n1
F

n3
F

n2
F

Cν

v

F

yν

xν

cν
nF

1

Fig. 7 Topological links between a triangular finite element mesh, F, and a square cell of the cellular automaton grid,

n. Interpolation coefficients, c
nF
1
n , are defined between each cell and the NF

n nodes of the finite element mesh,
nF
i , with i ¼ 1; NF

n


 �
and NF

n ¼ 3 in this figure.
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Fig. 6 Element distribution in relative units, normalized by the mean concentration, in the scan position indicated in Fig. 5. (a) Before local solidification. The elements are
enriched in the interdendritic region. (b) Immediately after solidification. Phosphorus is still enriched in the position of last solidification, but carbon has already diffused

away due to interaction with silicon. (c) After 40 min at a temperature of approximately 1000 �C (1830 �F). Silicon and manganese are almost immobile in the solid and prevail
in the region of last solidification, while phosphorus also was forced to diffuse into the regions of first solidification, depleted from silicon. Calculated by MICRESS

*Some authors (Ref 29, 30) use a CA type of method to com-
pute the development of microstructure at the scale of the
solid/liquid interface. However, the size of the CA cells is
then decreased to a size similar to that used for a PF simula-
tion. Then realistic simulation of the development of the
structure at the scale of the casting cannot be achieved.
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gmm ¼ Min
Am �Amin

m

Amax
m �Amin

m
; 1

" #
(Eq 7)

where Am, A
min
m , and Amax

m are the areas asso-
ciatedwith the current, initial, andmaximal grow-
ing shapes, respectively. The volume fraction
of solid associated to cell m, gsm, is then given by:

gsm ¼ gmm g
s m
m (Eq 8)

where gs mm is the volume fraction of solid

located in the envelope S
½ij�
m . It is to be noted

that the growing shape associated with a given
cell n is not a regular square as was the case
in previous procedures (Ref 31, 32). Limitation
to a simple square was based on the assumption
that the temperature is uniform within the cell,
and all four <10> directions could conse-
quently grow at the same velocity. Since the
grain envelope is sustained by a series of neigh-
boring cells, the temperature gradient could be
taken into account by the temperature
difference between cells. Because of the effect
of the fluid flow on the growth kinetics of the
four <10> directions, each of the directions

GnS
½ij�
n ; ½ij� 2 ½01; 10; 10; 01�, makes a different

angle with the fluid-flow direction. Four differ-

ent values of the growth velocities, v
½ij�
n , are

thus calculated. A similar extension was pro-
posed by Takatani et al. for the study of grain
texture formation in strip casting of thin steel
sheets due to the effect of the relative fluid-flow
velocity on grain structure formation (Ref 33).
Details concerning the boundary layer correla-
tion used to compute the supersaturation of the
dendrite tips growing into an undercooled melt
in the presence of fluid flow, and thus to deduce
its growth velocity, are available in Ref 34.
The CA model has been extended to account

for the transport of the grains due to fluid flow
and sedimentation. This part of the model is
not presented here. More information is avail-
able in Ref 35.

Coupling of Direct Structure
Simulation at Macroscopic Scale

The finite element method is used to solve
the average conservation equations written for
the total mass, the energy, the mass of solute,
and the momentum at the scale of the casting
(Ref 36, 37). As outputs of a FE simulation, it
is possible to predict the time evolution of the
average enthalpy, the average velocity of the
liquid phase (the solid being fixed), and the
average solute composition. The average

enthalpy and solute composition are converted
into evolutions of temperature, solute composi-
tion of the liquid, and volume fraction of solid.
This can be carried out by applying a simple
microsegregation model, such as the lever-rule
approximation deduced from the phase diagram
data, at the microscopic scale of the dendrite
arm spacing. In such a purely macroscopic cal-
culation, the presence of the mushy zone is thus
a direct function of the average enthalpy and
the local liquidus temperature. As soon as the
enthalpy falls below the value of the enthalpy
that corresponds to the local liquidus tempera-
ture, the solid starts to form and the volume
fraction of solid consequently increases. The
final solid is formed at the eutectic temperature.
The method described previously does not con-
sider coupling with direct simulation of struc-
ture development.
In order to account for the effect of the

growth undercooling of the microstructure, as
well as for the transport of equiaxed grains that
can freely develop in the liquid, the mesoscopic
cellular automaton (CA) method has been cou-
pled with the macroscopic FE method (Ref
38). The output of the CA model is the grain
structure. Such a coupling between the meso-
and macroscopic methods makes it possible to
take into account nonequilibrium solidification
paths due to growth undercooling. The volume
fraction of solid is not only a function of the
average composition and enthalpy, but also a
function of the presence of the mushy zone.
The presence of the mushy zone itself becomes
a function of the location of the grains. The lat-
ter depends on both the undercooling of the
growing dendritic grain structure and its sedi-
mentation and transport due to the fluid flow.
The coupling with the movement of the free
equiaxed grains requires modifying the drag
force entering the Navier-Stokes equation. This
force depends on the relative velocity of the liq-
uid with respect to the solid (i.e., velocity of the
equiaxed grains), as well as on the volume frac-
tion of the equiaxed grains in the macroscopic
REV. It is computed according to the model
proposed by Wang et al. (Ref 39), and it is
added as a source term in the formulation of
the FE method.
In order to calculate the velocity of the grains

that are free to move in the liquid, the model
proposed by Ahuja et al. (Ref 40) has been
reprogrammed. The trajectory of each individ-
ual grain is computed with a dedicated CA
algorithm. The supersaturation entering the
dendrite growth kinetics is computed using a
correlation that accounts for the effect of the
relative flow velocity with respect to the solid
velocity as well as the orientation between the
dendrite growth direction and the fluid-flow
direction (Ref 34). It is worth noticing that the
CAFE model presents similar objectives as the
Eulerian model proposed by Wang and Becker-
mann (Ref 6). The main difference is due to the
Lagrangian description used to track each indi-
vidual grain with the CA method. Only the liq-
uid velocity is calculated with the FE method.

n m

S [10] = S [10]

S [01]

S [1̄0]

S [01̄]

S [10] min

Sµ
[10] max

C

S [01] min

Sµ
[01] max

S [1̄0] minS [1̄0] max

S [01]

S [1̄0]

S [01̄]

S [01̄] min

C

G

S [01̄] max

G

Fig. 8 The algorithm to model the growth of a cell n identified as part of a grain is schematized, as well as the
propagation of the grain to a neighboring cell m. The growing shape associated with cell n has propagated

from the white to the black continuous thin lines to reach positions S
½ij�
n ; ½ij� 2 ½01; 10; 10; 01�. At that time, the

growing shape S
½ij�
n has engulfed the center of cell m, C

m
. The actual size of the growing shape associated to cell

m; S½ij�m (hashed area delimited by a continuous bold line), is calculated. The initial growing center and shape

associated to cell m, respectively Gm and S
½ij�min
m (grey area delimited by the dashed bold lines), as well as its maximal

growing shape, S
½ij�max
m (delimited by the dotted bold line), used to defined the volume fraction of the mushy zone

associated to cell m; gmm , are also shown.
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Such a simplification requires the transport of
average quantities due to the movement of the
solid phase to be accounted for. This is
achieved by the development of coupling
scheme between the CA and FE method.
The experimental configuration proposed by

Hebditch and Hunt (Ref 41, 42) is considered
for the application of the CAFE model. It con-
sists of a parallelepipedic cavity with dimen-
sions 100 mm (4 in.) long, 60 mm (2 in.)
high, and 13 mm (0.5 in.) thick. All faces are
carefully insulated except for one of the smal-
lest faces. The Pb-48wt%Sn binary alloy is
cooled down and solidified by imposing a cir-
culation of water in a copper chill that is main-
tained in contact with this face. As a
consequence of this configuration, a two-
dimensional Cartesian approximation of the
transport phenomena can be made by neglect-
ing the interactions of the fluid flow with the
two largest faces of the mold (Ref 43). The
FE mesh is refined in both the horizontal and
vertical directions as shown in Fig. 9(M). The
location of the measurements of the composi-
tion in the final as-cast ingot are also shown
in Fig. 9(M). A detailed table of the values of
the parameters is given in Ref 38.
Figure 9 presents the results of the simula-

tions. Maps of grain structures and macrosegre-
gation, as well as composition profiles are
shown. Time evolution of the development of
the grain structure shows that equiaxed grains
accumulate in the bottom region of the ingot
by sedimentation. The general trends of the

segregation map are the same as the one pre-
dicted by a purely FE calculation (Ref 36).
However, variations known as mesosegrega-
tions are also predicted at a smaller length
scale. These variations are caused by the devel-
opment of equiaxed grains in preferred zones,
leading to instability of the segregation field
that further develops with the propagation of
the mushy zone. It is interesting to observe the
formation of channels in the top left side of
Fig. 9(b). The mechanism that led to the forma-
tion of this channel is instability of the growth
front. Equiaxed grains have moved and accu-
mulated at a position close to the actual root
of the channels, forming arms of fixed equiaxed
grains. These arms served as barriers to the
fluid flow that then developed preferentially
on their sides. Consequently, a channel with
enriched solute developed between the arms,
similar to the mechanism leading to the forma-
tion of a freckle (channel segregation). The
average composition profiles drawn in Fig. 9
(c) also show similar trends.
In the present configuration defined by the

experiments performed by Hebditch and Hunt
(Ref 41), comparison with a calculation that
does not account for the development of the
grain structure (purely macroscopic FE calcula-
tion) shows that macrosegregation is not
directly influenced by the structural features.
The effect of the transport of equiaxed grains
on the macrosegregation is well demonstrated
in the literature (Ref 44, 45), especially for
larger ingot sizes. The limited size of the

present Pb-48wt%Sn ingot does not favor such
an effect. It should also be said that the grain
structure model only considers the formation
of equiaxed dendritic grains: no globular grains
with high inner volume fractions of solid are
taken into account. Such a limitation could be
detrimental for the application of the present
model to the prediction of segregation induced
by grain movement. Not only the morphology
of the equiaxed grain structure plays a role
on segregation, but also it is expected to consid-
erably modify the fluid flow. Despite the fact
that the latter effect is accounted for in the pres-
ent model, the consequence on the overall fluid
flow remains limited and macrosegregation still
is explained mainly by the same thermosolutal
considerations that lead to the segregation map
computed with a purely macroscopic FE
calculation.
There are fewer studies in the literature on

the effect of the grain structure on mesosegre-
gation. The fact that instability of the growth
front leads to further instability of the segrega-
tion map is well established for the formation
of channels that could give rise to freckle for-
mation. However, the proposition that accumu-
lation of transported equiaxed grains on the
growth front could lead to the formation of
channels and eventually freckles is new. Only
in situ diagnostics by direct visualization of
the formation of the grain structure could vali-
date this prediction.
Since the grain structure is difficult to extract

from Ref 41 and 42, and since the
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Fig. 9 Predictions from the cellular automaton finite element model. (a) Final grain structure. (b) Segregation map of tin with its composition scale. (c) Composition profiles for a
Pb-48wt%Sn alloy. Equiaxed grains nucleated in the undercooled melt are free to move due to sedimentation and buoyancy-driven flows. The FE mesh (M) is drawn

together with horizontal lines indicating the location of the profiles drawn in (c). The symbols in (M) indicate the location of the measurements (Ref 41). The same styles are used
in (c) and (M) for curves and symbols.
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measurements were carried on a very coarse
grid and for a relatively large volume (4 mm,
or 0.2 in., diam rods were extracted from the
as-cast structure), it is not possible to directly
use these experimental results to validate the
predictions of the CAFE model. Similarly, no
detailed measurement of the average composi-
tion has been conducted yet with the purpose
of characterizing a segregation map with a def-
inition smaller than the grain size. It is thus dif-
ficult to validate the present predictions of
mesosegregation. Furthermore, the measure-
ments are often carried out with samples of sev-
eral cubic millimeters. Such measurements do
not permit validation of the simulations, unless
the predicted segregation maps are also drawn
by averaging the composition over the same
volume as the one used for the measurements.
This procedure, however, has not been used
here since it rubs out the effect of the grain
structure.

Summary

Two models used to predict direct structure
formation in casting have been presented. The
development of solid/liquid interfaces or of
grain envelopes can be tracked using a PF
method or a CA method, respectively. While
growth morphology, kinetics, and segregation
are direct outputs of the PF method, its applica-
tion remains limited to small portions of a cast-
ing. Computer limitations are the main problem
and are not likely to be solved within the next
few decades (Ref 46). For that reason, the CA
method has been developed with the goal of
providing a direct simulation of the structure
in the entire casting while not considering the
development of the solid/liquid interface. As a
consequence of this approximation, only the
development of grain envelopes is simulated,
and microscopic models that have been devel-
oped in the literature for a long time are
integrated. These microscopic models include
kinetics models for the growth front (grain
envelope or boundary between the mushy zone
and the liquid outside the envelope) or microse-
gregation models. The advantage of this CA
mesoscopic method is the possibility of study-
ing the influence of the development of struc-
ture on quantities characterized at the scale of
the casting (e.g., macrosegregation).
The development of quantitative models is

very much related to the availability of experi-
mental data. Such data are required to test the
assumption of the models. Since the assumption
applies at the scale of the structure, experimen-
tal data need to be collected in very well
defined and characterized conditions. This is
true for casting geometry, heat flow conditions,
and alloy properties. Thus, the development of
experimental facilities is still a need for further
modeling activities.
Coupling of models and numerical methods

could be the solution to improving the results
for engineering processing of solidification

structure. However, such coupling is difficult
because of the interdisciplinary nature of the
field. It is recognized that such challenging
coupling is not simple.

REFERENCES

1. R. Trivedi and E. Sunseri, Non-Plane Front
Solidification: Cellular and Dendritic
Growth, and Columnar to Equiaxed Transi-
tion, Casting, S. Viswanathan, Ed., Vol 15,
ASM Handbook, ASM International, 2008

2. S. Shankar, Eutectic Solidification, Cast-
ing, S. Viswanathan, Ed., Vol 15, ASM
Handbook, ASM International, 2008

3. Peritectic Solidification, Casting, S. Viswa-
nathan, Ed., Vol 15, ASM Handbook, ASM
International, 2008

4. W. Kurz, Plane Front Solidification, Cast-
ing, S. Viswanathan, Ed., Vol 15, ASM
Handbook, ASM International, 2008

5. M. Krane, V. Voller, and B. Li, Modeling of
Transport Processes and Electromagnetics,
Casting, S. Viswanathan, Ed., Vol 15,
ASM Handbook, ASM International, 2008

6. C.Y. Wang and C. Beckermann, Equiaxed
Dendritic SolidificationwithConvection: Part
I: Multiscale/Multiphase Modeling, Metall.
Mater. Trans., Vol 27A, 1996, p 2754–2764

7. M.A. Martorano, C. Beckermann, and
Ch.-A. Gandin, Metall. Mater. Trans. A,
Vol 34, 2003, p 1657

8. W. Kurz and D.J. Fisher, Fundamentals of
Solidification, 3rd ed., Trans Tech Publica-
tions, Switzerland, 1992

9. A. Karma, Phase-Field Formulation for
Quantitative Modeling of Alloy Solidifica-
tion, Phys. Rev. Lett., Vol 87, 2001,
p 115701–1–4

10. B. Echebarria, R. Folch, A. Karma, and
M. Plapp, Quantitative Phase-Field Model
for Alloy Solidification, Phys. Rev. E,
Vol 70, 2004, p 061604–1–22

11. G. Caginalp and P. Fife, Phase-Field Meth-
ods for Interfacial Boundaries, Phys. Rev.
B, Vol 33, 1986, p 7792–7794

12. L.Q. Chen, Phase-Field Models for Micro-
structure Evolution, Ann. Rev. Mater.
Res., Vol 32, 2002, p 113–140
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Modeling and Simulation of
Cavitation during Hot Working
P.D. Nicolaou, UES Inc.
A.K. Ghosh, University of Michigan
S.L. Semiatin, Air Force Research Laboratory

MANY METALLIC MATERIALS develop
internal cavities when subjected to large uniax-
ial or multiaxial tensile strains at elevated tem-
peratures. These materials include conventional
alloys of aluminum, titanium, copper, lead, and
iron as well as emerging intermetallic materials
such as titanium aluminide alloys (Ref 1–3).
For a given material with a given microstruc-
ture, the extent of cavitation depends on the
specific deformation conditions (e.g., strain rate,
temperature, and stress state). In most cases, cav-
itation may lead to premature failure at levels of
deformation far less than those at which flow-
localization-controlled failure would occur. Cav-
itation is a very important phenomenon in hot
working of materials because it may yield infe-
rior properties in the final part, let alone lead to
premature failure during forming.
Cavity formation usually comprises three

distinct but simultaneously occurring stages,
that is, nucleation, growth, and coalescence.
An important requirement for cavitation during
deformation under either conventional hot
working (high-strain-rate) conditions or super-
plastic forming is the presence of a tensile
stress. Under conditions of homogeneous com-
pression, on the other hand, cavitation is typi-
cally not observed. In fact, cavities produced
during tensile flow may often be closed during
subsequent compressive flow. Similarly, it has
been demonstrated that the superposition of a
hydrostatic pressure during hot forming can
reduce or even eliminate cavitation (Ref 4).
This article deals with the modeling and sim-

ulation of cavitation phenomena. It is divided
into six sections. Experimental observations of
cavitation are briefly summarized first. The next
two sections review the modeling of cavity
nucleation and cavity growth; the former topic
is treated more extensively in a companion arti-
cle in this Volume. The discussion of cavity
growth focuses on both mesoscale and micro-
scale models under uniaxial versus multiaxial
tensile-stress conditions; mesoscale models
incorporate the influence of local microstructure

and texture on cavitation. Descriptions of cavity
coalescence and shrinkage are summarized in
the following two sections. The last part of this
article deals with the simulation of the tension
test to predict tensile ductility and to construct
failure-mechanism maps. Table 1 includes a list
of symbols used in this article.

Cavitation Observations

Optical and scanning electron microscopy
(SEM) are the usual techniques applied to
quantify cavity formation within metallic
materials. Specifically, samples are sectioned
along one or more directions and are prepared

for metallographic analysis. Low-magnifica-
tion optical microscopy permits a gross exam-
ination of the sample, while SEM investigation
enables the observation of cavities in greater
detail. Optical micrographs with magnifica-
tions between 50 and 200� are typically ana-
lyzed using commercial software packages
(e.g., NIH, Image J) to obtain measurements
of several important features of cavities, for
example, average radius, shape, and angle with
respect to the principal directions. Further
analysis of such measurements is used
to determine the cavity area fraction, cavity
volume, cavity density, and cavity shape
(Ref 5, 6).

Table 1 List of symbols

a, size of major axis of an elliptical cavity
Ao, area of the nominally uniform slice of the specimen
Alb, load-bearing area
Am, macroscopic area of a tension specimen
b, size of minor axis of an elliptical cavity
g, surface energy of the cavity
gp, surface energy of a particle
gi, surface energy of the particle-matrix interface
Cv, cavity volume fraction
Cvo

, initial cavity volume fraction
D, diffusion coefficient
d, grain-boundary thickness
dij, Kronecker delta
�e, effective strain
_�e, effective strain rate
eo, strain at which a cavity becomes stable
e, axial strain
_e1; _e2; _e3, strain rate along the principal directions 1, 2, 3
_eij , strain-rate tensor
eN, axial strain at the neck of a specimen
ei, strain in the defect portion of the specimen
eu, strain in the uniform region of the specimen
fh, volume fraction of hard phase
f, stress-intensification factor
F, size of initial geometric defect (taper)
FT, stress triaxiality factor
Z, individual cavity-growth rate parameter in uniaxial tension
ZAPP, apparent cavity-growth rate
Zts, individual cavity-growth rate parameter in
complex stress state

Zi, cavity-growth rate along principal direction “i”
k, Boltzmann constant
K, strength coefficient

kD, constant dependent on the geometry of the deformation
Li, cavity length along principal direction “i”
l, cavity spacing
m, strain-rate sensitivity
M, Taylor factor
Mh, Taylor factor of hard phase
Ms, Taylor factor of soft phase
n, stress exponent
P, applied hydrostatic pressure
rc, critical cavity radius
r, cavity radius
ro, radius at which a cavity becomes stable
R, average of the three semiaxes of the cavity
�r, average cavity radius
r, relative density
U, profile radius at the neck of a tension specimen
w, half-diameter or half-width of a tension specimen
s, external normal stress
�s, effective stress
�ss, effective stress of soft phase
�sh, effective stress of hard phase
sM, mean stress
sz, principal stress along the longitudinal direction
sr, principal stress along the radial direction
sy, principal stress along the hoop direction
smac
z , macroscopic longitudinal stress

smac
r , macroscopic radial stress

smac
y , macroscopic hoop stress

s0ij, deviatoric stress tensor
s, center-to-center cavity spacing
V, cavity volume
Vo, volume at which a cavity becomes stable
O, atomic volume
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Higher-magnification SEM analysis is often
conducted in selected areas of a specimen to
establish cavity nucleation sites, nucleation strain,
onset of coalescence, coalescence mechanisms,
and so on relative to microstructural features (tri-
ple points, second-phase particles) that influence
cavitation behavior. As an example, Fig. 1(a)
shows a typical optical micrograph used to deter-
mine the cavity features in Ti-6Al-4V following
hot tension testing (Ref 5); a corresponding
high-magnification SEM micrograph (Fig. 1b)
reveals the onset of coalescence of cavities.
Experimental measurements and observations

of cavitation are summarized in Table 2, which
summarizes the broad test conditions and major
conclusions related to cavitation behavior for a
number of different alloys (Ref 7–18). This list
is not exhaustive but provides an overview of
the extent of the phenomenon. Observations for
aluminum alloys are not included here, inas-
much as they are discussed in the companion
article by A.K. Ghosh in this Volume.
As microscopic examinations reveal, cavita-

tion comprises three distinct stages that usually
occur simultaneously: nucleation, growth, and
coalescence. The modeling of each of these
stages is briefly described in the following
sections.

Modeling of Cavity Nucleation

Nucleation represents the first stage of cavi-
tation. Cavities nucleate by:

� Intersection of matrix slip bands with nonde-
formable second-phase particles or with
grain boundaries

� Sliding along grain boundaries, giving rise
to stress concentrations at triple junctions
that are not relaxed by diffusional transport

� Condensation of vacancies at grain
boundaries

Once a cavity is generated, the propensity for
it to grow (or shrink) is determined from the
local stress equilibrium (Ref 19, 20). Specifi-
cally, a cavity is stable when its size exceeds
a critical radius, rc, which is given by the fol-
lowing relationship:

rc ¼ 2 gþ gp � gi
� 	

=s (Eq 1)

in which g, gp, and gi denote the surface ener-
gies of the cavity/void, the particle, and the par-
ticle-matrix interface; s is the applied stress.
This criterion implies that flow hardening is
required to continuously nucleate and grow

cavities, which usually does not occur during
conventional hot working or superplastic flow
(except in cases of significant grain growth).
The equation also leads to required stresses
for initiation and early growth that are unrealis-
tically high. Therefore, other methods based on
nucleation and growth from inhomogeneities/
regions of high local stress triaxiality have been
developed. For example, Ghosh et al. (Ref 21)
have developed a constrained-plasticity model
in which nanocavities nucleated by slip inter-
sections with nondeformable second-phase par-
ticles or grain boundaries grow due to stresses
normal and/or parallel to the interface by local
plasticity at the tip of a cracklike defect. In this
case, the stress state is highly dilatational, and
the early rate of growth is thus extremely
rapid. The growth rate of a cavity decreases sig-
nificantly as its size increases and becomes
comparable to the microstructural feature
that produces the constraint. Such models
are described in more detail in the companion
article on cavity nucleation in this Volume.

Modeling of Cavity Growth

Cavity growth follows nucleation. Cavity-
growth mechanisms can be classified into two
broad categories: diffusion-controlled growth
and plasticity-controlled growth. Diffusional
growth dominates when the cavity size is very
small. As the cavity size increases, diffusional
growth decreases very quickly, and plastic
flow of the surrounding matrix becomes the
controlling mechanism (Ref 19, 22).
Diffusion-controlled growth has been modeled

(Ref 22–24) assuming spherical, widely spaced,
and noninteracting cavities. The variation of the
cavity radius, r, with effective strain, �e, is given
by the following expression:

dr

d�e
¼ Dd

2kT _�e
O

�s
r2

kD

3
þ P

�s
þ 2g
r�s

� �
1

ln l=2rð Þ � 3=4

(Eq 2)

Here, D is the diffusion coefficient, d is the
grain-boundary thickness, k is the Boltzmann
constant, O is the atomic volume, _�e is the effec-
tive strain rate, �s is the effective stress, l is the
cavity spacing, P is the applied hydrostatic
pressure, g is the surface energy, and kD is a
constant dependent on the geometry of the
deformation.
The diffusional-growth mechanism is of lim-

ited engineering importance because the great
majority of cavity growth occurs by a plastic-
ity-controlled mechanism under the conven-
tional hot working conditions employed in
industrial forming processes. In such cases,
the cavity-growth rate depends on the deforma-
tion temperature, the strain rate, and the stress
state. The remainder of this section, therefore,
deals with the modeling of cavity growth under
both uniaxial and multiaxial stress conditions.
Plasticity-Controlled Growth under

Uniaxial-Tension Conditions. The plasticity-
Fig. 1 Cavitation observations for Ti-6Al-4V with a colony-alpha microstructure. (a) Optical micrograph. (b) SEM

micrograph
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controlled growth of an isolated, noninteracting
cavity during uniaxial tensile deformation is
given by the following equation:

V ¼ Vo exp Zðe� eoð Þ or r ¼ ro exp
Z
3

e� eoð Þ
� �

(Eq 3a)

or

dV

de
¼ ZV

dr

de
¼ Zr

3

(Eq 3b)

In Eq 3, V and r are the cavity volume and radius,
respectively; Vo and ro are the volume and radius
of the cavity at a strain eo at which it becomes sta-
ble; e denotes axial strain; and Z is the individual
cavity-growth rate parameter (Ref 18, 19, 25).
The cavity-growth rate, Z, is related to material
parameters such as the strain-rate sensitivity, m,
which itself is a function of deformation para-
meters (strain rate and temperature). For a planar
array of spherical, noninteracting, grain-boundary
cavities under tensile straining conditions, the fol-
lowing relationship between Z and m has been
derived (Ref 26):

Z ¼ 1:5
mþ 1

m

� �
sinh

2

3

2�mð Þ
2þmð Þ

� �
(Eq 4)

This theoretical relationship has been found to
describe well experimental observations for a
wide range of cavitating metals and alloys.

The measurement of the cavity-growth rate
of an individual cavity is difficult because
continuous nucleation and cavity coalescence
takes place in parallel with growth. To over-
come this problem, the cavity volume frac-
tion, Cv, is measured; its variation with
strain is described by a relationship similar
to Eq 3:

Cv ¼ Cvo exp½ZAPPðe� eoÞ� (Eq 5)

in which the apparent cavity-growth rate,
ZAPP, replaces the individual cavity-growth
rate, Z. The parameter ZAPP is an average
incorporating the growth of individual cav-
ities, continuous cavity nucleation, and coales-
cence; ZAPP is readily determined from
semilog plots of Cv versus e (Ref 18, 27) (e.
g., Fig. 2). The data in Fig. 2 correspond to a
gamma titanium aluminide alloy tested in ten-
sion at a temperature of 1000 �C and a strain
rate of 10�4 s�1. The slope of the fitted line
equals ZAPP (Ref 18).
Simulations of cavity growth with continu-

ous nucleation have led to the delineation of
the difference between ZAPP and Z. Typical
simulation results (Fig. 3) show the ratio
ZAPP/Z as a function of the cavity-nucleation
rate, N (defined as the number of cavities that
initiate per unit volume and per unit strain),
and the strain-rate sensitivity. This ratio is close
to unity when the cavity-nucleation rate is low;
however, it deviates from unity as N increases.
In addition, it has been found that the

Table 2 Experimental observations of cavitation

Investigator(s) Reference Material Testing Observations

Humphries and
Ridley

7 a/b brass Tensile, T ¼ 540�640� C _e ¼ 1:67
�10�4 to 3:33� 10�3 s�1

1. Cavities appeared to be nucleated at triple points. 2. Cavitation
increased with the increase of strain, strain rate, and grain size as well
as the decrease of temperature.

Caceres and
Wilkinson

8, 9 Ultrafine Coronze 638
(Cu-2.5%Al-1.8%Si-
0.4%Co)

Tensile 1. The damage process is essentially independent of the strain rate at regions
I and II of the s- _e curve. 2. At high strain rates, the level of cavitation
was low, and failure occurred by necking. 3. Extensive cavity coalescence
was observed up to strains of 1.5.

Belzunce and
Suery

10 Superplastic a/b brasses Tensile Cavities are preferentially located at junctions between two a-grains.

Chandra et al. 11 Superplastic a/b brass Tensile 1. Cavitation is associated with grain-boundary sliding. 2. Nucleation occurs
at points of stress concentrations in the sliding interfaces. 3. a-b
interfaces are predominant on nucleation due to unbalanced strain
accommodation between the two grains.

Chokshi 12 Cu-2.8Al-1.8Si-0.4Co Tensile, T ¼ 550� C; _e ¼ 1:3� 10�3 s�1 1. Stringers form parallel to the tensile axis. 2. Cavities nucleate
continuously during deformation. 3. Cavity coalescence occurred in a
direction perpendicular to the tensile axis.

Sagat and Taplin 13 Ternary brass Tensile, T ¼ 400� 800� C; _e ¼ 1:7� 10�3

to 1:7� 10�5 s�1
The plastic flow was accompanied by simultaneous nucleation and growth
of intergranular and interface cavities; failure occurred by fracture
without macroscopic necking.

Livesey and Ridley 14 Microduplex Pb-Sn
eutectic

Tensile 1. Cavities led to a brittle-type mode of fracture. 2. The level of cavitation
was enhanced as the volume fraction, hardness, and size of the
intermetallic particles were increased.

Livesey and Ridley 15 Cu-Zn-Ni microduplex
alloys

Tensile Cavities with radius over 0.5 mm grew by plasticity, while the growth of
cavities with radius below 0.5 mm is controlled by diffusional processes.

Ahmed et al. 16 Superplastic Zn-22Al Tensile, T ¼ 230 �C; _e ¼ 1:3� 10�3 s�1 Cavitation occurs up to strain rates of 3 � 10�2 s�1 and is most extensive in
region I of the s- _e curve.

Kim et al. 17 Al2O3-0vol%ZrO2 . . . Cavities changed their shape during deformation; the cavity aspect ratio
decreased from �1.0 at the initial stage to �0.5 prior to failure.

Semiatin et al. 2 Ti-6Al-4V Tensile, T = 875–950 oC 1. Cavity initiation occurred at very low strains (�0.2) regardless of strain
rate for T < 900 oC. 2. Above 900 �C, substantially higher cavity-
initiation strains and lower cavity-growth rates were observed.

Lombard et al. 18 g-titanium aluminide Tensile, T ¼ 900� 1200� C
_e ¼ 10�2 to 10�4 s�1

1. Cavity growth was plasticity controlled. 2. The largest cavity size and
cavity density increased with decreasing strain or strain rate and
decreasing temperature. 3. At 1200 oC, cavity-growth rates were lowest
and tensile ductilities were highest.
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Fig. 2 Measuredcavity volume fraction (Cv) as a function
of axial strain from tension testing of a gamma

titanium aluminide alloy. The test temperature was 1000
�C, and the strain rate was 10�4 s�1. Source: Ref 18
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Fig. 3 Simulation results for the ratio of the apparent to
individual cavity-growth rates as a function of

the cavity-nucleation rate. Source: Ref 27
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dependence of ZAPP/Z on the strain-rate sensi-
tivity, m, is relatively weak (Ref 27).
The applicability of simple relationships such

as Eq 3 and 5 has been established by the mod-
eling work conducted by Hancock (Ref 28) and
Stowell (Ref 29).
Hancock Model. This plasticity-controlled

growth analysis considers a single cylindrical
hole in an incompressible viscous solid
(Ref 28). The model gives rise to an additional
surface-tension term in Eq 3(b), that is, g/r, in
which g is the surface energy and is typically
of the order of 1 J/m2. The term g/r may be
viewed as a radial stress introduced on the sur-
face of the cylindrical void. For such a void, the
resulting equation is:

dr

de
¼ Z

3
r� 3g

2s

� �
(Eq 6)

The previous expression reveals that the sur-
face-tension term is negligible when the applied
stresses are high, which is typically the case
under hot working conditions.
Stowell Model. The model by Stowell for

plasticity-controlled cavity growth was devel-
oped for superplastic alloys. The analysis
focuses on a cylindrical representative volume
element with a diameter equal to the cavity
spacing and a length equal to the grain diameter
(Ref 29). The model accounts for the increase
in strain rate in the region where the cavity is
present relative to that in the uncavitated
region. An initial cavity elongates with strain,
leading to the definition of an equivalent radius
r ¼ ð1=3Þðaþ 2bÞ), in which a and b denote the
major and minor axes of the elliptical cavity,
respectively. This approximation for the equiv-
alent cavity radius becomes less accurate as the
aspect ratio a:b increases. Assuming that the
cavity volume (V) is proportional to r3 and the
cavity density (number of cavities per initial
unit volume, Vo) is N, the Stowell analysis
leads to an expression similar to Eq 3.
Stowell’s model has some limitations, mostly

related to the assumptions that a fixed number
of cavities grow from the beginning of the
deformation, and there is no interaction
between neighboring cavities. In addition, it
assumes the same law for the different direc-
tions of cavity growth.
Plasticity-Controlled Growth under Multi-

axial Stress States. The stress state developed
during industrial metalworking operations is
usually multiaxial. To describe cavity growth,
modifications must therefore be made to rela-
tionships such as Eq 3(a, b), which is strictly
applicable for deformation under uniaxial-ten-
sion conditions. For this purpose, the simplest
approach consists of the application of a rela-
tionship similar to Eq 3 in which the uniaxial-
tension cavity-growth parameter Z is replaced
by a cavity-growth parameter for the complex
stress state, that is, Zts, and the uniaxial strain,
e, is replaced by the effective strain, �e. A com-
plex stress state is quantified by considering the
stress ratio sM=�s, that is, the ratio of the mean

to effective stress. The cavity-growth rate
parameter Zts is simply a function of sM=�s,
that is:

Zts

Z
¼ F

sM

�s

� �
(Eq 7)

Thus, the multiaxial stress analog of Eq 3(a) is:

r ¼ ro exp
Zts

3
�e� �eoð Þ

� �
or

r ¼ ro exp
Z
3
F

sM

�s

� �
�e� �eoð Þ

h i
(Eq 8)

The function FðsM=�sÞ is therefore required to
describe cavity growth under multiaxial stress
states. As described next, the function F
(sM=�s) has been determined using continuum
mechanics approaches (Ref 30–33) as well as
semiempirical methods (Ref 34).
McClintock Model. McClintock used a con-

tinuum approach to obtain equations that
describe the growth of voids of different geo-
metries under different stress conditions (Ref
32, 33, 35). The initial focus was on the
description of the growth of cylindrical voids
in a linear-hardening material subject to an
axisymmetric stress state or in a rigid, nonhar-
dening material under axisymmetric deforma-
tion conditions. This was followed by an
assessment of the growth of voids within a
moderately work-hardening material. The over-
all result was a law that describes the growth,
within a shear band, of a cylindrical void
of elliptical cross section in a linear-hardening
matrix under arbitrary biaxial loading
(Ref 36, 37):

1

r

dr

d�e
¼ 1

2 1� nð Þ sinh ð1� nÞs
t

h i
(Eq 9)

in which t is the shear stress within the shear
band, s is the normal stress across it, �e is the
effective strain, and n is the strain-hardening
exponent. A simple modification of Eq 9 pro-
vides an order-of-magnitude estimate for the
growth of elliptical cavities by taking an aver-
age of the three principal stresses:

dR

d�e
¼ a

1� n
sinh ð1� nÞsM

to

� � �
R (Eq 10)

Here, R denotes the average of the three semi-
axes of the cavity, a is a constant of the order
of unity, and sM is the mean stress. This model
shows that the void growth decreases as n
increases. By analogy with Eq 3(b), the term
within the angular brackets in Eq 10 equals
Zts/3. The value of Zts can be readily calculated
from a relationship derived by Rice and Tracey,
which is described next.
Rice-and-Tracey Model. A continuum-

mechanics approach was also employed by
Rice and Tracey (Ref 30) to describe the
growth of a spherical cavity within a plastic,
nonhardening material obeying the von Mises
yield criterion. The strain field was assumed to
comprise three contributions:

� A uniform strain field due to plastic defor-
mation of the matrix

� A spherically symmetric strain field result-
ing from the change of the cavity volume
but involving no shape change

� A strain field (decaying at remote distances)
that arises from changes of the void shape
but not its volume

The analysis of Rice and Tracey revealed that
the contribution of the change of the cavity
shape to the strain is minimal; on the other
hand, the other two factors had a much more
potent effect. In fact, they showed that by
neglecting the cavity-shape-change strain field,
the error introduced was less than 1%. This
analysis led to the determination of the follow-
ing dependence of Zts on the stress ratio sM=�s:

Zts ¼ 0:558 sinhð3sM=2sÞ þ 0:008 n coshð3sM=2sÞ
(Eq 11)

in which n is a function of the principal strain
rates, that is, n ¼ �3 _e2= _e1 � _e3ð Þ, with
_e1 � _e2 � _e3.
Pilling-and-Ridley Model. An alternate,

semiempirical approach (Ref 34) has also been
used to quantify the effect of the hydrostatic
pressure, P, on the cavity-growth rate, Zts,
for superplastic alloys, which often exhibit
extensive cavitation. The empirical relationship
between Zts and Z is:

Zts ¼ Z 1þ 2
P

�s

� �
(Eq 12)

where P is taken to be negative if it is compres-
sive and positive if it is tensile. Because
sM ¼ P þ �s=3; P=�s ¼ sM=�s� 1=3, Eq 12 can
then be rewritten in terms of the stress ratio:

Zts ¼ Z
1

3
þ 2

sM

�s

� �
(Eq 13)

Therefore, by combining Eq 8 and 13, the cav-
ity size for a multiaxial stress state can be
calculated.
Application of Models. The applicability of

relationships for Zts/Z, such as Eq 10 to 13
(Ref 38), has been determined by comparing
model predictions to experimental measure-
ments. The collected measurements correspond
to a variety of materials deformed under differ-
ent stress states (e.g., equibiaxial tension, plane-
strain tension, uniaxial tension of notched spe-
cimens, etc.) and processing conditions (i.e.,
temperature, strain rate). The experimental data
fall within a broad scatter band (Fig. 4). Model
predictions are also shown in this figure. A
comparison of the scatter band and trend lines
for the various equations indicates that none
of the models provides precise predictions of
the measurements. Nevertheless, the semiem-
pirical model described by Eq 13 does mirror
the observed trend better than the others. In
fact, the upper and lower limits of the experi-
mental scatter band follow this relationship
(Eq 13) multiplied by a factor Q equal to 0.75
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or 1.25, respectively. Thus, the general correla-
tion of cavity growth and stress state is
described by the following relationship:

r ¼ ro exp
Z
3
Q

1

3
þ 2

sM

�s

� �
�e� �eoð Þ

� �
(Eq 14)

The usefulness of the correlation described
by Eq 14 has been confirmed using two differ-
ent sets of cavity size measurements (Fig. 5).
The first set came from experiments involving
a range of stress triaxialities developed during
notched-tension testing of a titanium alloy
(Ref 39), while the second focused on results
from the equibiaxial-tension testing of an alu-
minum alloy (Ref 40).
Measurements of the average diameter of

cavities developed during notched-tension test-
ing of Ti-6Al-4V (with a colony-alpha micro-
structure) at 815 �C and a nominal strain rate
of 0.1 s�1 (Ref 39) are plotted as a function of
the stress ratio sM=�s in Fig. 5(a). The individ-
ual data points correspond to two different
cavity-growth strain ranges, e–eo. In addition,
predictions for Z = 6.5, values of the constant
Q between 0.75 and 1.25, and the same levels
of e–eo (i.e., �0.14 and �0.22) are also shown
in the graph as shaded areas. It can be seen that
the correlation embodied in Eq 14 bounds the
experimental measurements well.
Measurements (data points) of the effective-

strain dependence of the average diameter of
cavities developed during the equibiaxial-ten-
sion testing (sM=�s ¼ 0:66) of a fine-grained,
modified 5083 aluminum alloy at two different
strain rates and a temperature in the superplas-
tic range are shown in Fig. 5(b) (Ref 40).
Applying Eq 14 with Q = 0.75 and 1.25, a cav-
ity-growth rate in uniaxial tension of Z = 3.2,
and an assumed nucleation strain, eo, of zero
(solid lines), it is seen that model predictions
bound the observations for this material as well.
Cavity-Growth Rate along the Principal

Directions. In many cases, cavities do not
grow as simple spheres whose radii increase
with strain; rather, they grow as ellipsoidal
voids. Hence, the use of a single cavity-growth
parameter Z (or Zts) is not justified. In such
cases, it is often useful to quantify the cavity-
growth rate along each of the principal direc-
tions of the ellipsoidal cavity. In particular,
the change of the size of a cavity along direc-
tion i may be described by the relationship:

Li ¼ Lio expðZi�eÞ (Eq 15)

in which Li and Zi denote the size and cavity-
growth rate parameter along direction i.
As an example, directional cavity growth has

been observed during the hot torsion testing of
Ti-6Al-4V (Ref 41). The cavity-growth rates
along the three principal specimen directions
(z, r, y) were determined by measuring the cav-
ity sizes, Lz, Lr, and Ly via optical microscopy
on the z-r and z-y cross sections. The measured
average cavity lengths (Lz, Lr, and Ly) as a func-
tion of effective strain (Fig. 6) indicated that the
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cavity-growth parameter is indeed directional in
nature {Z}:

fZg ¼
Zz

Zr

Zy

0
@

1
A ¼ 0:05

0:41
0:46

0
@

1
A

The volumetric cavity-growth rate Z equals the
sum (trace) of the components of the previous
matrix: Z = Zz + Zr + Zy or Z = 0.92. The value
Z = 0.92 was found to be in broad agreement
with the value of Z if the cavities had been trea-
ted as spherical in shape.
Micromechanical Models of Plasticity-

Controlled Growth. Classical plasticity-con-
trolled models, such as those discussed previ-
ously, neglect the effect of local texture and
microstructure on cavity growth. As such, their
principal use is for the prediction of the average
cavity size and volume fraction developed
during hot working or superplastic forming.
However, it is the size of the largest cavities
that play the most important role with respect
to the properties and performance of a finished
product. To this end, so-called micromechani-
cal models that enable such predictions have
been developed to fill this gap.
Micromechanical models (Ref 42, 43) focus

on quantifying local stresses and the partitioning
of strain between adjacent grains (or colonies in
the case of a lamellar microstructure) due to dif-
ferences in crystallographic orientation. The first
analyses were developed for alpha/beta titanium
alloys with a colony-alpha microstructure in
which cavitation is quite severe. The plastic
anisotropy of the alpha (hexagonal close-packed)
phase leads to colonies with markedly higher or
lower Taylor factors, which therefore behave
differently during deformation.
Micromechanical cavity-growth models

comprise three elements:

� An analysis to estimate the approximate
stress ratio within adjacent hard and soft
grains or colonies

� A self-consistent calculation for the parti-
tioning of the macroscopic strain/strain rate
to differently oriented grains/colonies

� A plasticity-controlled model incorporating
stress-state effects to estimate the actual cav-
ity-growth kinetics (e.g., Eq 8).

The basic assumptions of these models are:
� The cavity formed at the boundary between a

hard grain/colony and a soft grain/colony is
small relative to the grain size andhencehas lit-
tle influence on the stresses and strains that are
developed in the absence of the cavity.

� Cavities grow into softer grains/colonies.

Uniaxial Tension. For uniaxial-tension defor-
mation, the stress ratio (sM=�s) controlling cav-
ity growth within the soft colony is given by the
following expression (Ref 42):

sM

�s
¼ fh

Mh

Ms

_�eh
_�es

� �m
�eh
�es

� �n

�1
� �

þ 1

3
(Eq 16)

in which M, _�e, and �e denote the Taylor factor,
strain rate, and strain of a hard (subscript “h”)
or soft (subscript “s”) grain/colony, respec-
tively; fh is the volume fraction of the hard
grains/colonies; and m and n denote the strain-
rate sensitivity and the strain-hardening expo-
nent, respectively. The partitioning of strain/
strain rate between hard and soft grains/colo-
nies, which is needed as input for both the
stress-state (Eq 16) and the cavity-growth
(Eq 14 for Q = 1) calculations, may be esti-
mated from the self-consistent calculations
(Ref 44), in which the relative strain rates are
a function of the volume fraction of the hard
grains/colonies and the ratio of strength coeffi-

cients/Taylor factors of the hard and soft grains/
colonies. In Fig. 7, model results of the ratio of
the strain rate of higher-flow-stress grain/col-
ony to the macroscopic (imposed) strain rate
( _eh= _etot) and the corresponding ratio for the
lower-flow-stress grain/colony ( _es= _etot) are
given as a function of the ratio of the strength
coefficients, kh/ks, and the different volume
fraction, f, of the hard grain/colony. The strain
rate in the higher-flow-stress (hard) phase is
less than in the lower-flow-stress phase. The
difference increases as either f decreases and/
or kh/ks increases.
A typical application of the model for cavita-

tion during hot tension of Ti-6Al-4V with a col-
ony-alpha microstructure is shown in Fig. 8.
Here, measured radii, r (for cavities larger than
3 mm) (data points), are plotted as a function of
the Taylor factor ratio, Mh/Ms. The solid lines
represent model predictions; the strain at which
each measurement corresponds is shown in the
legend. The shaded bands correspond to a range
of the fraction of the hard phase, fh, between 0.4
and 0.8 (increasing from right to left, as shown
by the arrow in the graph) and three different
cavity-growth strain intervals, that is, e–eo =
0.18, 0.35, and 0.55, in which eo denotes the
cavity-nucleation strain. The line within the
shaded area corresponds to fh = 0.6. The model
reveals that for a given Mh/Ms, the cavity radius
increases as the fraction of the hard phase
increases at the expense of the soft one, largely
because the strain accommodated by the soft
phase increases. However, the cavity radius
has a stronger dependence on the strain at
nucleation (e–eo) than fh. Overall, the experi-
mental observations in Fig. 8 are well bounded
by the model predictions for a cavity-growth
strain range between 0.18 and 0.55, with the
majority of cavity measurements lying close to
the e–eo = 0.18 condition (Ref 42).
Multiaxial Stress States. The principal

aspects of the micromechanical analysis of cav-
ity growth under a macroscopic multiaxial
stress state also comprise estimates of the local
stress state, the partitioning of strain/strain rate
between hard and soft grains/colonies using a
strain-partitioning model (Ref 44), and the
application of the cavity-growth equation (Eq
14 for Q = 1) to the soft colony.
The macroscopic stress state is assumed to

comprise three principal stresses (e.g., axial,
sz; radial, sr; and hoop, sy, for axisymmetric
deformation), which can be determined from
finite-element method (FEM) analysis. The
microscopic local stresses in the hard and soft
grains/colonies are determined by taking into
account the yield functions of the hard and soft
colonies and the relevant local-equilibrium
equations. For a material obeying the von
Mises yield criterion, the yield-function rela-
tionships are:

�sh ¼ 1ffiffiffi
2
p syh � szhð Þ2þ szh � srhð Þ2þ srh � syhð Þ2
n o

(Eq 17)
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Fig. 6 Strain and direction dependence of the size of
cavities developed during hot torsion testing of

Ti-6Al-4V with a colony-alpha microstructure at 815 �C
and a surface effective strain rate of 0.04 s�1. Source:
Ref 41
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�ss ¼ 1ffiffiffi
2
p sys � szsð Þ2þ szs � srsð Þ2þ srs � sysð Þ2
n o

(Eq 18)

The subscripts y, r, and z refer to the specific
principal stress components; the subscripts
h and s refer to the hard and soft colonies,
respectively; and �sh and �ss denote the flow
stress of the soft and hard colonies,
respectively.
The macroscopic axial (smac

z ) and radial
(smac

r ) stresses that are determined from FEM
analysis are each assumed to be a rule-of-mix-
tures average of the corresponding stress com-
ponents in the hard and soft colonies, thus
satisfying the load equilibrium considerations:

smac
z ¼ fhszh þ 1� fhð Þszs (Eq 19)

smac
r ¼ fhsrh þ 1� fhð Þsrs (Eq 20)

Furthermore, the hoop stress is usually taken to
be essentially the same in the soft and hard
grains/colonies and is equal to the macroscopic
(FEM) stress smac

y :

smac
y ¼ syh ¼ sys (Eq 21)

If the flow stresses of the hard (�sh) and the
soft (�ss) colonies are known, the axial and
radial stresses in each colony can be determined
by solving Eq 17 to 21. More typically, �ss and
�sh are determined by applying the self-consis-
tent model to estimate the strain rates and hence
the flow stresses in the hard and soft colonies
(Ref 43, 44).
Having determined the stress components,

the stress ratio sM=�s in both the hard and soft
colonies can be calculated. Because the soft
colony undergoes more strain than the hard col-
ony, micromechanical cavity-growth calcula-
tions are typically based on the strain in the
soft colony and the value of Zts corresponding
to its stress ratio. The values of the strain and
Zts in the softer colony are then used to esti-
mate the size of the largest colonies in accor-
dance with Eq 8.
The micromechanical model for the size of

the largest cavities developed under a state of
multiaxial stress has been validated via observa-
tions for the hot pancake forging of cylindrical
Ti-6Al-4V preforms with a colony-alpha struc-
ture (Ref 43) (Fig. 9). Typical calculations of
the stress ratio (sM=�s) developed within the
hard and soft colonies at the equatorial free

surface reveal that the stress ratio in the softer
colony is very sensitive to the Taylor factor ratio
Mh/Ms, whereas it exhibits a much weaker
dependence on Mh/Ms and has smaller values
for the harder colonies. Model predictions for
the size of the largest cavities (based on the cal-
culated stress ratio, the corresponding values of
Zts, and the strain in the softer colony from the
strain-partitioning model) are compared to
measured radii of the large cavities (data points)
as a function of distance form the free surface in
Fig. 10. This comparison shows that the model
mimics the observed behavior, with the best fit
obtained for Mh/Ms between 1.5 and 3.

Modeling of Cavity Coalescence

Cavity coalescence refers to the stage at
which voids link together, leading to final frac-
ture. In most models, cavity coalescence/link-
age is assumed to occur between first- and
second-nearest-neighbor cavities only. If it is
postulated that there is no nucleation of new
cavities, then two coalescence mechanisms are
possible (Ref 45–47):

� Impingement: This mechanism refers to the
exhaustion of the ligament between the two
cavities. As two cavities grow, the ligament
between them is reduced until the outer sur-
faces of the cavities come into contact. This
condition is described by the following
relationship:

s� ðri þ rjÞ ¼ 0 (Eq 22)

in which s denotes the center-to-center cavity
spacing, and ri and rj are the instantaneous radii
of cavities i and j, respectively. It is important to
note that a small initial intercavity spacing does
not necessarily imply that coalescence will
occur, because the horizontal and vertical
spacing as well as the cavity-growth rate are
both important.

� Internal necking: Rupture of matrix material
between two cavities occurs as a result of
plastic instability and flow localization, much
as though the cavities and matrix between
them form a microscopic tension specimen.
Various criteria for describing coalescence
via such an internal necking process have
been based on (1) a critical matrix-ligament
strain, ecr, (2) a critical stress, or (3) a critical
void volume fraction. The first criterion is the
one applied in most cases.

The critical matrix ligament strain, ecr,
depends on the initial cavity spacing and the
individual cavity-growth rate, Z. This strain
can be determined by considering the deforma-
tion of a microspecimen containing two cavities
along its midplane, which act like a geometric
defect. Details of such simulations are given
in the section on tensile ductility in this article.
Here, typical results for such a mechanism are
summarized in terms of the critical strain as a

Fig. 9 Montage of micrographs along the equatorial plane showing the variation of cavitation in the radial direction
developed during hot pancake forging of Ti-6Al-4V with a colony-alpha microstructure. Source: Ref 43

Fig. 8 Comparison of measurements and predictions of the cavity radius as a function of the Taylor-factor ratio Mh/
Ms for cavity radii greater than 3 mm. The solid lines represent predictions for fh = 0.6 for three different ranges

of the cavity-growth strain. The local fraction of hard orientations, fh, increases in the shaded region from 0.4 to 0.8 in
the direction shown. Source: Ref 42
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function of the center-to-center cavity distance,
d, and the cavity-growth rate, Z (Fig. 11) (Ref
47); the critical strain increases as d increases
and/or as Z decreases.
Cavity coalescence may also be regarded as a

process that, in effect, increases the average
cavity-growth rate. In particular, the effect of

pairwise coalescence on the average cavity-
growth rate, d�r=d�e, can be estimated from the
following equation (Ref 48):

d�r

d�e
¼ 8CvFZ 0:13r� 0:37 dr=d�eð Þid�e

� 	þ dr=d�eð Þi
1� 4CvFZd�e

(Eq 23)

in which Cv is the instantaneous volume frac-
tion of cavities, Z is the uniaxial-tension cav-
ity-growth parameter (Eq 3), d�eð¼ d�eÞ is a
small increment of strain, (dr=d�e)i is the rate
of growth per unit strain of an isolated cavity
(= Zr/3 from Eq 3), and F is given by:

F ¼ ð1þ Z�ed�e=3þ ðZd �eÞ2=27 (Eq 24)

Equation 23 can be easily applied to predict
average cavity size by a simple spreadsheet
analysis, in which strain is the independent var-
iable, and the average cavity size is the depen-
dent variable. An example of the application
of Eq 23 is shown in Fig. 12 for a material with
an individual cavity-growth rate (Z) equal to 3.
The cavity size for coalescence or no coales-
cence, along with the corresponding cavity vol-
ume fraction, is shown in this figure. These
results show that the effect of coalescence on
the average cavity radius becomes noticeable
when the cavity volume fraction exceeds �7%.
In spite of prior research in this area, coales-

cence mechanisms are still not fully understood
due to the experimental challenge in obtaining
reliable data for the population of cavities dur-
ing the process. These difficulties are associated
primarily with the complex shapes of cavities.
However, the recent application of novel exper-
imental techniques has partially overcome such
challenges. For example, Dupuy and Blandin
(Ref 22) and Martin et al. (Ref 49) have con-
ducted x-ray microtomography to obtain three-
dimensional images of cavity populations in a
nondestructive manner (Fig. 13). From this
work, a coalescence or interlinkage parameter
(IP) has been introduced. This parameter is the
ratio of the volume of the largest cavity to the
total volume of cavities in the specific region
investigated. The microtomography results sug-
gest that coalescence occurs over relatively
large domains of strain and cavity volume frac-
tions (Ref 22, 49). For example, Fig. 14 shows
the variation of IP with the cavity volume frac-
tion (which itself increases with strain) for alu-
minum alloy 5083 tested at 525 �C and a strain
rate of 10�4 s�1. The value of IP is relatively
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low (<0.05) for a cavity volume fraction �5%
(corresponding to a strain of �1.2), and then
it increases sharply.

Modeling of Cavity Shrinkage

Cavities that nucleate and grow under a ten-
sile state of stress may be reduced in size dur-
ing a change in strain path, during which the
stress state becomes compressive. A microme-
chanical model that describes cavity-shrinkage
kinetics has been developed and applied (Ref
50). In this approach, the stresses developed

within the soft grains/colonies during a strain-path
change that gives rise to compressive triaxiality
are estimated in the same way as in the case of
open-die forging, that is, by applying the yield
conditions and load-equilibrium equations. To
estimate the strain-rate components and thus the
densification rate _r ¼ _e11 þ _e22 þ _e33, the stres-
ses are inserted into a model for the consolidation
of porous media (Ref 62):

_eij ¼ KðrÞf2 _�e
�s

� �
1þ nð Þs0ij þ 1� 2nð ÞsMdij

h i
(Eq 25)

in which _eij denotes the strain rate tensor, s0ijis
the deviatoric stress tensor, sM is the mean
stress, �s is the effective stress, n is the Poisson’s
ratio of the porous body,f is the stress-intensifica-
tion factor, and dij is the Kronecker delta.
The function K(r) is associated with the relative
density r; it is commonly assumed to be equal to
r when the latter is greater than 90%.
The applicability of Eq 25 to model cavity

shrinkage has been demonstrated for Ti-6Al-4V
with a colony-alpha microstructure subjected to
torsion followed by reversed torsion or uniaxial
compression (Fig. 15). Cavity-shrinkage predic-
tions (Ref 50, 51) showed good agreement with
such observations (Fig. 16a, b). The more rapid
closure kinetics during compression compared
to reversed torsion (as shown in the micrographs
in Fig. 15) were quantified correctly. Such
results were explained on the basis of the higher
levels of compressive stress triaxiality in com-
pression compared to those in reversed torsion,
the orientation of cavities in torsion relative to
the applied stresses, and dynamic spheroidiza-
tion of the microstructure, which affected the
stress triaxiality in torsion to a greater extent
than in compression.

Modeling and Simulation
Approaches to Predict Tensile
Ductility and Develop
Failure-Mode Maps

Cavitation may lead to premature failure and
thus to a significant reduction in the tensile
ductility or forming limit relative to that
in materials that do not cavitate but fail instead
by strain localization prior to fracture (Ref 52).
For a given value of the strain-rate sensitivity
(m), the decrease in elongation for fracture-con-
trolled failures due to cavitation depends on the
rates of cavity nucleation and growth, the cav-
ity shape and size distribution, and the spatial
distribution of the cavities.
Early models of the effect of cavitation on fail-

ure (e.g., Ref 53) focused only on the effect of cav-
ity generation on flow stability in uniaxial tension.
In these approaches, it was assumed that all cav-
ities were spherical and uniformly distributed
across a given cross section; triaxiality and
stress-concentration effects were neglected. The
models postulated that cavitation increases the
three dimensions of the specimen (length, width,
thickness) in proportion to the level of cavitation.
Key results indicated that the progress of cavity
generation renders deformation less stable by
reducing the effective values of both the strain-
hardening exponent (which primarily impacts the
uniform elongation) and the strain-rate sensitivity
(which affects the rate of flow localization follow-
ing the onset of instability).
More recent models quantify the effect of

cavitation on tensile ductility in more detail.
These approaches include those that do or do
not incorporate the effect of stress triaxiality
in the neck on cavitation.

Fig. 13 Three-dimensional view of the largest
coalesced cavities obtained via x-ray

tomography of a sample of aluminum alloy 5083
following deformation in tension at 525 �C and 10�4 s�1.
Source: Ref 22
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Fig. 14 X-ray tomography measurements of the cavity
interlinkage parameter as a function of cavity

volume fraction in a sample of aluminum alloy 5083
following deformation in tension at 525 �C and 10�4 s�1.
Source: Ref 49

Fig. 15 Micrographs showing the effect of strain path on cavitation in Ti-6Al-4V samples with a colony-alpha
microstructure deformed at 815 �C and an effective strain rate of 0.04 s�1 via monotonic torsion,

reversed torsion, and compression following monotonic torsion. Source: Ref 51
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Long-wavelength models of the tension test
seek to quantify cavitation and flow-localiza-
tion behavior by assuming that the neck which
developed after the onset of instability has a
very long wavelength, and thus the stress triax-
iality due to necking can be neglected (Ref 54,
55). In such situations, cavitation and strain-
localization behavior are quantified by deter-
mining the relative deformation of two material
slices (one with an initial defect of some sort)
via a simple load-equilibrium approach. In par-
ticular, the analysis is based on the principle
that the load (= axial stress multiplied by the
cross-sectional area) transmitted through the
two slices representing the specimen is con-
stant. For a noncavitating material, deformed
in uniaxial tension, the following equilibrium
expression is obtained:

expð�e=mÞen=mde ¼ 1� Fð Þ1=mexp �eN=mð ÞeNdeN
(Eq 26)

In Eq 26, the subscript N refers to an initial
geometric defect, F; and F ¼ Ao �AoNð Þ= Ao,
in which Ao and AoN denote the area of the
uniform and defected slice of the specimen.
For a cavitating material, cavity growth

decreases the effective cross-sectional area of
the specimen. Combining Eq 5 and 26 and
assuming a uniform distribution of cavities,
the following equilibrium relationship is
obtained in long-wavelength two-slice models:

expð�e=mÞen=m 1� Cvo exp ZAPP e� eoð Þ½ �f g1=mde ¼
1� Fð Þ1=mexp �eN=mð ÞeN 1� Cvo exp ZAPP eN � eoð Þ½ �f g1=mdeN

(Eq 27)

Lian and Suery (Ref 56) were the first to
develop and apply an expression of the form
of Eq 27. In their simulations, they assumed
an initial cavity volume fraction ðCvoÞ between
10�3 and 10�4. Cavitation failure was assumed
to occur when the cavity volume fraction in the

defect region reached 30%. From such ana-
lyses, maps showing the failure mode as a func-
tion of m and Z can be derived. The maps are
divided into three regimes:

� A regime in which the material fails by flow
localization/necking

� A regime in which cavity growth dominates
and leads to failure without pronounced flow
localization

� An intermediate mixed-mode regime in
which both cavitation and necking contrib-
ute to failure

Model predictions typically show good first-
order agreement with observations in the litera-
ture, despite the fact that a precise description
of cavity nucleation and coalescence is not
included in the analysis.
The macroscopic, two-slice, long-wavelength

model can be extended to establish the effect of
superimposed hydrostatic pressure on the fail-
ure mode (Ref 57). For given values of m and
Z, the predicted failure mode changes when
the superimposed pressure is greater than a cer-
tain value. It has been found that materials that
fail without neck formation under zero-pressure
conditions do indeed undergo flow localization
prior to fracture when high pressures that sup-
press cavity growth are imposed.
Analogous to the macroscopic, long-wave-

length analysis to determine ductility and fail-
ure mode, microscopic load-equilibrium
approaches have been developed to investigate
the internal necking and failure of the ligament
between two cavities and hence the cavity-coa-
lescence phenomenon. These latter techniques
typically rely on a representative microspeci-
men (lying within the material) with a uniform
rectangular cavity array (Fig. 17). In this case,
a load-equilibrium analysis, such as that devel-
oped by Zaki (Ref 58), can be used to treat the
straining process within the uniform and
necked/defect portions of the specimen, the lat-
ter representing the ligament between two cav-
ities. The load-equilibrium equation is:

en=mu deu ¼ en=mi 1� ro exp Z=3ð Þei½ �f g2=mdei
(Eq 28)

in which n is the strain-hardening exponent, m
is the strain-rate sensitivity, eu is the strain in
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Fig. 16 (a) Comparison of model predictions (lines) and experimental measurements (data points) of the cavity
fraction as a function of effective strain during reversed torsion at 815 �C of Ti-6Al-4V samples with two

different levels of the initial cavity fraction. The model predictions are plotted for two different ratios of the Taylor
factor between the hard and the soft colonies (Mh/Ms). Source: Ref 50 (b) Comparison of model predictions (lines)
and measurements (data points) of the cavity fraction as a function of the macroscopic effective strain during
compression of Ti-6Al-4V samples following torsional predeformation to a strain level denoted ein. Both prestraining
and compression were conducted at 815 �C and an effective strain rate of 0.04 s�1. Source: Ref 51

Fig. 17 Microspecimen geometry used in cavitation
analysis by Zaki. Source: Ref 58
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the uniform region, and ei is the strain in the
defect portion of the specimen. Failure is
assumed to occur when the ratio ei/eu tends
toward infinity. It has been found that the
strain-rate sensitivity strongly affects the total
strain when the individual cavity-growth rate
is low (<3).
Macroscopic Load-Equilibrium Approach

with Stress Triaxiality. A load-equilibrium
approach that includes the influence of stress tri-
axiality developed within the neck on flow local-
ization and failure during tension testing
provides more physically realistic estimates of
ductility and failure mode than long-wavelength
models for both cavitating and noncavitating
materials (Ref 59, 60). For a sheet or round-bar
tension test, the formulation is based on:

� A discretized sample geometry rather than
merely two slices (e.g., Fig. 18)

� A description of the material flow (stress-
strain) behavior

� An appropriate load-equilibrium equation
(to describe the relationship between the
strain rate in each slice to that in the middle
slice)

� A specified boundary condition (e.g., con-
stant crosshead velocity)

For a cavity-free material flow behavior, the
simple engineering power-law formulation is
often used:

�s ¼ K�en _�em (Eq 29)

in which �s, �e, and _�e denote the effective stress,
effective strain, and effective strain rate, respec-
tively, and K, n, and m represent the strength
coefficient, strain-hardening exponent, and the
strain-rate-sensitivity index, respectively.

At any instant of deformation, the axial load
is the same in each element in order to maintain
equilibrium. When cavitation occurs, the load-
bearing area, Alb, differs from the apparent, or
macroscopic area, Am. Assuming spherical and
uniformly spaced cavities, the relationship
between the two quantities (denoting the initial,
or uncavitated, area as Asp

o ) is:

Am ¼ Alb= 1� Cvð Þ2=3 and Alb ¼ Asp
o exp ��eð Þ

(Eq 30)

The load borne by each slice is equal to the
product of its load-bearing cross-sectional area
and axial stress; the axial stress is equal to the
flow stress corrected for stress triaxiality due
to necking and is evaluated at a strain rate
corresponding to that which the material ele-
ments experience. The load equilibrium condi-
tion is thus described by:

�siA
i
lb=F

i
T ¼ �sjA

j
lb=F

j
T (Eq 31)

in which the subscripts and/or superscripts i and
j denote the corresponding parameters for ele-
ments i and j, respectively; FT represents the tri-
axiality factor; and Alb is the load-bearing area.
The triaxiality factor at the symmetry plane of
the neck (as well as away from this plane, at
least to a first order) is given by the following
equations for round-bar (FrT) and sheet (FsT)
specimen geometries:

FrT ¼ 1þ 2
U

w

� �� �
ln 1þ w

2U

� �� � ��1
(Eq 32a)

FsT ¼ 1þ 2
U

w

� �1=2
(

� ln 1þ w

U
þ 2w

U

� �1=2

1þ w

2U

� �1=2" #
� 1

)�1
(Eq 32b)

in which w represents the specimen half-diame-
ter or half-width, and U is the profile radius of
the neck (Ref 61).
The matrix strain rate, _�e, that is, the strain

rate of the cavity-free material, can also be
related to the macroscopic sample strain rate,
_�em (measured from the rate of change of the
specimen dimensions). Using power dissipation
arguments, the relationship between the two
strain rates is (Ref 57)

_�e ¼ 1=j rð Þ _�em (Eq 33)

in which r is the relative density of the speci-
men (r = 1 � Cv), Cv is the cavity volume frac-
tion, and j is the stress-intensification factor,
which, for spherical and uniformly distributed
cavities, is given by j = 1/r2/3.
Equations 29 to 33 can be used to simulate

the isothermal, hot tension test of a cavitating
material. Briefly, such simulations comprise
the following steps:

1. Specify the initial specimen geometry
(width, thickness, length, and initial cavity
volume fraction in each element) as well as
the overall nominal (or true) strain rate for
the tension test. Calculate FT for each ele-
ment using Eq 32(a, b).

2. Based on the geometry and local cavity vol-
ume fraction, determine the initial strain-rate
distribution for each element in the speci-
men relative to that in the central (reference)
element using Eq 31. Determine absolute
values of strain rate using the boundary con-
dition. Here, use is made of the material
constitutive relationship (Eq 29) with the
strain rate from Eq 33.

3. Impose an increment of deformation (based
on the strain rate calculated in step 2) and
cavitation (based on Eq 5) for each element,
and determine the new specimen geometry,
FT distribution, and local cavity volume
fractions.

4. Calculate the engineering stress and strain.
5. Calculate a new strain-rate distribution using

Eq 31 as in step 2.
6. Repeat steps 3 to 5 until failure

Simulation outputs include predictions of
engineering stress-strain curves and the total
elongation at failure. For example, typical pre-
dictions of tensile elongation for sheet materials
that exhibit strain-rate hardening (Ref 60) (with
a rate-sensitivity index of m) and no strain hard-
ening are shown in Fig.19. The figure illustrates
the increase of ductility with increasing m and
decreasing ZAPP. In addition, by incorporating
a fracture criterion (e.g., fracture occurs when
the cavity volume fraction in an element reaches
30%), the competition between flow-localiza-
tion- and cavitation-controlled failure can be
quantified and used to construct maps showing
the failure mode as a function of m and ZAPP.
For example, a failure-mode map for non-
strain-hardening materials is plotted in Fig. 20
(Ref 60). For deformation under superplastic

Fig. 18 Discretization of the sheet specimen for
simulation of flow localization and cavitation

during isothermal hot tension testing. Source: Ref 60
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Fig. 19 Macroscopic model predictions of total
elongation as a function of m and ZAPP for

sheet tension testing of samples with a 2% taper and
strain-hardening exponent n = 0. The individual data
points represent measurements taken from the literature.
Source: Ref 60
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conditions (m > 0.3) and ZAPP > 2, the map
shows that failure is fracture/cavitation con-
trolled. On the other hand, flow-localization-con-
trolled failure is seen to predominate only for
small values of the apparent cavity-growth rate.
Failure observations for several titanium alu-

minide alloys (Fig.21) illustrate the types of
behavior that can be modeled by this approach.
For example, a flow-localization type of failure
(Fig. 21a) has been observed for the orthorhom-
bic titanium aluminide alloy Ti-21Al-22Nb
deformed at 980 �C and a nominal strain rate
of 1.6 � 10�3 s�1 (Ref 63). On the other hand,
the gamma titanium aluminide alloy Ti-45.5Al-
2Cr-2Nb exhibits fracture prior to flow localiza-
tion during tension testing at 1200 �C and a
nominal strain rate of 10�3 s�1 (Fig. 21b) (Ref
64). The values of m, ZAPP, and the
corresponding failure modes that pertain to
these (and similar) experimental observations
are cross plotted in Fig. 20. The open data
points represent fracture-controlled failures,
while the solid data points are flow-localiza-
tion-controlled failures. The predicted failure
modes based on the values of m and ZAPP show
good agreement with the observations.
Hybrid Macro-Micro Modeling. The vari-

ous features of the macroscopic load-equilib-
rium model with stress triaxiality and the
microspecimen (cavity-coalescence) model
described in the previous two sections can be
combined to develop a hybrid macro-micro
model for the tensile behavior of cavitating
materials (Ref 47). In such a hybrid model,
the critical strain (ecr) for intercavity ligament
rupture due to internal necking at a microscale
is determined from simulations of the deforma-
tion of a microtension specimen (Ref 58); these
simulations provide ecr as a function of cavity
spacing, d, and material parameters such as
the strain-rate-sensitivity index (m) and the cav-
ity-growth rate (Z). The steps of this hybrid
model are similar to the ones of the macro-
scopic load-equilibrium approach. The major
difference lies in the fact that the load-bearing

area is determined from the macroscopic area
of each slice of the specimen and the projection
of the void area in the horizontal plane of this
slice. Therefore, the load-bearing area is not
necessarily constant within a particular slice at
a given level of tensile elongation. Rather, it
is smallest in regions heavily populated with
cavities or in regions in which extensive coales-
cence has occurred. In addition, the location of
the minimum load-bearing area within a given
slice is not the same at two different levels of
deformation because of cavity coalescence.
For example, the minimum load-bearing area
may have been located in a region with the
highest local cavity density during an initial
deformation stage. However, because not all
cavity coalescences take place simultaneously
but rather progress with strain, the minimum
load-bearing area at a later stage of deformation
may have then been located where the maxi-
mum number of coalescences had occurred.
Model predictions of engineering stress-

strain curves from both a macroscopic model
and a hybrid macro-micro model are presented
in Fig. 22 for a non-strain-hardening material,
assuming a range of individual cavity-growth
rates, Z, and a constant (i.e., no new nucleation)
cavity density of N = 100 cav/mm2. The hybrid
model predicts that flow localization occurs
earlier during the deformation/cavitation pro-
cess compared to the macroscopic model. Fur-
thermore, flow localization appears to be more
predominant in the hybrid model for the cav-
ity-growth rates Z considered. In fact, for Z = 2,
the shape of the engineering stress-strain
curve suggests noticeable flow localization
for the hybrid model but a fracture-controlled
failure mode for the macroscopic model. The
predicted trends are similar for higher initial-
cavity densities as well. Such behavior can

be ascribed to the fact that the hybrid analysis
considers randomly, rather than uniformly,
dispersed cavities within the specimen, and
the cavity population and coalescence in a
particular area affect the load-bearing area
(Ref 47). Therefore, the load-bearing area is
constant within a slice for the macroscopic
model. On the other hand, this area varies even
within the same slice for the hybrid model, inas-
much as it depends on the local cavity concentra-
tion and/or coalescences that occur in a particular
(local) region of the slice. As a result, as deforma-
tion proceeds, the load-bearing area is lower in
the hybrid model. Hence, the load-bearing area
decreases more rapidly with strain in the hybrid
model, and the engineering stress is lower and
decreases more rapidly with engineering strain.

Summary

The parameters that govern the cavitation
process during the hot working of metals have
been summarized. Models of plasticity-con-
trolled cavity growth, both for uniaxial and
complex (multiaxial) states of stress, are rela-
tively advanced compared to those for the
nucleation and coalescence of cavities. In many
cases, mesoscale models of plasticity-controlled
growth can provide reasonable estimates of the
average cavity size. Microscale analyses enable
the prediction of the size of the largest cavities
by taking into account local microstructure and
texture effects. Nevertheless, models of cavity
nucleation and coalescence are important with
respect to predicting overall tensile ductility.
Last, models are being developed to treat the
shrinkage of cavities that result from changes
in stress state/strain path during complex indus-
trial hot working processes.
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Fig. 20 Failure-mode map developed from
macroscopic model simulations of the

sheet tension test. Model predictions of the failure mode
are compared to experimental observations (data points).
Source: Ref 60

Fig. 21 Micrographs of (a) an orthorhombic titanium aluminide alloy that failed in tension by flow localization
(Source: Ref 63) and (b) a near-gamma titanium aluminide alloy that failed in tension by fracture

(cavitation) (Source: Ref 64)
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Modeling of Cavity Initiation and Early
Growth during Superplastic and Hot
Deformation
A.K. Ghosh and D.-H. Bae, University of Michigan
S.L. Semiatin, Air Force Research Laboratory

THE FORMATION AND GROWTH of
internal voids in metallic alloys are of con-
siderable concern in components produced by
superplastic and hot forming processes. Grain-
boundary cavitation, observed under tempera-
ture and strain-rate conditions for which the
boundaries are weaker than the grain interiors,
often results from grain-boundary sliding and
the concentration of strain around nondeform-
able particles and hard second phases located
at grain boundaries. Strain incompatibility
between phases is the primary mode of cavity
initiation during elevated-temperature deforma-
tion, but sometimes, cavity nuclei pre-exist in
multicomponent systems or are generated by
the intersection of slip within materials. The
pre-existence of cavities is a function of proces-
sing conditions to which structural materials are
subjected and are thus often dependent on:

� Residual stresses developed during cooling
from a high temperature due to the crystallo-
graphic anisotropy of misoriented grains/
phases, with such phases invariably exhibit-
ing different coefficients of thermal
expansion

� Gradients in deformation and temperature
that are impossible to avoid during solidifi-
cation and deformation processing

Pre-existing cavities are usually very small in
size. Nevertheless, such cavity nuclei can
enlarge during subsequent deformation. Grain
boundaries represent a region with material
properties that are different from those of the
grain interior, and this can create a tendency
for grain-boundary shear and sliding under the
traction between grains. This condition is illu-
strated in Fig. 1, which shows that triple-junc-
tion regions can develop voids more easily
than other regions if grains slide relative to
each other like nondeforming blocks. At lower
deformation temperatures, at which grain-

boundary regions are not weaker than the grain
interiors, the intersection of slip with particles
and the intersection of slip from different
regions of a crystal can open up voids. These
concepts are instructive but somewhat oversim-
plified, because the deformation of metallic
alloys is not uniform everywhere. For example
Fig. 2 shows the results of finite-element analy-
sis calculations for the strain distribution in
polycrystalline metals composed of strain-hard-
ening grains of different orientations and cohe-
sive grain-boundary layers that exhibit a
viscous response. The strain in the material is
seen to be nonuniform, even in the absence of
nondeformable particles. Strain incompatibility
can thus be generated easily, and this too can
lead to the nucleation of voids.
A careful examination of the microstructures

in engineering alloys, such as those based on
aluminum and titanium, has shown that many
voids are nucleated due to incompatible defor-
mation between phases (in accordance with
the mechanisms suggested by Fig. 1 and 2),
although some cavities may pre-exist after pri-
mary processing and enlarge during subsequent
hot deformation. Even when cavities are very
small (e.g., nanoscopic in size), increased levels
of local hydrostatic stress may arise from plas-
tic constraint and lead to rapid dilatation of
interfacial defects, followed by a slower growth
rate due to reduced constraint as the voids
expand further. In the remainder of this article,
this broad understanding is elaborated.

Early Concepts of Creep Cavitation

In early theories of cavitation inmetallic mate-
rials, several key ideas were developed for creep
deformation and then applied to superplastic
and conventional hot deformation. In these
approaches, creep at low stresses and the

diffusional contribution to cavity enlargement
were considered the most important issues.
These metallurgical processes were considered
to be slow, permitting rounding of voids. The
essential idea was that a minimum stress equal
to 2g/r (g is surface tension; r is void radius) must
be applied to a solid to keep a void open; other-
wise, surface diffusion would close it. Subse-
quently, cavity-growth models were developed;
these analyses focused on stress concentrations
along the grain boundaries, with diffusional flow
relaxing tensile stresses at cavity tips on the grain
boundary and higher tensile stresses developing
in regions between cavities. This leads to higher

Fig. 1 Schematic illustrations of grain-boundary
sliding events that open voids at grain-

boundary triple junctions. The simplicity of these sliding
events ignores the distribution of strains and stresses that
can occur in various parts of a polycrystalline solid.
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vacancy concentration between the cavities and
vacancy transport from the regions between cav-
ities toward the cavities themselves. The enlarge-
ment of the cavities was believed to be primarily
due to such vacancy transport, and the rounding
of the cavities to be due to surface diffusion.
Thus, the overall cavitation process was thought
to be dominated strongly by diffusional
mechanisms.
Two subsequent developments necessitated

re-examination of these ideas for higher-melt-
ing-point alloys that were superplastic and
alloys that were found to be superplastic at high
strain rates at which the diffusional approaches
do not produce meaningful results. In particu-
lar, hot working and superplastic forming
processes take advantage of the enhanced
strain-rate sensitivity and formability of materi-
als at elevated temperatures. In forging and
forming processes, during which a desired
shape is imparted to a workpiece, internal dam-
age in the form of voids often develops in many
engineering alloys. High-temperature cavitation
models developed initially for the prediction of

creep life in limited-ductility materials with
creep-resistant microstructures (Ref 1–6) were
extended to material systems exhibiting several
hundred to thousand percent tensile elongations
at higher strain rates and temperatures suitable
for forming applications. Re-examination of
the microstructural and phenomenological
details of cavitation for the formable alloys
(e.g., cavity sources, distribution, size, and
volume fractions) show, however, a lack of cor-
respondence with existing creep models, such
as that of Hull and Rimmer (Ref 1). For
example, in a diffusional void-growth model,
a regular distribution of small voids is assumed
to be situated on grain boundaries normal to the
maximum tensile stress direction, and growth
occurs by vacancy transport along the boundary.
Voids in formable alloys, however, seldom form
as arrays on single boundaries but rather initiate
sporadically and are associated with certain
nondeformable particles or hard phases whose
spacing is of the order of two to five grains or
more (Fig. 3). In many alloys, single particles
intersect one or two grain-boundary planes.

An unsettling issue with early (diffusion-
based) models is the significant underprediction
of void size and volume fraction observed with
increasing deformation during hot forming,
particularly at modest levels of strain (<0.5),
for which diffusional cavity-growth processes
have been generally accepted to operate (Ref
7). Furthermore, diffusional growth, driven by
an effective stress of s � 2g/r (in which s
denotes the applied stress), is unsuitable for
nanometer-scale voids, because this stress pre-
dicts unrealistic values of the initial void-
growth rate, and a physically implausible
adjustment of the value of r then becomes
necessary.
To overcome the deficiencies of early cavita-

tion models, an alternate approach based on
interface-constrained plasticity has been devel-
oped and validated. This new model, summar-
ized as follows, explains why the cavity-
growth rate is enhanced by increased strain rate,
larger particle size, and decreasing forming
temperature/lower m-value (strain-rate sensitiv-
ity parameter) in metals, features that cannot be
quantified by the diffusional-growth mecha-
nism. The predictions of the model are capable
of explaining experimental observations,
including what appears to be continuous
nucleation of cavities during deformation.

Cavitation Observations during
Hot Working

To place the basis for the interface-con-
strained plasticity cavitation model into proper
perspective, the microstructural details of the
early stages of cavitation are summarized in
this section. In particular, careful observations
have been made for two materials representing
a wide range of microstructure and mechanical
properties:

� A modified 5083 aluminum alloy (com-
position in weight percent: A1-4.5Mg-
0.4Cu-0.7Mn) processed to fine-grained,
recrystallized sheet (grain size �7 mm) for
superplastic forming applications

� A beta-annealed Ti-6Al-4V plate containing
large colonies (>100 mm) of a and b
lamellae

The aluminum alloy contained nondeformable
hard phases, such as Al6Mn particles and iron-
aluminum intermetallics, at which cavities were
found to nucleate (Fig. 4). For the titanium
alloy, large a-layers lying along the boundaries
of lamellar colonies, having higher strength
than the colony structure, create incompatibility
for shear. The thin layer of softer b-phase con-
strained between this layer and the colony-a
plates has been found to generate cavitation.
The two alloys were tested under uniaxial ten-
sion at constant true strain rate (Ref 8) at 450
to 550 �C and 10�4 to 10�2 s�1 (aluminum
alloy) or 600 to 850 �C and 10�2 to 3 s�1 (the
titanium alloy), representing superplastic

High
strain
level

High
strain
level

Low
strain
level

High

Low

Fig. 2 Calculated distribution of effective strain in polycrystals of different grain sizes under uniaxial tension.
(a) Grain size = 4 nm. (b) Grain size = 25 mm. A smaller grain size shows more strain near the grain

boundaries, including lobes of shear strain, but the coarser grain size produces higher overall strain within the grain,
concentrated more in the vicinity of grain boundaries. Acknowledgment: Calculations performed by Xiang Li

Fig. 3 Schematic illustration of morphologies of grain-boundary (GB) cavity sources. (a) Hull-Rimmer cavitation in
creeping solids. (b) Nondeformable particles in a fine-grained superplastic matrix
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forming and hot forming conditions, respec-
tively. Sectioning of samples after interrupted
tests (three orthogonal planes per test condition)
revealed the evolution of cavitation with strain,
as determined by optical, scanning, and trans-
mission electron microscopy (TEM), that is, at
various magnification levels. Quantitative
image analysis techniques were used to exam-
ine and monitor cavitation with strain. A prob-
lem with particle disintegration during sample
preparation and debonding from the matrix
was found for the aluminum alloy but was
minimized by using special polishing
procedures.
An analysis of the morphology of voids in

the aluminum alloy indicated that they were
associated with the particle-matrix interfaces
and were cracklike in geometry (i.e., penny-
shaped) when they were very small. Also, at
inception, the void sizes found by TEM were
a few nanometers, but they did not self-sinter/
close even after an exposure at 550 �C. These
findings rule out the occurrence of Hull-
Rimmer creep in these materials, except
perhaps at low strain rates. Furthermore, the
aluminum sheet contained some initial voids
before recrystallization. The total number was
found to decrease somewhat with annealing at
550 �C. However, even after 3 h of annealing,
some voids remained, although sintering theory
suggested that only 7 to 8 min would be needed
for void closure by surface tension at this

temperature. While the pre-existing voids
before superplastic deformation were few in
number, these observations question the effec-
tiveness of surface tension in creating healed
and well-bonded interfaces. Partial sintering
leaves weak (defective) regions. Such interface
defects, as well as constrained, thin regions of
matrix between harder phases, are likely sites
for subsequent void nucleation. It is, however,
possible in some materials to generate good
chemical wetting and essentially defect-free
interfaces, whereas different sites may contain
unsealed nanovoids that can grow in size.
Based on the experimental observations, ini-

tial void growth thus appears to occur along
particle-matrix interfaces in a manner similar
to crack propagation, with only slight extension
normal to the interface. Occasionally, near
grain boundaries, slight extension along the
grain boundary is also possible due to intersec-
tion of an interface crack with the boundaries,
possibly due to grain-boundary sliding effects,
as illustrated in Fig. 1. As shown in Fig. 4
(a and b), when the entire interface is debonded,
a void larger than the debonded particle is cre-
ated; that is, a step jump in void size occurs.
The particle that created this larger void easily
falls out during specimen preparation. Freshly
debonded voids are often faceted and, in rare
situations, still hold the particle that generated
them. This is understandable from the statistics
of the metallographic sectioning process, which

seldom provides an opportunity for the reten-
tion of a fully debonded particle within its
corresponding cavity.
Voids have also been found to nucleate

continuously as a function of strain in single-
and two-phase metallic alloys, intermetallics,
and ceramics (Ref 9–12); that is, more cavities
become visible with increasing strain. Figure 5
shows this behavior for the aluminum alloy.
Not only do more cavities nucleate with
increasing strain, but the rate of continuous
nucleation also increases with increasing strain
rate and decreasing temperature, both of which
can be attributed to the higher flow stress of the
matrix under these conditions. Thus, the nucle-
ation of new cavities is believed to be stress-
dependent, which is expected on the basis of
the stress necessary to break bonds in the
regions of interfacial defects.
Any model purporting to describe the early

stage of cavitation must therefore address
experimental observations of continuous nucle-
ation, cracklike interface cavities, cavity growth
from nanometer-scale sizes, and debonding at
particle interfaces and formation of large-fac-
eted cavities.

Analysis of Cavitation under
Constrained Conditions

Model Formulation. Based on the phenome-
nology of cavitation described previously, a
model has been developed to describe cavity
growth from nanometer-scale defects pre-existing
at the particle-matrix interface assumed to be
strongly bonded, except in a region of the
defect that is assumed to be penny-shaped
and serve as the cavity nucleus. Enlargement
of such cavity nuclei occurs under stresses
normal (and/or parallel) to the interface by
local plasticity at the tip of the cracklike defect,
because a debond cannot support a tensile trac-
tion across it. In the well-bonded region away
from such a defect, the normal stresses and
hydrostatic tension are high (Ref 13), leading to
low rates of deformation here, but at the free sur-
face of the defect, stresses are high and deviatoric
in nature, thus producing high local strain rates.
For a stress normal to the interface, the con-
strained region around the particle is schemati-
cally illustrated in Fig. 6(a). The analysis is
performed by applying a known stress to the
matrix away from the particle and then comput-
ing the higher net stress carried by the region
containing the particle due to load transfer from
the matrix, as in a composite material. This calcu-
lation is based on the size of the particle and that
of the representative cell surrounding the particle,
both of which can be estimated from microstruc-
tural observations.
For a thin layer of matrix attached to the par-

ticle surface containing the defect, the matrix is
assumed to be perfectly bonded to the particle
on its bottom edge along an exterior circle
(radius = R) (Fig. 6b). The circumferential

Fig. 4 Cavity initiationat the interface ofnondeformable secondphases. Al-Mg-Cu-Mnalloy showing (a) a cracklike cavity
at the particle interface and (b) complete debonding around a particle (embedded). Ti-6A1-4V showing (c) a cavity

at the interface of grain-boundary a-phase and (d) a schematic of the constrained b-layer in which the cavity nucleates

Modeling of Cavity Initiation and Early Growth during Superplastic and Hot Deformation / 341

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



strain rate ( _ey) along this outer circle is fixed at
zero (plane strain), because the particle is
assumed to be nondeformable. The metal
deforms, and at the free surface of the void,

strain rates are higher due to a lack of con-
straint, that is, the radial stress sr = 0, which
produces deviatoric stresses and plastic flow.
The metal matrix below the thin region of

disbond is larger in area than the penny-shaped
cavity that is shown, and hence, its deformation
rate is of little consequence to the enlargement
of the penny-shaped cavity and is therefore
neglected. The deformation of the ring-shaped
slab of matrix attached to the particle can be
analyzed with the assumption of volume con-
stancy. The tensile strain normal to the inter-
face (ez) leads to outward expansion of the
hole interior, described therefore as interface-
constrained dilatational growth of the cavity.
The state of strain at the inner diameter of the
cavity (radius = r) is primarily one of circum-
ferential tension, whose magnitude is propor-
tional to (R/r)2; that is, it increases rapidly
with particle size R. Even under elastic loading
of the overall material, localized plastic strain
at the void tip could initiate dislocation glide-
and-climb activity that leads to debonding and
hence cavity nucleation and growth. There is
no impediment to plasticity and growth of the
nanocavity on the particle interface for the ori-
entation shown, and its growth rate is predicted
by geometry and volume conservation as long
as the cavity size is small relative to the particle
size R.
The numerical solution of the incremental

cavity-extension problem involves a displace-
ment-based approach. The initial height of the
slab is assumed to be h0. After that, height
increases due to the axial (z) strain increment,
Dez, volume constancy, leads to the following
relation:

pðR2 � r2Þh0 ¼ pðR2 � r21Þh0ð1þ DezÞ (Eq 1)

Here, r1 is the enlarged diameter of the cavity
after the axial strain increment. Furthermore,
r1 = r(1 + Dey), in which Dey is the
corresponding increment in circumferential
strain at the inner surface of the cavity when
the increment Dez is imposed on the thin slab.
Combining this expression with Eq 1, one
obtains:

ð1þ DezÞ ¼ R2=r2ð Þ � 1

R2=r2ð Þ � ð1þ DeyÞ2
(Eq 2)

After some further algebra, a simplified repre-
sentation of the cavity-growth description in
terms of time derivatives can be derived:

r ¼ strain-rate ratio ¼ _ey= _ez
¼ 0:5ððR=rÞ2 � 1Þ=ð1þ 2ezÞ (Eq 3)

The detailed strain-rate distribution around the
penny-shaped cavity can be estimated using a
numerical procedure in which the interface slab
is first discretized into a number of elements
(Fig. 7). At the edge of the particle (xn = R),
_ey ¼ 0, and hence, r = 0. The strain-rate ratio,
r, increases toward the hole in the thin slab of
matrix. For n elements chosen within the
matrix, a small Dez is applied at xn = R, and
the change in height of this element is calcu-
lated, thereby dictating the value of xn�1 in
the element to its right. The corresponding
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Fig. 5 Total number density of all voids in an Al-Mg-Cu-Mn superplastic alloy as a function of strain at various
temperatures and strain rates, showing that voids nucleate continuously during deformation
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Fig. 6 Cavity growth at matrix/hard particle interface, (a) Flow incompatibility around hard phase, and the
development of a constrained matrix zone. (b) Intensified deformation at the tip of a penny-shaped cavity

with large circumferential tension
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stress distribution is calculated by first comput-
ing the effective strain rate from r as:

_e ¼ ð2=
ffiffiffi
3
p
Þð1þ rþ r2Þ0:5 _ez

and then using a material constitutive relation of
the form s ¼ k _em (where K is the strength
coefficient, and m is the strain-rate sensitivity
exponent) to calculate the effective-stress
distribution. The sz distribution can then be
determined by applying the definition of the von
Mises effective stress, which gives sz ¼ 1:414
s½ðb� aÞ2 þ ða� 1Þ2 þ ð1� bÞ2��0:5, where
the stress ratios a and b, defined as a = sy/sz

and b = sr/sz, are related to the strain-rate ratio
through the associated flow rule, r = (2a � b �
1)/(2� a � b).
When the cavity grows to a certain size (i.e.,

is completely debonded from the particle),

continued growth is assumed to occur under
unconstrained conditions and is then modeled
in accordance with the classical Hancock rela-
tion, d(lnR)/de � Z/3, in which Z denotes the
cavity-growth parameter.
Model Predictions. Figure 8 shows typical

model predictions for the growth of a penny-
shaped cavity under interfacial constraint.
Figure 8(a) shows how the growth of a nanome-
ter-scale defect is strongly influenced by the
particle size, R, assuming that the same-sized
initial defect exists in each case. If optical
microscopy is used to detect voids and its reso-
lution is 0.8 mm, it would be expected that the
voids produced by the larger particles would
be detectable at strain levels of 3 to 4 % for
m = 0.3, but cavities resulting from a 0.1 mm
diameter particle would not be visible until a
much larger strain. Figure 8(b) shows

constrained-growth predictions for materials
with m = 0.3 and 0.5. Constrained growth is
faster for materials with lower m-values.
Furthermore, larger initial defect size can cause
early visibility (using optical microscopy) and
early debonding of the particle. The dashed
lines in Fig. 8(b), indicative of unconstrained
cavity growth, reveal a slower growth rate after
debonding (Ref 14) and suggest that voids may
not be visible until the imposed strain becomes
very large. Thus, depending on the particle size,
initial defect size, and dependence of m versus
e curve, particles will debond and enter the
unconstrained growth phase at different strains.
In other words, an increasing number of voids
will become visible, with increasing strain giv-
ing rise to what appears to be continuous
nucleation.
Figure 9 shows the results of similar calcula-

tions for Ti-6A1-4V (with a colony-alpha
microstructure) as a function of temperature.
The m-value of this material increases with
temperature. A smooth transition to uncon-
strained growth is incorporated through pro-
gressive debonding and a gradual loss of load-
carrying ability. The predicted strain for visible
cavities increases with increasing temperature,
in broad agreement with experimental
observations.
Model Implications. The continuum analy-

sis described previously is justified even for
small cavities (e.g., nanoscale voids), because
while flow begins with a few dislocations at
the void tip, the dislocation density must be
high enough to accommodate the high local
strain rates that are developed during cavity
growth. The number of participating disloca-
tions increases with increasing void size as the

Fig. 7 Schematic illustration of matrix discretization used to estimate the kinetics of cavity growth under constrained-
plasticity conditions
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movement of dislocations produces surface
steps at the interface, and the interface delami-
nation process continues (Ref 15). Figure 2
shows another reason to rely upon the contin-
uum-type analysis, inasmuch as it captures and
distinguishes between the strain distribution on
the nano- and micrometer scales. The complex-
ity of molecular dynamics analysis, which does
not simulate realistic strain rates for viscous
processes, is thus avoided.
Because only one grain-boundary plane

intersects a particle in most cases, and the inter-
facial cavity is not always at a grain boundary,
vacancy transport along grain boundaries can-
not be a major contributor to the interface-con-
strained plasticity-growth process or its crack
like geometry. In a few instances when the cav-
ity does intersect a grain-boundary plane, a
slight extension along the grain boundary may
be seen, but not nearly of the magnitude as that
which occurs along the interface due to plastic-
ity. It should be borne in mind, however, that
while vacancy transport and grain-boundary
sliding are unable to accommodate the large
circumferential tension near the defect, the

far-field stress, strain, and strain rate are still
influenced by the sliding contribution inherent
in the superplastic constitutive law. The
m-value (dlogs/dlog _e) corresponding to the
applied strain rate directly influences the force
balance across the interface and produces a
strong effect on the rate of growth of the
penny-shaped void (Ref 14).
The aforementioned model of interface-con-

trolled growth of nanoscopic voids followed
by unconstrained growth at larger void sizes
avoids the uncertainty of earlier, diffusion-
based approaches with regard to the choice of
the initial cavity size and cavity-stability con-
siderations using surface tension rules. The
new model provides good estimates of cavity
nucleation and growth behavior during hot
forming and superplastic forming of materials
that are consistent with measurements.

Summary

A new outlook on the mechanism and kinet-
ics of early-stage cavity growth, heretofore

referred to as nucleation, during hot working
and superplastic forming of metals is emerging.
The key components of this description are:

� Interface defects between a hard phase and
the deformable matrix initiate cracklike
growth during the early stages of deforma-
tion due to local plastic constraint.

� The model associated with the new approach
indicates that early growth by interface-con-
strained plasticity growth is extremely rapid
for submicron-sized voids and likely over-
shadows diffusional growth in superplastic
(and nonsuperplastic) alloys.

� Constrained growth through the submicron
range is governed by the size of the hard
phase, the strain-rate sensitivity of the alloy,
and the strain near the hard phase.

� As the interface debonds, the constraint is
lost, and general plasticity begins at void
sizes in the range of 0.5 to 5 mm. Because
voids with sizes below �1 mm are not read-
ily observable, submicron growth of cavities
is not readily observed, and when such cav-
ities do grow to observable size, nucleation
is said to occur. So-called continuous nucle-
ation occurs because smaller particles have
smaller constrained zones and require more
strain to produce complete debonding.
Hence, the small voids need more strain to
become visible.

� Continuous nucleation effects have been
combined with a model of the growth of
individual cavities. The predictions for an
aluminum alloy are in reasonable agreement
with cavitation data obtained from con-
trolled tests. Cavitation rates can increase
2 to 5 times due to continuous nucleation.

� Pre-existing cavities of observable size are
few in number. Cvo, a measure of initial cavity
volume fraction often used in the literature,
does not adequately capture the physics of
the early stage of the cavitation process.
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Models for Fracture during
Deformation Processing
Howard Kuhn, The Ex One Company

IN VERY BROAD TERMS, MODELING
OF FRACTURE DURING DEFORMATION
PROCESSES has been a major focal point for
production engineers since cracking first
occurred as a source of scrap in manufacturing.
G. Sachs, in his 1954 compilation of articles in
Fundamentals of the Working of Metals (Ref 1),
pointed out that “Two characteristics of any
metal or alloy are of particular interest to the
engineer engaged in the working of metals.
The one is the ability of the metal to withstand
permanent or plastic changes in shape or defor-
mations, and it is called ductility. . . The other
metal property of interest to the processing
engineer is the resistance of the metal to
deformation. . . For any given material to be
processed, both the ductility and the deforma-
tion resistance may differ with the variables of
processing within very wide limits.” In other
words, it was recognized early on that the plastic
deformation and fracture behavior of materials
were functions not only of the material but the
processing conditions as well.

Background

At that time, ductility was primarily
expressed through measurements of elongation
and reduction of area in a tension test. Ongoing
testing and everyday experience illustrated that
the ability of a metal to tolerate deformation
without fracture was usually enhanced by
increasing temperature and by decreasing rate
of deformation. It was also recognized that duc-
tility was strongly dependent on the size and
amount of particles or precipitates dispersed
throughout the material. Increasing volume
fraction of particles drastically reduces tensile
ductility (Ref 2) by providing sources for void
initiation, which then grow and coalesce into
cracks with increasing plastic deformation.
Process engineers further understood that

tensile stresses, or better yet, hydrostatic ten-
sion, played a strong role in fracture during
metalworking processes. Pioneering work by
Bridgman (Ref 3) during WWII showed that
deforming materials under high superimposed

hydrostatic pressure dramatically enhanced
their ductility, so it was presumed that hydro-
static tension would have the opposite effect.
It was further recognized that secondary tensile
stresses occur in generally compressive pro-
cesses, such as the hoop stress due to barreling
in axial compression of a cylinder. However,
plasticity theory was in its infancy and not yet
available in convenient form for everyday
practitioners to determine the detailed stress
and strain conditions throughout a workpiece
undergoing practical metalworking operations.
Early “models” of fracture in metalworking

processes assembled these data for a given
material, which was expressed through:

� Tabulations (both mental and on paper) of
the ranges of temperature and deformation
rate at which cracking was likely

� Sketches of crack locations in various
processes (Fig. 1), with guidelines (again,
both mental and on paper) on their
prevention

Experience-based knowledge was the founda-
tion of predictive models for process design to
avoid defects. Today (2009), such experience-
based knowledge is supplemented by
analytical methods using models of fracture to
provide a more reliable approach to trouble-
shooting fracture problems in processes, or to
design a process to avoid fracture.
Physical modeling of processes, using soft

materials such as plasticene (nonhardening
clay) or lead, became popular in the evolution
of plasticity analysis. Grid lines were placed
on the model material, which was then formed
by low-cost tooling that represented the actual
process of interest. The deformed grid lines
then revealed the pattern of deformation and
strains occurring at various points throughout
the workpiece. Compressed plasticene cylinders
with internally gridded meridian planes were
used to determine the degree of inhomogeneity
due to various lubrication conditions (Ref 4, 5),
and lead billets with internally gridded planes
were used to understand the inhomogeneity of

Fig. 1 Sketches of processing defects form a basis for early models. (a) Forging or compression test specimen.
(b) Extrusion. (c) Drawing. (d) Forging with no horizontal constraint at die surface Source: Ref 1
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plastic deformation during open-die forging and
rolling (Ref 6) and extrusion (Ref 7). Plasticene
and copper specimens with grid lines were used
to interpret the complex distribution of strains
in shear spinning (Ref 8). Plasticene with small,
embedded metal cylinders has also been used to
visualize the localized deformation around
inclusions leading to void initiation, growth,
and coalescence in ductile fracture (Ref 9).
Translation of the strain measurements into
stress distributions was accomplished by devel-
opment of the visioplasticity method. Measured
grid displacements were first transformed into
strain-field calculations, and the Levy-Mises

plasticity equations were then used to calculate
the accompanying stress fields (Ref 10). This
method proved tedious but did provide some
important insights into the critical stresses in
the vicinity of crack formation. Modern tools
for digitizing images would streamline the
visioplasticity method today, but its use is
superseded by computerized finite-element
analytical methods, as discussed later.
The slab method of analysis is of little help in

modeling fracture during plastic deformation pro-
cesses because it considers deformation to be
homogeneous through the thickness of the work-
piece, and it is clear that nonuniformity of

deformation is a key ingredient leading to stress
states favorable to fracture. Nevertheless, the
method has been used to interpret fracture condi-
tions during compression of fiber-
reinforced composite plates (Ref 11). As shown
in Fig. 2, compression of a composite plate
(25 vol% stainless steel wire in a 6061 aluminum
matrix) perpendicular to the fiber direction leads
to void formation around the fibers near the plate
ends. During compression of a plate, the lateral
pressure, q, and normal pressure, p, increase
toward the lateral central axis of the plate
(Fig. 3); the rate of increase depends on the
lumped parameter mL/h, where m is the coefficient
of friction, andL andh are the instantaneous length
andheight of the plate. Comparing the lateral posi-
tions of the voids with the local stresses calculated
by the slab method, the ratio of lateral pressure
to vertical pressure, q/p, required to prevent void
formation was calculated. Figure 4 shows the

Fig. 2 Macrographs of the polished mid-plane of a composite plate compressed to 50% reduction in height.
The innermost evidence of void formation around reinforcing fibers delineates between sound and

damaged material. Matrix is 2024 aluminum alloy with 25 vol% NS355 stainless steel wire (0.23 mm diameter)
reinforcement. Plates are 6.4 mm thick, 12.7 mm wide and variable length from 6.4 to 19.0 mm. Source: Ref 11

Fig. 3 Distribution of vertical forming pressure, p, and
lateral internal pressure, q, in the lateral

direction for two different values of mL/h. Source: Ref 11

Fig. 4 Values of calculated local lateral pressure to
axial pressure ratio (q/p) at measured positions

of the transition between sound and damaged material
in compressed composite plates of various geometries at
20% reduction in height. Source: Ref 11
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experimental results for 20% compression and
various forging parameters mL/h. Repeating
the tests for various degrees of compression,
a forming limit was determined for the com-
posite (Fig. 5).
The upper-bound method of analysis was

developed primarily to provide a quick determi-
nation of the pressures required in various
metalforming operations (Ref 12). Based on
equating the external work done to the energy
dissipated by an assumed flow field in the
workpiece, its first manifestation considered
rigid rectangular, triangular, or trapezoidal
blocks separated by lines of velocity disconti-
nuity. The method involves searching for the
pattern of blocks to represent metal flow that
minimizes the overall deformation energy and
thus the forming load. While the method is
not useful in determining localized stresses for
prediction of crack formation, it can be used
to determine the process conditions likely to
produce defects. Johnson and Kudo (Ref 13)
showed that in a double forging/extrusion oper-
ation, a flow field that assumed cavity forma-
tion at the centerline (known as central burst)
would lead to the lowest forming load under
certain geometric conditions (Fig. 6). Avitzur
(Ref 14) later extended the upper-bound
method by using continuous functions to

represent the flow field and applying optimiza-
tion techniques to determine the flow functions
that minimize the energy of dissipation.
Perturbations can be incorporated in the flow
functions to simulate defect formation. In some
situations, the external work required to create
the flow field with defects is lower than the
work required for sound flow, as shown in
Fig. 7 for wiredrawing. The calculated external
applied load (drawing force) is plotted along
the vertical axis as a function of die half-angle.
For angles less than a1, sound flow occurs, and
for angles greater than a2, sound flow occurs
with a dead-metal zone forming at the die.
Between these two limits, however, a flow field
allowing for central burst formation requires
a lower load than either of the sound flow
modes. Therefore, in this range of die angles,
a necessary condition for central burst cracking
is satisfied. Repeated calculations using the

upper-bound method provide the combinations
of die angle and reduction that cause central
burst (Fig. 8) for various m factors (0 < m <
1.0) representing friction along the die surfaces.
For a given value of friction, internal cracking
is predicted to occur for die angle and reduction
combinations below the line, and no defects
occur above the line. Note that, for a given
die angle, one approach to avoid central burst
is to increase the reduction! This example is a
clear illustration of the role of process para-
meters (in this case, geometric conditions) in
the occurrence of fracture. It should be repeated
that the upper-bound method for defect
prediction gives only a necessary condition.
The strain-hardening and strain-rate-hardening
characteristics of the material can be included
in the analysis, but the material microstructural
characteristics are not included. Therefore,
when operating in the central burst range illu-
strated in Fig. 8, fracture can occur; whether
or not it will occur depends on the material
structure (voids, inclusions, segregation, etc.).
Experimental validation of the forming limits
in Fig. 8 showed that, of 500 extrusions in the
central burst zone, 4.5% of the parts had central
burst, while none of 500 extrusions in the safe
zone showed central burst (Ref 17).
Slip-line field analysis provides a geometric

method for calculation of stress states in plastic
deformation processes, particularly the hydro-
static stress state. While strictly applicable only
to non-work-hardening material and plane-
strain deformation, the method provides useful
insight into the role of deformation process
geometric conditions on the potential for frac-
ture and its location in the workpiece. For
example, double indentation by flat punches is
a classical problem in slip-line field analysis,
illustrated in Fig. 9 for various ratios of

Fig. 5 Forming limit in terms of the limiting pressure
ratio q/p to prevent void formation as a

function of height reduction. Source: Ref 11

Fig. 6 Upper-bound analysis of a double extrusion-forging process showing sound flow on the left and cavity
formation at the centerline on the right. Source: Ref 13

Fig. 7 Drawing force as a function of die half-angle.
Central burst formation requires lower

external applied load than sound flow in the region
between a1 and a2. Source: Ref 25

Fig. 8 Upper-bound prediction of central burst in wire
drawing in terms of reduction and die half-

angle. Increasing friction, expressed by the friction
factor, m, increases the defect region of the map.
Source: Ref 25
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workpiece height to punch width, h/b. Bound-
aries of the deformation zone change as h/b
increases. For h/b < 1, the deformation region
is spread over an area nearly as large as the
punch width. When h/b > 1, the deformation
zone meets the centerline at a point. For any
configuration, the punch pressure and the
hydrostatic stress at the centerline can be calcu-
lated by traditional slip-line field analysis
(Ref 19). Figure 10 shows that both punch pres-
sure and centerline hydrostatic stress increase
with increasing h/b. The critical geometry is
h/b = 1.8 because the hydrostatic stress
becomes tensile for h/b ratios greater than this
value. The tooling arrangement and deforma-
tion geometry in Fig. 9 approximates several
other metalworking processes, including roll-
ing, drawing/extrusion, and open-die forging
(Fig. 11). For similar h/b ratios in these pro-
cesses, the stresses throughout the deformation
zone can be approximated by those calculated

from slip-line analysis for double indentation.
The results of slip-line field analysis for double
indentation can be applied to prediction of
central burst in drawing and extrusion. For
example, in extrusion or drawing, h/b is
approximated by:

h=b ¼ a½1þ ð1�RÞ1=2�2=R (Eq 1)

where a is the die half-angle, and R is the area
reduction. Taking h/b = 1.8 as the critical ratio
at which the centerline hydrostatic stress
becomes tensile, the relationship between a
and R can be calculated. The result is shown
in Fig. 12 along with the similar relationship
predicted by the upper-bound analysis (Fig. 8).
The correlation is remarkable in view of the
dissimilarity in die shape between extrusion
and double indentation. The similarity in results
shown in Fig. 12 indicates that the flow mode
for defect formation in the upper-bound method

is physically equivalent to the development of
tensile hydrostatic stress at the centerline.
The use of slip-line field analysis for fracture
modeling was also used in the classic study by
Coffin and Rogers (Ref 20). Slip-line field anal-
ysis of sheet drawing was used in combination
with very carefully executed experiments on

Fig. 9 Slip-line fields for double indentation at various ratios of workpiece height to punch width, h/b. Source: Ref 25

Fig. 10 Variation of the normalized indentation
pressure (P/Y, where Y is the yield strength)

and the normalized centerline hydrostatic stress (sh/Y)
with h/b ratio as calculated from slip-line field analysis.
Source: Ref 25

Fig. 11 Slip-line fields for (a) rolling, (b) drawing, and (c) side pressing. These fields are similar to those for double
indentation of a thick slab shown in Fig. 9.

Fig. 12 Prediction of central burst in wire drawing by
the tensile stress criterion and slip-line field

analysis (solid line) of double indentation. The range of
predictions by upper-bound analysis (Fig. 8) is shown by
dashed lines. Source: Ref 25
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various copper alloys, followed by extensive
optical metallography. Results showed that
hydrostatic tension at the centerline exclusively
led to void formation and slight density reduc-
tion, while hydrostatic compression led to zero
or slight density increase (Fig. 13).

Fracture Criteria

The fracture models described previously,
while providing useful insights, are approximate
in their determination of the process or material

conditions leading to fracture. They rely primar-
ily on the expectation that hydrostatic tension is
the major culprit leading to fracture but do not
address the role of any material characteristics.
Modern finite-element analytical techniques

have advanced in four decades from simple
linear structures to nonlinear rigid-plastic analysis
to elastic-plastic analysis of anisotropic, work-
hardening, strain-rate-sensitive materials in com-
plex three-dimensional, large-strain processes.
As a result, they are capable of providing detailed,
fine-granularity maps of all components of the
stress and strain tensors and their combinations,
as well as scalar temperatures and their vector
gradients, throughout the history of a deformation
process. Accurate prediction of fracture during
metalworking processes, then, should be accom-
plishable by inserting a criterion of fracture that
faithfully represents the behavior of the material
of interest.
General observations of ductile fracture in

metalworking can be distilled to two universal
conclusions:

� Tensile stress and plastic deformation con-
stitute necessary ingredients for fracture,
and control of these localized conditions
through modification of the global process
parameters (die geometry, workpiece geom-
etry, and friction) can restrain the occurrence
of fracture (Ref 1, 3, 11, 13, 20–24).

� Ductile fracture involves the generation,
growth, and coalescence of voids, and this
sequence of events is dependent on the
microstructure and deformation mechanisms
prevalent in the material, as well as the loca-
lized conditions of stress and deformation
(Ref 1, 2, 25–27).

A criterion of fracture for use in finite-element
analyses should include these effects implicitly,
if not explicitly.

A suitable validation standard should be estab-
lished for evaluation of the various criteria. Ten-
sion testing is not suitable because it produces
one basic stress state rather than the variety expe-
rienced inmetalforming operations. The upset test
on cylinders, on the other hand, can generate a
variety of stress states on its cylindrical surface
through changes inworkpiece geometry and inter-
face friction conditions. In addition, a wealth of
information is available on this test through
researchbyanumberof investigators (Ref28–33).
Upset compression testing has become a

standard for workability evaluation. As shown
in Fig. 14, a range of strain combinations can
be developed at the cylindrical free surface
simply by altering friction and geometry condi-
tions. The influence of friction and consequent
bulging on circumferential tensile stress devel-
opment is clearly shown in Fig. 15. Compression
with friction produces circumferential tension
that leads to fracture, while frictionless compres-
sion prevents barreling, tension, and cracking.
Stresses at the cylindrical surface of the upset
cylinder are related to the surface strains by:

s1 ¼ 4=3l½e1 þ 1=2 e2�
s2 ¼ 4=3l½e2 þ 1=2 e1�

(Eq 2)

where l ¼ e=s is the ratio of effective strain to
effective stress. For frictionless (homogeneous)
compression, e1 = �½ e2, so the circumferential
stress s1 is zero. That is, for frictionless com-
pression, the stress state is purely compressive
(i.e., s2 = �Y, the material flow stress), and
the hydrostatic stress is �Y/3. For larger absolute
ratios of strain, the localized circumferential
stress becomes more tensile, while the axial
compressive stress becomes less compressive.
Alterations of the compression test geometry

have been devised to extend the range of sur-
face strains available toward the vertical, tensile
test specimens. Test specimens are essentially
prebulged by machining a taper or a flange on
the cylinders (Fig. 16). Compression then
causes lateral spread of the interior material,
which expands the rim circumferentially while
applying little axial compression to the rim.
Therefore, the tapered and flanged upset test
specimens provide strain states consisting of
small compressive strain components. Each
combination of height, h, and thickness, t, gives

Fig. 13 Density of 6061-T6 aluminum alloy drawn
under different externally applied

hydrostatic pressures as a function of thickness. Nominal
27% reduction per pass with die half-angle of 25�.
Source: Ref 17

Fig. 14 Localized strains on (a) the bulging cylindrical surface of an upset test and (b) their variation with aspect ratio
and friction conditions. Source: Ref 34

Fig. 15 Compression tests on 2024-T35 aluminum
alloy. Left to right: Undeformed specimen,

compression with friction (cracked), compression
without friction (no cracks)

350 / Fundamentals of the Modeling of Damage Evolution and Defect Generation

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158387
/knovel2/view_hotlink.jsp?hotlink_id=440158388


a different ratio of tensile to compressive strain.
The strain states developed at the surfaces of
straight, tapered, and flanged compression test
specimens are summarized in Fig. 17.
The variety of strain combinations available

in compression tests offers the possibility for
material testing over most of the strain combi-
nations that occur in actual metalworking
processes. A number of samples of the same
material and condition are tested, each one
under different friction and geometry para-
meters. Tests are carried out until fracture is
observed, and the local axial and circumferen-
tial strains are measured at fracture. Figures
18 to 20 give some examples of results for AISI
and SAE 1045 carbon steel, 2024-T351 alumi-
num alloy at room temperature, and 2024-T4
alloy at a hot-working temperature (Ref 28).
In some cases, the fracture strains fit a straight
line of slope �½; in others, the data fit a dual-
slope line with slope �½ over most of the range
and slope �1 near the tensile strain axis. Simi-
lar data have been obtained for a wide variety

of materials. In each case, the straight-line
behavior (single or dual slope) appears to be
characteristic of all materials, but the height
of the line varies with the material, its micro-
structure, test temperature, and strain rate. Sim-
ilar results have been found, initially by Kudo
and Aoi (Ref 29), Kobayashi (Ref 30), Thoma-
son (Ref 31), Ganser et al. (Ref 32), and Bao
and Wierzbicki (Ref 33).
The nature of the fracture loci shown in

Fig. 18 to 20 suggests an empirical fracture cri-
terion representing the material aspect of work-
ability. The strain paths at potential fracture
sites in material undergoing deformation pro-
cessing (determined by measurement or mathe-
matical analysis) can then be compared to the
fracture strain loci. Such strains can be altered
by process parameter adjustment, and they rep-
resent the process input to workability. If the

process strains exceed the fracture limit lines
of the material of interest, fracture is likely.
Fracture models have been devised in an

attempt to derive a fracture criterion. Most mod-
els are based on the concept of void nucleation
and growth to coalescence along bands of high
shear stress, as depicted in Fig. 21, originally
developed by McClintock (Ref 35) and later by
Rice and Tracey (Ref 36). Figure 22 shows a
plot of the predicted strain locus at fracture by
the McClintock model. The predicted fracture
strain line has a slope of �½ over most of its
length, matching that of the experimental frac-
ture line. Near the tensile strain axis, the slope
of the predicted line is �1, matching that of
actual material results shown in Fig. 19 and 20.
In sheet forming, the observation that a neck

forms before fracture, even under biaxial stress
conditions in which localized instability can-
not occur, has prompted consideration of the
effects of inhomogeneities in the material.
For example, a model of localized thinning
due to a small inhomogeneity has been devised
(Ref 37). Beginning with the model depicted in
Fig. 23, plasticity mechanics is applied to deter-
mine the rate of thinning of the constricted
region, tB, in relation to that of the thicker
surrounding material, tA, in region A. When
the rate of thinning reaches a critical value,
the limiting strains are considered to have been
reached, and a forming-limit diagram can be
constructed. The analysis includes the effects
of crystallographic anisotropy, work-hardening
rate, and inhomogeneity size, tB/tA.
The R-Z- Models. The Marciniak Kuczynski

model (Ref 37) was applied to free surface frac-
ture in bulk-forming processes because of
evidence that localized instability and thinning
also precede this type of ductile fracture
(Ref 38). Two model geometries were consid-
ered, one having a groove in the axial direction
(Z-model) and the other having a groove in the
radial direction (R-model), as shown in Fig. 23.
Applying plasticity mechanics to each model,
fracture is considered to have occurred when the
thin region B, tB, reduces to zero thickness. When
the fracture strains are plotted for different applied
stress ratios, a fracture strain line can be con-
structed. As shown in Fig. 24, the predicted frac-
ture line matches the essential features of the
experimental fracture lines (Fig.18 to 20). The
slope is �½ over most of the strain range and
approximately�1 near the tensile strain axis.
For both the R- and Z-models shown in

Fig. 23, the applied strain ratio during any
increment of deformation will be defined as:

K ¼ �dez=dey (Eq 3)

This gives an increment in equivalent strain in
region A, the matrix material:

d�eA ¼ deyð2=
ffiffiffi
3
p
Þð1�K þK2Þ1=2 (Eq 4)

and an applied stress ratio, from the Levy-
Mises equations, of:

Fig. 16 Depiction of (a) flanged and (b) tapered
prebulged compression test specimens.

Lateral spread of interior material under compression
expands the rim circumferentially while little axial
compression is applied (see Fig. 17).

Fig. 17 Range of free surface strain combinations
for compression tests having cylindrical

(Fig. 14), tapered, and flanged (Fig. 16) edge profiles.
The ranges shown are approximate, and they may
overlap a small amount.

Fig. 18 Fracture locus for AISI 1045 cold-drawn steel
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r ¼ szA=syA ¼ ð2K � 1Þ=ðK � 2Þ (Eq 5)

The equivalent stress in region A is then:

�sA ¼ syA ð1� rþ r2Þ1=2 (Eq 6)

The radial stress is taken to be zero because
each model applies to an element at or near
the surface.
In region B, the groove, equilibrium gives:

syB ¼ syA ðtA=tBÞ ¼ syA=f (Eq 7)

where f = tB/tA
Assuming sz is the same in regions A and B:

szB=syB ¼ ðszA=syA Þf ¼ rf (Eq 8)

then the equivalent stress in region B is:

�sB ¼ syB ð1� rf þ r2f2Þ1=2 (Eq 9)

Now combining Eq 6, 7, and 9:

�sB ¼ �sA½ð1� rf þ r2f2Þ=ð1� rþ r2Þ�1=2=f
(Eq 10)

Using the relation between equivalent stress
and equivalent strain, �s ¼ C�en, the equivalent
stress in Eq 10 is eliminated, giving:

�eB ¼ �eAf½ð1� rf þ r2f2Þ=ð1� rþ r2Þ�=f2g1=2n
(Eq 11)

Evaluating Eq 11 for each increment in deforma-
tion gives d�eB, the increment of effective strain
in region B. Then, from the Levy-Mises equa-
tions, the incremental strains in region B are:

deyB ¼ d�eBð1� rf=2Þ=ð1� rf þ r2f2Þ1=2 (Eq 12)

dezB ¼ d�eBðrf � 1/2Þ=ð1� rf þ r2f2Þ1=2 (Eq 13)

derB ¼ d�eBð�rf=2� 1/2Þ=ð1� rf þ r2f2Þ1=2
(Eq 14)

The change in thickness ratio, f = tB/tA, for
the R-model is given by:

df ¼ fðdezB � dezA Þ (Eq 15)

and for the Z-model:

df ¼ fðderB ¼ derA Þ (Eq 16)

This prescribes a new value of f, which, along
with the appropriate value of K, is used to
calculate the strains for a new increment of
deformation using Eq 12 to 14.
It can be expected that the R-model will lead

to thinning of the groove for any value of K <
2.0, because the resulting tensile stress, sy, will
produce greater thinning than would naturally
occur under the axial compressive stress, sz.
At K = 2.0, no circumferential tensile stress
occurs, and both regions A and B thin the same
amount under the axial stress (df = 0).
The Z-model will lead to thinning for 0 � K

< 1.0. In this domain, sy is greater than |sz|,
and the Poisson contraction in the radial direc-
tion in the groove due to tensile stress, sy, will
be greater than the Poisson extension due to
compressive stress, sz. At K = 1.0, these effects
balance so that no thinning occurs, and for K >
1.0, the groove increases in thickness more rap-
idly than the matrix (df > 0).
The calculation procedure for the model of

localized thinning is relatively simple and

can be used to give the strains and f-value explic-
itly. Calculations in this studywere performed on
a programmable desk-top electronic calculator.
A typical result of the variation of f during defor-
mation is given in Fig. 25.
In an attempt to use these models to predict the

forming limits in upsetting of cylinders,
calculationswere performed on both theR-model
and Z-model for values of K ranging between
0 and 2.0. Prestrain (E0) was taken as 0.1, and
two different n-values (0.1 and 0.25) were used.
Initial f0 values of 0.8, 0.95, and 0.99 were
also used. Calculations were terminated when f
became zero, which is taken as the limiting con-
dition of fracture (Ref 39).
The Cockcroft-Latham criterion of fracture

(Ref 40) is not based on a micromechanical
model of fracture but simply recognizes that
tensile stress and plastic deformation are the
essential macroscopic ingredients of fracture.
The Cockcroft-Latham criterion suggests that
fracture occurs when the accumulated tensile
strain energy reaches a critical value:

0

ð
es
de ¼ C (Eq 17)

where s* is the maximum tensile stress; e is the
equivalent strain; and C is a constant determined
experimentally for a given material, temperature,
and strain rate. This criterion is an outgrowth of
the more general postulate by Freudenthal (Ref
41) that fracture occurs when the plastic work
per unit volume reaches a critical value. Other
variations of the basic concept have been pro-
posed by Oh et al. (Ref 42), Brozzo et al. (Ref
43), and Bao and Weirzbicki (Ref 44). Gouveia
et al. (Ref 45) showed by experiment and
finite-element study that the Cockcroft-Latham
criterion provided the best predictive capability.
The Cockcroft-Latham criterion, by integrating
the tensile plastic work over the entire metal-
working process, accumulates the damage done

Fig. 19 Fracture locus for aluminum alloy 2024-T351 at room temperature

Fig. 20 Fractue locus for aluminum alloy 2024-T4 at
room temperature and at 300 �C (570 �F).

_e ¼ 0:1 s�1
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to the microstructure (microvoid formation, void
growth and coalescence) by tensile stresses and
plastic deformation so that when it reaches a
critical value, C, fracture occurs.

Extension of the Criterion to the Fracture
Locus for Compression. The Cockcroft-
Latham criterion has been reformulated to
provide a predicted fracture line for

comparison with the experimental fracture
strain line.
This criterion was extended to cover the case

of a simple compression. The strains involved
in upsetting a cylinder—the basic test used in
experimental determination of fracture lines—
are illustrated in Fig. 26. In this case, the cir-
cumferential stress, sy, is the maximum tensile
stress, that is, s* in Eq 17.

If the stress ratio is defined as:

r ¼ sz=sy (Eq 18)

and the imposed strain ratio is:

a ¼ �dez=dey (Eq 19)

then from the Levy-Mises equations:

a ¼ ð1� 2rÞ=ð2� rÞ (Eq 20)

Fig. 23 Material elements used as models for plasticity analysis of localized thinning and fracture of materials.
(a) R-model (b) Z-model

Fig. 21 McClintock model of void coalescence by shear from (a) initial circular voids, through (b) growth, and
(c) void contact or coalescence.

Fig. 24 Fracture strain locus predicted by the model
of localized thinning. The shaded area

represents typical experimental fracture loci, such as
Figs 18 to 20

Fig. 22 Fracture strain locus predicted by the
McClintock model of void growth. The

shaded area represents typical experimental fracture loci
such as Fig. 18 to 20
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s
 ¼ sy ¼ s
de

� �
dey

ð1� r=2Þ (Eq 21)

Assuming the power strain-hardening law is
valid during the deformation:

s ¼ Ken (Eq 22)

where s is the equivalent stress, e is the equiv-
alent strain, K is the stress at e ¼ 1:0, and n is
the strain-hardening exponent.
The relationship between equivalent strain

and the individual strains can be written as:

e ¼ ðer � ezÞ2 þ ðez � eyÞ2 þ ðey � erÞ2
h i1=2 ffiffiffi

2
p

3

� �
(Eq 23)

From this equation, and Eq 19, e can be written
in terms of ey and a. The expression involving
e, ey, and a is:

e ¼ 2ey½ð1� aþ a2Þ=3�1=2 (Eq 24)

From Eq 17, 21, and 24, the following equation
was obtained:

ðe
0

s
de ¼ C ¼ 2kffiffiffi
3
p
� �

2ffiffiffi
3
p
� �n

ðeyf
0

ð1� aþ a2Þ1=2ey
h in

ð2� aÞdey ðEq 25Þ

The value of C can be determined from Eq 25
after integrating and solving for eyf . For strain
ratio a = 0, the plane-strain case, eyf is equal
to the intercept of the fracture line, a. Then:

eyf ða ¼ 0Þ ¼ a ¼ C

k

� �1=1þn
�3ðnþ2Þ=2ðnþ1Þ

� 1

2

� �
½ðnþ 1Þ=2�1=ð1þnÞ ðEq 26Þ

where a is the intercept on the ey axis of the
fracture line, k is the stress at e ¼ 1:0, and
n is the strain-hardening exponent.

The value of the intercept, a, for various
materials was determined experimentally. For
1020 steel and 1045 steel, a was found to be
0.32 and 0.29, respectively. Figure 27 shows
that the fracture strain line predicted by the
Cockroft–Latham criterion, Eq 17, also is in
reasonable agreement with the experimental
results. The height of the predicted fracture line
is determined by experiment, such as a tension
test, rather than by speculation on a material
inhomogeneity strength.
Figure 27 shows that the fracture strain line

predicted by the Cockcroft-Latham criterion is
also in reasonable agreement with experimental
results. This criterion does not show the dual-
slope behavior of the previous models and
some actual materials. However, the correspon-
dence between the Cockcroft-Latham criterion,
the fracture model-based criteria, and the exper-
imental data shows that all of the criteria are
generally in agreement with the overall nature
of surface strains at fracture in upset compres-
sion tests. In addition, the Cockcroft-Latham
criterion (Eq 17) is the easiest to implement in
a finite-element analysis code.
To be a truly useful fracture model, however,

the criterion must be applicable to all conditions
in metalworking processes, not just the surface
fracture in compression tests. Mathematically,
the criterion can be extended to three-
dimensional stress states by imposing a pressure,
P, on the free surface. This has the effect of
applying a hydrostatic pressure, P, to all direc-
tions because, to maintain yielding and the same
strain state, the other two stresses must increase
by the magnitude P as well. Then, the forming-
limit line becomes modified, as illustrated in
Fig. 28. For superimposed pressure (P > 0),
the fracture line increases in height and its slope
increases slightly. For superimposed tension
(P < 0), the height of the fracture line decreases
and curves downward.
The effect of hydrostatic pressure on

fracture has been studied extensively.
It has been shown that superimposed pres-

sure increases fracture strain for various materi-
als and test methods. Under high hydrostatic
pressure, even brittle materials such as marble
have been made to flow plastically.

The fracture model of Lee and Kuhn (Ref 39)
can be modified to include hydrostatic pressure
and thus determine its effect on the fracture
strain line.
The Cockcroft–Latham criterion is modified to

include the effects of superimposed hydrostatic
pressure, because it has been shown that this crite-
rion agrees well with experimental data for free
surface fracture. The Cockcroft–Latham criterion
(Eq 17) proposes that fracture will occur when
the critical value, C, is reached.
Modifications to the criterion are made as fol-

lows. The deformation strain path for the region
where fracture occurs is taken to be linear:

a ¼ dey
der

(Eq 27)

where der and dey are increments of strain in
the radial and circumferential directions,
respectively. For each increment of deforma-
tion, the equivalent strain increment is:

de ¼ ð2=
ffiffiffi
3
p
Þða2 � aþ 1Þ1=2der (Eq 28)

Individual strain increments can be expressed in
terms of stresses by means of the Lèvy–Mises
equations:

dey ¼ de
s
½sy � 1/2ðsz þ srÞ� (Eq 29)

der ¼ de
s

sr � 1/2ðsz þ syÞ½ � (Eq 30)

Equations 27, 29, and 30 are combined to form:

derð2� aÞ=de ¼ 3ðsr � szÞ=2s (Eq 31)

derð1� 2aÞ=de ¼ 3ðsy � szÞ=2s (Eq 32)

Substituting Eq 28 for the value of de yields:

sr ¼ sð2� aÞ=½
ffiffiffi
3
p
ða2 � aþ 1Þ1=2� þ sz (Eq 33)

sy ¼ sð1� 2aÞ=½
ffiffiffi
3
p
ða2 � a� 1Þ1=2� þ sz (Eq 34)

Fig. 26 Schematic diagram of upset test on cylindrical
specimens. Surface strains at the equator are

measured as shown.

Fig. 27 Fracture strain locus predicted by the
Cockcroft–Lathan criterion. The shaded

region represents the range of fracture lines determined
experimentally.

Fig. 25 Variation of f = tA/tB for the R-model and
Z-model. K = 0.6, f0 = 0.99, n = 0.25
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It can be assumed that, as shown in Fig. 28, the
z-plane is a free surface, and normal pressure P is
applied to it. The effect of normal pressure P is
to increase the pressure in all three directions; in
other words, it increases the hydrostatic pressure
level. Note that the first terms of Eq 33 and 34
are the same as those for deformations without
an applied pressure for given value of a, and sz

appears as an addition in each equation.
From Eq 27 and 33, the Cockcroft-Latham

criterion can be modified for superimposed
hydrostatic pressure, P, by taking s* = sr as:

C ¼
ðef
0

s
de ¼
ðef
0

ðs
 � P Þde

¼
ðef
0

sð2� aÞ=½
ffiffiffi
3
p
ða2 � aþ 1Þ1=2� � P

n o
de

¼
ðef
0

sð2� aÞ=½
ffiffiffi
3
p
ða2 � aþ 1Þ1=2�

n o
de

�
ðef
0

Pde

¼
ðeTf
0

2K

3

� �
2ffiffiffi
3
p
� �n

ð2� aÞ½ða2 � aþ 1Þ1=2�nern

� der� P

ðerf
0

2ffiffiffi
3
p ða2 � aþ 1Þder

¼ 2K

3

� �
2ffiffiffi
3
p
� �n

ð2� aÞða2 � aþ 1Þn=2 1

nþ 1
enþ1rf

� P
2ffiffiffi
3
p ða2 � aþ 1Þ1=2erf

(Eq 35)

where erf is the radial strain at fracture.
For the model material under study, from

previous experimental data for K, n, and erf
at a = 0 (plane strain), C was calculated.
Then, erf was calculated for various values
of a between 0 and 2 and P by an iterative
method.

The results are shown in Fig. 29 for various
hydrostatic pressure levels (in relation to yield
strength, Y). As the level of hydrostatic pressure
increases, the intercept increases and the slope
of the fracture line increases above one-half.
This is consistent with emperical results.
The measured surface strains and hydrostatic

pressure levels determined by the visioplasticity
method were combined with theoretical form-
ing-limit diagrams developed from the Cock-
croft–Latham criterion.
As shown in Fig. 30, at 45% height strain for

unlubricated specimens, strains are below the
fracture line, and no fracture, in fact, was
observed. For the lubricated specimens, the
strains are above the fracture line, and fractures
were observed.
To evaluate the Cockcroft-Latham criterion

for nonfree surface fractures, the double-extru-
sion forging process (recall Fig. 6) was carried
out with a split billet containing a deformation
grid (Fig. 31). Measurements of the grid displa-
cements on this midplane were made at several
increments of deformation, and the visioplasti-
city method (Ref 10) was used to calculate the
strains and hydrostatic pressure at the midpoint.
The hydrostatic stress state at the center of the
specimen is initially compressive and then
reverses, becoming tensile as the flange thick-
ness is reduced and metal flows into the oppos-
ing hubs. Meanwhile, the strains at the center
are increasing monotonically as deformation
progresses. This is illustrated in Fig. 32 by the
steps 0, 1, 2, and 3. As deformation proceeds,
the strains at the center increase, but the hydro-
static pressure is also increasing, so the fracture
line moves upward. Then, as the flange thick-
ness approaches one-half of the hub base diam-
eter (die orifice diameter), the hydrostatic stress
becomes tensile. At this point, the fracture line
decreases in height, but the strains at the center
continue to rise and cross the fracture line,
coinciding with the formation of the central

burst. The calculated hydrostatic tension at
fracture was 0.3 yield stress (Y). This approach
could be used for predicting central burst in
drawing and extrusion to provide a material-
dependent criterion, as opposed to the more
simplistic upper-bound and tensile stress cri-
teria described previously.
Frequently, cracks occur during forging on

surfaces that are in contact with the dies and
then move around a die corner (Fig. 33). From
the observation of a variety of such defects, it
appears that a common characteristic is an
abrupt change in frictional shear traction distri-
bution in the region of the crack.
A technique for studying die contact surface

cracks was developed by means of a disk com-
pression test using dies having a rough surface
in the central region and a smooth surface in
the outer region. Figure 34 shows the top view
of a 6061 aluminum alloy disk compressed
between such dies. In the transition region
between the rough central die surface and the
smooth outer region, radial cracks initiate and
propagate outward. Such cracks occurred at
approximately 30% reduction when the smooth
outer region was lubricated with a synthetic
fluorine-containing resin. The cracks occurred
at approximately 45% reduction when grease
lubrication was used in the outer smooth region.
No cracks occurred even for very large reduc-
tions when the smooth outer region was not
lubricated.
Grid marks placed on the die contact surface

of the disks were used to measure the distribu-
tion of surface strains in the radial direction.
Figure 35 gives an example of such measure-
ments. In the rough central region, the strains
are zero, while in the smooth outer region,
the strains are equal and constant. In the tran-
sition, however, the circumferential strain, ey,

Fig. 29 Fracture strain lines as predicted by the
Cockcroft–Lathan criterion in quadrants one

and two of the strain plane; P is the superimposed
pressure.
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Fig. 30 Resulting strains at the transition at 45%
deformation and fracture lines for each case

of friction condition. The resulting strain crossed the
fracture lines for synthetic fluorine-v containing resin- (a)
and grease-lubricated (b) cases but is below the fracture
line for the unlubricated case (c).

Fig. 28 Movement of the fracture strain line due to
superimposed hydrostatic stress. Applied

stress is represented in terms of multiples of the yield
strength, Y. Negative values of P indicate hydrostatic
tension. Calculations are based on a modification of the
Cockcroft–Lathan criterion.
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jumps abruptly from zero to its constant value
in the outer region, and the radial strain, er,
overshoots to a very high value before return-
ing to its constant value in the smooth outer
region. The strains shown in Fig. 35 were the
same regardless of the friction condition in
the smooth outer region. Therefore, fractures
in the transition region occur because of the
combination of large tensile surface strains
and low hydrostatic stress state. This explains
the occurrence of cracks at low reduction
when a synthetic fluorine-containing resin is
used, and no occurrence of fracture when no
lubricant is used. The synthetic fluorine-con-
taining resin, having a near-zero friction coef-
ficient, results in very low radial back pressure
on the transition region, while grease and no
lubricant provide progressively larger back
pressures.
By means of visioplasticity analysis (Ref 10),

the stresses were determined at the contact sur-
face in the vicinity of the transition region. The
resulting normal die pressure plus the surface
radial and circumferential strains define the
stress and strain states in the transition region
and can be illustrated on a forming-limit dia-
gram. Figure 36 shows the change in surface
strains and the increase in the fracture line due
to increasing normal pressure during compres-

Fig. 31 Internal fracture during the double-extrusion
forging of aluminum alloy 6061. Grid

deformations on the middle longitudinal plane are
shown. The stress-strain states are defined by the insert,
s3 is perpendicular to the plane of the schematic
bulging the free surface.

Fig. 32 Progression of surface strains and fracture line
at the central internal location of the double-

extrusion forging shown in Fig. 31. The fracture line
rises from 0 to 1 to 2 as internal pressure increases and
then falls to point 3 as internal stress becomes tensile.
Meanwhile, the strains at the center continue to rise and
cross the fracture line at the deformation stage in which
internal fracture occurs.

e

e

s

2

3

1

Fig. 33 Die contact surface cracking during forging extrusion of aluminum alloy powder compact. (a) Cross section.
(b) Normal to vertical rib surface. Note also the cracks at the top free surface. The cracks form as material

flows from the flange area beneath the punch into the die cavity. Stress-strain states are defined in insert, s3 is
normal to the free surface.
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sion of a disk with grease lubricant in the outer
region (indicated by the increments of reduc-
tion to 45%). The fracture line increases due
to increasing pressure at a slower rate than the
strains increase, and at 45% reduction, the
strain path exceeds the fracture line, and cracks
are observed. For a synthetic fluorine-contain-
ing resin lubricant, the crossover occurs at
approximately 30% reduction, while in the case

of no lubricant, the fracture line moves progres-
sively away from the strain path.
While these are crude measurements taken at

only a few deformation steps, Fig. 32 and 36 do
provide some experimental validation of the
Cockcroft-Latham fracture line (Fig. 28), and
it would be expected to provide accurate pre-
dictions of fracture at any location in a work-
piece. A true test of the criterion is to embed
it in finite-element codes for prediction of frac-
ture under a variety of metalworking processes.
The criterion has become integral to large
deformation codes such as DEFORM and
MSC.MARC. As a simple example, Fig. 37(a)
shows the prediction of fracture at the center-
line of a round billet compressed between par-
allel flat dies (Ref 46, 47), similar to the
geometry shown in Fig. 38. The damage value
is highest at the center and reaches the critical
value for fracture. Figure 37(b) shows the same
billet between a three-die arrangement. The
new deformation geometry reduces the damage
level below the critical value for the material.
A further example of application of the

Cockcroft-Latham criterion, the DEFORM
code for simulation of plastic deformation pro-
cesses, was applied to axisymmetric extrusion,
as shown in Fig. 39, in which three separate
reductions are taken (Ref 48). The Cockcroft-
Latham criterion was incorporated with the
detailed calculation of stresses and strains
throughout the extrusion process to indicate
regions in which high microstructural damage
occurred. It is clear that as the damage
increases, central burst is predicted to occur
after the third reduction, which is commonly
observed.
Another example, shown in Fig. 40, involves

formation of an axisymmetric part formed by

back extrusion. Circumferential cracks form
on the inside surface of the part at the location
identified in Fig. 41 by point P2. Note that
P2 is originally under the punch but
then moves around the punch radius and up
the sidewall of the part, similar to the example
shown in Fig. 33. The calculated damage,
according to the Cockcroft-Latham criterion
embedded in DEFORM, is shown for P2
in Fig. 42. Note that the damage is very low
as long as P2 is under the punch but increases
rapidly as soon as it goes around the punch
corner and separates from the punch.
This is similar to the experimental measure-
ments and calculations carried out in Fig. 34
through 36.
Testing precautions must be used in apply-

ing the Cockcroft-Latham criterion through
finite-element codes. While the codes are capa-
ble of producing faithful reproductions of the
distributions of stress and strain throughout
the workpiece during a metalworking process,
accurate prediction of fracture-occurrence loca-
tion and time still depends on a faithful repre-
sentation of the fracture phenomenon through
the material factor, C. One approach is to use
the upset compression test to establish a frac-
ture line for the material, as in Fig. 18–20,
and then perform finite-element analyses of
the tests to establish the value of tensile plastic
work at which the fractures occur, that is, the
value of C.
When considering workability tests, it is

important to recognize that fractures initiate in
localized regions where interaction between
the stress and strain states and the material
structure reaches a critical level. Orientation,
shape, and volume fraction of inclusions and
other microstructural inhomogeneities have a
dominant effect on the fracture process. There-
fore, it is critically important that workability
test specimens contain material having the
same microstructural features as the material
in the localized, potential fracture regions of
the actual process.
Specifically, when evaluating a workpiece

for surface fractures, the test specimens used
to evaluate C must have surfaces that contain
the as-received surface of the workpiece under
consideration. The as-received surface may
contain laps, seams, a decarburized layer, and
so on, which affect fracture initiation. By the
same argument, evaluation of material for inter-
nal fractures such as central burst must involve
test specimens taken from the middle of the
workpiece, where, for example, segregation of
second phases may have occurred. In this case,
bending tests wherein the convex bending sur-
face coincides with the centerline of the work-
piece may be the preferred test geometry.
Furthermore, because of possible anisotropy
effects, orientation of the critical stresses with
respect to any inclusion alignment must be the
same in the test specimens as it is in the actual
process and material of interest. All of these
considerations place great importance on cor-
rect selection of the test specimen material

Fig. 34 (a) Top view of aluminum alloy 6061 disk
compressed between dies. (b) Cracks form at

the transition region between rough and smooth areas of
the die.

Fig. 35 Radial variation of contact surface strains after
30% compression of the disk shown in Fig. 34

Fig. 36 Progression of surface strains and fracture line
at the transition region between rough and

smooth zones of the compressed disk shown in Fig. 35.
Points 1, 2, 3, and 4 represent 10, 20, 30, and 45%
reduction, respectively.
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and geometry to provide a true representation
of the tensile plastic energy to fracture. For this
purpose, bending as well as compression tests
must be considered in preference to tensile test-
ing, because the failure in a tension test occurs
by necking instability and involves material
that is at the center of the specimen rather than
at the surface.

Fundamental Fracture Models

In the current state of fracture prediction in
metalworking processes, computer models pro-
vide robust simulations of the deformation, stres-
ses, and strains throughout the workpiece, but the
material fracture characteristics must be input
from data gathered through properly selected test
specimens and procedures. New efforts are being
made to provide a prediction of the fracture char-
acteristics of a material from knowledge of its
microstructural and crystallographic details.
One approach involves the application of

finite-element analysis in a multiscaled
approach (Ref 49). Unit cell models are used
at each scale to discern the micromechanics of
the fracture process. The three scales (Fig. 43)
include the atomic distance to assess debonding

of particles, the nanometer scale of microvoid-
nucleating secondary particles, and the microm-
eter scale of primary void-forming inclusions.
One difficulty with the approach involves the
distribution of particles. Fracture generally
begins at the weakest link of the material,
which would be the location of closely spaced
particles. For this reason, modeling is per-
formed around clusters of particles having a
higher density of particles than the average
throughout the material. Another problem
involves accurate representation of debonding
at particle-matrix interfaces. A first-principles
calculation can be used to determine the bond-
ing energy at the interfaces. Then, the particle-
matrix interface is modeled by the finite-
element code as one-dimensional cohesive
elements. Figure 44 shows an example of
microvoid formation and coalescence in two-
dimensional shear deformation. A more long-

range approach involves application of first-
principles-based molecular dynamics calcula-
tions to simulate the generation of dislocations
around particles, leading to separation of the
matrix from the particle and void formation
(Ref 50). Figure 45 illustrates a typical
sequence of events in the vicinity of a particle.
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Modeling of Hot Tearing and
Other Defects in Casting Processes
Brian G. Thomas, University of Illinois (UIUC)

AS COMPUTATIONAL MODELS
MATURE, their practical benefit to improving
casting processes is growing. Accurate calcula-
tion of fluid velocities, temperature, microstruc-
ture, and stress evolution is just the first step.
Achieving tangible improvements to casting
processes requires the accurate prediction of
actual casting defects and product properties.
Defects that form during solidification are
important not only to the casting engineer but
also to engineers involved in subsequent
manufacturing processes and evaluation. Solid-
ification defects are responsible for many of the
defects in final manufactured products and
failures in service. They originate from inclu-
sion entrapment, segregation, shrinkage cav-
ities, porosity, mold-wall interactions, cracks,
and many other sources that are process-
specific. Casting defects can be modeled by
extending the results of casting simulations
through postprocessing and/or by solving fur-
ther coupled equations that govern these phe-
nomena. The prediction of defect formation is
made difficult by the staggering complexity of
the phenomena that arise during commercial
casting processes. This article introduces some
of the concepts involved in modeling some of
these solidification defects and focuses in more
detail on hot tearing.

Inclusions

Inclusions are responsible for many serious
surface defects and internal quality problems
in cast products. They arise from foreign parti-
cles, such as eroded sand particles, and impuri-
ties remaining in the liquid metal after upstream
refining (Ref 1). Nonmetallic inclusion particles
act as sites of stress concentration and hydrogen
gas nucleation, leading to lower fatigue life,
hydrogen embrittlement, surface defects, and
other problems in the final product. Predicting
their damage requires knowledge of the num-
ber, size distribution, composition, and mor-
phology of the inclusions coming from

upstream processing prior to casting. Obtaining
this knowledge ideally involves modeling the
multiphase fluid flow, turbulent mixing and dif-
fusion, species transport, chemical reactions,
and particle interactions that create the inclu-
sions in upstream processes.
Considerable modeling of these phenomena

has been addressed in previous simulations of
vacuum degassers, R-H degassers (a type of
recirculating degasser), ladles, tundishes, and
other refining vessels and transfer operations
used in metallurgical processing (Ref 2). These
models solve the multiphase Navier-Stokes
equations for turbulent fluid flow, using software
such as FLUENT (Ref 3), and provide the flow
field for subsequent simulation of inclusion par-
ticle transport. The first challenge is to properly
incorporate the phenomena that drive the flow,
which usually include the buoyancy of injected
gas bubbles (Ref 4), which depends on the shape
of the bubbles, ranging from spherical caps to
spheres. Other effects important to accurately
computing the flow field may include natural
convection, which requires a coupled heat-trans-
port solution for the temperature field. When
electromagnetic stirring is used, these forces
require modeling the applied magnetic field.
Another challenge is to incorporate the effects
of turbulence. Computationally-efficient choices
include simple “mixing-length” models, the two-
equation models such as k-e to simulate the time-
average flow pattern. Large-eddy simulation
(LES) models can simulate the details of the
time-evolving turbulent vortices, but at great
computational expense. These methods have
been compared with each other and with mea-
surements of fluid flow in continuous casting
(Ref 5–7).
Formation. Modeling the thermodynamics

and kinetics of particle formation, transport,
collisions, and removal or entrapment in the
molten metal during upstream refining pro-
cesses is the next crucial step. Thermodynamic
reactions to quantify the precipitates that form
in these multicomponent alloy systems can be
predicted by simultaneous solution of chemical

equilibrium equations, where the biggest chal-
lenge is to find accurate activity coefficients.
Equilibrium compositions can also be found
by comparing free-energy functions, such as
used in Thermo-Calc (Ref 8), FACT-Sage
(Ref 9), MTDATA (Ref 10), Gemini (Ref 11),
and other thermodynamic modeling software.
The kinetics of nonmetallic inclusion formation
are generally controlled by species transport in
the liquid and at reaction interfaces, such as
the slag-metal surface, where droplets of the
different liquid phases, solid particles, and gas
bubbles interact. The physical entrainment of
slag particles into the molten metal is another
important source of inclusions (Ref 12), which
requires transient multiphase modeling of the
free surface, considering its breakup into dro-
plets and surface tension effects, and pushes
current modeling capabilities to their limit.
Another important source of inclusions is

reoxidation of the molten metal by exposure
to air. Oxygen absorbs rapidly from the atmo-
sphere into any exposed molten metal and com-
bines to form precipitates, which has been
predicted in molten steel from the alloy content
(Ref 13). Predictions are limited by understand-
ing of the entrainment of oxygen from the
atmosphere, the turbulent flow of the liquid
steel during pouring, which determines the
gas-metal interface shape, and the internal
transport and reactions of chemical species in
the molten metal.
Transport. The transport of particles through

the flowing metal is the next crucial step to
determine the inclusion distribution in the final
product and can be modeled in several ways
(Ref 14). Although the effect of bubbles on the
flow pattern can be modeled effectively using
Eulerian-Eulerian multiphase models, the fate
of inclusion distributions is best modeled via
Lagrangian particle tracking. In this method,
the trajectories of many particles are integrated
from the local velocity field, based on previous
solution of the fluid velocities of a mold-filling
simulation. The effect of turbulence on the cha-
otic particle paths is very important and is best

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 362-374

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



modeled with the transient turbulent velocity
field, using LES (Ref 15). In more computa-
tionally-efficient time-averaged simulations of
the turbulent flow field, the effect of turbu-
lence on particle motion can be approximated
using methods such as “random walk,” where
the velocity at each time increment is given a
randomly-generated component with magni-
tude proportional to the local turbulence level
(Ref 3). This method has been applied success-
fully to simulate particle motion in continuous
casting molds (Ref 16).
Inclusion particle size distributions evolve

during transport due to collisions with each
other and by their attachment to the surface
of bubbles. Collisions can be modeled by
tracking the evolution in the number distribu-
tion of particles in each size range, including
the local effects of Brownian motion, turbu-
lence, and diffusion, which is aided by size-
grouping models to cover the large range of
particle sizes (Ref 17). Attachment and
removal by bubbles can be modeled by com-
puting the attachment rates of different parti-
cle sizes to different bubble sizes and shapes
in computational models of these microscale
phenomena (Ref 16, 18). These attachment
rates can then be incorporated into the macro-
scale models of fluid and particle trajectories
(Ref 16, 18). In the extreme, inclusions may
agglomerate into large clogs, which can
restrict the flow of molten metal, cause detri-
mental changes in the downstream flow pat-
tern, and can lead to catastrophic defects in
the final product. Modeling and analysis of
clogging is a complex subject that has been
reviewed elsewhere (Ref 19).
Capture. Particle capture into the solidifica-

tion front is a critical step during the modeling
of inclusion transport. Small particles flow
between the dendrites, so they can be modeled
as entrapped when they touch a domain wall.
Larger particles may be pushed by the inter-
face or engulfed by a fast-moving planar front
(Ref 20). More often, they are entrapped when
they are suspended in front of the solidification
front long enough for the dendrites to surround
them. Entrapment is greatly lessened by tan-
gential flow across the solidification front
(Ref 21). A criterion for entrapment has been
developed based on balancing the many forces
that act on a particle suspended at the interface
(Ref 21). Particles that never touch the inter-
face, or escape capture, eventually may be
removed if the flow pattern transports them to
the casting boundaries, such as the top surface
of some processes, where they can enter the
slag layer.
The final step is to predict the property

changes caused by the entrapped inclusions,
which is a challenging modeling task and
depends on downstream processing, such as
rolling and heat treatment. Even with simply
cooling to ambient, precipitation continues in
the solid state, where the inclusion distribution

is greatly affected by kinetic delays due to
nucleation and solid-state diffusion (Ref 22).
This is further complicated by preferential pre-
cipitation at grain boundaries and compatible
existing inclusions and is affected by strains,
local microsegregation, and many other phe-
nomena. Clearly, the modeling of inclusions is
a challenging task.

Segregation

Segregation is caused by the partitioning of
alloying elements between the liquid and solid
phases during solidification. Because species dif-
fusion in the solid is very slow, this phenomenon
is usually manifested by small-scale composition
differences, called microsegregation, which
explains how the spaces between dendrites are
enriched in alloy relative to the dendrite centers.
Although it contributes greatly to macrosegrega-
tion, porosity, inclusions, and other defects,
microsegregation alone is not usually considered
a defect, and it can be removed by homogeniza-
tion heat treatment. When fluid flow is present,
however, large-scale species transport leads to
macrosegregation, where the composition differ-
ences arise over large distances, such as between
the center and surface of a casting. This serious
defect cannot be removed. It is extremely diffi-
cult to predict, because it involves so many dif-
ferent coupled phenomena, and at vastly
different length and time scales. In addition to
predicting fluid flow, species transport, and solid-
ification, segregation requires prediction of the
dendrite morphology and microstructure and
the complete stress state, including deformation
of the spongy mushy zone (Ref 23) and mechan-
ical bulging and bending of the casting surface
(Ref 24). Moreover, the fluid flow must be accu-
rately characterized at both themicroscopic scale
between dendrite arms and at the macroscopic
scale of the entire casting. Each of these model-
ing tasks is a large discipline that has received
significant effort over several decades.
Segregation is the main phenomenon respon-

sible for many different kinds of special defects
that only affect particular casting processes. For
example, “freckle” defects can arise during the
directional solidification of turbine blades when
buoyancy-driven flow allows winding vertical
channels to penetrate between dendrites and
become filled with segregated liquid near the
end of solidification (Ref 25). Inverse segrega-
tion or surface exudation in direct-chill continu-
ous casting of aluminum ingots arises during
the initial stages of solidification when thermal
stress pushes out droplets of enriched interden-
dritic liquid through pores in the spongy mushy
zone where it extends to the ingot surface (Ref
26). A comprehensive summary of the model-
ing of this important class of defects is beyond
the scope of this article, and reviews of various
aspects of this complex subject can be found
elsewhere (Ref 23, 27–29).

Shrinkage Cavities, Gas Porosity,
and Casting Shape

Shrinkage cavities are voids in a casting that
form due to the thermal contraction of liquid
pockets after they become surrounded by solid
that prevents the feeding of additional liquid.
Porosity is the name for small voids that form
due to the evolution and entrapment of gas bub-
bles. These two important classes of defects are
related. Both involve the entrapment of liquid
pockets, a criterion for the nucleation of gas
bubbles, and depend on the overall shrinkage
of the casting, which requires a complete ther-
momechanical stress calculation, in addition to
accurate prediction of fluid flow and solidifica-
tion. A rough estimate of shrinkage cavity
potential is possible from postprocessing analy-
sis of the results of a simple solidification heat-
transfer analysis, looking for regions where
solid surrounds the liquid. This simple analysis
can be automated by tracking parameters that
represent shrinkage potential, such as the
Niyama criterion (Ref 30, 31) More accurate
prediction of shrinkage requires complete mod-
eling of fluid flow, heat transfer, and thermal-
stress analysis. The fluid flow analysis is further
complicated by the need for accurate character-
ization of the permeability of the porous den-
dritic network, which also depends on the
microstructure and alloy segregation. The stress
analysis depends on the evolving strength of the
solid, in addition to the mushy zone, interaction
with the mold, and other phenomena that are
discussed further in the section on hot tearing.
In addition to the phenomena that govern

shrinkage cavity formation, gas porosity predic-
tion also requires modeling the transport of dis-
solved gases, the nucleation of bubbles or gas
pockets, and their possible transport after they
form. This modeling also involves the same
complications discussed in the prediction of
inclusions, including nonequilibrium thermody-
namics, chemical reactions, nucleation, precipi-
tate formation, and growth kinetics. Indeed,
precipitation reactions are alternative ways for
the dissolved gases to be consumed. Finally,
gas bubbles that float during solidification can
collide and coalesce, depending on surface ten-
sion. When combined with improper venting,
this can lead to the creation of a defect found
at the top of foundry castings, known as a sur-
face blow hole.
Shrinkage and porosity defects are related to

the final shape of the casting. When the solid
metal shell is strong enough to resist shrinkage
and retain its external dimensions, internal
shrinkage and porosity may be more problem-
atic. In contrast, practices that lessen shrinkage
and porosity may involve more external shrink-
age of the exterior. Inaccurate final dimensions
is another casting defect. Because comprehen-
sive modeling of these defects requires the
simultaneous solution of so many different
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equation systems, with so many uncertain fun-
damental properties, this class of defects is dif-
ficult to predict and is the subject of intense
ongoing research. The art of modeling these
defects involves how to make simplifying
assumptions with the least loss of accuracy.
Further details on the current state of the art
in modeling of this important class of defects
is given elsewhere (Ref 28, 32, 33).

Mold-Wall Erosion

Feeding molten metal into the casting cavity
is a critical operation where defects may arise.
Excessive turbulence and velocity impingement
of the molten metal can erode the surface of the
mold wall, especially near the in-gate. In sand
molds, this can dislodge sand particles to act
as another source of inclusions in the final cast-
ing. Even with permanent metal molds such as
used in pressure die casting, excessive velocity
against the metal walls can locally erode the
metal, enlarging the casting cavity and creating
surface defects.
Erosion rate has been related to the metal

velocity and other parameters in a few previous
studies, based mainly on empirical correlations
(Ref 34). For example, in die casting, erosion
strength has been characterized by integrating
the instantaneous velocity over the time of the
injection cycle for each local portion of the
mold-wall surface (Ref 35). The resulting con-
tours over the mold surface can be correlated
with erosion damage.
Erosion of the mold wall due to fluid flow also

may remove protective surface coatings and allow
chemical reactions between the mold and the
exposed mold metal. Thus, the mechanical ero-
sion may be accompanied by chemical erosion
and/or metallurgical corrosion, which often act
together to wear away the mold surface. Analysis
of the chemical component requires consideration
of the thermodynamic reactions and their kinetics.
The interdiffusion of elements in themoltenmetal
to contaminate the mold walls can lower the local
melting temperature. This is responsible for the
problem of soldering in aluminum die casting in
steel molds (Ref 36, 37).

Mold-Wall Cracks

Cracks in the mold wall are another source of
defects in the casting, in addition to lowering
the lifetime of permanent molds. Mold cracks
decrease the local heat-transfer rate, allowing
local strain concentration in the adjacent solidi-
fying metal and causing hot-tear cracks at the
casting surface that mirror those in the mold.
In water-cooled molds, mold cracks also pose
a safety hazard, from the chance of molten
metal contacting the cooling water. Mold
cracks, or heat checks, are caused by repeated
rapid and severe fluctuations in the mold sur-
face temperature. They can be predicted from

the results of a transient thermal-stress analysis
of the mold itself, by combining the calculated
inelastic strain (due to plasticity and creep) with
measurements of cycles to failure from thermal-
fatigue experiments. For example, surface cracks
in copper molds used from continuous casting
were predicted by comparing the results of tran-
sient three-dimensional finite-element analysis
of the copper mold and its support structure dur-
ing cyclic loading with measured fatigue cycle-
to-failure data (Ref 38). In addition to adopting
practices to lower the maximum surface temper-
ature, the mold lifetime was predicted to
increase by lessening constraint of the mold by
loosening bolts (Ref 38, 39). Often, the predic-
tion of mold cracks requires consideration of
the chemical interaction of the liquid metal with
the mold, such as formation of brass in copper
molds by the preferential absorption of zinc from
the molten metal.

Other Defects

Many other casting defects arise due to pro-
blems specific to individual processes. Grain
defects, such as unwanted grain boundaries,
are important in directional solidification pro-
cesses, such as the casting of single-crystal tur-
bine blades, where high-temporature creep
resistance is the most important property. In
the Czochralski process, where single crystals
are slowly pulled from doped melts to cast rods
for making semiconductor wafers, even disloca-
tions are serious defects that must be mini-
mized. Examples in foundry sand casting
include cold shut, blow holes, liquid metal pen-
etration into the sand grains, and other surface
defects. Some insight into these defects can be
found from the results of a solidification heat-
transfer analysis. For example, problems related
to cold shut can be estimated from a simulation
if the molten metal freezes before the casting
cavity is completely filled, leaving voids or
seams at the junction where two streams met.
Crystal defects depend on the temperature gra-
dient across the solidification front. Further
insight can be gained from direct modeling of
the microstructure (Ref 40) and molecular
dynamics or quantum-mechanics models of dis-
locations and other phenomena at the atomic
scale (Ref 41). Many important process-specific
defects have received little attention by the
modeling community.
A final category of defects may be termed

“goofups” because their cause is so obvious,
and the solution involves, at most, only basic
calculations. For example, a short pour occurs
when the volume of metal poured is less than
the volume of the casting cavity. Unsightly mis-
match seams arise when the two halves of the
foundry casting mold are not aligned due to poor
maintenance of the hinges and pins. Although
obvious, avoiding such defects requires careful
and diligent operations. Here, expert-system-
type software may help, aided in these examples

by embedding simple volume calculations and
tracking of maintenance schedules. The rest of
this article focuses on the important defect of
hot-tear crack formation.

Hot-Tear Cracks

Crack formation is caused by a combination of
tensile stress and metallurgical embrittlement.
Although solidifyingmetal is subject to embrittle-
ment due to a number of different mechanisms at
different temperature ranges, hot-tear cracks form
near the solidus temperature. Embrittlement is so
severe near this temperature that hot-tear cracks
form at strains on the order of only 1%, making
them responsible for most of the cracks observed
in cast products.Hot-tear cracks formbecause thin
liquid films between the dendrites at grain bound-
aries are susceptible to strain concentration, caus-
ing separation of the dendrites and intergranular
cracks. The prediction of these cracks presents a
formidable challenge to modellers, owing to the
many complex, interacting phenomena that gov-
ern stress and embrittlement, some of which are
not yet fully understood:

� Predicting temperature, strain, and stress dur-
ing solidification requires calculation of the
history of the cast product and its environment
over huge temperature intervals. Characteriz-
ing the heat-transfer coefficients at the bound-
aries and interfaces is one ofmany difficulties.

� The mechanical problem is highly nonlinear,
involving liquid-solid interaction and complex
constitutive equations. Stress arises primarily
from the mismatch of strains caused by large
temperature gradients and depends on the
time- and microstructure-dependent inelastic
flow of the material. Even identifying the
numerous metallurgical parameters involved
in these relationships is a daunting task.

� The coupling between the thermal and the
mechanical problems is an additional diffi-
culty. This coupling comes from the
mechanical interaction between the casting
and the mold components, through gap for-
mation or the buildup of contact pressure,
locally modifying the heat exchange.

� Accounting for the mold and its interaction
with the casting makes the problem multido-
main, usually involving numerous deform-
able components with coupled interactions
and contact analysis.

� Cast parts usually have very complex three-
dimensional shapes, which puts great
demands on the interface between computer-
aided design and the mechanical solvers and
on computational resources.

� The main cause of embrittlement is the seg-
regation of solute impurities and alloying
elements to the interdendritic liquid between
primary grains, which lowers the solidus
temperature locally. Segregation is most
severe, and thus most important, at the
grain boundaries, owing to the greater local
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interdenritic spacing locally, which allows
the liquid to persist longer between grain
boundaries.

� Larger primary grain size increases strain
concentration and embrittlement, so it must
also be predicted. Because the grain size
evolves with time, the grain size in the final
cooled microstructure differs from the pri-
mary grain size, so grain size measurements
for model validation should be inferred from
analysis of the microsegregation pattern.

� Stress on the liquid films depends on the
ability of liquid to flow through the dendritic
structure to feed the volumetric shrinkage,
relative to the strength of the surrounding
dendritic skeleton. Thus, accurate perme-
ability models are required for the mushy
zone, which, in turn, require accurate predic-
tion of the microstructure, including the den-
drite arm shapes, especially at the grain
boundaries.

� Crack prediction requires modeling the distri-
bution of supersaturated dissolved gas and its
nucleation into pores or crack surfaces.

� The formation of solid precipitates tends to
pin the primary grain boundaries, enhancing
strain concentration. The interfering precipi-
tates also act as nucleation sites for both gas
bubbles and voids, both of which increase
embrittlement. Modeling precipitation is dif-
ficult, owing to the multicomponent nature
of commercial alloys and the importance of
kinetic delays.

� The subsequent refilling of hot tears with
segregated liquid alloy can cause internal
defects that are just as serious as exposed
surface cracks, which oxidize. This again
requires accurate prediction of both inter-
dendritic and intergranular solute flow.

� The most important parameters to hot tear-
ing— the stress-tensor field, which acts to
concentrate tensile strain in liquid regions of
the mushy zone, and the fluid-velocity vector
field, which acts to fill the voids— are both

three-dimensional time-varying quantities
that depend greatly on the orientation and
shape of the microstructure. Thus, even
empirical criteria to predict hot tears depend
on conducting experiments with the proper
load orientation, rates, and microstructures.

� The important length scales range from
micrometers (dendrite arm shapes) to tens
of meters (metallurgical length of a continu-
ous caster), with a similar huge order-of-
magnitude range in time scales.

Heat-Transfer Modeling

Accurate calculation of the evolving temper-
ature distribution during the casting process is
the first and most important step in the analysis
of hot tears. In addition to solving the transient
heat-transport equation with phase change, this
critical task usually requires coupling with tur-
bulent fluid flow during mold filling and inter-
action with the mold walls, with particular
attention to the interfacial gap.
Heat transfer across the mold-casting inter-

face depends on the size of the gap (if open)
or the contact pressure (if closed), so coupling
with results from a mechanical analysis is often
needed. Figure 1 shows the changes in interfa-
cial heat transfer for these two cases. When a
gap opens between the casting and the mold
due to their relative deformation, the heat trans-
fer drops in proportion to the size of the gap.
Heat flows across the interface, qgap, by con-
duction through the gas within the gap and by
radiation between the two parallel surfaces:

qgap ¼ kgas
g
ðTc � TmÞ þ sðT 4

c � T 4
m Þ

1
ec
þ 1

em
� 1

(Eq 1)

where kgas (T) is the thermal conductivity of the
gap; g is the gap thickness; Tc and Tm are the
local surface temperature of the casting and

mold, respectively; ec and em are emissivities;
and s is the Stefan-Boltzmann constant. To
avoid numerical problems at small gap sizes,
this function should be truncated to a finite
value, h0, which corresponds to the closed-gap
case and depends on the average roughness.
More sophisticated functions can be applied
to account for mold coating layers, different
material layers, radiation conduction, contact
resistances to incorporate surface roughness,
and other phenomena. Specific examples of
these gap heat-transfer laws are provided else-
where for continuous casting with oil lubrica-
tion (Ref 42) and mold flux (Ref 43).
When contact between the mold and casting

is good, the interfacial heat flux increases with
contact pressure according to a power law
(Ref 44), such as:

qcontact ¼ ðh0 þApBc ÞðTc � TmÞ (Eq 2)

where pc is the contact pressure, and A and B
are fitting parameters that depend on the
materials, lubricants, roughnesses, and tempera-
ture. After removal from the mold, heat
transfer is given by uncoupled surface convec-
tion coefficients. Accurate characterization of
the surface heat flux for all of these conditions
requires careful calibration and validation with
experimental measurements and is a critical step
in modeling.

Thermomechanical Modeling

Prediction of the displacements, strains, and
stresses during the casting process is the next
step in predicting residual stress, the distorted
shape, and crack defects, including hot tears.
As previously mentioned, stress analysis is also
important in the prediction of porosity and seg-
regation. The modeling of mechanical behavior
requires solution of the equilibrium or momen-
tum equations relating force and stress, the
compatibility equations relating strain and dis-
placement, and the constitutive equations relat-
ing stress and strain. This is because the
boundary conditions specify either force or dis-
placement at different regions of the domain
boundaries.
Governing Equations. The conservation of

force (steady-state equilibrium) or momentum
(transient conditions) can be expressed by:

r
@v

@t
þ v � rv

� �
¼ r � sþ rg (Eq 3)

where s is the stress tensor, r is the density,
g is the gravitational acceleration, v is the
velocity field, r is the gradient operator and
matrices (vectors and tensors) are denoted in
bold. Once solidified, the velocity terms that
comprise the left side of Eq 3 can be neglected.
The strains that dominate thermomechanical

behavior during solidification are on the order
of only a few percent, prior to crack formation.
With small gradients of spatial displacement,Fig. 1 Modeling heat-transfer coefficient across the mold-casting gap
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ru ¼ @u=@x, the compatibility equations
simplify to (Ref 45):

« ¼ 1

2
ruþ ðruÞT
� �

(Eq 4)

where « is the strain tensor, u is the displace-
ment vector, and T denotes transpose. This
small-strain assumption simplifies the analysis
considerably. The compatibility equations can
also be expressed as a rate formulation, where
strains become strain rates and displacements
become velocities. This formulation is more
convenient for a transient computation with
time integration involving fluid flow and/or
large deformation.
Choosing constitutive models to relate stress

and strain is a very challenging aspect of stress
analysis of solidification, because it depends on
accurately capturing the highly nonlinear evolu-
tion of the material microstructure with numerical
parameters. Traditionally, this is accomplished
with a family of elastic-plastic stress-strain curves
at the appropriate temperatures and strain rate(s)
and perhaps by adding a separate strain-rate func-
tion of temperature, stress, and time to account for
the time-dependent softening effects of creep.
However, the state variables of strain and

time are not enough to quantify the strength of
the material, especially during loading rever-
sals. Furthermore, the effects of plastic strain
and creep-strain rate are not independent. Thus,
unified models have been developed that com-
bine the different microstructural mechanisms
together in terms of state variables that relate
more closely to fundamental microstructural
parameters such as dislocation density. Many
models of different complexity can be found
in the literature (Ref 46, 47). In their simplest
form, these constitutive equations for metals
are often expressed in terms of the state vari-
ables of temperature and inelastic strain:

_« ¼ _«el þ _«in þ _«th (Eq 5)

_«el ¼ 1þ n
E

_s� n
E
trð _sÞIþ _T

@

@T

1þ n
E

� �
s

� _T
@

@T

n
E

� �
trðsÞI

(Eq 6)

_«in ¼ fðs; T; structureÞ (Eq 7)

_«th ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r T0ð Þ
r

3

s
� 1

" #
I (Eq 8)

These tensor equations are expressed in
terms of rates, where an overdot is the time
derivative, tr is the trace of a matrix, I is the
identity tensor, and every variable should
depend on temperature, T. The strain-rate ten-
sor, _«, is split into an elastic component _«el

� 	
,

an inelastic (nonreversible) component _«in
� 	

,
and a thermal component _«th

� 	
. Equation 6 is

the hypoelastic Hooke’s law, where E is
Young’s modulus, n is the Poisson’s coefficient,
and _s is the time derivative of the stress tensor
s. Equation 7 gives a framework for evolving
the inelastic strain tensor, «in, which is often
used as the only parameter to characterize
material structure. The thermal strains (Eq 8)
include the solidification shrinkage and are
based on the temperature field solved with the
heat-transfer model. Care should be taken in
choosing a consistent reference temperature,
T0, and in differentiating to extract the thermal
strain rate, which can be accomplished numeri-
cally. Finding suitable constitutive equations to
characterize the material mechanical response
for the wide range of conditions experienced
during solidification is a formidable task that
requires careful experiments under different
loading conditions, a reasonable form for the
theoretical model, and advanced fitting proce-
dures to extract the model coefficients.
Solution Strategies. Thermomechanical

analysis of casting processes poses special diffi-
culties due to the simultaneous presence of liq-
uid, mushy, and solid regions that move with
time as solidification progresses, the highly
nonlinear constitutive equations, complex
three-dimensional geometries, coupling with
the thermal analysis, interaction with the mold,
and many other reasons. Several different stra-
tegies have been developed, according to the
process and model objectives:

� A first strategy is to perform a small-strain
thermomechanical analysis on just the solidi-
fied portion of the casting domain, extracted
from the thermal analysis results. This strat-
egy is convenient when the solidification
front is stationary, such as the continuous
casting of aluminum (Ref 48) and steel (Ref
42, 49). For transient problems, such as the
prediction of residual stress and shape (butt-
curl) during startup of the direct-chill and
electromagnetic continuous casting processes
for aluminum ingots, the domain can be
extended in time by adding layers (Ref 48).

� A second popular strategy considers the
entire casting as a continuum, modifying
the parameters in the constitutive equations
for the liquid, mushy, and solid regions
according to the temperature and phase frac-
tion. For example, liquid can be treated by
setting the strains to zero when the tempera-
ture is above the solidus temperature. The
primary unknowns are the displacements or
displacement increments. To facilitate the
tracking of state variables, a Lagrangian for-
mulation is adopted, where the domain fol-
lows the material. This popular approach
can be used with structural finite-element
codes, such as MARC (Ref 50) or ABAQUS
(Ref 51), and with commercial solidification
codes or special-purpose software, such as
ALSIM (Ref 52)/ALSPEN (Ref 53), CASTS
(Ref 54), CON2D (Ref 55, 56), Magmasoft

(Ref 57), and Procast (Ref 58, 59). It has
been applied successfully to simulate defor-
mation and residual stress in shape castings
(Ref 60, 61), direct chill casting of alumi-
num (Ref 48, 52, 53, 60, 62, 63), and contin-
uous casting of steel (Ref 55, 64). Time
integration of the highly nonlinear constitu-
tive equations can benefit from special
local-global integration numerical methods
(Ref 56) or recent explicit methods
(Ref 65). Assuming small strain and avoid-
ing Poisson’s ratio close to 0.5 for stability
reasons (Ref 66, 67) means that the liquid
phase is not modeled accurately. Thus, some
phenomena must be incorporated from other
models, such as heat transfer from imping-
ing liquid jets (Ref 68) and fluid feeding into
the mushy zone (Ref 55).

� A third strategy simulates the entire casting,
treating the mass and momentum equations
of the liquid and mushy regions with a
mixed velocity-pressure formulation. The
primary unknowns are the velocity (time
derivative of displacement) and pressure
fields, which makes it easier to impose the
incompressibility constraints and to handle
hydrostatic pressure loading. Indeed, the
velocity-pressure formulation is also applied
to the equilibrium of the solid regions, in
order to provide a single continuum frame-
work for the global numerical solution. This
strategy has been implemented into codes
dedicated to casting analysis, such as THER-
CAST (Ref 64, 69, 70) and VULCAN
(Ref 71). If stress prediction is not important
so that elastic strains can be ignored, then
this formulation simplifies to a standard
fluid-flow analysis, which is useful in the
prediction of bulging and shape in large-
strain processes. For problems involving
large strain, such as squeeze casting, this
strategy is suited to an arbitrary Lagrangian
Eulerian (ALE) formulation. In a Eulerian
formulation, material moves through the
computational grid, which remains station-
ary in the laboratory frame of reference and
requires careful updating of the state vari-
ables. In ALE, mesh updating is partially
independent of the material velocity to
maintain the quality of the computational
grid. Further details are provided elsewhere
(Ref 69, 72).

Hot-Tearing Criteria

The next step is to quantify embrittlement
and to incorporate it with the thermal-stress
analysis to predict hot-tear cracks. Hot-tearing
phenomena are too complex, too small-scale,
and insufficiently understood to model in detail
as part of the macroscale thermomechanical
analysis. Thus, several different criteria and
approaches have been developed to predict hot
tears from the results of such analyses. This
topic is the focus of many ongoing research
efforts, and although many of these criteria
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reproduce observed trends, much more work is
needed before quantitative predictions are
reliable.
Different approaches are needed for different

microstructures and metals, according to the
most important phenomena that govern crack
formation. Hot-tear cracks forming within large
networks of mushy, equiaxed grains require
accurate constitutive models to quantify the
rheology of the mushy region. Cracks between
columnar grains require models that incorporate
the balance between liquid feeding between
dendrites and tensile deformation perpendicular
to the direction of dendrite growth. The
hot tearing of aluminum alloys additionally
depends on the critical stress to nucleate a gas
bubble. In steel, dissolved gas contents are usu-
ally low, so hot tears usually refill with
segregated liquid without opening into cracks.
This macrosegregation is very damaging, so it
becomes a very important phenomenon to
model accurately. Every criterion depends on
experimental measurements and how best to
incorporate them.
Thermal-Analysis-BasedCriteria.The results

of the solidification heat-transfer analysis alone
can provide some important insights into hot
tearing. As illustrated in Fig. 2, the location of
hot-tear cracks observed in a casting can be

related to their time of formation. Cracks tend
to initiate near the casting surface (x1) and
propagate toward the center of casting (x2) as
solidification progresses. Figure 2(b) shows
the progress of the mushy zone and important
isotherms with time, based on the results of a
solidification heat-transfer model. In the case
of continuous casting, the time axis also corre-
sponds to distance in the casting direction, so
the figure depicts the actual shape of the solidi-
fication fronts in the real caster.
Casting conditions that produce faster solidi-

fication and alloys with wider freezing ranges
are more prone to hot tears. Thus, many criteria
to indicate hot-tear cracking susceptibility
(HCS) are solely based on thermal analysis.
One (Ref 73) simply compares the local time
spent between two critical solid fractions, gs1
and gs2 (typically 0.9 and 0.99, respectively),
with the total local solidification time (or a
reference solidification time):

HCSclyne ¼ t0:99 � t0:90
t0:90 � t0:40

(Eq 9)

Mechanical-Analysis-Based Criteria. Many
different criteria have been developed to predict
hot-tear cracks from the results of a mechanical
analysis. Regardless of the model formulation,
developing an accurate criterion function to
predict hot tears relies on measurements, such
as the submerged split-chill tensile test (Ref
74–76). This experiment applies and measures
a tensile load on the solidifying shell, perpen-
dicular to the growth direction, so it matches
the conditions present in hot tearing between
columnar grains. Other experiments, such as
the Gleeble, apply a tensile load to remelted
metal that is held in place by surface tension.
Care must be taken in the interpretation of such
measurements because the load is generally
applied in the same direction as solidification-
front growth. Proper interpretation of any hot-
tearing experiment requires detailed modeling
of the experiment itself, because conditions
are never constant, and, at best, only raw data
such as temperature, displacement, and force
can be measured. The parameters of greatest
interest must be extracted using models.
Criteria based on classical mechanics often

assume cracks will form when a critical stress
is exceeded, and they are popular for predicting
cracks at lower temperatures (Ref 77–80).
Tensile stress is also a requirement for hot-tear
formation (Ref 81). This critical stress depends
greatly on the local temperature and strain rate.
The maximum tensile stress occurs just before
formation of a critical flaw (Ref 82).
Measurements often correlate hot-tear forma-

tion with the accumulation of a critical level of
mechanical strain while applying tensile load-
ing within a critical solid fraction where liquid
feeding is difficult. This has formed the basis
for many hot-tearing criteria. One such model
(Ref 81) accumulates inelastic deformation
over a brittleness temperature range, which is
defined, for example, as gs 2 0:85; 0:99½ � for a

Fe-0.15wt%C steel grade. The local condition
for fracture initiation is then:Xgs2

gs1
�ein � ecr (Eq 10)

in which the critical strain, ecr, is 1.6% at a
typical strain rate of 3 � 10�4 s�1. Careful
measurements during bending of solidifying
steel ingots have revealed critical strains rang-
ing from 1 to 3.8% (Ref 81, 83). The lowest
values were found at high strain rate and in
crack-sensitive grades (e.g., high-sulfur peritec-
tic steel) (Ref 81). In aluminum-rich aluminum-
copper alloys, critical strains were reported
from 0.09 to 1.6% and were relatively indepen-
dent of strain rate (Ref 82).
The critical strain decreases with increasing

strain rate, presumably because less time is
available for liquid feeding, and also decreases
for alloys with wider freezing ranges. The
following empirical equation for the critical
strain in steel, ecr, was based on fitting measure-
ments from many bend tests (Ref 84):

ecr ¼ 0:02821

_e0:3131�T 0:8638
B

(Eq 11)

where _e is the strain rate (s�1) and DTB is the
brittle temperature range (�C) defined between
the temperatures corresponding to solid frac-
tions of 0.9 and 0.99.
An elegant analytical-criterion model has

been derived to predict hot tearing, based on
when the local liquid feeding rate along the
interdendritic spaces between the primary
columnar dendrites is insufficient to balance
the rate of tensile strain increase in the per-
pendicular direction across the mushy zone
(Ref 85, 86). Specifically, gas pores cavitate to
separate the residual liquid film between the
dendrites when the tensile strain rate exceeds
a critical value:

_e � 1

R

l22 rTk k
180ml

rL
rS

pm � pCð Þ � vT
rS � rL

rS
H

� �
(Eq 12)

in which ml is the dynamic liquid viscosity, l2 is
the secondary dendrite arm spacing, pm is the
local pressure in the liquid ahead of the mushy
zone, pC is the cavitation pressure, vT is the
velocity of the solidification front, and jjrTjj
is the magnitude of the temperature gradient
across the mushy zone. The quantities R and
H depend on the solidification path of the alloy:

R ¼
ðT1

T2

gs
2F ðT Þ
gl3

dT H ¼
ðT1

T2

gs
2

g2l
dT

F ðT Þ ¼ 1

rTk k
ðT
T2

gsdT

(Eq 13)

where the integration limits are calibration
parameters (Ref 87). The upper limit T1 may
be the liquidus or the coherency temperature,
while the lower limit T2 typically is within the
solid fraction range of 0.95 to 0.99 (Ref 88).

Fig. 2 Relating the location of hot-tear crack formation
to results of a transient thermal simulation. (a)

Measure crack location in casting. (b) Predict shell
thickness history
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This criterion model has been applied to hot
tearing of aluminum microstructures (Ref 87).
For hot tearing within large mushy regions,

typically equiaxed microstructures, constitutive
behavior of the mushy zone to predict the local
fluid flow and deformation of the dendritic
network presents an important additional chal-
lenge. Other criterion models that focus more
on this aspect of hot tearing have recently been
developed (Ref 88–90). Further details on hot
tearing of aluminum alloys are reviewed else-
where (Ref 91).
Microscale Model-Based Criteria. Detailed

computational models can be developed based on
temperature, fluid flow, stress, and strain in the
mushy zone during solidification. For example, a
finite-element model of an equiaxed mushy zone
of aluminum has been applied to investigate con-
stitutive behavior and to quantify strain concentra-
tion in the liquid films for a few specific sets of
conditions (Ref 92). Once such models are more
mature, their results can be incorporated into bet-
ter criteria for hot tearing. A final difficult task is
extracting results from the macroscale model
results to compare with the criterion models,
owing to the sensitivity of numerical estimates of
parameters such as strain rate to numerical oscilla-
tions and mesh refinement effects. Thus, coupling
difficulties between the macro- and microscale
models is another reason that hot-tear crack pre-
diction is an ongoing challenge.

Microsegregation Modeling

Quantifying the relationship between temper-
ature and phase fractions is an essential part of
eachmodel involved in the prediction of hot tear-
ing, including the heat transfer, the mechanical,
and the hot-tear criterion models. This relation-
ship determines how latent heat is evolved in
the heat-transfer model and how to switch
between constitutive models in the mechanical
model. Although simple linear, lever-rule, or
Scheil-based relations are usually sufficient for
these macroscale models, microsegregation is
an essential aspect of embrittlement and greatly
affects the phase-fraction temperature relation-
ship involved in any hot-tearing criterion. Better
relationships use the results of microsegregation
models that consider partial diffusion of multiple
solute elements in the solid phase, using simple
analytical solutions (Ref 93), or one-dimensional
models of a single secondary dendrite arm (Ref
94). More advanced models couple this calcula-
tion together with the macroscale models and
allow the relationship to evolve to incorporate
nucleation undercooling and other phenomena
(Ref 27). Ideally, the relationships applied
between dendrites and at grain boundaries
should be different, and they should vary with
location in the casting, to account for macrose-
gregation and other phenomena. An important
concept, which is often overlooked, is that the
same (or very close) relationship must be used
in each model of the analysis. Inconsistency

between microsegregation models is one of the
main reasons why different researchers have pro-
posed different critical temperatures in their hot-
tear criteria. Experiments conducted to quantify
the parameters in hot-tearingmodels should fully
report both the raw data and the models used to
extract hot-tearing parameters, including the
microsegregation model.

Model Validation

Model validation is a crucial step in any
computational analysis. Analytical solutions
are needed to prove internal consistency of the
model and to control discretization errors.
Comparison with experiments is needed to
prove the model assumptions, property data,
and boundary conditions. Weiner and Boley
(Ref 95) derived an analytical solution for uni-
directional solidification of an unconstrained
plate, which serves as an ideal benchmark prob-
lem to validate thermal and mechanical models.
The plate is subjected to sudden surface quench
from a uniform initial temperature to a constant
mold temperature, with a unique solidification
temperature, an elastic-perfectly-plastic consti-
tutive law, and constant properties.
This benchmark problem can be solved with a

simple mesh of one row of elements extending
from the casting surface into the liquid, as shown
inFig. 3.Numerical predictions shouldmatchwith
acceptable precision using the same element type,
mesh refinement, and time steps planned for the
real problem. For example, the solidification stress
analysis code CON2D (Ref 55) and the commer-
cial code ABAQUS (Ref 51) were applied for typ-
ical conditions of steel casting (Ref 56).

Figures 4 and 5 compare the temperature and
stress profiles in the plate at two times. The
temperature profile through the solidifying
shell is almost linear. Because the interior
cools relative to the fixed surface temperature,
its shrinkage generates internal tensile stress,
which induces compressive stress at the surface.
With no applied external pressure, the average
stress through the thickness must naturally equal
zero, and stress must decrease to zero in the liq-
uid. Stresses and strains in both transverse direc-
tions are equal for this symmetrical problem. The
close agreement demonstrates that the computa-
tional model is numerically consistent and has
an acceptable mesh resolution. Such studies
reveal that a relatively fine mesh is needed to
achieve reasonable accuracy, and that results
from many thermomechanical models reported
in previous literature had insufficient mesh
refinement. Comparison with experimental mea-
surements is also required, to validate that the
modeling assumptions and input data are
reasonable.

Fig. 3 One-dimensional slice domain for modeling
solidifying plate

Fig. 4 Temperatures through solidifying plate at different times, comparing analytical solution and numerical
predictions
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Case Study—Billet Casting Speed
Optimization

A Lagrangian model of temperature, distor-
tion, strain, stress, and hot tearing has been
applied to predict the maximum speed for con-
tinuous casting of steel billets without forming
off-corner internal hot-tear cracks. The two-
dimensional transient finite-element thermome-
chanical model, CON2D (Ref 55, 56), has
been used to track a transverse slice through
the solidifying steel strand as it moves downward
at the casting speed to reveal the entire three-
dimensional stress state. The two-dimensional
assumption produces reasonable temperature
predictions, because axial (z-direction) conduc-
tion is negligible relative to axial advection
(Ref 43). In-plane mechanical predictions are
also reasonable, because bulging effects are
small, and the undiscretized casting direction
is modeled with the appropriate condition of
generalized plain strain. Other applications
with this model include the prediction of
ideal taper of the mold walls (Ref 96)
and quantifying the effect of steel grade on
oscillation mark severity during level fluctua-
tions (Ref 97).
The model domain is an L-shaped region of a

two-dimensional transverse section, shown in
Fig. 6. Removing the central liquid region saves
computation and lessens stability problems
related to element locking. Physically, this
“trick” is important in two-dimensional
domains because it allows the liquid volume

to change without generating stress, which
mimics the effect of fluid flow into and out of
the domain that occurs in the actual open-
topped casting process. Simulations start at the
meniscus, 100 mm below the mold top, and
extend through the 800 mm long mold and
below, for a caster with no submold support.
The instantaneous heat flux, given in Eq 14,
was based on plant measurements (Ref 98). It
was assumed to be uniform around the perime-
ter of the billet surface in order to simulate
ideal taper and perfect contact between the shell
and mold. Below the mold, the billet surface
temperature was kept constant at its circumferen-
tial profile at mold exit. This eliminates the effect
of spray cooling practice imperfections on sub-
mold reheating or cooling and the associated
complication for the stress/strain development.
A typical plain carbon steel was studied (0.27%
C, 1.52% Mn, 0.34% Si) with 1500.7 �C
liquidus temperature and 1411.8 �C solidus
temperature:

q MW=m2
� 	 ¼ 5� 0:2444t sð Þ t � 1:0 s

4:7556t sð Þ�0:504 t > 1:0 s


(Eq 14)

Different constitutive models were used for
each phase of the solidifying steel. The following
elastic-visco-plastic constitutive equation was
developed for the austenite phase (Ref 99) as
a function of percent carbon content (%C)
by fitting constant strain-rate tensile tests
(Ref 100, 101) and constant-load creep tests
(Ref 102) to the form in Eq 5 and 7:

_eeq ¼ f%C seq � s0

� �1=m
exp � 4:465�104

T

� �
where

f%C ¼4:655� 104 þ 7:14� 104ð%CÞ
þ 1:2� 104ð%CÞ2

s0 ¼ ð130:5� 5:128� 10�3T Þef2eq
f2 ¼ �0:6289þ 1:114� 10�3T

1=m ¼ 8:132� 1:54� 10�3T
with T in kelvin; and seq and s0 in MPa

(Eq 15)

Further equations, such as the associated flow
rule, are needed to transform this scalar equa-
tion into tensor form and to account for
reversals in loading conditions. Equation 15
and a similar one for delta-ferrite have been
implemented into the finite-element codes
CON2D (Ref 55) and THERCAST (Ref 103)
and applied to investigate several problems
involving mechanical behavior during continu-
ous casting.
Elastic modulus is a crucial property that

decreases with increasing temperature. It is dif-
ficult to measure at the high temperatures
important to casting, owing to the susceptibility
of the material to creep and thermal strain dur-
ing a standard tensile test, which results in
excessively low values. Higher values are
obtained from high-strain-rate tests, such as
ultrasonic measurements (Ref 104). Elastic
modulus measurements in steels near the soli-
dus temperature range from �1 (Ref 105) to
44 GPa (Ref 106), with typical modulus values
of �10 GPa near the solidus (Ref 98, 107, 108).

Fig. 5 Lateral (y and z) stress through solidifying plate at different times, comparing analytical solution and numerical
predictions

Fig. 6 Model domain
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The density needed to compute thermal
strain in Eq 8 can be found from a weighted
average of the values of the different solid and
liquid phases, based on the local phase frac-
tions. For the example of plain low-carbon
steel, the following equations were compiled
(Ref 55) based on the phase fractions of
alpha-ferrite ( fa), austenite ( fg), delta-ferrite
( fd) (Ref 109, 110), and liquid ( fl) measure-
ments (Ref 111):

r kg=m3
� 	 ¼rafa þ rgfg þ rdfd þ rlfl

ra ¼7881� 0:324T �Cð Þ � 3� 10�5T �Cð Þ2

rg ¼
100 8106� 0:51T �Cð Þ½ �

100� %Cð Þ½ � 1þ 0:008 %Cð Þ½ �3

rd ¼
100 8011� 0:47T �Cð Þ½ �

100� %Cð Þ½ � 1þ 0:013 %Cð Þ½ �3
rl ¼7100� 73 %Cð Þ � 0:8� 0:09 %Cð Þ½ �

T �Cð Þ � 1550½ �
(Eq 16)

Sample results are presented here for one-
quarter of a 120 mm square billet cast at speeds
of 2.0 and 5.0 m/min. The latter is the critical
speed at which hot-tear crack failure of the shell
is just predicted to occur. The temperature and
axial (z) stress distributions in a typical section
through the wideface of the steel shell cast at
2.0 m/min are shown in Fig. 7 and Fig. 8 at four
different times during cooling in the mold.
Unlike the analytical solution in Fig. 4, the sur-
face temperature drops as time progresses. The
corresponding stress distributions are qualita-
tively similar to the analytical solution (Fig. 5).
The stresses increase with time, however,
as solidification progresses. The realistic consti-
tutive equations produce a large region of
tension near the solidification front. The magni-
tude of these stresses (and the corresponding
strains) are not predicted to be enough to cause
hot tearing in the mold, however. The results
from two different codes reasonably match,
demonstrating that the formulations are accu-
rately implemented, convergence has been

achieved, and that the mesh and time-step refine-
ment are sufficient.
Figure 9(a) shows the distorted temperature

contours near the strand corner at 200 mm
below the mold exit for a casting speed of
5.0 m/min. The corner region is coldest, owing
to two-dimensional cooling. The shell becomes
hotter and thinner with increasing casting
speed, owing to less time in the mold. This
weakens the shell, allowing it to bulge more
under the ferrostatic pressure below the mold.
Figure 9(b) shows contours of hoop stress

constructed by taking the stress component act-
ing perpendicular to the dendrite growth direc-
tion, which simplifies to sx in the lower right
portion of the domain and sy in the upper left
portion. High values appear at the off-corner
subsurface region, due to a hinging effect that
the ferrostatic pressure over the entire face
exerts around the corner. This bends the shell
around the corner and generates high subsur-
face tensile stress at the weak solidification
front in the off-corner subsurface location. This
tensile stress peak increases slightly and moves
toward the surface at higher casting speed.

Stress concentration is less and the surface
hoop stress is compressive at the lower casting
speed. This indicates no possibility of surface
cracking. However, tensile surface hoop stress
is generated below the mold at high speed in
Fig. 9(b) at the face center due to excessive
bulging. This tensile stress, and the accompany-
ing hot-tear strain, may contribute to longitudi-
nal cracks that penetrate the surface.
Hot tearing was predicted using the criterion

in Eq 10 with the critical strain given in Eq 11.
Inelastic strain was accumulated for the compo-
nent oriented normal to the dendrite growth
direction, because that is the weakest direction
and corresponds to the measurements used to
obtain Eq 11. Figure 9(c) shows contours of
hot-tear strain in the hoop direction. The high-
est values appear at the off-corner subsurface
region in the hoop direction. Moreover, signifi-
cantly higher values are found at higher casting
speeds. For this particular example, hot-tear
strain exceeds the threshold at 12 nodes, all
located near the off-corner subsurface region.
This is caused by the hinging mechanism

Fig. 7 Temperature distribution along the solidifying
slice in continuous casting mold

Fig. 8 Lateral (y and z) stress distribution along the
solidifying slice in continuous casting mold

Fig. 9 Distorted contours at 200 mm below mold exit. (a) Temperature. (b) Hoop stress. (c) Hot-tear strain

370 / Fundamentals of the Modeling of Damage Evolution and Defect Generation

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view LIVE GRAPH

Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158412
/knovel2/view_hotlink.jsp?hotlink_id=440158416
/knovel2/view_hotlink.jsp?hotlink_id=440158420
/knovel2/view_hotlink.jsp?hotlink_id=440158421
/knovel2/view_hotlink.jsp?hotlink_id=440158422


around the corner. No nodes fail at the center
surface, in spite of the high tensile stress there.
The predicted hot-tearing region matches the
location of off-corner longitudinal cracks
observed in sections through real solidifying
shells, such as the one pictured in Fig. 10. The
bulged shape is also similar.
Results from many computations were used

to find the critical speed to avoid hot-tear
cracks as a function of section size and working
mold length, as presented in Fig. 11 (Ref 108).
These predictions slightly exceed plant prac-
tice, which is generally chosen by empirical
trial and error. This suggests that plant condi-
tions such as mold taper are less than ideal, that
other factors limit casting speed, or those
speeds in practice could be increased. The qual-
itative trends are the same.
This quantitative model of hot tearing pro-

vides many useful insights into the continuous
casting process. Larger section sizes are more
susceptible to bending around the corner and
thus have a lower critical speed, resulting in
less productivity increase than expected. The
trend toward longer molds over the past three
decades enables a higher casting speed without
cracks by producing a thicker, stronger shell at
mold exit.

Conclusions

The prediction of defects represents the cul-
mination of solidification modeling. It enables
models to make practical contributions to real
commercial processes, but it requires incorpor-
ating together and augmenting the models of
almost every other aspect of casting simulation.
Hot-tear crack prediction requires accurate ther-
mal and mechanical analysis, combined with
criteria for embrittlement. As computing power
and software tools for computational mechanics
advance, it is becoming increasingly possible to
perform useful analysis of fluid flow, tempera-
ture, deformation, strain, stress, and related
phenomena in real casting processes. Computa-
tions are still hampered by the limits of mesh
resolution and computational speed, especially

for realistic three-dimensional geometries and
defect analysis. The modeling of defects such
as hot tears is still in its infancy, and there is
much work to be done.
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Modeling of Tensile Properties
Peter C. Collins and Hamish L. Fraser, The Ohio State University

TENSILE PROPERTIES OF METALLIC
MATERIALS are characterized by the elastic
modulus (i.e., Young’s modulus) exhibited by a
material prior to the formation of a permanent
set, the yield stress, ultimate tensile stress
(UTS), and a measure of ductility prior to failure
(usually either the elongation to failure and/or the
reduction in area). While considerable progress
has been made regarding the prediction of
the elastic modulus of metals and fairly simple
alloys using ab initio, quantum mechanical
calculations, the plastic properties are consider-
ably more complex. Thus, in the case of these
latter properties, there are a number of app-
roaches, including phenomenological, mecha-
nistic (including atomistic), and rules-based,
that are the subject of considerable current study.
Considering the three plastic properties, yield
stress is difficult to predict, UTS very difficult,
and ductility extremely difficult. The reason
why these properties present such difficulties
regarding computation is because in any given
(useful) alloy containing a number of alloying
elements, a number of strengthening mechan-
isms, for example, can contribute. In general, it
is not known which of these mechanisms is con-
tributing significantly to the value of the given
property, and the specific roles of each of the
alloying elements are often not well understood.
In metallic materials, plastic deformation

generally occurs by dislocation glide, twinning,
phase transformations, climb of dislocations,
grain-boundary sliding, and diffusion of point
defects. Which of these deformation processes
is activated depends largely on intrinsic proper-
ties, for example, the Peierls stress, and extrin-
sic factors such as temperature and imposed
strain rate. Generally, the first three processes
are associated with tensile properties, and the
latter three with creep. Strengthening mechan-
isms are those that inhibit these deformation
processes. For example, if a material deforms
by dislocation glide (by far the most common
process), then the material can be strengthened
if glide is made more difficult, because a larger
tensile stress must be applied to effect disloca-
tion motion and hence plastic strain. The most
common strengthening mechanisms are:

� Solid-solution strengthening
� Age/precipitation hardening

� Dispersion strengthening
� Grain size reduction
� Strengthening from cold work
� Strengthening from interfaces

Regarding ductility, in general, the more
effectively the given strengthening mechanism
inhibits the deformation processes, the greater
will be the reduction in ductility. Simply con-
sidered, this is because the increased strength-
ening results in an increase in the applied
stress needed to produce plastic strain. For a
given material, the applied stress will eventu-
ally exceed a critical value where fracture pro-
cesses become active, leading to failure. The
situation is complicated by significant differ-
ences between the global state of stress in a
given specimen compared with local states of
stress, which can be rather different. Reference
is made to the occurrence of stress concentra-
tions that can occur because of extrinsic factors,
such as at small, nondeforming particles, partic-
ularly those with an elliptical shape with sharp
major radii of curvature, for example, impurity
inclusions, and intrinsic processes, such as the
formation of a dislocation pileup at an obstacle,
for example, at a grain boundary. In this latter
case, the stress concentration is proportional to
the number of dislocations in the pileup, which
can be a significant number, leading to a sub-
stantial stress concentration. Thus, while on
average, the applied stress may be at a value
somewhat lower than the critical value for acti-
vation of failure mechanisms, locally, stress
concentrations may be such as to increase the
local stress above that critical value, leading,
for example, to local crack initiation. The
occurrence and influence of these stress concen-
trations cause significant difficulties in terms of
developing predictive models.
It would be very advantageous if materials

engineers and designers would have a set of
computational tools for the prediction of the
interrelationships between microstructure and
properties, and for this article, specifically ten-
sile properties, for a wide range of materials.
As noted previously, in any given metallic
material, there are a number of contributing
strengthening mechanisms. A computational
tool would require the contribution of each of
the strengthening mechanisms to be predicted

and then summed in an appropriate way to
derive an estimate of the tensile properties. As
seen in the following, where each of the
strengthening mechanisms are described and
the current state of modeling assessed, while
general understandings have been developed,
accurate predictions are not typically available.
Because of space limitations, the focus of this
article is on deformation mechanisms pertinent
to structural materials; the extremely interesting
case of deformation in nanoscaled materials,
such as multilayered systems, is not discussed.

Current State of Understanding
and Modeling of Strengthening
Mechanisms

Solid–Solution Strengthening

The intentional (and sometimes uninten-
tional) tailoring of interstitial and substitutional
solid solutions is arguably one of the most
important methods by which the strength of
alloys may be affected. Consider the effects of
solid-solution strengthening on:

� Steels, where it is well established that inter-
stitial carbon and nitrogen have the largest
effect on yield strength and hardness (e.g.,
Dsys � 3000 MPa/wt%C)

� Titanium-base alloys, where the effect of
interstitial oxygen has also been known to
markedly increase the yield strength
(Ref 1), as is reflected in the differences in
yield strength among the grades of commer-
cially pure titanium (e.g., sys

Grade 1, �0.18O

� 220 MPa; sys
Grade 4, �0.4O � 560 MPa)

� Al-Si-Cu alloys, where the supersaturation
of copper (and early stages of precipitation,
Guinier-Preston-Bagaryatskii zones) have
been identified as the significant contributor
to strength (Ref 2)

� Die-cast magnesium alloys, where solid-
solution strengthening is one of the key
design considerations in their development
(Ref 3)

� Cast magnesium alloys, where both alumi-
num and zinc are considered to exhibit
rather potent solid-solution strengthening
effects (Ref 3, 4)
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Clearly, solid-solution strengthening is an impor-
tant mechanism for inclusion in models for the
prediction of tensile properties of an alloy.
Legacy Understanding. The strengthening

effect of solid solutions is due to the interaction
of dislocations with solute atoms. The origin of
this effect has been attributed to either the inter-
actions between strain fields of dislocations with
those of solute atoms and/or the difference in
elastic modulus between the solvent and solute
atoms. In both cases, the interaction can be one
where the energy of the dislocation is reduced
(an attractive interaction) or increased (a repul-
sive interaction) when interacting with solute
atoms. Thus, when the interaction of strain fields
results in a decrease in the overall amount of
strain (e.g., when a large substitutional solute
occupies a lattice site below the extra half-plane
of atoms in an edge dislocation, i.e., where the
strains are tensile in nature), the line energy of
the dislocation will be reduced, as will the degree
of misfit about the solute. Likewise, when the
elastic modulus of the solute is lower than that
of the solvent atoms, a decrease in the line energy
will also result, because the strain energy (Es) of a
dislocation is proportional to G�b2, where G is
the shear modulus, and b is the magnitude of the
Burgers vector. In the case of an attractive inter-
action, the solute atoms will strongly interact
with dislocations, and will tend to “lock” the dis-
locations. Motion of such dislocations requires
the defects to break away from the interacting
solute atoms, requiring an increased applied
shear stress; that is, the material is strengthened.
For repulsive interactions, the increase in strain
energy of the dislocations if these defects are
moved close to such solute atoms will also
require an increase in the applied shear stress,
and so, the material will appear to be stronger.
Regarding the interaction of strain fields, it is

necessary for the strain fields to be of the same
kind, that is, hydrostatic (or dilatational) or shear.
In principle, the strain fields associated with
screw dislocations are shear in nature, whereas
for edge dislocations there are both shear and
dilatational distortions, the latter arising from
displacements parallel to þ�[b � u], where b is
the Burgers vector and u the dislocation line
direction.Mixed dislocationswill also have com-
ponents of both types of strain field, with their
respective magnitudes depending on the angle

between their Burgers vector and line direction.
Regarding the strain fields about solute atoms,
for metallic materials with close-packed crystal
structures, substitutional and interstitial solutes
generally exhibit hydrostatic strain fields, as do
solutes in non-close-packed systems (e.g., body-
centered cubic, or bcc), whereas interstitial
solutes in these latter systems tend to exhibit
asymmetrical distortions, such that both dilata-
tional and shear strains exist. Hence, it can be
expected that reasonable interactions will exist
between, on the one hand, edge and mixed dislo-
cations and, on the other hand, substitutional and
interstitial solutes, whereas, in principle, strong
interactions are expected between interstitial
solutes and screw dislocations only in bccmateri-
als. These various interactions are summarized in
Table 1. In fact, in close-packed systems, dissoci-
ation into partial dislocations occurs, for exam-
ple, Shockley partials in face-centered cubic
(fcc) materials. Because the Burgers vectors of
these defects are inclined to one another, it is
not possible for both of them to be in the screw
orientation simultaneously, and so, a weak inter-
action between at least one of the partials and
both interstitial and substitutional solutes in fcc
will occur.
Modeling of Solid-Solution Strengthening.

Based on the spatial and temporal nature of the
interactions between solutes and dislocations,
two separate approaches have been developed,
which may be classified as:

� Those that attempt to model the interactions
of a moving dislocation in a random fixed
dispersion of solute atoms

� Those that attempt to model the nucleation
of slip at a barrier of solute atoms

A third type of dislocation/solute interaction,
solute drag, can be used to explain a solute
atmosphere that diffuses at a rate similar to
the velocity of the dislocation. However,
because this dislocation/solute atom interaction
requires either elevated temperatures or low
strain rates, it is not expected to be relevant
for most tensile property models. For example,
it may be important to consider solute drag if
the models to be developed are of flow stresses
of the material at certain forming conditions.
Model Type 1: A Moving Dislocation in a

Random Fixed Dispersion of Solute Atoms.
For solute-rich, homogeneously distributed sub-
stitutional-solid solutions, the original model of
Mott and Nabarro (Ref 5) included as a primary
variable the size-misfit factor, eb (=(1/b)(db/
dc)) in their final derivation, given by:

t ¼ Ge2bc
5=3ðln cÞ2

where, in addition to eb, the other variables are
the modulus (G) and the solute concentration
(c). The fundamental limitations of the original
derivation include its inability to explain the
apparent effect that valencies have on the
strengthening effect (Ref 6, 7), the pure shear
strain fields associated with screw dislocations,

temperature effects, and the nonhomogeneous
nature of the solute distribution that is experi-
mentally observed. The limitations regarding
the effect of valence state and the experimen-
tally observed nonhomogeneous distribution of
solute were addressed by Labusch, who
incorporated more realistic approximations of
solute clusters and a modulus factor into the
size-misfit factor to obtain the experimentally
observed and often cited c2/3 dependency:

t ¼ A

b
f4mc

2w=E
� 	1=3

where E is the line energy of the dislocation, A
is a function of the interaction of forces
between the dislocation and obstacle (e.g., the
solute cluster) located at a distance y from
the dislocation, and w is the summation of the
strengths of the individual solute atoms in the
cluster. In addition,

fmð¼ ðGb2=120ÞeLÞ

is dependent upon: eLwhich is a misfit parame-
ter given as the square root of a combination of
squares of the contributions of the size and
modulus factors. This inclusion of a modulus
factor will account for the effect of modulus
differences in solute content to a first approxi-
mation. Nabarro later revisited the problem
and derived two forms, one whose functional
form is identical to that obtained by Labusch,
where A is ½. However, he also obtained a rela-
tion to describe isolated pinning points for lean
solid solutions (e.g., less than the Friedel limit
of �100 to 200 ppm), given as:

t ¼ 1

b
f2mc=2

5=2E
� �1=2

where the variables have the previously
described meanings. These models still neglect
to account for any thermal effects or the inter-
action between screw dislocations and types of
solute. The thermal effects neglected are related
to the experimentally observed drop in yield
strength with decreasing yield strength up to
�0.3 to 0.4 Tm (e.g., the homologous tempera-
ture), where the yield strength appears to pla-
teau with further increases in temperature.
This plateau has been attributed to thermally
activated recovery processes in the material.
Finally, because these models consider the

overall solid-solution strengthening effect in
binary alloy systems, it is relevant to consider
the extension of such models to materials con-
taining a number of different solutes. Labusch
first theorized (Ref 8) and Gypen and Deruyt-
tere (Ref 9) experimentally verified that the
total combination of the individual solid-solu-
tion strengthening effects, for solute elements
A and B, may be taken as:

DttotalSS ¼ Dt2=3A þ Dt2=3B

� �3=2
Model Type 2: Slip Nucleation. Feltham (Ref

10) was the first to propose a model in which

Table 1 Summary of the expected
interactions between the strain fields of
dislocations and solute atoms in the given
crystals

Dislocation character

Edge Mixed ScrewCrystal structure(a) Type of solute

Close-packed
(e.g., fcc, hcp)

Substitutional
ffip ffip ffip

. . .
Interstitial

ffip ffip ffip
. . .

bcc Substitutional
ffip ffip ffip

. . .
Interstitial

ffip ffip ffip ffip ffip ffip
(a) fcc, face-centered cubic; hcp, hexagonal close-packed; bcc, body-
centered cubic.

ffip ffip
indicates the possibility of strong interactions,

whereas
ffip
indicates the possibility of weak interactions.

378 / Phenomenological or Mechanistic Models for Mechanical Properties

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



the mechanism is based on slip nucleation from
barriers. Although the first model assumed a
fairly concentrated solid solution and was
meant to account for certain aspects of fcc
materials, it was soon discovered to describe
accurately the break-away phenomenon in
dilute alloys (c � 0.01 at.%) as well as solid-
solution strengthening in hexagonal close-
packed (hcp) and bcc materials (0.005 to 45
at.%). The nature of the model allows a first
approximation of the temperature dependencies
of solid-solution strengthening. The model is
derived by considering the work required to
move an edge dislocation from one linear seg-
ment of pinning solutes to the next linear seg-
ment of pinning solutes. It may be shown that
the work is the sum of the energy required to
unpin the dislocation from the solute atoms,
the increase in the dislocation line length, and
the work done by the applied shear stress. Nota-
bly, the critical resolved shear stress is a tem-
perature-dependent term, thereby partly
overcoming a limitation of model type 1. A fur-
ther advantage of this approach is that by relat-
ing various equations for work, the shear stress
function can be solved in closed form and then
verified. The relevant equations for this
approach are:

W ¼ U1=2
c

L

b
þ n2Gb3

b

L
� 1

2
ntb3

L

b
L

b
¼ ð4Gn=tÞ1=2

WðtÞ ¼ mkT

where, in addition to c, b, G, t, k, and T, which
have their meanings as given previously, U is
the energy expended per solute atom to reach
the saddle point between two linear segments
of pinning particles, n is related to the distance
between linear segments (typically 4 to 6 for
fcc and hcp, 1 to 2 for bcc), L is the length of

the dislocation segment remaining pinned, and
m(= ln(vo/v), where vo and v are the original
and instantaneous dislocation velocities, and m
is typically 25 þ� 2.3. Further details of the tem-
perature dependence of the critical resolved
shear stress, the temperature dependency on
the deformation activation volume, and the
low-temperature anomalies are adequately
described in the review by Butt and Feltham
(Ref 10). It should be noted that in their treat-
ment, the contribution of other pinning points,
such as dislocation networks, is considered as
part of a modified solute content, c*. While
they do not directly consider the temperature
effects of c*, they do consider the temperature
effects in the work term that may include c*.

Additional Resources. For a more detailed
review, the reader is referred to the numerous
review articles of solid-solution hardening,
notably the most recent review of Butt and Fel-
tham (Ref 10). A rather simplified c1/2 depen-
dency has also been derived and shown
elsewhere (Ref 11–13). Research into stress
relaxation (typically <10% of the load in alu-
minum-base alloys) has attempted to relate
stress relaxation (and a corresponding increase
in strength upon reload) to the rearrangement
of dislocations and solute atoms during the
unload (Ref 14, 15).

Age/Precipitation Hardening

In a number of alloys, it is possible to solu-
tion heat treat a material in a single-phase field,
quench to room temperature, and then subse-
quently age at an intermediate temperature,
leading to the precipitation of second-phase
particles. Often, the precipitation sequence
involves nonequilibrium zones and precipitates,
such that the nucleation frequency is very high,
leading to extremely refined distributions of
particles. Also, solute content can influence

the transformation paths and types of precipi-
tates formed. These refined distributions of par-
ticles can lead to very significant increases in
strength. While the classical examples of alloys
heat treated in this way are the widely used alu-
minum-copper alloys (Fig. 1a), Al-Mg-Si
alloys, and nickel-base superalloys, heat treat-
ments may also be used to optimize strengths
in b-titanium alloys, some copper-base alloys
(copper-titanium, copper-beryllium, copper-
cobalt), some magnesium-base alloys (magne-
sium-zinc, magnesium-rare earths, Mg-Zn-Ca)
(Fig. 1b), and iron-base alloys. An example of
the variation in the property of a material that
may occur as a result of different aging condi-
tions (both time and temperature) is shown in
Fig. 1(a, b). In this figure, the variation is asso-
ciated with the time to and magnitude of the
peak yield strengths and reflects the material
response to heat treatment. Further, it has been
shown that for many of these heat treatable
alloys, the alloy content can significantly affect
the peak properties as well (Fig. 2). This type of
material response is typically called age (or pre-
cipitation) hardening.
In general, the ability to age harden a mate-

rial is dependent on two criteria. The first is
the requirement that a large concentration of
solute be quenched into a supersaturated solid
solution, so that the resulting volume fraction
of finely dispersed precipitates is significant.
This requirement is met for alloy systems
where the equilibrium solvus exhibits a signifi-
cant curvature, such that the maximum solid
solubility will be relatively large. For example,
consider the aluminum-copper binary system,
of which the relevant portion appears in
Fig. 3. In this figure, it can be observed that
the equilibrium solute concentration at tempera-
tures below 250 �C is less than 0.1 wt% (0.04
at.%) Cu. However, at 548 �C, the solid solubil-
ity is �5.7 wt% (2.5 at.%) Cu. The second

Fig. 1 Age-hardening response. (a) Aluminum alloys aged at various temperatures measured by tensile strength. Source: Ref 16. (b) Magnesium alloys as measured by aging time
versus Vicker’s hardness. Source: Ref 17, adapted from Ref 18
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criterion involves the nature of the precipitation
processes. Thus, to permit a very refined distri-
bution of particles to form on aging, either
(near) homogeneous nucleation or copious het-
erogeneous nucleation of particles on defects
and interfaces is required. This latter criterion
is often accomplished through the precipitation
of nonequilibrium zones and phases where the
activation energy for nucleation is reduced,
largely through reductions in interfacial ener-
gies and elastic misfits.
Legacy Understanding. Age hardening

initiates when a supersaturated solid solution
is aged and subsequently decomposes through
the formation of zones and second phases. The
modeling of deformation in the presence of
such phase transitions is normally based on a
distribution of spherical particles, obviously an
approximation because the zones and precipi-
tates are often disk, ellipsoidal, or rod shaped
as well as spherical. It is usually considered that
this precipitation of zones and second phases
rapidly reduces the matrix solute concentration
from a supersaturation to an equilibrium value.
Upon further aging, the distribution of particles
coarsens by Ostwald ripening (particle coarsen-
ing), such that with a fixed volume fraction of
second phase, the average particle size (with
radius r) will increase, as will the interparticle
spacing (L). At short aging times and at rela-
tively lower temperatures, the particles are rela-
tively coherent and characterized mainly by
misfit strain fields, especially if they are GPB
zones (i.e., compositionally different from the
matrix but having the same fcc crystal struc-
ture). As intermediate phases form, the crystal
structure of the particles is different from that
of the matrix, and this will contribute to
strengthening; that is, the difference in Peierls

stress (equivalently the critical resolved shear
stress for dislocation motion) between the
matrix and particles will contribute to strength-
ening. This is particularly the case if the parti-
cles are ordered intermetallic compounds
(such as g0-Ni3Al in nickel, as in g-nickel-base
superalloys), where resistance to dislocation
motion arises not only from differences in
Peierls stresses but also from formation of
antiphase boundaries.
The typical age-hardening response, as

shown in Fig. 1, exhibits an initial increase in
yield strength (or hardness, as was measured
in the early literature) to a peak strength, fol-
lowed by a decrease in the value of this prop-
erty. There are two competing deformation
mechanisms that can account for these varia-
tions (Fig. 4): the first operative as the value
of the yield strength increases where the parti-
cles are cut, or sheared, by dislocations, and
the second, which is responsible for the
decreasing part of the aging response where
dislocations can bypass the particles (the Oro-
wan mechanism). These mechanisms are con-
sidered in turn.
When precipitation occurs in an alloy where

age hardening is effective, the zones or parti-
cles (the precipitation sequence depending on
the alloy system) are extremely finely dispersed
and are mainly characterized by their coherency
strain fields. The very small interparticle
spacing is such that a given dislocation will
lie both in regions between the zones or parti-
cles as well as through them because of the line
tension (i.e., the energy/unit length) associated
with the dislocation. Therefore, further motion
of the defect requires some segments to glide
completely through the obstacles (i.e., mainly
the strain fields) and for others to glide from

regions of high strain to those of lower-strain
fields between the zones or particles. Conse-
quently, the strengthening effect is not particu-
larly significant. As the particles coarsen,
resulting in increased interparticle spacings (a
fixed volume fraction of second phase), more
segments of the dislocations lie between the
particles, such that an increased fraction of the
length of the dislocations must do work against
the strain fields of the obstacles. Also, with
aging time, the particles become more effective
obstacles, because they adopt crystal structures
different from the matrix. Hence, the strength-
ening effect becomes more significant. Further
aging results in increased particle sizes and spa-
cings, such that essentially all segments of dis-
locations can lie in regions between the
particles, and motion of dislocations requires
that all segments of the defects must do work
cutting through the obstacles; this would corre-
spond to the maximum strengthening effect.
As the interparticle spacing increases with

continued aging, it becomes possible for the dis-
location line to bow between the particles. This
is depicted in Fig. 5(a–d),where a dislocation line
with the line direction shown is assumed to glide
to the right on a slip plane parallel to the plane of
the page. Provided the particles are sufficiently
widely spaced, the dislocations will adopt the
configuration shown in Fig. 5(b, c). Note that at
the points marked “A” (Fig. 5c), the dislocation
segments have opposite signs and so pinch off
to form a loop around each particle and a disloca-
tion line that has effectively bypassed the parti-
cles. This is the Orowan mechanism. As shown
subsequently, the shear stress required to operate
the mechanism is proportional to Gb/L (G being
the shear modulus, b the magnitude of the Bur-
gers vector, and L the interparticle spacing), and
so with continued aging and coarsening of the
particle dispersion, bypassing of obstacles
becomes easier, and hence, the strengthening
effect will decrease, as is observed.
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Fig. 2 Effect of solute content on peak yield strength. Source: Ref 16 Fig. 3 Portion of the aluminum-copper system
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In addition to influencing the yield strength,
these two mechanisms, dislocation cutting and
particle bypass (Orowan mechanism), can also
influence the ultimate tensile strength and ductil-
ity. In the case of dislocation cutting, each time a
particle is cut, the area of the particle subtended
on the slip plane decreases, as shown in Fig. 6.
Therefore, that particle effectively becomes a
weaker obstacle, such that it will require less work
to be done by the next dislocation emitted by the
given source to cut the particle; of course, this
new dislocation will also reduce the effective size
of the particle, again reducing its effectiveness as
an obstacle. Such successive particle cutting
results in slip localization, where, in principle, it
becomes increasingly easier for the dislocation
source to operate, implying possible work soften-
ing. Of course, there are other deformation pro-
cesses at work that complicate the situation, such
that rarely is work softening observed, but with
dislocation cutting as the predominant strengthen-
ing mechanism, there is limited scope to realize
significant work hardening. Such strain localiza-
tion will lead to significant pileups of dislocations
at grain boundaries, producing very significant
stress concentrations, which may have a marked
influence on the initiation of intergranular frac-
ture, particularly if grain-boundary phases exist
at the boundaries, which is often the case in com-
mercial alloys. In contrast, in the case of disloca-
tion bypass, debris in the form of dislocation
loops is left around each particle that is bypassed.

The next dislocation to attempt to bypass the given
particles will experience a repulsive force,
because its line direction is parallel to that of the
segments of the loops with which it first comes
into proximity, and so the passage of the second
dislocation is more difficult than the first, requir-
ing an increase in the applied stress to continue
dislocationmotion; that is, the samplewouldwork
harden. If the dislocation is screw in character,
then it could possibly undergo a double cross-slip
mechanism of bypass, depicted in Fig. 7, but this
would also require an increase in applied stress,
because the cross-slip plane is most likely to be
less favorably oriented than the primary system.
The third dislocation would experience an even
greater repulsive interaction. These increases in
applied stress would lead to the operation of other
dislocation sources, such that the slip would be
spread throughout the grain, rather than become
localized (as with cutting).
As can be seen, there are some very impor-

tant differences between these two deformation
mechanisms. While in heat treatable aluminum
alloys, for example, peak hardness usually is
achieved in the dislocation-cutting regime,
there are problems associated with slip localiza-
tion and properties such as ductility and stress-
corrosion cracking. Interestingly, the commer-
cial aluminum-lithium alloys were made viable
by introducing a very refined dispersion of the
phase d0-Al3Li for strengthening. To reduce
the extent of the resulting slip localization, a
second series of nondeformable particles was
also introduced to disperse slip.
Modeling Precipitation Strengthening.

This section discusses legacy and current
understanding of dislocation cutting and dislo-
cation bypass.
Dislocation Cutting. As discussed previ-

ously, dislocation cutting occurs when the dis-
tribution of particles is extremely refined,
most usually consisting of either zones or sec-
ond phases with coherent interfaces with atten-
dant misfit strains, semicoherent interfaces with
misfit dislocations, and particles with crystal

structures that are somewhat different from that
of the matrix, leading to significant differences
in Peierls stresses and choice of slip planes.
Clearly, it is a somewhat complex situation,
with contributions to hardening changing as a
function of aging time as the distribution of par-
ticles develops and changes structurally. A pre-
diction on the basis of small coherent particles
yields a flow stress variation given by (Ref 19):

t ¼ 4:1Ge3=2f1=2
r

b

� �1=2

where G is the shear modulus, e is the coher-
ency misfit strain, f is the volume fraction, r is
the particle radius, and b is the magnitude of
the Burgers vector. As can be seen, the yield
stress will vary as a function of r1/2, which is
a reasonable approximation to the expected
behavior. A different formulation (Ref 20)
incorporates the various contributions to the
strengthening, discussed previously, and yields
an equation to estimate the increase in shear
stress arising from the presence of the distribu-
tion of particles and is written as:

�tc ffi g3=2

b
f1=2

r1=2

ð6EvÞ1=2

where g is an effective interfacial energy, Ev is
the strain energy of a dislocation (taken as
1
2
Gb2), and the other symbols have their usual

meaning. Again, the strengthening effect is pre-
dicted to vary as a function of r1/2. Both of these
expressions are useful in that they predict the
trend in strength variation as a function of aging
time. However, they do not return accurate pre-
dictions for strengthening. For example, consider
the age-hardening curve shown previously in
Fig. 1. As can be seen, the strength increase does
not vary uniformly, that is, simply as a function of
r1/2, because the nature of the zones and particles
is changing with aging time. Each form of the
zones and intermediate phases gives rise to a par-
ticular strengthening effect.

Fig. 5 Schematic of the Orowan mechanism. The dislocation line moves left to right through steps a, b, c, and d. b is
the Burgers vector. Other symbols are self-evident.

Fig. 4 Effect of particle size on yield strength with
operating mechanisms involving dislocation

particle interactions. Time and yield strength in arbitrary
units (A.U.)
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Fig. 6 Schematic of particle cutting, showing multiple
dislocations (A, B) operating from source S1.
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The Orowan Mechanism (Dislocation
Bypass). As noted previously, if the interparti-
cle particle spacings are sufficiently large,
dislocations bypass the particles by the Orowan
mechanism. The effective increase in the flow
stress for this particular case is given by:

tOrowan � aGb

L
ðcosfcÞ3=2

where a is a factor, L is the particle spacing, fc

is shown in Fig. 5(b), and G and b have their
usual meanings. When the particles are suffi-
ciently far apart, fc approaches 0, and the
cosfc term can be ignored. Further, a may be
taken to be 0.84 for dislocations in a random
array of strong spherical obstacles, where cos
(fc/2) > 0.70 (i.e., most cases). It should be
noted that this approximates the local shear
stress when the dislocation is interacting with
the particles and is not applicable when the dis-
location is not interacting with the particle (e.g.,
when it is moving to the next array of barriers).
It may also be shown that the spacing L and

Burgers vector b may be related to the size of
the particles and the concentration of solute
and combined in the following form:

tOrowan � 0:84Gb

L
¼ 0:84Gf1=2

r

Emerging Concepts. The simplified models
for bypass often assume a random array of pre-
cipitates and tend to exclude the precipitate mor-
phology and/or its orientation relationship with
the matrix. Therefore, recent research has

focused on deriving more accurate models of
shear stress using a variety of approaches (Ref
21–23), including computational dislocation-pre-
cipitate simulations to study various precipitate
morphologies and distributions. For very thin
platelike precipitates on the {100} planes, a
few different analytical expressions for the shear
strength have been proposed, including (Ref 22):

ty0 ¼ 0:13
Gbffiffiffiffiffiffi
dw
p
� � ffiffiffi

f
p
þ 0:75

ffiffiffiffi
d

w

r
f þ 0:14

d

w
f3=2

 !

� ln
0:87

ffiffiffiffiffiffi
dw
p

r0

 !

where d is the diameter of the precipitate,w is the
thickness, f is the volume fraction, and r0 is the
inner cutoff radius, which is set to b, or (Ref 21):

sppt ¼ M
Gb

2p
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

� �
0:931

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:306pdw

f

s  

� pd
8
� 1:061w

�
ln
1:225w

r0

� �!

For computational efforts, the terms for the size
and fraction of the precipitates may be modified
to account for time and temperature effects as
the nature and type of particles evolve. Based
on such modifications, Weakley-Bollin et al.
analyzed these models (Ref 2) and found that
for Al-Si-Cu alloys, each predict peak hardness
to occur at a time much longer than experimen-
tally observed. However, both models are more
sensitive to the thickness (w) of the precipitate
than to the diameter. Unfortunately, the true

distribution of precipitate thicknesses is
extremely difficult to quantify, because the
thickness of the strengthening precipitates in
these systems is often less than 5 nm. Other
researchers have used more complex disloca-
tion-particle models to simulate complex parti-
cle distributions, where the variation in both
size and spacing may be studied (Ref 24),
which may help overcome may of the assump-
tions required to derive the aforementioned
models. Lastly, stress relaxation is an important
element when attempting to understand the
ductility of precipitation-hardened systems as
a function of temperature (Ref 25).
It is beneficial to engineer the shape of the

precipitate to maximize their interaction with
dislocations. For example, in the magnesium-
tin system, where more than one morphology is
possible, the strengthening afforded by the rods
is far greater than for the thin plates, because
the rods cross many (�102 to 103) slip planes
rather than only a few (�10 to 50 for the thin
plates). Fundamental experimental andmodeling
work is being performed on these types of mag-
nesium-base alloys (Ref 17) to study how
changes in alloy content affect lattice parameters
and therefore precipitation morphologies and
sequences.
It may also be advantageous to form ordered

precipitates, because this increases the effective-
ness of the strengthening afforded by a dispersion
of particles. This increases not only themagnitude
of theBurgers vector but also results in an increase
in strengthening due to the influence of antiphase-
boundary (APB) energy, gAPB. Thus, shearing of
the ordered particles is affected by glide of super-
dislocations, and, in general, these defects are dis-
sociated into superpartials, bounding a ribbon of
APB. This is illustrated by reference to the model
system, namely g/g0 nickel-base superalloys,
where the ordered phase g0 (Ni3Al with the L12
crystal structure) is dispersed in the g-matrix (fcc
nickel solid solution). The orientation relationship
between the g and g0 phases is described by
f001gg==f001gg0 , <100 >g ==<100 >g0 , and
the difference between the lattice parameters of
the two phases is very small; that is, there exists
a small but significant elastic misfit, the magni-
tudes of which depend on the chemical composi-
tion of the given superalloy. In the matrix,
dislocations with b ¼ 1/2 < 110 > glide on
{111}, and in the ordered phase, dislocations with
b =<110> glide on {111} planes parallel to those
in the matrix. In the ordered particles, the perfect
dislocations dissociate into superpartial disloca-
tions, such that, for example:

b ¼ ½101� ! 1

2
½101� þ APBþ 1

2
½101�

Each of the superpartial dislocations (with
b ¼ ½ <110>) can further dissociate into pairs
of Shockley-like partials, each with b ¼ 1/6
<112>, bounding a complex stacking fault.
This latter dissociation is not shown here,
because it is the influence of the APB on
strength that is of interest. The shear of the
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Fig. 7 Schematic of the double cross-slip mechanism around a particle
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particles may be described by a strengthening
term, taking the form:

t ¼ 0:5a
gAPB
b

� �1:5
bdf

G

� �1:5

�0:5 gAPB
b

f

where a is a numerical factor that is dependent
on the shape (for example, 0.72 for spherical
particles, Ref 26, and 1/p, Ref 19, without a
reported shape).
In addition to the contribution to strengthen-

ing from the presence of the APB in these
ordered particles, there is also a contribution
that arises from the source of the superdisloca-
tions. Rather than nucleate new dislocations
within the particles, the gliding matrix disloca-
tions transmit through the matrix/particle inter-
faces. Of course, it requires that two matrix
dislocations with b ¼ 1/2 <110 > are transmit-
ted to form one superdislocation, with b =
<110>. These two matrix dislocations have
the same sign, with parallel Burgers vectors,
and so they will repel one another. This force
of repulsion must be overcome to enable slip
transmission to occur. This provides a contribu-
tion to strengthening. When the leading and
trailing dislocations are within the same parti-
cle, the strengthening may be given as:

tc ¼ 0:84Gf0:5w
db

1:28
dgAPB
wG

� 1

� �0:5

where w accounts for the elastic repulsion
between the leading and trailing dislocations
and is of the order unity (Ref 27). The limita-
tions of the two preceding equations is that they
are valid only for low volume fractions of the
precipitates (i.e., less than 0.1).

Dispersion Strengthening

Dispersion strengthening is an active mecha-
nism in alloys intended for use at intermediate
and elevated temperatures. It is, in many ways,
very similar to age hardening, described previ-
ously, except that the particles are chosen
because of their thermal stability, that is, their
resistance to Ostwald ripening (particle coars-
ening). From coarsening theory, the stability
of particles, when exposed to elevated tempera-
tures, depends largely on the product of three
terms, namely the interfacial energy, the diffu-
sivity of the slowest elemental species, and
the solubility of solute in the matrix. For the
age-hardening systems, for example, the heat
treatable aluminum alloys (i.e., taken from the
2xxx, 6xxx, 7xxx, and 8xxx aluminum alloy
series), the dispersions are not particularly sta-
ble thermally because of the relatively large
solubilities of the solute elements (an advantage
in terms of increased volume fraction of preci-
pitates) and their reasonable rates of diffusion.
Dispersion-strengthened systems are usually
those that contain a dispersion of particles
where the solubilities of the solute are
extremely low and the diffusion rates are also

very slow, for example, rare earth oxides (pro-
ducing oxide-dispersion-strengthened or ODS,
systems). In these ODS alloys, the solubilities
of both the rare earths and oxygen tend to be
very low in typical matrices (e.g., nickel and
aluminum), and the diffusivities of the rare
earth elements are also low. Figure 8 shows
the retention of a beneficial strengthening effect
at higher temperatures offered by an ODS alu-
minum alloy with respect to both pure alumi-
num and a precipitation-hardened Al-Mg-Si
system, 6061. In this figure, although the pre-
cipitation-hardened system exhibits a similar
hardness at low temperatures, when the parti-
cles fully dissolve (�225 �C), the primary
strengthening mechanism is lost, resulting in a
significant reduction in hardness. However, the
ODS alloy remains stronger at elevated tem-
peratures (Ref 28).
Modeling of Dispersion Strengthening.

With such low solubilities, the heat treat
method for producing age-hardening systems
is not appropriate, and methods for such a
mechanical alloying must be used to effect rea-
sonable volume fractions of these thermally sta-
ble particles. The resulting particles are
essentially nondeformable, and the interparticle
spacings are such that the Orowan mechanism
operates, and the strengthening is given by:

tlocðstrongÞ ¼ tOrowan � 0:84Gb

l
¼ 0:84Gf1=2

N1=3

¼ 0:84Gf1=2

r

To maximize the increase in strength due to dis-
persoids, it is desirable to minimize the radius
of the dispersoid and maximize the volume frac-
tion. However, in addition to this strengthening
mechanism, the debris from the formation of dis-
location loops about the particles from the Oro-
wan mechanism act to work harden the
material, leading to an often-observed high
work-hardening rate for dispersion-strengthened
materials. In addition, researchers have explored

the possibility of the generation of geometrically
necessary dislocations (e.g., prismatic loops that
intersect the glide plane) at thematrix-precipitate
boundaries due to the presence of hard particles
in the plastically deforming matrix (Ref 28, 29).
These dislocations will also contribute to the
work-hardening component of the strength of
the material. As the temperatures increases, it is
important to consider the effects of thermally
activated dislocation motion, such as cross slip
around the dispersoids, and climb. In addition,
dynamic recrystallization and recovery may
reduce the work-hardening effects at elevated
temperatures.

Grain-Size Strengthening/Hardening

The independent observations and ground-
breaking work of E.O. Hall and N.J. Petch (Ref
30–32) in the early 1950s led to the development
of the Hall-Petch relationship, which relates the
effect of grain size with the corresponding
strength of a material. The experimentally
observed relationship is given as:

sy ¼ si þ kd�1=2

where si is an intrinsic grain lattice friction
stress, k is taken as a material constant, and d
is a measure of the grain size. Thus, kd�1/2 may
be considered as the increase in yield stress
(Dsy) resulting from a grain-size effect (i.e.,
DsHP). Figure 9 schematically illustrates the
often-observed grain-size dependence for the
three common metallic crystal structures. In this
case, the intrinsic strength is that of the matrix
and, in principle, includes the influence of other
strengthening mechanisms.
Legacy Understanding. Consider a poly-

crystalline material subjected to a tensile load.
As the applied stress is increased, slip is
assumed to initiate in those grains that are most
favorably oriented for dislocation glide, that is,
where the Schmid factor (= cosf cosl, where l
is the angle between the slip direction and the

Fig. 8. Effect of dispersions on the hardness of an
oxide-dispersion-strengthened (ODS) material

as a function of temperature as compared to pure
aluminum and 6061 aluminum alloy. Source: Adapted
from Ref 28

Fig. 9 Effect of grain size on the yield strength for
different crystal structures. hcp, hexagonal

close-packed; bcc, body-centered cubic; fcc, face-
centered cubic. Source: Adapted from Ref 19, Fig. 7.32

Modeling of Tensile Properties / 383

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158432
/knovel2/view_hotlink.jsp?hotlink_id=440158433


tensile axis, and f is the angle between the slip
plane normal and the tensile axis) is maxi-
mized. When the critical resolved shear stress
is exceeded in one of these favorably oriented
grains, a dislocation source (marked S1 in
Fig. 10) operates, emitting dislocation loops.
In the absence of obstacles, the leading disloca-
tion loop will expand across the slip plane until
encountering the grain boundary, for example,
at “A” in the figure. Because of the discontinu-
ity represented by the grain boundary, the dislo-
cation will initially remain at the boundary. The
next dislocation to be emitted by the source will
also glide to the region adjacent to the bound-
ary but will experience a repulsive force from
the first dislocation, because these defects have
like signs. This repulsive force promotes a
backstress that subtracts from the resolved
shear stress (trss). Hence, the applied stress
must be increased for the original dislocation
source to continue operation. After several dis-
locations have been emitted, these defects will
continue to form a dislocation pileup (Fig. 10)
that exhibits a stress concentration at its head,
the magnitude of which is proportional to the
number of dislocations contained in the pileup.
In the original understanding of this mecha-
nism, this stress concentration may help acti-
vate another dislocation source in the
neighboring, less-well-oriented grain, marked
S2 in Fig. 10. The grain-size effect arises from
the fact that when the grain is large, a signifi-
cant number of dislocations may join the pileup
before the backstress effectively stops the oper-
ation of the source. In this case, the stress con-
centration can be very significant, because the
number of dislocations in the pileup is large.
Only modest increases in the applied stress
would be necessary to activate source S2 in
the neighboring grain. In contrast, when the
grain size is small, then, because of the proxim-
ity of the dislocation source to the grain bound-
ary, the number of dislocations in the pileup
will be limited, because the backstress will be
more effective in inhibiting the operation of
the source. In this case, the stress concentration
will be relatively small. Consequently, the

applied shear stress must be increased signifi-
cantly to initiate operation of the source at S2;
that is, the sample has been strengthened.
More recent considerations have examined the

possibility of transmission of slip across grain
boundaries as an alternative event to operating a
dislocation source in the neighboring grain.
Because it is usually most unlikely that slip planes
in the neighboring grain will be parallel to that in
the original grain, transmission of dislocations
often requires that a residual defectwith an irratio-
nal Burgers vector be left in the boundary, and
these sessile defectsmaycause problems to further
transmission. Because of the multiplicity of slip
systems in most metallic alloys, operation of new
sources, rather than slip transmission, is expected
to be the predominant event.
Modeling grain-boundary strengthening

represents a difficult task. For example, accu-
rate descriptions of the stress field ahead of a
crack tip in a neighboring grain are highly com-
plex (Ref 33). In consequence, fairly simple
approximations of this stress field are used to
assess the influence of the pileup in activating
a potential dislocation source in a neighboring,
less favorably oriented grain; here, the stress
concentration ahead of the pileup is approxi-
mated, varying simply as (d/r)1/2 (where 2d is
the grain diameter, and r is the location of the
potential source in the neighboring grain). In
the absence of a grain boundary, the shear
stress acting on the active slip plane would be
ti, given by ti � tcrss/(cosfcosl), where tcrss
is the critical resolved shear stress for activation
of dislocation motion. In the presence of the
grain boundary acting as an obstacle, the shear
stress is increased (i.e., the strengthening effect)
to t, so that the effective resistance of the
boundary is given by (t � ti). It is this stress
that is enhanced by the stress concentration at
the head of the dislocation pileup. For a poten-
tial source in the neighboring grain at a distance
r from the pileup (Fig. 10), the stress, tr, would
be given approximately by:

tr ¼ ðt� tiÞ d

r

� �1=2

The shear stress tr operates in a plane parallel
to the pileup; to operate a source in the neigh-
boring grain at r, its value must be tmax. Substi-
tuting this value into the previous equation and
rearranging yields:

t ¼ ti þ tmax�r1=2�d�1=2
However, the shear stress must act on the slip
plane of the new source in the neighboring
grain, so an orientation factor, m0, is introduced,
such that tmax = m0 � tcrit, where tcrit is the
shear stress required to operate the new source.
It follows that:

t ¼ ti þm0�tcrit�r1=2�d�1=2
To write this in terms of the applied stress and
hence assess the contribution of this mechanism

to increasing the yield stress, a second orienta-
tion factor is introduced, that is, relating applied
stress to resolved shear stress, namely s = m �
t. Also, a further simplifying assumption is
made by equating the two orientation factors,
such that m = m0. Hence, the yield stress is
expected to vary with grain size in the follow-
ing way:

sy ¼ si þm2�tcrit�r1=2�d�1=2
Let ky = m2 � tcrit � r1/2, so that:

sy ¼ si þ ky�d�1=2
This is the well-known Hall-Petch equation,
where ky is known as the Hall-Petch parameter.
This relationship has been validated experimen-
tally for many metallic materials, and so,
despite the simplifying assumptions, the form
appears to be correct. The degree to which
grain-size reduction increases the yield stress
depends on the magnitude of the Hall-Petch
parameter.
There are important materials parameters that

influence the value of ky, one being the proba-
bility of a slip system being reasonably oriented
in the adjacent grain (the orientation factor),
and the other being the value of tcrit, that is,
the shear stress necessary to activate glide in
the material, the effective critical resolved
shear stress. Based on these, an assessment of
the effectiveness of grain size as a strengthen-
ing mechanism can be made. Thus, if the mate-
rial has a limited number of slip systems
available and an intrinsically high value of the
critical resolved shear stress or strong locking
of dislocations (e.g., by solute), then a reason-
ably large value of ky would be expected, and
grain size should contribute significantly to
strengthening. Alloys based on fcc metals have
a large number of slip systems available (i.e.,
½<110>{111}) and generally fairly low values
of tcrit, and hence, strengthening from a reduc-
tion in grain size is not expected to be signifi-
cant. For bcc materials, although the number
of available slip systems is large (1/2<111>
on {110}, {112}, and {123}), they often exhibit
large values of the critical resolved shear stress,
and also, there tends to be very strong locking
of dislocations. Hence, grain-size reduction in
bcc alloys is often an effective strengthening
mechanism. For hcp materials, the number of
available slip systems tends to be low, while
values of the critical resolved shear stress vary
considerably (e.g., low for magnesium and high
for a-titanium). Hence, the effectiveness of this
strengthening mechanism depends on the spe-
cific hcp metal upon which the given alloy is
based and the degree to which other strengthen-
ing mechanisms have been exploited in alloy
design. It is possible to derive a ranking of the
constant k based on these two factors, which
are similar to what is shown in Table 1. These
results explain the trends observed in Fig. 9.
Experimentally, it has been shown that the
parameter k is approximately 1 order of

Fig. 10 Schematic showing the important variables
that contribute to the observed Hall-Petch

effect. See details in the text.
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magnitude greater for bcc alloys when com-
pared with fcc alloys (bcc: 0.5 to 1.6 MN/
m�3/2; fcc: 0.06 to 0.15 MN/m�3/2) (Ref 32–
40). Values for hcp magnesium have been
reported in the range of 0.11 to 0.54 MN/m�3/
2 (Ref 41–52) and in the same range (�0.61
MN/m�3/2) for hcp titanium (Ref 53).
In addition to the higher-angle grain bound-

aries, efforts have been made to model similar
strengthening effects observed in subgrain
structures. These models attempt to directly
incorporate the dislocation densities of the sub-
grain boundaries and consider them to exhibit
different boundary strengths (e.g., DtSubgrain
boundary = t � ti) than those afforded by high-
angle grain boundaries. Thus, it is possible to
show that the grain-size-dependent term is
equivalent to a dislocation-density-dependent
term, as shown on the right side in:

kd�1=2 ¼ ðm2tcritr1=2Þd�1=2 � amGbr1=2T

This dislocation density term must be separated
into the accumulation of dislocations associated
with subgrain boundaries, which have been
termed statistically stored dislocations (SSDs),
and those associated with grain boundaries,
which have been termed as geometrically nec-
essary dislocations (GNDs). Thus, the equation
becomes:

amGb�
1=2
T ¼ amGbðrSSD þ rGNDÞ1=2

Thus, the total effect becomes:

sy ¼ si þ ktotd
�1=2 ¼ si þ amGbðrSSD þ rGNDÞ1=2

It is then possible to approximate the rSSD
either as a mixed tilt/twist boundary with
rtilt/twist = rSSD = 1.5 Sv/b, where Sv is the area
of boundaries per unit volume, is the misorien-
tation angle, and b is the Burgers vector; or as
Ashby’s approximation that rSSD is linearly
dependent on strain, rSSD � e/(bls), where ls is
the free slip distance. Similarly rGND may
either be neglected and assumed to be ade-
quately incorporated in the original grain-size
factor, kd�1/2, or approximated by rGND � e/
(4bd), where d is the grain size. Thus, two
equivalent types of equations emerge:

sy ¼ si þ amG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5bðSV �Þ

p
þ kd�1=2

¼ si þ amGb
e

b ls
þ e
4bd

� �1=2

These models have been used to adequately
describe the behavior of aluminum-magnesium
alloys (Ref 54) andCopper,Nickel, and aluminum
(Ref 55). While these latter variations of the Hall-
Petch relationship do include a polygonized sub-
structure from previous cold work as well as a
strain term, the strain hardening of the grains is
not considered in the Hall-Petch relationship,
which is typically reported relative to the yield
strength at 0.2% strain. While some have reported
the relationship to be valid at larger strains aswell,
the Hall-Petch parameters are a function of work-

hardening rates (Ref 56). It has also been shown
that the intrinsic strengthwill change as a function
of strain and cold work history (i.e., si,tot = si +
Dsi(e)), because themultiple slip systems and dis-
locations within a grain will interact and create
pinning points.
This strengthening mechanism is not neces-

sarily limited to the effects of only grain size
but may be extended to other second phases.
For example, some of the early work on steels
correlated the martensite packet size, rather
than the grain size, against the yield strength
and arrived at similar observations (Fig. 11)
(Ref 57–60). For the original data shown in this
figure, it was postulated that the difference in
slope for the various compositions was attribu-
ted to the carbon buildup at the martensite
packet size boundaries. However, as has been
shown, the k is also dependent on the critical
resolved shear stress of the crystal, and the car-
bon content would change the critical resolved
shear stress for the two types of martensite.
Data taken from recent work on the effect of
a-colony sizes in a+b titanium alloys show a
deviation from the d�1/2 relationship (Ref 61),
suggesting that, in this case, it is not a simple
Hall-Petch relationship. More importantly, an
analysis of the titanium data shows a minimal
k factor (�0.1 MN/m�3/2). Thus, it is important
to consider whether other interfacial strengthen-
ing mechanisms are present in order to predict
and differentiate whether these other domain
sizes (e.g., martensite packets and colonies of
lamellae) will exhibit a Hall-Petch relationship.
Such work has been conducted in the study of g
+ a2 polysynthetically twinned crystals, where
the colony-like structure exhibits a Hall-Petch
factor of 5 MN/m�3/2 and an unrealistic nega-
tive value of s0, whereas the Hall-Petch param-
eter for equiaxed a is �0.9 to 1.4 MPa/m�1/2

(equivalent with MN/m�3/2). Therefore,

researchers have drawn conclusions that the
material response of this type of colony micro-
structure may not be adequately described by a
Hall-Petch phenomenon, and another mecha-
nism (or competing mechanisms) likely domi-
nates (see the section “Strengthening from
Interfacial Barriers to Slip Transmission in this
article) (Ref 62–65). In addition to considering
other domain types, research into stress-acti-
vated strain mechanisms at boundaries other
than grain boundaries (e.g., twin boundaries)
has been conducted. In this research, twin
boundaries act as the obstacles, and either dislo-
cation or twinning is then activated in the
neighboring domain, which does result in an
apparent Hall-Petch effect (Ref 66) with a
larger apparent k-factor (>30 MN/m�3/2),
which can be attributed to the critical stress
component rather than the m-factor.

Strengthening from Cold Work

It has long been recognized that cold work
can impart a significant increase in the strength
of a material. The implication is that the struc-
tural changes accompanying cold work impede
dislocation motion in a given sample on the
subsequent application of stress in, for example,
a tension test, such that an increase in applied
stress is required to cause the sample under
consideration to yield. The most common
change accompanying cold work is a significant
increase in dislocation density, often referred to
as debris, and much of the strengthening effect
derived from cold work is due to the interaction
of mobile dislocations with that increased dislo-
cation density. In fact, essentially the same pro-
cesses that lead to work hardening during
tensile testing are responsible for the increased
strength in samples of cold-worked alloys.

Fig. 11 Effect of martensite packet size on the yield strength. Source: Ref 58–60
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Legacy Understanding. As stated previ-
ously, it is the interaction of mobile disloca-
tions with increased dislocation density
following cold work of a material that results
in strengthening. There are a number of interac-
tions between dislocations that can lead to
impediment of further dislocation glide. To
illustrate these processes, two simple interac-
tions are described.
The first of these involves the intersection of

two dislocations gliding on two inclined slip
planes, as depicted in Fig. 12. In Fig. 12(a),
the edge dislocation AB intersects the screw
dislocation CD. As a result, a jog is formed
where the jogged segment PS lies parallel to
the direction of the Burgers vector of the dislo-
cation CD, as shown in Fig. 12(b). As can be
seen, the jogged segment no longer lies in the
primary slip plane. Further motion of the dislo-
cation would be achieved by edge segments on
either side of the jog bowing out in the primary
slip plane, and the jogged segment would be
able to follow by gliding on the “slip plane”
defined by the Burgers vector and jog line
direction, that is, the plane marked PQRS. In
this way, the intersection impedes the motion
of the edge dislocation to some degree. Con-
sider the situation in Fig. 12(c), where the dislo-
cation is now screw in character, as shown.
The resulting jog (Fig. 12d) is again in the
direction of the Burgers vector of the

intersected dislocation (CD), but in this circum-
stance, the jog is edge in nature, along a screw
dislocation. Upon further motion of the disloca-
tion AB, the jogged segment is essentially ses-
sile, because motion in the direction of the
dislocation AB can only be achieved nonconser-
vatively, that is, by the formation of either
vacancies or interstitials. Depending on the
local state of stress, it may be possible for the
jogged segment to glide along the dislocation
line until it encounters the edge component,
and then glide could occur as discussed previ-
ously. In this second case (Fig. 12c, d), the for-
mation of an essentially sessile jog would be a
significant impediment to dislocation motion.
Of course, if this were to happen frequently,
for example, the interaction of a mobile dislo-
cation with forest dislocations, then significant
hardening would result.
The second type of interaction to be

described leads to dipole formation. Consider
the operation of two similar sources, S1 and
S2, producing dislocations on parallel slip
planes. As the first dislocation with positive
sign from S1 (marked “A”) glides to the right
in Fig. 13(a), the dislocation of opposite sign
from S2 (marked “B”) glides to the left. These
dislocations interact with one another, the
forces acting between them being shown in
Fig. 13(b). As can be seen, when the distances
x and y are equal, the force between them is

zero. If, for example, dislocation “B” attempts
to move further to the left, it experiences a pos-
itive force (i.e., in the positive x-direction)
resisting such motion. Likewise, if “B” attempts
to glide to the right, it experiences a restoring
force in the negative x-direction. The disloca-
tion “A” experiences the same set of forces,
and, in essence, these two dislocations are
locked in position; because they are of opposite
sign, they form a dislocation dipole. The
strength of the interaction depends on the sepa-
ration of the slip planes, y.
It should be noted that a comprehensive

treatment of stress- strain or cold-work behav-
ior is extremely complicated, because this
would require a sufficiently complex integra-
tion of individual elements beyond the treat-
ment of a single dislocation/barrier interaction.
However, the general treatment, first conducted
by Taylor (Ref 67), allows for a rudimentary
understanding of the observed phenomenon
when considered together with a sufficient
understanding of the corresponding dependency
limitations (e.g., temperature, solute content,
stacking fault energies, etc.). In Taylor’s treat-
ment, it is possible to account for the barriers
to dislocation motion due to the presence of
other interacting dislocations rather than solute
atoms, precipitates, or dispersoids. The interac-
tion may occur in a variety of ways, including,
but not limited to the original treatment of
interacting edge dislocations on parallel slip
planes by Taylor (Ref 67), the treatment of dis-
locations approaching a pileup with a resulting
backstress (e.g., at grain boundaries or disloca-
tion loops left around particles or dispersoids),
and the treatment of dislocations approaching
an array of forest dislocations, which has both
long-range (field and bowing) and short-range
(individual dislocation) components.
It is useful to first consider the case of defor-

mation of single crystals before attempting to
understand the behavior of polycrystalline
materials. Figure 14 shows schematically the
observed stress-strain curve for a crystal ori-
ented such that slip occurs on only one slip sys-
tem. It is clear that three distinct stages occur
that correspond to a marked increase in strain
(e.g., excluding the prestrain elastic region). In
stage I (easy glide), dislocations moving on
the slip system with the highest resolved shear
stress account for plastic strain. Without the
presence of other obstacles (e.g., boundaries,
precipitates), it is possible for the dislocations
to move over large distances (up to the crystal
diameter), accounting for the considerable
shear strain. In this stage, the deformation has
been observed to be characterized largely by
edge dislocation dipoles. Screw dislocations, if
originally present, easily cross slip and annihi-
late with those of the opposite sign. It is gener-
ally accepted that this behavior occurs for fcc
and hcp materials and high-purity bcc materials
(Ref 68–70). The work-hardening rate (I/G �
10�4) is equivalent for these three systems.
The degree of strain over which stage I occurs
is a function of temperature, composition, size,
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crystal orientation, and, for hcp crystal struc-
tures, the dominant slip system. For example,
while the degree of easy-glide deformation
hcp systems that deform by prism slip (e.g.,
titanium, zirconium) is equivalent to fcc and
high-purity bcc (i.e., �20%), hcp systems that
deform by basal slip (e.g., magnesium, cobalt,
zinc) can exhibit easy-glide strains out to fail-
ure (� 100 to 500%). It is notable that for
lower-purity bcc materials, stage I does not nec-
essarily occur, and the material may exhibit a
stress-strain curve similar to that of polycrystal-
line bcc material (Ref 68). It is important to
consider the role of stacking-fault energy. It
has also been observed that, with regard to the
dependence on crystal orientation, stage I easy
glide is not as distinguishable in single crystals
oriented such that multiple slip systems are pos-
sible (e.g., toward the corner of the stereo-
graphic triangle) (Ref 68). In such systems,
the multiple slip systems lead to dislocation/
dislocation interactions other than dipoles of
stage I.
The nature of these interactions between

multiple slip systems is similar to that which
occurs in stage II behavior. Stage II is charac-
terized by a significant increase in the work-
hardening rate of the material (yII/G �3 �

10�3, for most metals), which has been attribu-
ted to the multiplication and movement of dis-
locations on secondary slip systems. Barriers
to dislocation motion, such as forest disloca-
tions, jogs, or Lomer-Cottrell barriers (or ses-
sile, nonmobile, stair-rod dislocations), can
readily form as products of the multiple slip
systems. Thus, the slip-line length decreases,
requiring a greater stress to achieve the same
strain. Because the activation of such secondary
slip systems is dependent upon orientation, it
can be shown that the strain at which stage II
starts is dependent upon this parameter. In stage
III, dynamic recovery begins, and the observed
curve is parabolic. Because recovery is also
dependent upon composition and temperature,
the onset of stage III is also proportional to
temperature.
The behavior of the polycrystalline material

is significantly different, complicated by:

� The multiple orientations of the individual
crystal grains

� The necessary activation of multiple slip
systems within a given grain to satisfy the
von Mises condition of five independent
slip systems to accommodate an arbitrary
shape change, which arises from the six

independent strain components, less one
for the condition of constant volume (Ref
71, 72)

� The smaller size of the individual grains
with the associated hard barrier of the
boundaries, which reduces the slip length

Notably, the need to operate five independent
slip systems to accommodate an arbitrary shape
change in polycrystalline materials may be used
to explain why certain hcp metals (e.g., zinc,
tin) that deform by basal slip (only two inde-
pendent slip systems) have such remarkably
low ductility in the polycrystalline form, while
they exhibit such a long stage I easy-glide
region for single crystals. Indeed, their stage I
easy-glide strain is far greater than that of other
materials.
Modeling Strengthening by Cold Work.

Because the products of dislocation interaction
on multiple slip systems provide the barriers
to the motion of other active dislocations, a
hardening model that includes the spacing (l)
of the dislocation- product barriers is given as:

t � aGb

l

which is identical in form to those of the bypass
models of precipitation and dispersion harden-
ing. In the original treatment by Taylor, which
considers the work hardening due to an elastic
interaction, the variable l was considered to be
the mean distance between the dislocations.
This may be approximated as r�1/2, where r
is the dislocation density. In this case, the con-
stant a is given as:

a ¼ 1

8pð1� uÞ

and:

t � aGb
ffiffiffi
r
p

In experimental evaluations of these equations,
it has been determined that a ranges from the
low values (�0.05 to 0.1) up to 1. Additionally,
it has been observed that the form of the

Fig. 13 Dislocation dipole formation and forces

Fig. 14 Regions of single-crystal slip
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dislocation density varies depending upon
which elements of the dislocation networks act
as barriers. If the dislocation density is suffi-
ciently small, or the primary dislocations have
yet to rearrange into cell walls, then the density
may be considered as rp (primary), where the
main work-hardening component is from pri-
mary dislocation interactions. However, if there
has been arrangement of the dislocations into a
walled or forest configuration, the dislocations
included in the density should include those in
the wall or forest configuration. In this case,
the stress is derived from a similar argument
to Orowan looping. In either case, the form
remains the same.
Because the shear strain may be related to

the dislocation density, it is possible to derive
an elementary form of the equation showing
the parabolic nature of the stress-strain curve:

t ¼ Cb1=2g1=2

This form requires that one make several
assumptions about the shape of the dislocation
loops, which will change the form of the con-
stant C (including the a term). A more
generalized form may be taken as:

t ¼ aG
b

x

� �1=2

gn

where n is the strain-hardening coefficient, and
x is the average distance a dislocation moves
before an obstacle arrests its motion. It should
be noted that these equations may be modified
to include a temperature-independent term (typ-
ically tG) and a temperature- dependent term
(tS), accounting for the temperature effect on
modulus. It has been noted that both of these
terms are important in pure fcc materials,
whereas in alloys and bcc materials, the solid-
solution effects and Peierls stress dominate tS,
which is greater than tG. These equations may
be used to describe the phenomenon observed
in either stage II or that observed in polycrystal-
line materials, where multiple slip and barriers
dominate the hardening term.
It is possible to relate the polycrystalline

work-hardening rate (ds/de) to the single-crys-
tal work-hardening rate (dt/dg) by:

@s
@e
¼ m2 @t

@g

where m, in polycrystalline materials, is equiv-
alent to the Taylor factor (M) and �2 to 3
(bcc) (Ref 19, 69), �3 (fcc), and �6.5 (hcp
absent of twinning).
For dispersion-strengthened materials, as

described previously, there is also a work-hard-
ening component to dispersion strengthening,
where the multiplicity of dislocations around
the nondeformable dispersoids (either debris
loops or GNDprismatic loops) further strengthen
thematerial. At small strain (e.g.,<1%, prior to a
significant effect of dislocation multiplication),
the yield strength may be given as:

s ¼ si þ aGf3=2e

where f is the volume fraction of dispersoid par-
ticles. At larger strains, when the Orowan loops
and GNDs play a role, the form may be given
as:

s ¼ si þ aG
fb

d

� �1=2

e1=2

where d is the particle diameter. In principle,
the same phenomenon would occur in overaged
precipitation-hardened systems, but the typical
size of those precipitates is much coarser than
the typical effective dispersoid size. Thus, the
second component of the equation approaches
zero (d >> b).

Strengthening from Interfacial Barriers
to Slip Transmission

For many of the relevant engineering alloys,
including iron- and titanium-base alloys,
strengthening may be derived from the presence
of domains of two-phase lamellar microstruc-
tures. This strengthening is derived due to the
presence of the interphase interfaces, which
act as barriers to slip transmission into and
across a second phase. Thus, for grain bound-
aries in single-phase materials, the ease of slip
transmission depends on how nearly parallel
the slip plane in the adjacent grain is to that
of the deforming grain. Generally, transmission
results in a residual defect, with an irrational
Burgers vector being left in the interface. The
magnitude of the Burgers vector of the residual
defect depends on factors such as slip-plane
alignment, but its presence will complicate fur-
ther slip transmission by the active slip system
in the primary deforming grain. In a two-phase
material, there is an added complication from
the fact that slip is transmitted from one crystal
structure to a different one across the given
interphase boundary. As can be appreciated,
the situation for modeling the transmission
event is extremely complicated, and well-devel-
oped models are not yet commonly available.

Examples of Predictive Models

As was noted at the beginning of this article,
the prediction of tensile properties in engineer-
ing alloys is an extremely complicated task.
As seen in the earlier discussion, the individual
strengthening mechanisms have been recog-
nized and basic mechanisms have been identi-
fied to various degrees of confidence.
However, the modeling of the contributions of
these mechanisms to tensile strength usually
involves a number of simplifying assumptions,
leading to a parametric or phenomenological
relationship describing increases in yield
strength. There is an essential absence of mod-
els describing contributions of strengthening
mechanisms to ultimate tensile strength, and
there are no models to predict tensile ductility.

Consequently, in the recent past, there has been
an emphasis on the development of more accu-
rate models to predict contributions from the
various strengthening mechanisms, as well as
development of finite-element method/crystal-
plasticity models. Additionally, rules-based
approaches have been employed to yield quan-
titative predictions of tensile properties as a
function of both heat treatment (Ref 73–75)
and microstructural and compositional para-
meters (Ref 76–79). Some examples of these
efforts are described in the following.

Atomistic Modeling of Dislocation
Structures and Slip Transmission

Many of the emerging techniques aim to
develop and apply physics-based multiscale
modeling tools for predicting strengthening
contributions to mechanical properties. Among
the major modeling and simulation approaches
currently being employed are ab initio (Ref
80–83) atomistic (Ref 84, 85), and phase-field
(Ref 86–89) techniques.

Ab Initio and Atomistic Methods

Ab initio modeling holds the promise of
being a highly accurate and predictive method.
A drawback is computational complexity,
because models often contain only a few hun-
dred atoms. However, it may be used to extract
fundamental quantities such as phase stability
(Ref 90), elastic properties (Ref 80, 82), diffu-
sion barriers, electronic and optical responses
(Ref 91, 92), and so on. Using interatomic
potentials, atomistic calculations can be used
to probe defect processes. In particular, it can
be applied to study dislocation processes (Ref
93) (Fig. 15). Recently, researchers have made
progress in applying the nudged elastic band
(Ref 93, 95) method to locate the saddle-point
configurations of stressed systems consisting
of a large number (102 to 103) of nontrivially
activated atoms. It is now possible to compute
the three-dimensional atomistic activation pro-
cesses at crack tips, such as dislocation bowout
(Ref 95) (Fig. 16) and crack-front kink nucle-
ation and migration (Ref 93), as functions of
the stress-intensity factor. While it is possible
to handle more complex geometries, atomistic
calculations in such idealized, well-controlled
geometries using the empirical potential of a
pure element are meant to serve as calibrations
for semianalytical theories, such as that attribu-
ted to Rice (Ref 96–98), which, when cali-
brated, can use ab initio energetics directly for
more complex alloys.
Li et al. have probed the details of the ther-

mally activated slip transmission across various
interfaces (copper twin boundary, a/b interfaces
in titanium alloy) with atomistic reaction-path
calculations and microscopic phase-field mod-
els (Fig. 17). The athermal stress threshold
and activation volume of these interfacial/bulk
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dislocation reactions are calculated and found
to be in reasonable agreement with experi-
ments. They have computed the strain-rate
dependence of deformation in metals whose
yield strength is derived mainly from interfacial
resistance. The accumulated interfacial disloca-
tions will, in turn, influence the activation
energy due to dislocation-dislocation interac-
tions. This newly proposed interfacial harden-
ing law is distinct from the conventional bulk
work hardening.

Phase-Field Modeling

Although the phase-field method is most
commonly used to describe the spatial and tem-
poral details of microstructural development, it

has also been used to describe the evolution of
dislocation structures (i.e., dislocation dynam-
ics) of a system. Phase-field modeling uses gra-
dient thermodynamics of nonuniform systems
in which two spatially continuous field vari-
ables are solved simultaneously. These field
variables often describe energy and order of
the system. For example, for the case of micro-
structural evolution, the field variables describe
the compositional variations (energy) and struc-
tural symmetry (order). Such an approach can,
in principle, describe the evolution of features
at the mesoscopic length scale of any nonuni-
form system. The spatial and temporal evolu-
tion of dislocation structures is of interest in
the prediction of tensile properties. Many of
the efforts on increasing the maturity of the

phase-field method, including applications to
dislocation dynamics, have been conducted by
Y. Wang, whose companion article, “Phase-
Field Microstructure Modeling,” in this Volume
more fully describes the use of such tools. Two
examples of dislocation dynamics are shown in
Fig. 18(a–d). Fig. 18(a) shows a description of
dislocation interactions using the phase-field
method. Here, two dislocation loops on differ-
ent slip planes in an fcc material have reacted,
resulting in a sessile dislocation segment.
Figure 18(b) shows dislocation multiplication
under increased applied uniaxial loading.
Figure 18(c) shows the equilibrium dislocation
structure in a g/g0 microstructure, where the dis-
locations are the boundaries between the
slipped and unslipped regions. Figure 18(d)
shows a snapshot of a dislocation dynamics
phase-field model where the dislocations are
cutting the g0 precipitates and considers a newly
identified reordering phenomenon (Ref
99–101).

Finite-Element Modeling

It is common to model the continuum
response of the material using finite-element
modeling (FEM) approaches. Efforts by S.
Ghosh et al. (Ref 102–107) have focused on
using adaptive meshing and accurate three-
dimensional mesoscopic microstructural fea-
tures (i.e., grains) to predict the properties of a
material. The accurate grain reconstructions
are based on experimental datasets. Following
three-dimensional rendering, rigorous analysis
of a suite of statistical grain descriptors have
been developed, including those which describe
the distributions of grain size and shape from
the orientation and misorientation distributions
obtained using electron backscattered diffrac-
tion. In addition, the correlation between statis-
tical descriptors was measured, which was
made possible through the ability to examine
each feature individually. When analyzed, these
descriptors have been used to produce statisti-
cally equivalent synthetic microstructures
(Fig. 19a–c), which have been included in
FEM. While the determination and inclusion
of accurate descriptions of grain shape and dis-
tribution represent a significant breakthrough in
such models, it remains computationally chal-
lenging to include the details of features that
may occur within the grains. For example, in
the case of nickel-based superalloys, the g0 dis-
tribution is often considered as part of the con-
stitutive behavior of the individual grains rather
than as a separate phase. While this may be a
reasonable approximation for systems with
such symmetry between the matrix and precipi-
tate phase, it is less so for the more complex
two-phase microstructures such as titanium-
base alloys, which also provide challenges in
determining a predictable constitutive response.
Thus, a challenge these methods still face is the
ability to include multiple phases that span
across length scales in a computationally inex-
pensive fashion.

Fig. 15 Dislocation process. (a) Concatenated snapshot of a heterogeneously nucleated prismatic dislocation loop
gliding through an aluminum thin film. Source: Ref 94. (b) Microstructural development in a two million

atom molecular dynamics simulation of (111) surface indention of aluminum thin film. Operations of a threefold
symmetric prismatic dislocation loop source result in the parallelepiped slip lines on the bottom. Highly mobile,
through-thickness threading dislocations are nucleated in the nanoindention as well. Courtesy of J. Li
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Fig. 16 Three-dimensional (3-D) atomistic activation process at crack tip. (a) Geometry of a mode I crack containing
24 unit cells (61 Å) in x2 and 103,920 copper atoms in a R = 80 Å cylinder. Source: Ref 95. (b) Continuum

Stroh solution and (c) the actual atomistic local stress distribution of syy at GI/GI, emit = 0.75. (d) 3-D activation
minimum energy pathway (MEP) (solid line) of partial dislocation emission by bowout and its competing two-
dimensional (2-D) pathway (dashed line). i to ix show the sequential nine nudged elastic band images on MEP, with
iv being the saddle point; atoms whose coordination number differs from 12 are not shown. Courtesy of J. Li
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Fig. 18 Phase field modeling techniques applied to show (a) reaction of two dislocation loops resulting in a sessile component in the stair-rod configuration; (b) dislocation content
at two locations of a stress-strain curve; (c) dislocations in a nickel-based superalloy of various types showing the slipped regions; and (d) dislocation activity, including the

separation of partials, in a nickel-based superalloy whose microstructure has been informed from experimental data (inset). Courtesy of Y. Wang

Fig. 17 Thermally activated slip transmission. (a) Coherent S3 {111} twin boundary in copper. (b) Schematic of two competing pathways of slip-transfer reaction discovered from
nudged elastic band calculations. (c) Atomic configurations of absorption, desorption, and direct transmission. Courtesy of J. Li
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Cast Aluminum Property Prediction

For aluminum alloys, one of the most
detailed mechanistic models currently available
includes contributions from the various
strengthening mechanisms in order to describe
the yield strength in a cast aluminum alloy
319 (Ref 2) as a function of aging conditions.
The individual strengthening contributions
present in the model are from the intrinsic
strength of the matrix (including both grain-
boundary strengthening and strengthening from
the eutectic phase), solid-solution strengthen-
ing, and precipitation strengthening. Thus, the
model may be written as:

stot ¼ si þ D�ss þ D�ppt

Because variations in strength due to micro-
structural evolution occur in aluminum alloys
such as aluminum W319, the model considers
the effect of temperature on the strengthening
terms. Because these alloys are solution treated

and quenched, the solid solution is initially
supersaturated with solute. With aging, the
degree of supersaturation will decrease
until an equilibrium level is reached, which is
itself a function of temperature. For this model,
the Guinier-Preston-Bagaryatskii zones have
been included in the solid-solution effects,
because they are difficult to quantify. The
precipitation-strengthening effect includes
both looping and shearing and is based on some
of the emerging models of precipitation
distributions and their hardening effects. The
combination of looping and shearing may be
written as:

D�ppt ¼ 1

D�shear
þ 1

D�bypass

� ��1

where the change in strength due to shear and
bypass is appropriately indicated. The form of
this equation allows for the combination of the
two competing mechanisms, while ensuring
that the active mechanism dominates the term,

because the other mechanism will drop signifi-
cantly in magnitude upon reaching a critical
particle size, assuming uniform size and distri-
bution. As discussed in the section “Emerging
Concepts” in this article, the simplified models
for bypass often assume a random array of pre-
cipitates and tend to exclude the precipitate
morphology and/or its orientation relationship
with the matrix. For this model, the two
functions describing the change in stress with
particle geometries were evaluated. These are
(Ref 22):

ty0 ¼ 0:13
Gbffiffiffiffiffiffi
dw
p
� � ffiffiffi

f
p
þ 0:75

ffiffiffiffi
d

w

r
f þ 0:14

d

w
f3=2

 !

�ðln 0:87
ffiffiffiffiffiffi
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p

r0

!

where d is the diameter of the precipitate, w is the
thickness, f is the volume fraction, and r0 is the
inner cutoff radius, which is set to b, or (Ref 21):

sppt ¼M
Gb

2p
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�pd
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�
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For this model, the initial precipitate varia-
bles (i.e., size and fraction) have been deter-
mined by careful measurements using the
transmission electron microscope (Fig. 20).
For computational efforts, the terms for the size
and fraction of the precipitates may be modified
to account for the experimentally determined
effects of thermal exposure on their spatial
evolution.
After development and comparison with

other mechanism-based models (Nie, Shercliff,
and Ashby), the author (Ref 2) extracted the
predicted contributions of the effects of the
individual strengthening mechanisms as a func-
tion of time (Fig. 21). Weakley-Bollin et al.
analyzed these models (Ref 2) and found that
for Al-Si-Cu alloys, each predicted peak hard-
nesses that occur too late compared with exper-
iment, which was attributed to the fact that both
models are more sensitive to the thickness (w)
of the precipitate than to the diameter. Unfortu-
nately, the true distribution of precipitate thick-
ness is extremely difficult to quantify, because
the thickness of the strengthening precipitates
in these systems is often less than 5 nm.
The limitations identified in their research

include an absence of a fundamental model to
predict the growth of the strengthening phases
(y0) as a function of time, temperature, and sol-
ute content. The current model is based on
extensive characterization of samples taken
from each condition. Therefore, it is clearly
necessary to develop more accurate models of
the initial stages of the precipitates as well as
details of their evolution. State-of-the-art char-
acterization techniques, such as the local area
atom probe (Ref 108, 109) and aberration-cor-
rected transmission electron microscopes

Fig. 19 Finite-element modeling. (a) Three-dimensional reconstruction of IN-100 nickel-based superalloy of a
volume with dimensions 96 � 36 � 46 mm. (b) Example of grain descriptor, the distribution of grain

volume. (c) Synthetic volume containing 5269 grains. Courtesy of S. Ghosh and M. Groeber

Fig. 20 Effect of aging on precipitation in an aluminum W319 alloy. Source: Adapted from Ref 2
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(Ref 109, 110), are making such detailed under-
standing of the precipitate structures, morpholo-
gies, relationship with the matrix, and
sequences possible (Fig. 22). Rigorous studies
of the phase relationships and precipitation
sequences (Ref 108, 111–113) are also under-
way. The combination of these efforts will lead
to more robust thermodynamic-based predictive
models and should lead to next-generation
advanced precipitation-strengthened systems.

Use of Rules-Based Approaches:
Neural Networks

Rules-based approaches and data-mining
techniques may be used to provide quantitative
predictions of tensile properties. In general, a
database relating properties to various para-
meters (e.g., microstructural features) is divided

into two parts; one part is used to train a model,
and the other is used to test its reliability. Here,
prediction corresponds to interpolation within
the ranges of values of the parameters
contained in the given database used to develop
the model. These models are not based on phys-
ical realities or mechanistic information but
provide engineers with a way of predicting
properties.
One such rules-based approach involves neu-

ral networks. These networks use a hyperbolic
tangent-fitting function to perform nonlinear
regression to develop relationships between
input parameters and the given output (here,
tensile properties). The resultant models may
be used in two ways. First, they may be used
to provide a quantitative (interpolative) predic-
tion of properties. Second, they may be used
to perform virtual experiments. This latter
application of a developed neural network pro-
vides a way to perform controlled experiments

that cannot be done in the laboratory, as shown
subsequently. Clearly, the development of neu-
ral-network models requires an accurate and
well-populated database relating input and out-
put parameters. These are often not generally
available. In the following, an example of the
application of neural-network modeling to the
prediction of properties in a/b titanium alloys
is given.
Example: Neural Networks for a/b Tita-

nium Alloys. Over a period of several decades,
a/b titanium alloys have been studied inten-
sively due to their important technological
applications in a wide range of fields, especially
in aerospace (Ref 114–116). Interestingly, the
factors that influence and determine their
mechanical properties are not well understood.
It has been claimed that they depend on the
characteristics of their microstructural features
(Ref 117–119). However, the microstructures
of such real titanium alloys are rather complex
and can exhibit a range of spatial distributions
and morphologies of the two primary phases
(hcp a and bcc b), which vary according to
the thermomechanical processing. For example,
as shown in Fig. 23(a–c), the a-phase can man-
ifest as either a colony-type morphology
(Fig. 23a) or basketweave Widmanstätten mor-
phology (Fig. 23(b), depending on the cooling
rate from the b-phase field, or as equiaxed
a-particles (Fig. 23c) if worked in the a+b
phase field. Because the spatial and morpholog-
ical distributions of the individual microstruc-
tural features are themselves interdependent, it
is experimentally not possible to isolate the
effect of the individual features. Thus, while it
is reasonable to assume the individual strength-
ening mechanisms described previously in this
article act in concert to dictate the mechanical
properties, it is very difficult to isolate the indi-
vidual strengthening mechanisms. Indeed,
establishing correlations between microstruc-
tural features and a given property has proven
to be an elusive goal for previous researchers.
For example, while Boyer et al. (Ref 120) sug-
gested that the tensile properties of b-processed
microstructures must be correlated with the col-
ony size, prior-b grain size, and a-plate width,
no such correlation could be established
through experimental techniques. A similar
observation was made by Rhodes et al. (Ref
121) while trying to establish the correlation
between microstructural features and fatigue
crack growth rate. It was suggested by these
authors that the relationship between properties
and the microstructural features is determined
by the complex combination of the parameters.
The previous state-of-the-art for relating micro-
structural features to the properties of these
alloys is that proposed by Lütjering et al. (Ref
122), where the experimentally observed micro-
structural influence on properties is indicated
qualitatively by + (positive), � (negative), or
0 (no influence).
To overcome the challenges of the complex

and interrelated microstructures, artificial neu-
ral networks have been used to develop a

Fig. 21 Calculated effects of the individual components of the aging response. Source: Adapted from Ref 2

Fig. 22 High-resolution scanning transmission microscope image of (a) Guinier-Preston-Bagaryatskii (GPB) zone
and (b) S-phase. Source: Courtesy of Libor Kovarik
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microstructurally based quantitative (interpola-
tive) predictive model for mechanical proper-
ties of a/b titanium alloys. Artificial neural
networks are a convenient modeling tool for
developing a predictive model in the short term,
because they can handle a large number of vari-
ables with complex interdependencies and do
not need any prior knowledge of the physics
of the problem. The authors of this article have
used this approach to develop models to predict
both the yield and the ultimate tensile strength
of b-processed and a+b-processed Ti-6Al-4V
at room temperature (Ref 76, 77, 123).
b-Processed Ti-6Al-4V. The database for the

b-processed Ti-6Al-4V contains the values of
the thickness of a-lath, volume fraction of total
a, colony size factor and prior-b grain factor as
input parameters, and the tensile properties
(yield strength and ultimate tensile strength) as
output parameters. The neural network was
trained separately for each of the two different
output variables. Figure 24(a,b) shows the pre-
dictions of yield strength and ultimate tensile
strength for 16 test data points (which were
not used in training). The dashed line is the zero
error line, and the solid lines are þ�5% error
lines. It is seen that the trained neural network
is able to predict the yield and ultimate tensile
strength values of Ti-6Al-4V from the micro-
structural features within þ�3 and þ�4% error,
respectively. It is of interest to identify the fac-
tors that limit the accuracy of the predictions.
Because the approach used here essentially
involves nonlinear regression, it is immediately
obvious that the accuracy may be improved by
the use of a larger population of the database.
In addition, it is important to consider whether
important microstructural features have not
been included in the analysis. For example,
the effects of local texture differences have
not been quantified and included in the model.
Also, the oxygen concentration, thought to
harden a-titanium, has not been measured.
In addition to this promising predictive capa-

bility, neural networks can also be used to

extract the functional dependencies of the ten-
sile properties on individual microstructural
features. These dependencies can guide the
development of a physically based model for
the property-microstructure relationship. Thus,
experimentally it is impossible to vary one par-
ticular microstructural feature independent of
others; virtual experiments can be performed
using trained neural networks whereby each
individual microstructural parameter can be
varied without changing the values of the
others. For example, while the variation in yield
strength as a function of a-lath thickness is
plotted in Fig. 25(a) for various samples, it
should be noted that the values of other micro-
structural features, such as colony size factor,
prior-b grain factor, and volume fraction of
total a, are also simultaneously changing due
to their interdependent response to the given
heat treatment. As a result, it is not possible to
obtain an independent trend of variation in
yield stress with thickness of a-lath. A solution
involves the use of the trained neural network
to perform virtual experiments. Thus, properties
may be predicted as a function of the value of
the microstructural feature of interest while
keeping the other microstructural input para-
meters at constant values within their experi-
mental range. Such a trend plot has been
demonstrated in Fig. 25(b) for the variation of
yield stress with thickness of a-lath, where the
values of the other microstructural parameters
(volume fraction of total a, colony size factor,
and prior-b grain factor) are kept constant at
their mean values within their range in the
training database. From this trend plot, it is
expected that the yield stress would decrease
monotonically with increasing thickness of a-
lath. Similarly, the trend plot in Fig. 26 shows
a monotonic decrease in yield stress with
increase in colony size, but the effect is not as
large as that of a-lath thickness.
These trend plots of strength variation on

individual microstructural parameters are con-
sistent with the expected behavior. For

example, with decreasing thickness of a-laths,
the effective slip length decreases, and so,
based on restricted lengths of possible disloca-
tion pileups, the yield strength should inversely
vary with thickness of a-lath. The trend plot
produced from the neural network shown in
Fig. 25(b) correctly predicts this behavior. Sim-
ilarly, the neural network also predicts an
inverse trend for yield strength with colony
size. In this case, the strengthening associated
with deformation of colony laths may also be
rationalized based on the slip length within the
alpha phase (Ref 124–126). Thus, the Burgers
orientation relationship that exists between the
a and b phases within a single colony allows
for an easy slip transfer across the a/b bound-
ary, and, because the a-laths within a single
colony are all similarly oriented, the slip often
traverses the entire colony. This should make
the colony size factor a significant microstruc-
tural dimension affecting the yield strength in
this alloy. Once again, the trend plot predicted
by the neural network shown in Fig. 26 cor-
rectly predicts this behavior, although the trend
is less significant compared with the effect of
lath thickness on yield strength. This may be
due to the increased number of a/b boundaries
afforded by decreasing a-lath thickness for the
same colony size. Thus, although it has been
assumed (Ref 126) that slip transfer across a/b
boundaries is relatively straightforward, these
boundaries may offer more resistance to slip
transfer than previously considered. It is also
necessary to consider the spatial distribution
of the individual features that occur within the
grains when deriving constitutive laws for the
mesoscopic behavior of the grains. This was
clear when considering the effect of the prior-
b grain size on yield stress. Although the
Hall-Petch effect would suggest that a decrease
in grain size would result in stronger material,
the opposite was observed. Upon further study,
it was discovered that the smaller grains often
contained only colony-type microstructures,
while the larger grains would contain a stronger

Fig. 23 Examples of microstructures that occur in titanium-based alloys. (a) Colony, resulting from slowly cooling the material, (b) basketweave, resulting from a more rapid
cooling of the material, (c) equiaxed alpha particles, which result from working the material in the two-phase region.
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basketweave microstructure in the grain cen-
ters. Thus, the strengthening afforded by the
basketweave more than offset any possible
Hall-Petch effect that may exist.
a+b-Processed Ti-6Al-4V. For this database,

the microstructural features include the
equiaxed alpha size (equiaxed a size, mm), the
volume fraction of equiaxed alpha
ðF equiaxed�a

v Þ, the volume fraction of total alpha
ðF total�a

v Þ, and the width of the alpha-laths in
the transformed b-v regions (a-lath width, mm)
(Ref 127, 128). In addition to the

microstructural variations, this database
included designed variations in the alloy con-
tent to explore their effects on the resulting
mechanical properties. The alloys studied,
while within the specification range of Ti-6Al-
4V, may be described as Ti-xAl-yV (4.76 < x
< 6.55; 3.30 < y < 4.45) with controlled varia-
tions in interstitial oxygen and iron (0.07 < wt
%O < 0.20; 0.11 < wt%Fe < 0.41). The results
of the virtual experiments showed a similar
effect of volume fraction total alpha and the
thickness of the alpha-laths on the resulting

properties as was observed for the b-processed
Ti-6Al-4V. In addition, it was established that
the inclusion of the basketweave microstructure
was important. A feature that is not present in
b-processed microstructure is the equiaxed a-
particles, which may be described according
to their size and volume fraction. The quality
of the model is shown in Fig. 27, where the pre-
dicted yield stress is plotted against the actual
experimental value. As can be seen, the model
displays an uncertainty of approximately þ�2%.
For these microstructures, it was determined

that the volume fraction of equiaxed alpha par-
ticles is the microstructural feature that has the
greatest influence on the resulting tensile prop-
erties (Fig. 28a), largely due to the extended
range of volume fraction of equiaxed alpha that
can be affected in these microstructures, result-
ing in a variation in properties of almost 60
MPa. Thus, not only is it important to consider
the normalized influence of a particular vari-
able on the properties but also the extent of
the range that a particular variable can exhibit.
For example, for the two microstructural fea-
tures related to scale, it is also important to
note that while the thickness of the Widman-
stätten alpha-laths may yield a more significant
negative influence on properties per microme-
ter increase, the range of lath thickness that
can be affected by thermomechanical proces-
sing is smaller than the range of equiaxed
alpha–particle sizes, �0.345 < tlath < 0.667
and 4.79 < dequiaxed < 8.39, respectively. The
trend in volume fraction of equiaxed alpha
(Fig. 28b) most likely represents a result of
the difference in scale of the microstructural
features being considered. That is, one may
speculate that the early dislocation activity
may be more easily accommodated in the
equiaxed alpha-particles rather than the Wid-
manstätten alpha-laths, and that a higher frac-
tion of equiaxed alpha would result in a
lowering of the yield strength. A second effect
that will occur upon an increase in the volume
fraction of equiaxed alpha particles that may
affect the yield strength is the effect of parti-
tioning of both aluminum and oxygen to the
equiaxed alpha, decreasing the effectiveness
of the Widmanstätten alpha-laths to strengthen
the overall microstructure through a modifica-
tion to the critical resolved shear stress.
A similar analysis of the dependency of

properties on alloy composition yields stronger
influences, particularly with respect to the a-
stabilizing elements, aluminum and oxygen.
The influence of oxygen on the yield strength
is clear (Fig. 29a), with an effect of �940
MPa/wt%. Aluminum has less of an effect on
strengthening the hcp phase (�50 MPa/wt%).
Vanadium appears to have a negligible effect,
while iron has a greater strengthening effect
than Aluminum (�75 MPa/wt%). Based on this
model, the increases in strength afforded by
changes in composition are more significant
than the changes in strength offered by modifi-
cations to the microstructure; the use of neural
networks has identified solid-solution
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strengthening as an influential strengthening
mechanism in the alloy Ti-6Al-4V.
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Modeling of Creep
Sammy Tin, Illinois Institute of Technology

FOR MANY ENGINEERING MATERI-
ALS, deformation is highly sensitive to both
temperature and strain rate. Under these condi-
tions, deformation is considered to be thermally
activated, that is, assisted by thermal energy. In
order to develop an understanding of the under-
lying mechanisms governing deformation at
elevated temperatures, the phenomenological
effects resulting from temperature-induced
thermodynamic and kinetic changes are
discussed.

Fundamentals of Deformation

Ideally, the deformation behavior of all engi-
neering materials can be described using
expressions known as constitutive equations,
which relate the dependence of stress, tempera-
ture, and microstructure on deformation. Con-
stitutive equations have the general functional
form:

_g ¼ fðs; T; SiÞ (Eq 1)

where the strain rate, _g, can be defined as a
function of stress, s; temperature, T; and a
structure parameter, Si. This structure parameter
is a complex variable that may be comprised of
a number of dynamic microstructural variables,
such as material composition, grain size, dislo-
cation density, precipitate size, and morphol-
ogy, that evolve during the course of
deformation. Thus, the time-dependent behav-
ior of the structure parameter is also dependent
on the stress, temperature, and the current
structure:

dSi

dt
¼ gðs; T; SiÞ (Eq 2)

For simplicity, the structure variable is often
designated as being a fixed parameter that does
not change over a range of imposed deforma-
tion conditions. The assumption of a constant
structure variable is valid over some limited
ranges of deformation conditions and can be
used to describe the deformation behavior of a
variety of different engineering materials fairly
accurately. However, in reality, it is difficult to
maintain a constant structure parameter over a

wide range of temperature and deformation in
practical engineering materials. Due to the fact
that structure variables are highly sensitive to
temperature and stress, the goal of formulating
a coupled set of constitutive equations that are
capable of describing deformation in all materi-
als remains a major challenge, particularly dur-
ing deformation at elevated temperatures.
At temperatures approaching absolute zero,

deformation occurs at an extremely low rate until
a critical value of ss=m is reached. Above this
critical stress, dislocation glide mechanisms are
activated, and dislocations are able to glide freely
until they encounter an obstacle or exit the crystal.
The critical value of ss=m corresponds to a
threshold stress, tcri, that is required for disloca-
tions to overcome the shear resistance of the crys-
tal lattice and initiate plastic flow. At stresses
approaching the threshold stress, thermal fluctua-
tions in the crystal lattice may serve to enhance
the ease by which plastic flow may occur as well
as dislocation activity. Thermally activated defor-
mation can be expressed in the form:

_gi ¼ _go exp
�Gðs; SiÞ

kT

� �
(Eq 3)

where k is the Boltzmann constant, _go is a
material constant, and G is the Gibbs free
energy for activation of dislocation glide.
Depending on the dominant mode of deforma-
tion, the exact form of this relationship may
change, because changes in temperature and
stress may alter the manner by which disloca-
tions and defects contribute to plastic flow.
For many materials, the pronounced effect of

temperature on deformation can be attributed to
different plasticity mechanisms operating at
low and high temperatures. At low temperatures,
T, relative to the melting temperature (Tm),
where T/Tm < 0.4, plasticity tends to be glide
limited or obstacle limited. Glide limited refers
to the ability of individual dislocations to
become active and move against the shear resis-
tance of the lattice. Once active, these mobile,
gliding dislocations may encounter obstacles
such as solute atoms, grain discontinuities, other
dislocations, or precipitates that limit their
movement. Obstacles affect the movement of
gliding dislocations as they influence the stress
state of the crystal through which they are

moving. There are two types of stresses or inter-
actions that need to be considered when evaluat-
ing the effect of obstacles on dislocation
movement: long range, which are slowly varying
stresses due to other dislocations or groups of
dislocations; and short-range interactions result-
ing from localized changes in the resistance of
the crystal lattice to shearing and dragging of
jogs. At these low temperatures, thermal activa-
tion primarily aids the dislocations in penetrating
these short-range barriers. The application of a
shear stress, ta, sufficiently high in magnitude
to move a dislocation forward by a small incre-
ment, dx, results in a measure of work, dW,
being performed on the crystal:

dW ¼ tabldx (Eq 4)

where b is the Burgers vector, and ldx is the
area on the slip plane being swept out by the
mobile dislocation segment.
For small plastic strains, the relationship

between the glide resistance, t, and the shear
strain, ta, and Helmholtz free energy, F, is
defined as (Ref 1):

t ¼ 1

V

@DF
@g

(Eq 5)

As a result, the activation free energy that must
be supplied to activate the dislocation segment
over the obstacle or barrier is:

DG ¼
ðtline
ta

ðbDAÞdtline (Eq 6)

where tline is the resistance to the dislocation
line segment opposing its motion. The quantity
of bDA is commonly referred to as the activa-
tion volume, which is the product of the area
on the slip plane and its corresponding Burgers
vector. With thermal activation, the probability
of the thermal fluctuation providing sufficient
energy that enables the dislocation segment to
overcome the obstacle is proportional to
expð�DG=kT Þ. The resulting strain rate, _g,
can thereby be expressed as:

_g ¼ _go exp
�DG
kT

(Eq 7)
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Combining this expression with that of Eq 6
allows one to express the activation volume as:

bDA ¼ @DG
@t
¼ kT

@ ln _g
@t

(Eq 8)

This expression suggests that variations in
strain rate can reveal whether the rate-limiting
obstacles are long or short range in nature.

Creep Characteristics

At high temperatures, T > 0.4Tm, time-depen-
dent plasticity may occur at stresses well below
the flow stress of the material, also referred to
as creep deformation. Creep deformation may
occur via a number of mechanisms, but all of
them include an element of thermal activation
that allows for plastic deformation to occur at
stresses below the yield or flow stress. Under a
constant stress or load at elevated temperature,
the initial response of the material will be to
undergo an initial reversible elastic deformation.
Following this, the material will gradually
extend plastically, which would be considered
to be permanent or irreversible deformation.
With respect to engineering applications, the
main concern regarding creep deformation is
the loss in dimensional stability, although pro-
longed creep may also lead to rupture.
Stages. The typical response of a material to

a constant stress at elevated temperature can be
expressed in the form of a creep curve (Fig. 1).
Creep deformation is commonly classified as
being comprised of three distinct stages:

� I, or primary creep: Following an instanta-
neous elastic and plastic strain upon loading,
this stage is highly transient because the
strain rate decreases rapidly due to the
development of dislocation structures within
the microstructure. The strain rate decreases
until a minimum is reached.

� II, or secondary creep: During this stage of
creep, the strain rate is at a minimum, and
this is often attributed to the establishment
of equilibrium between deformation and
recovery mechanisms. The minimum or
steady-state creep rate, _emin or _ess, respec-
tively, is maintained for an extended period
of time during secondary creep.

� III, or tertiary creep:Toward the conclusion of
secondary creep, the strain rate begins to accel-
erate as a result of internal damage accumula-
tion within the material and microstructure.
Damage accumulation reduces the effective
load-bearing cross-sectional area andmay lead
to catastrophic failure of the material.

Modeling Steady-State Range. Increasing
the stress and temperature during creep defor-
mation will tend to extend the primary and ter-
tiary creep regimes and reduce the duration of
steady-state, secondary creep. Since tertiary
creep often results in significant dimensional
nonconformance and localized deformation,
creep-limited components are often removed

from service near the end of secondary creep,
before the transition into tertiary. Thus, it is
desirable to model the magnitude of the creep
strain into the steady-state range (Ref 2):

e ¼ eelastic þ ein þ at1=3 þ _eSSt (Eq 9)

where the total creep strain, e, is the sum of the
elastic, eelastic; instantaneous, ein; primary at1=3;
and steady-state creep, _eSSt, strains. Deforma-
tion occurring within the material during pri-
mary creep can be quite complex, particularly
during the initial transient, where the disloca-
tion density in the material increases rapidly.
Thermal activation enhances dislocation mobil-
ity that allows for rapid multiplication and
hardening to occur within the microstructure.
As primary creep progresses, these dislocations
organize themselves into low-energy subgrain
structures that are retained through the second-
ary creep regime. The walls of the subgrains
are comprised of high densities of dislocations,
while the cell interiors are relatively free of dis-
locations (Ref 3). This process is shown sche-
matically for pure iron being crept at 600 �C
in Fig. 2. The change in dislocation density as
a function of creep strain for the subgrain
walls and cell interiors is shown in Fig. 3.
These changes in the strain rate and accompa-
nying changes in subgrain structure are often
described by the Bailey-Orowan equation
(Ref 4, 5). This expression accounts for both
the hardening and recovery processes that occur
during primary creep, before the attainment of
steady state. If the flow stress is expressed as
a function of time and strain:

s ¼ sðe; tÞ (Eq 10)

ds ¼ ds
de

� �
t

deþ ds
dt

� �
e
dt (Eq 11)

Since creep tests are conducted at constant
stress, the change in stress, ds ¼ 0:

ds
de

� �
t

de ¼ � ds
dt

� �
e
dt (Eq 12)

_e ¼ de
dt
¼ � ds

dt

� �
e

�
ds
de

� �
t

¼ r

h
(Eq 13)

where r is the recovery function, and h is the
hardening function. Recovery or softening

during creep occurs as the overall dislocation
density is being reduced due to dislocation
annihilation or rearrangement of the disloca-
tions from the cell interiors into low-energy
configurations within the subgrain walls. The
hardening function is a measure of the increase
in flow stress as straining occurs. The relation-
ship between the dislocation density during
steady-state creep and the applied stress is:

t ¼ amb
ffiffiffi
r
p

(Eq 14)

where t is the shear stress, a is a material con-
stant, m is the shear modulus, and r is the dislo-
cation density. This equation suggests that the
shear stress increases as the dislocation density
increases. During steady-state creep, however,
there is a balance between the mechanisms
resulting in dislocation multiplication or harden-
ing and the mechanisms resulting in dislocation
recovery and softening. A number of theories
have been established over the years to model

Fig. 1 Schematic of a creep curve exhibiting the three
regimes: I, primary creep; II, secondary or

steady-state creep; and III, tertiary creep

Fig. 2 Schematic showing the rearrangement of
dislocations into low-energy configurations

during the initial stages of creep. Source: Ref 3

Fig. 3 Plot showing the overall changes in dislocation
density, rtot, as a function of creep strain for

pure iron at 600 �C. Dislocation densities are different
within the cell interiors, rs, and along the cell walls, r.
Source: Ref 3
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creep deformation based on the evolution of dis-
location substructures using the rates of harden-
ing and recovery, with limited degrees of
success (Ref 6, 7). The major difficultly asso-
ciated with this approach is the ability to quanti-
tatively model inhomogeneous dislocation
structures as they develop. The formation of sub-
grains and low-energy dislocation configurations
is an extremely complex process that involves
understanding of plasticity across multiple-
length scales. Moreover, the detailed processes
by which dislocations are generated within the
cell interiors and annihilated within the cell
walls are not entirely understood. Despite this,
a number of creep models have been developed
to describe the time-dependent deformation
behavior of engineering materials.
Thermal activation assists many of the

mechanisms resulting in plastic deformation as
well as aiding in recovery. Recovery mechan-
isms are strongly influenced by temperature
and diffusive processes. By plotting the temper-
ature dependence of creep rate as a function of
temperature, the activation energy can be deter-
mined. The stress dependence of the creep rate
can be used to calculate the stress exponent.
The steady-state creep rate can be expressed as:

_eSS ¼ Asn exp
�Q
RT

� �
(Eq 15)

where A is a material constant, R is the ideal
gas constant, n is the creep stress exponent,
and Q is the activation energy for creep. As
demonstrated in a number of different engineer-
ing materials, the activation energy for creep is
strongly related to the activation energy for lat-
tice self-diffusion Fig. 4. At lower tempera-
tures, however, the activation energy for creep
correlates better with the lower value of the
self-diffusion coefficient for grain-boundary
diffusion. Moreover, a dependence of the
steady-state creep rate on stacking-fault energy
has also been established (Fig. 5) (Ref 8).
Based on these relationships, the steady-state
creep can also be expressed as (Ref 9):

_eSS ¼ A
s
m

� �n

DL

mb
kT

� �
(Eq 16)

This is referred to as the Dorn equation (Ref 7),
where DL is the lattice self-diffusion coefficient.
Prediction of Deformation. For predicting

creep deformation, most materials abide by
the Monkman-Grant relationship (Ref 10):

_etr ¼ CMG (Eq 17)

where tr is the time to rupture, and CMG is the
Monkman-Grant constant. This function shows
a direct relationship between the minimum
creep rate and the time to rupture (Fig. 6) (Ref
11). Creep damage accumulates mostly in the
form of cavitation and cracking along the grain
boundaries during tertiary creep. This Monk-
man-Grant relationship demonstrates that the
rate of damage accumulation along the grain

boundaries during tertiary creep is dependent
on the rate of deformation within the grains
during steady-state creep.
The ability to accurately predict the magni-

tude of creep deformation is an important attri-
bute that is required for structural components
that are used in creep-limited applications. For
many creep-limited engineering structures, the
time scales of interest are often on the order
of �10,000 to >100,000 h. With 8766 h in a
year, creep deformation of actual components
may occur over a period of years or even dec-
ades. In laboratory experiments, however, creep
tests are conducted under much higher tempera-
tures or stresses than those seen in service. This
is done in order to expedite the acquisition of
creep data, so that the tests can be performed
within a reasonable period of time. As a result
of the test conditions that accelerate creep
deformation, it is necessary to extrapolate
results obtained at high temperature and stres-
ses to predict the creep performance at lower
temperatures and stresses.
Larson-Miller parameter, P, is a commonly

used engineering approach that aims to unify
creep data generated over a range of tempera-
tures and stresses. This parameter combines
time to failure and temperature into a single
parameter that can be expressed as:

P ¼ T ðln tþ CÞ ¼ Q

R
(Eq 18)

where t is the time to rupture or to a defined
strain, and C is a material constant. C is typi-
cally assumed to possess a value of 20, unless
otherwise specified. The Larson-Miller parame-
ter also correlated well to the ratio of the activa-
tion energy for creep divided by the gas
constant. When the Larson-Miller parameter is
plotted against stress, the results for a single
material should all lie approximately on single
line (Fig. 7). This reflects the effect of the stress
in lowering the activation energy of the creep

process. Tests conducted at the same stress but
at different temperatures should yield similar
Larson-Miller parameters within the experi-
mental spread and vice versa.

Fig. 6 Monkman-Grant relationship for copper alloys
tested at a range of creep temperatures and

stresses

Fig. 4 Comparison of the activation energy for self-
diffusion versus the creep activation energy

for a variety of metals. Source: Ref 8

Fig. 5 Plot of the normalized creep strain rate versus
the normalized stacking-fault energy for a

number of alloys creeping at the same normalized stress.
The linear relationship indicates that the creep rate is
proportional to the stacking-fault energy.
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Other parameters that are commonly used for
unifying creep data are the Zener-Hollomon
parameter, Z, and the Sherby-Dorn parameter, y:

Z ¼ _e exp
Q

RT

� �
(Eq 19)

y ¼ t exp
�Q
RT

� �
(Eq 20)

The Zener-Hollomon parameter is often used
for predicting the material flow behavior during
hot working operations, while the Sherby-Dorn
is a general creep parameter that is used in a
similar manner as the Larson-Miller parameter.

Creep Mechanisms

Power Law Creep. Although effective,
many of the constitutive models developed for
predicting the creep performance of materials
are engineering-based models that rely heavily
on fitting mathematical expressions to existing
databases. In order to develop truly predictive
models capable of simulating the creep
response as a function of temperature and

stress, much effort has been dedicated to the
development of physics-based models that aim
to capture the rate-limiting mechanisms occur-
ring during deformation. The difficulties of this
approach, however, stem from the fact that the
rate-limiting mechanism tends to vary over the
wide ranges of stress and temperature encoun-
tered during service conditions.
At high stresses and at temperatures >0.5Tm,

dislocation power-law creep dominates. The
strain rate is related to stress by the following
equation:

_e / s
m

� �n

(Eq 21)

For power-law creep, the strain rate (g) is
extremely sensitive to the applied stress (s),
since the stress exponent (n) tends to range
between 3 and 10; m is the shear modulus. This
mode of creep involves glide of dislocations but
is limited by climb of the dislocations over
obstacles that inhibit further plastic flow. The
obstacles may be precipitates or dislocation
locks that impede their ability to glide along
the slip plane. As temperatures increase to
>0.5Tm, dislocations may begin to escape from

obstacles by climbing out of their slip planes
and continuing to glide. In this instance, the
rate-limiting mechanism for power-law creep
is kinetics of the climb process (Ref 10). The
rate of creep is thus determined by the rate at
which dislocations move and the density of
dislocations:

_g ¼ rb� (Eq 22)

where � is the average dislocation velocity, b is
the Burgers vector, and r is the dislocation den-
sity. During plastic deformation, the density of
dislocations in a metallic material is generally
assumed to be proportional to the stress
squared. This is due to the fact that when dislo-
cations are pinned by interactions with other
dislocations of average spacing r, the bypass
stress s ¼ mb=r. Since the dislocation density
is inversely proportional to r2, it is also propor-
tional to the applied stress squared:

r ¼ 1

r2
(Eq 23)

r ¼ s
mb

� �2

(Eq 24)

The velocity of dislocations is proportional to
the applied stress. Dislocations glide within the
structure in order to accommodate creep strains
but can be impeded by obstacles such as kinks
or jogs that form obstacles that restrict mobil-
ity. In order for deformation to continue, activa-
tion processes are required to enable climb of
the dislocation over the obstacle. Under these
conditions, the climb velocity, �c, can be
expressed as (Ref 11):

�c ¼ Dnsnb
2

kT
(Eq 25)

where Dv is the vacancy diffusion coefficient,
and sn is the stress component normal to the
slip plane. The creep strain rate can then be
expressed as:

_g ¼ a
s
mb

� �2Dnsnb
3

kT
(Eq 26)

_g ¼ A
Dnmb
kT

s
m

� �3

(Eq 27)

where A is a dimensionless constant that takes
into account that the stress causing climb is pro-
portional to the applied stress. This equation
suggests that the stress exponent for steady-
state creep should be three for power-law creep
conditions where the rate-limiting mechanisms
are associated with glide and climb of disloca-
tions. However, this only applies for a limited
number of materials, such as ice and some cera-
mics. Creep stress exponents will vary depend-
ing on the rate-limiting mechanisms of creep
and are influenced by the particular nature of
the dislocations as well as the barriers to their
motion (Ref 12–15). The more general value
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of the stress exponent is approximately five, but
values of up to ten are commonly measured for
engineering alloys.
Low Temperature Creep—Pipe Diffusion.

When creep occurs at low temperatures, the
measured activation energy for creep tends to
fall while the stress exponent rises. These obser-
vations are attributed to the fact that lattice diffu-
sion is no longer the dominant mechanism
governing the kinetics of the system. Pipe diffu-
sion, or diffusion of solutes or vacancies along
the cores of the dislocations, becomes more per-
tinent than lattice diffusion. The activation
energy and diffusion rates along the dislocation
cores are difficult to measure experimentally
but have been approximated to be similar to that
of grain-boundary diffusion. With the dislocation
cores serving as pathways for diffusion, the dis-
location density contained within the material
will have a significant impact on the pipe diffu-
sion rates. Since the dislocation density is pro-
portional to the stress squared, the power-law
creep equation can be written as:

_g ¼ A
DDCmb
kT

s
m

� �nþ2
(Eq 28)

where DDC is the diffusivity for pipe diffusion.
Power-Law Breakdown. When materials

are subjected to high stresses, breakdown of
the power law may occur as strain rates rapidly
increase. The dependence of the creep strain
rate on the stress can be represented with the
following empirical relationship:

_g ¼ C
Dmb
kT

sin h
as
m

� �� �n0
(Eq 29)

where Can
0
= A is the dimensionless constant.

Under these conditions, the deformation pro-
cess is predominantly governed by glide of dis-
locations rather than the sequential climb
followed by glide characterized by the power-
law creep equations. Since the applied stresses
are at a level where they can readily overcome
obstacles without having to first climb over
them, the deformation process is no longer lim-
ited by the kinetics of dislocation climb. The
high applied stresses reduce the activation bar-
riers for glide, and the deformation mechanisms
begin to resemble those of traditional plasticity.
Diffusional Creep. At low stresses, disloca-

tion generation may be difficult. In this
instance, the creep rates are proportional to
the first power of stress in the power-law creep
equation. Under these conditions, the creep
strain rates are less sensitive to applied stresses
and are strongly influenced by parameters that
impact the diffusivity of the system, namely
temperature and microstructure. Depending on
the dominant mode of diffusion, grain boundary
or lattice, the mechanism by which creep defor-
mation occurs may vary.
In instances where the applied stresses are low

and temperatures are >0.7Tm, creep deformation
is likely to be controlled by lattice diffusion. The
problem of diffusional creep was first addressed

by Nabarro and Herring (Ref 16). Creep defor-
mation occurs as a result of coordinated atom
movement between different interfaces that
results in a macroscopic shape change. Intrinsi-
cally, this is an extremely slow deformation pro-
cess that is limited to instances where the
applied stresses are insufficient to initiate dislo-
cation motion, while the temperature is high
enough to create a gradient of vacancies that
drives mass flow. Schematically, the process
can be seen in Fig. 8. The creep rate resulting
from diffusional flow can be derived by first
considering the equilibrium concentration of
vacancies, C, within a material:

C ¼ Co exp
�Qf

kT

� �
(Eq 30)

whereQf is the vacancy formation energy, and Co

is the equilibrium vacancy concentration coeffi-
cient. Upon the application of a stress, work is
required to create vacancies. Vacancy formation,
however, is influenced by the nature of the stress,
because tensile stresses aremore likely to result in
vacancy formation than compressive stresses.
Thus, at internal interfaces within the microstruc-
ture, such as grain boundaries, precipitate inter-
faces, and so on, the equilibrium concentration
of vacancies will vary depending on whether the
stresses at that particular interface are tensile or
compressive. This gradient of vacancies provides
a driving force for the flow of vacancies from
regions of the microstructure where the stresses
are tensile to the regionswhere compressive stres-
ses exist. Counter to the flow of vacancies is the
flow of atoms in the opposite direction. The work
required to create vacancies at the tensile (CT)
and compressive (CC) boundaries can be calcu-
lated using:

CT ¼ Co exp
�Qf

kT

� �
exp

sO
kT

� �
(Eq 31)

CC ¼ Co exp
�Qf

kT

� �
exp �sO

kT

� �
(Eq 32)

where O is the atomic volume. The flux of
vacancies, Jv, is then:

Jn ¼�DnCo

d
exp

�Qf

kT

� �
exp

sO
kT

� �
� exp �sO

kT

� �� �

ffi 2DnCo

d

sO
kT

� �
(Eq 33)

where Dv is the vacancy diffusion coefficient,
and d is the grain diameter, which also repre-
sents the maximum diffusion distance of the
vacancies. The strain rate caused by this diffu-
sional flow is related to the flux of atoms depos-
ited on the tension boundary:

_e ¼ Jnb
3

d
¼ 2DnCo

d

sO
kT

� �
b3

d
¼ 2Dsd

d2
sO
kT

� �
(Eq 34)

where Dsd is the self-diffusion coefficient
(including the formation and migration energies

for vacancy formation). In this expression, the
creep strain rate is proportional to the stress
and inversely proportional to the square of the
grain size.
Because diffusion is extremely sensitive to

temperature, at lower temperatures lattice diffu-
sion becomes sluggish, and diffusional flow
along grain boundaries is often the dominant
mass-transport mechanism. This is due to the
activation energy for bulk diffusion being higher
than that of grain-boundary diffusion. The effect
of diffusional flow along grain boundaries, Dgb,
was considered by Coble (Ref 17):

_e ¼ dDgbsb4

kTd3
(Eq 35)

Here, the self-diffusion coefficient is replaced
by the grain-boundary diffusion coefficient,
and the cross-sectional area through which dif-
fusion occurs can be assumed to be dbd, where
db is a measure of the thickness of the grain
boundary. In most cases, d is a dimensionless
constant with a value of �1. As is expected,
the creep strain rates for Coble creep are highly
sensitive to the grain size of the material. Small
grain sizes allow for large grain-boundary areas
to exist within the microstructure and are sus-
ceptible to comparatively high creep strain
rates. When considering diffusional creep, it is
important to note that both lattice diffusion
and grain-boundary diffusion occur simulta-
neously. However, as the temperature increases
and the activation energy for vacancy formation
Qf = kT, the high sensitivity of the creep strain
rate to diffusivity means that there is an abrupt
change from grain-boundary diffusion (Coble)
to bulk lattice diffusion (Nabarro-Herring)
creep kinetics.
Twinning during Creep Deformation.

Mechanisms that accommodate creep deforma-
tion do not necessarily need to involve power-
law creep-type dislocation activity or long-range
diffusive processes. Twinning or localized micro-
scale reordering of the crystalline structure during
creep deformation has been reported in alloys

Fig. 8 Schematic showing the flow of atoms from
compressive boundaries to tensile boundaries

during diffusional Nabarro-Herring creep. Vacancy flow
occurs in the direction opposite to that of the atom flow.
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with a limited number of operative slip systems,
such as hexagonally close-packed metals (Ref
18, 19), ordered intermetallics (Ref 20, 21), and
even precipitation-strengthened nickel-base
superalloys (Ref 22, 23). Generally considered a
deformation mechanism that is limited to rela-
tively low temperatures not indicative of creep
conditions, twinning involves the dissociation of
existing dislocation configurations into Shockley
partials that form complex, multilayered stack-
ing-fault structures that nucleate twins. Recently,
microtwinning has been reported to serve as the
dominant deformation mechanism during creep
of polycrystalline nickel-base superalloys within
a narrow range of temperatures and stresses.
Efforts to model this particular deformation
mechanism and assess the impact of this mecha-
nism on creep are currently in progress (Ref 24).
Deformation Mechanism Maps. In princi-

ple, more than one creep mechanism may oper-
ate in a material, depending on the temperature
and stress. However, for a particular combina-
tion of temperature and stress, a single creep
mechanism usually dominates and serves to limit
the kinetics of deformation. Since the boundaries
between the different regimes tend to be rela-
tively sharp, deformation mechanism maps, or

Ashby maps (Ref 25), may be used to define
the dominant mechanism as a function of com-
position, grain size, temperature, and stress
(Fig. 9). In their most common form, the axes
of the maps are expressed in terms of the nor-
malized shear stress, ss=m, and the homologous
temperature, T=Tm. Although each map is spe-
cific to a particular material and microstructure,
they allow for the identification of the tempera-
ture and stress dependence based on the rate
equations presented in this article. Strain-rate
contours on these deformation mechanism maps
are determined using the rate equations pre-
sented in this article. The spacing and gradients
of these contours show that they are roughly par-
allel to one another. The shape and position of
the various creep regimes on the deformation
mechanism map is consistent from alloy to alloy,
but microstructure plays an important role in
shifting the boundaries and defining transitions
between different mechanisms.

Creep-Strengthening Mechanisms

Most structural engineering components are
fabricated from alloys rather than pure metals,

due to the need to impart high levels of strength
in order to resist deformation. Strengthening
arises through a wide variety of mechanisms,
including substitutional and interstitial solution
strengthening, dispersion and/or precipitation
strengthening, and even grain-size strengthen-
ing. Depending on how these mechanisms
interact with the ability of dislocations to glide
within the structure, the effectiveness of these
mechanisms will vary, particularly as a function
of temperature. Interactions between disloca-
tions and obstacles may be classified as being
either strong or weak, depending on the magni-
tude of the interaction (Ref 26). When disloca-
tions encounter strong obstacles, such as
nonshearable precipitates, along its slip plane,
they must bow through large angles in order
to break away and bypass the obstacles and
continue gliding. Weak obstacles, such as sol-
ute atoms or small, shearable precipitates, on
the other hand, can be bypassed relatively eas-
ily without undergoing a large deviation in the
local orientation of the dislocation line. Thus,
strong and weak interactions can be character-
ized on the basis of the critical angle, jc, for
breakaway of the dislocation from the obstacle.
As dislocations are forced to bow or climb

over obstacles, the net increase in energy asso-
ciated with the change in the dislocation line
length can be expressed by defining the line
tension, G. This tension force represents a resis-
tance to lengthening or bowing of the disloca-
tion. For a mixed screw-edge dislocation, the
line tension is a function of the angle, y,
between the dislocation and the corresponding
Burgers vector:

G ¼ EelðyÞ þ d2EelðyÞ
dy2

(Eq 36)

where EelðyÞ is the dislocation line energy per
unit length as a function of the angle. The line
tension is also commonly simplified and
expressed in terms of the shear modulus, G,
and the Burgers vector, b, as:

G ¼ Gb2

2
(Eq 37)

The change in the length of the dislocation
segment bowing in between two obstacles, dS,
can also be expressed in terms of the bow
radius, R, and y as dS ¼ Rdy. The application
of a force balance between the outward force
on the dislocation caused by the application of
a shear stress, t, results in:

tbdS ¼ tbRdy ¼ 2G sin
dy
2

� �
(Eq 38)

For small angles of y, sin y � y, so:

tbRdy ¼ 2G
dy
2

� �
(Eq 39)

tbR ¼ G ¼ Gb2

2
(Eq 40)Fig. 9 Ashby deformation mechanism map for pure nickel with a grain size of 0.1 mm. L.T., low temperature;

H.T., high temperature
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t ¼ Gb

2R
(Eq 41)

The magnitude of the shear stress is inversely
proportional to the bow radius of the disloca-
tion. Since the particle/obstacle spacing, L, is
also related to the bow radius, R = L/2, the crit-
ical configuration for escape of the dislocation
from strong, nonshearable obstacles is:

t ¼ Gb

L
(Eq 42)

This relation is also commonly referred to as
the Orowan stress and represents the upper
limit of strengthening for nonshearable obsta-
cles where jc ¼ 0. In instances where the
obstacles may be sheared by the dislocation,
deformation may occur at stresses well below
those defined by the Orowan stress. If one con-
siders the force, F, exerted on the obstacle by
the dislocation as it bows out:

F ¼ 2G cos
j
2

� �
(Eq 43)

t ¼ Gb

L
cos

j
2

� �
(Eq 44)

This expression clearly suggests that strong obsta-
cles are associated with dislocations bowing
through a small critical angle, jc, while weak
obstacles result in high bowing angles.

Creep in Engineering Alloys—
Microstructural Modeling

In multicomponent materials that contain mul-
tiple phases or elements, the creep deformation
mechanisms may differ from those already dis-
cussed. Particularly in alloys that are subject to
microstructural changes during creep, the steady-
state equations donot necessarily hold true.Acon-
stitutive description of the strain-rate-dependent
behavior of engineering alloys must take into
account the intrinsic causes of damage accumula-
tion in the form of cavitation, dislocation evolu-
tion, and grain-boundary sliding. Moreover,
because creep occurs at elevated temperatures,
seldomdoes themicrostructure of the alloy remain
constant. Diffusive processes aid thermodynamic
transformations that result in grain growth, precip-
itation of undesirable secondary phases, along
with coarsening and dissolution of existing preci-
pitates. As a result of these microstructural
instabilities occurring during creep deformation,
empirical or theoretical steady-state approaches
based on the power-law creep equation (Ref
27–35) are usually insufficient for modeling creep
deformation in engineering alloys (Ref 36).
To be able to accurately capture both the dam-

age evolution as well as the microstructural
changes that occur during creep, significant
effort has gone into the development of constitu-
tive equations that incorporate kinetic terms
that reflect the microstructural changes that
occur during creep. Consider a multicomponent

engineering alloy that is strengthened by both
precipitates and solutes in a solid solution.
If the precipitates are randomly distributed
within the microstructure, one can define the
microstructure in terms of kinetic parameters,
where rs is the mean plane section radius of the
precipitates, fp is the volume fraction of precipi-
tates, and rtot is the total dislocation density.
As a result of the precipitates and other obsta-
cles, dislocations possess limited mobility during
creep because they become trapped by obstacles.
Similar to many of the basic theoretical models,
thermal activation allows some of these disloca-
tions to climb over the obstacles and continue
viscous glide. By incorporating the geometri-
cally random nature of the dislocation particle
intersections into a climb/glide model, however,
Dyson and McLean determined that the ability
of the dislocations to separate themselves and
escape from the climbing network was based
on statistics and dependent on the stress, temper-
ature, and particle-dispersion parameters. The
shear creep rate, _g can be expressed as:

_g ¼ 2rfp
0:5 p

4

h i0:5
�fp

0:5

� �
cjDv sinh

tmb2lp
kT

� �
(Eq 45)

where tm is the shear stress within the matrix,
Dv is the matrix diffusivity, cj is the dislocation
jog density, r is the dislocation density that is
able to glide, and the interparticle spacing is lp:

lp ¼ 2rs

p
4


 �0:5�fp
0:5

fp
0:5

 !
(Eq 46)

With knowledge of the shear creep rate, the
uniaxial creep strain rate can be expressed as:

_e ¼ 2rfp
0:5

�M

p
4

h i0:5
�fp

0:5

� �
cjDv sinh

smb
2lp

MkT

� �
(Eq 47)

where �M is the Taylor factor, and sm is the uni-
axial matrix stress. This uniaxial matrix stress is
related to the applied tensile stress, s, by assum-
ing that the precipitates deform elastically during
creep and that the matrix is the only phase that
deforms irreversibly. Since sm ¼ s� skð Þ,
where sk is the kinematic internal stress, the
kinematic creep equation can be expressed as:

_e¼ 2rfp
0:5

�M

p
4

h i0:5
�fp

0:5

� �
cjDv sinh

s�skð Þb2lp
MkT

� �
(Eq 48)

Since the kinematic internal stress varies as a
function of the microstructure, this term corre-
sponds to a physical representation of the
microstructure, such as changes in dislocation
density, grain size, precipitate size, morphol-
ogy, and volume fraction.
To effectively model the creep behavior of

engineering alloys using these kinematic creep
equations, one can use the continuum damage
mechanics (CDM) approach. This model was

developed to deal with the kinetics of microstruc-
tural changes by defining the creep strain rates as
a function of hardening and softening parameters
that correspond to phenomenological events (Ref
24–26). This is a powerful creep-modeling tech-
nique that can be used to identify the dominant
mechanisms governing deformation as well as to
provide insight into the microstructural changes
that occur during creep. For the internal-state var-
iable approach, creep deformation can be
expressed as a set of linear differential equations:

_e ¼ _e s; T;H;Dið Þ
_H ¼ _H s; T;H;Dið Þ
_Di ¼ _Di s; T;H;Dið Þ ðEq 49Þ

where T is temperature, H is a dynamic harden-
ing parameter that dominates primary creep
behavior, and Di is a dimensionless microstruc-
tural damage parameter that evolves during sec-
ondary and tertiary creep. _H is the rate of
dynamic hardening, and _Di is the rate at which
damage accumulates within the microstructure.
In most instances, the primary damage mechan-
isms resulting in creep failures are associated
with the following microstructural features: dis-
location activity, particulates/precipitates, and
grain-boundary cavitation. It is important to
note that the creep damage mechanisms may
be occurring simultaneously or in isolation
from one another. The explicit form of the
CDM creep model may be expressed as:

_e ¼ _eo
1�Dd

sinh
sð1�HÞ

soð1�DpÞð1�DcÞ
� �

(Eq 50)

In this formulation, parameters from the kine-
matic creep equation derived previously can
be integrated into the CDM model:

_eo ¼
2rfp

0:5

�M

p
4

h i0:5
�fp

0:5

� �
cjDv (Eq 51)

so ¼
�MkT

b2lp;i
(Eq 52)

The hardening parameter, H ¼ sk=s, and dam-
age parameters corresponding to dislocation
activity, particles, and cavitation are defined as
Dd, Dp, and Dc, respectively. Since the harden-
ing parameter also evolves as a function of time
or deformation, it can also be expressed as a
rate equation, _H, where:

_H ¼ fpE

s
1� H

H


� �
_e (Eq 53)

The volume fraction of precipitates is f, the
elastic modulus of the precipitates is E, and H*
is the normalized precipitate volume fraction:

H
 ¼ 2fp

2fp þ 1
(Eq 54)

In addition to the hardening response, materi-
als also undergo a softening behavior as damage
accumulates within the microstructure. Damage
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parameters can be attributed to gradual changes
in dislocation density, (Dd), particles (Dp), and
grain-boundary cavitation (Dc):

Dd ¼ 1� ri
r

(Eq 55)

Dp ¼ 1� lp;i
l

(Eq 56)

Dc ¼ 1� Ac;i

A
(Eq 57)

where r, lp, and Ac are the dislocation density,
interparticle spacing, and area fraction of the
cavitated grain boundary. The subscript, i,
denotes the initial for these parameters. The
numerical value for each of these parameters
ranges from zero to unity. Expressed in terms
of rate equations, these damage parameters
can be written as:

_Dd ¼
fpr

0:5

rsri
ð1�DdÞ2 _e (Eq 58)

_Dp ¼ Kp

3
ð1�DpÞ4 (Eq 59)

_Dc ¼ 1

3ef;u
_e (Eq 60)

where rs corresponds to the dislocation spacing,
Kp is the particle coarsening rate, and ef,u is the
strain at creep rupture. Coupling of all of these
rate expressions into the CDM model allows
for both the prediction of the creep response as
well as the evolution of the microstructure dur-
ing deformation. This is an extremely useful
model that has been successfully applied to sim-
ulate the deformation response of a number of
engineering alloys in commercial applications.
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Microstructure-Sensitive Modeling and
Simulation of Fatigue
David L. McDowell, Georgia Institute of Technology

HISTORICALLY, local stress-based criteria
for high-cycle fatigue (HCF) or plastic strain-
based criteria for low-cycle fatigue (LCF) have
been applied based on transfer of results from
tests on relatively small-scale unnotched labo-
ratory specimens to structural components
(Ref 1) to estimate crack initiation life. Simi-
larly, test results for crack propagation in pre-
cracked specimens have been employed to
estimate propagation behavior of components.
Explicit consideration of microstructure in
these relations has been limited, and mechan-
isms are not completely understood (Ref 2). In
this approach, it is typically assumed that the
life is decomposed between initiation and prop-
agation components, that is, NT = Ni + Np, with
the latter based on fracture mechanics correla-
tions for crack growth, for example, da/dN =
f(DK, Kmax). The cyclic crack growth rate is a
function of of the stress-intensity range and
maximum stress intensity. The crack size at
the end of the initiation process, ai, is based
either on consistency with crack lengths
measured in smooth specimens to define the
strain-life relations, typically 0.5 to 1 mm, or
some nonarbitrary length corresponding to a
transition from a regime of growth that is
affected by the notch root stress and strain field
to influence of only the remote nominal fields,
incorporating the notch as part of the crack.
The treatment of fatigue crack initiation,

involving the formation and early growth of
cracks to some detectable size, has traditionally
been distinguished from damage-tolerant analy-
sis, which considers propagation of pre-existing
cracks. In reality, both approaches are relevant
to modeling total fatigue lifetime of compo-
nents. Different industry sectors conventionally
design components for fatigue resistance with a
focus either on crack initiation or crack propa-
gation. Figure 1 distinguishes initiation-based
design applications involving high-frequency
reciprocating or rotating components from
propagation-based design applications, such as
high-performance aircraft or building infra-
structure. The distinction is primarily rooted in
the practicality and cost of detecting and

mitigating catastrophic failure scenarios via
inspection and maintenance. The propagation
life of initiated cracks in high-strength compo-
nents that rapidly accumulate fatigue cycles in
the HCF regime is typically short compared to
initiation life, and these cracks are often diffi-
cult to detect under service conditions. Accord-
ingly, initiation-based modeling approaches are
used that account for size effects and scatter in
fatigue to estimate minimum life. On the other
hand, this approach is often too conservative
in practice, and it is sometimes desired to
“retire for cause” rather than on the basis of
these estimates; this means that cracks should
be detected and monitored with respect to loca-
tion and size in order to remove or replace the
component. This is only a viable strategy if a
reliable and repeatable detection capability
exists, as is the case with inspection of hot spot
regions of large structures such as aircraft,
building columns, bridge supports and beams,
and so forth. This latter strategy of “damage
tolerance” is obviously a costly investment if
manual inspections are performed, or if the cost
of remote sensing is high. It drives the field of
material prognosis for damage-state awareness
to develop low-cost, embedded sensors that
can reliably detect cracks; moreover, as the
detection of incipient damage (initiation stage)
becomes realized, it will enable shifting of
more applications toward the top in Fig. 1,
increasing the importance of combined initiation
and propagation strategies.
Purposes and methods of fatigue modeling

and simulation differ among initiation- and
propagation-dominated scenarios. Typically,
the purpose of the former is to design either
failsafe components or components with a finite
life; the latter seeks to quantify remaining life
of components with pre-existing cracks using
fracture mechanics, with the intent of monitor-
ing via an inspection scheme. Considerable
variability of fatigue response is observed even
for smooth specimens under controlled testing
conditions, especially in HCF regime. This has
been addressed by employing statistical
approaches for minimum life design, typically

requiring large sets of experiments. Particularly
in the crack-initiation regime, the role of micro-
structure can be pronounced, both in terms of
mean fatigue lifetime and scatter in fatigue.
Moreover, especially in the HCF regime, com-
ponent and notch size effects are manifested
with dependence on underlying microstructure.
In view of the intimate role of microstructure,
computational modeling in the HCF regime is
of most clear relevance and is emphasized in
this article.

Stages of the Fatigue Damage
Process

The advent of microstructure-sensitive micro-
mechanics modeling of cyclic plastic deforma-
tion and fatigue processes in the last decade
that employ emerging tools in computational
materials science and mechanics has opened

Fig. 1 Relative weighting of initiation and propagation
approaches to fatigue-life estimation of

components by industry sector

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 408-418

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



new horizons for fatigue modeling. Specifically,
it is envisioned that microstructure-sensitive
fatigue modeling can assist in tailoring of mate-
rial microstructure for fatigue resistance, addres-
sing the hierarchical structure of the material in
concurrent design of microstructure and compo-
nent geometry. Second, it can serve to augment
costly experiments that characterize dependence
of fatigue response on material microstructure,
thereby reducing cycle time for insertion of
modified or new materials.
Microstructure-sensitive modeling must

address key aspects of physical processes of
fatigue from the scales of submicron micro-
structure to components. As a foundation for
the present article, the reader is referred to
already well-established introductory textbooks
and monographs (Ref 1, 2) regarding elemen-
tary concepts and definitions of stress-life, plas-
tic strain-life, and strain-life relations for
fatigue crack initiation, along with state-of-
the-art approaches for correlating growth of
long fatigue cracks. Early experimental work
(Ref 1, 2) indicated the causal influence of
cyclic plastic strain in LCF, and it has become
clear that even HCF failure is governed by
distributed microplasticity at the scale of indi-
vidual grains. Moreover, small cracks with size
on the order of microstructure heterogeneity
(grains, phases) propagate below driving-force
levels corresponding to long crack thresholds
and can be arrested by interaction with strong
microstructure barriers. Such microstructurally
small cracks are subject to the varying anisot-
ropy and heterogeneity of microstructure, giv-
ing rise to scatter in fatigue crack intiation and
a breakdown of applicability of long crack frac-
ture mechanics (Ref 3, 4). It is necessary to
clarify the definition of various stages of the
fatigue process. Consider the decomposition
(Ref 5, 6):

Nt ¼ Ni þNp

Ni ¼ Nnucl þNMSC þNPSC0

Np ¼ NPSC00 þNLC ðEq 1Þ

where Nt is the total fatigue life (cycles to fail-
ure); initiation life, Ni, corresponds to develop-
ment of cracks that are substantially longer than
scales of intrinsic microstructure barriers such
as grains or phases; and Np is the number of
cycles to propagate the crack(s) to failure. In
Eq 1, Nnucl is the number of cycles to nucleate
a crack (formation of a crack embryo and sub-
critical propagation to size of stable nucleus),
and NMSC, NPSC, and NLC represent the number
of cycles to propagate the crack(s) in the
regimes of microstructurally small, physically
small, and long crack growth, respectively.
The microstructurally small regime is normally
on the order of 3 to 10 times the grain or phase
size/spacing that affects retardation of the crack
driving force; it is characterized by an explicit
dependence of the fatigue crack growth rate
on microstructure attributes such as grain size,
second-phase particle size and spacing, and so
on. It also depends on amplitude of applied

stress, since such explicit dependence is mani-
fested in cases where the size of the cyclic
crack tip plastic zone depend on the order of
the damage process zone (e.g., grain size, inter-
phase spacing, etc.). Physically small cracks are
sufficiently large such that individual micro-
structure attributes do not affect the crack
growth rate; in other words, they are large
enough such that the damage process zone at
the crack tip serves as a representative volume
element with regard to the fatigue crack growth
rate (FCGR). Accordingly, conventional homo-
geneous fracture mechanics approaches apply.
NPSC is further decomposed as NPSC = NPSC0 +
NPSC00, reflecting the fact that a given definition
of initiation often implies an artificial partition
of the growth history into parts associated with
initiation and propagation regimes. These parts
are often distinguished by definition rather than
physics. In most engineering applications, crack
initiation is defined corresponding to crack
lengths beyond the microstructurally small
crack (MSC) regime. For example, definition
of an initiation crack length of 500 mm in a
polycrystalline material with grain size of 20 mm
is well beyond the regime of strong microstruc-
ture influence, the microstructurally small crack
regime. A long crack-growth model, recognizing
the crack shape and aspect ratio, can be applied
from this point up to 500 mm. Fatigue crack inita-
tion approaches that embed NPSC0 into some
parametric law (e.g., Coffin-Manson) based on
plastic strain range or stress range implicitly
parameterize the growth relations and assume
similitude among geometries. This is not a valid
assumption in cases of macronotches with differ-
enct acuities or varying intensity of stress field
gradients, for example.
The relative proportion of the components of

fatigue life in Eq 1 depend both on the applied
stress amplitude as well as whether or not the
specimens or components are notched. The
ratio of the nucleation fatigue life to Nt for
smooth uniaxial specimens, for example, quali-
tatively has the sigmoidal shape shown in Fig. 2
(a), approaching 0 in the limit at Nt ! 1, and 1
as Nt ! infinity. The precise dependence of

this ratio on Ni depends on material, with
higher-strength materials resulting in a shift of
the curve to the left in accordance with a
reduced transition fatigue life. Lower-strength
materials are considered to have greater fatigue
ductility, with the ability to accommodate
deformation with more extensive cyclic slip,
and exhibit a more pronounced resistance to
crack propagation.
For a given arbitrary fatigue life, a material

may be loosely categorized as fatigue ductile
or fatigue brittle. Figure 2(b) schematically
compares characteristic fractions of nucleation,
small crack propagation, and long crack propa-
gation for these two distinct classes, the former
typically pertaining to low-strength and the lat-
ter typically to high-strength materials. In the
LCF regime, the nucleation life can be negligi-
ble for many materials (particularly alloys with
extrinsic defects such as inclusions), so Fig. 2
(b) pertains more to an intermediate transition
fatigue life. On the other hand, nucleation and
MSC growth often dominate in HCF, and there-
fore, the design of fatigue-resistant materials in
this regime would focus on fine scales of cracks
relative to microstructure. It is emphasized that
the mechanisms for high-strength materials are
not really brittle in nature; rather, the scale of
the process zone for inelastic deformation and
evolving damage is typically much more
refined than that of fatigue ductile materials.
As a result, crack growth in fatigue brittle mate-
rials near the onset of growth can appear to fol-
low a stage II trajectory (see inset at lower right
in Fig. 3) (Ref 7) normal to the direction of the
maximum applied principal stress, even in the
MSC regime. Microstructure-sensitive MSC
growth laws are oftenmore relevant to component
life estimates for fatigue ductile materials. More-
over, multiaxial fatigue parameters should distin-
guish the two classes of behavior (Ref 8, 9).
For either class, the differences are not as signifi-
cant in the LCF regime as in the transition fatigue
and HCF regimes. Materials can also exhibit
transitions of behavior from fatigue ductile to brit-
tle in theHCFandveryhigh-cycle fatigue (VHCF)
regimes.

Fig. 2 (a) Crosshatched regime for typical ratios of Nnucl/Nt as a function of total fatigue life. (b) Schematic showing
relative ratios of nucleation, small crack lives (Nm = NMSC + NPSC0), and long crack lives (Np = NPSC00 + NLC) for

fatigue ductile and fatigue brittle materials for intermediate fatigue lives
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Hierarchical Multistage Fatigue
Modeling

Each regime of fatigue crack formation and
growth outlined in Eq 1 should be treated with
a distinct set of characteristic governing rela-
tions. Hence, they may be regarded as multi-
stage relations. McDowell and co-workers
introduced a multistage approach to microstruc-
ture-sensitive fatigue crack formation and
growth that employs fatigue indicator para-
meters for crack nucleation at the subgrain
scale (to be discussed later), along with heuris-
tic relations for growth based on the cyclic
crack tip displacement (DCTD), outlined in
Fig. 3 (Ref 5, 6, 10). As is the case with the
nucleation driving force, it is presumed that
the DCTD is computed from microstructure-
sensitive crystal plasticity relations for cracks
of various scales relative to microstructure.
In the da/dN versus DCTD relation, G is a

constant for a given microstructure (Ref 11). It

is directly related to irreversibility of slip
in the damage process zone. Micromechanical
studies can be introduced to capture DCTD
interactions with microstructure (Ref 4,
12–19). In general, due to lack of similitude
and shear localization at the tips of cracks on
the order of grain size, macroscopic, homoge-
neous fracture mechanics approaches to esti-
mate DCTD are generally insufficient (Ref 4).
The form shown in Fig. 3 does not rely on
applicability of small-scale yielding or conven-
tional linear elastic fracture mechanical
(LEFM) concepts. As the crack lengthens, con-
ventional da/dN versus DKeff relations may be
used, with the crossover defined by the maxi-
mum of MSC/PSC and long crack growth rates,
as indicated in Fig. 3.
Previous work (Ref 10) has suggested an

alternative definition of HCF, LCF, and transi-
tion fatigue regimes for heterogeneous micro-
structures compared to the standard ASTM
Interantional definition based on the ratio of
macroscopic elastic and plastic strain ranges

(Ref 1). Specifically, the HCF regime corre-
sponds to stress amplitudes below macroscopic
yielding for which cyclic plastic strain occurs
within isolated regions of microstructure stress
concentration (inclusions, favorably oriented
grains, etc.). This is the regime of constrained
cyclic microplasticity. Transition to LCF condi-
tions occurs at higher applied stress amplitudes
for which the cyclic plasticity becomes wide-
spread and more homogeneously distributed.
Although the focus in all stages is on disloca-
tion plasticity, each stage demands different
characteristic computational micromechanics
treatment of the role of plasticity in crack for-
mation and crack growth, as may be expected
based on distinct empirical relations that have
emerged for HCF and LCF.
In the HCF regime, crack nucleation and

microstructurally small growth dominate the
fatigue lifetime. Under HCF conditions, the
cyclic plastic deformation is highly heteroge-
neous within the microstructure; accordingly,
this is the regime in which variability and size
effects are most pronounced. A strategy for
computational HCF modeling of components
that must last millions of cycles, such as shafts,
bearings, and gears, for example, should focus
on extreme value statistics of potential sites
for microplastic strain localization and fracture
that drive crack formation and early growth.
Moreover, the issue of arrest of small cracks
that form at isolated sites of cyclic plastic strain
intensification is pertinent to estimation of a
fatigue limit.
Table 1 outlines some of the considerations

of dominant regimes of crack formation and
propagation for HCF and LCF regimes defined
in this manner. Microstructure-sensitive, simu-
lation-assisted fatigue analysis is particularly
useful as a means of gaining insight into
fatigue responses in the HCF regime, since
experimental results are often limited or incon-
clusive in this regime. In the VHCF regime,
crack initiation can shift from the surface to
the subsurface in view of multiple competing
failure modes.

Small Crack Formation and Early
Growth in Fatigue

There are several key points regarding the
physics of crack nucleation and MSC propaga-
tion in the HCF regime. First, the slip system
activity is often limited to one or two active
systems, since compatibility requirements are
not too demanding (elastic and plastic strains
are comparable). This point can be problematic
for conventional crystal plasticity models
that do not focus on slip system interactions.
Second, MSC growth is subject to attenuation
and arrest at microstructure barriers such as
grain and/or phase boundaries. In the MSC
regime, cracks grow at apparent stress-intensity
factor levels well below that of the long crack
LEFM threshold, and considerable nonmono-
tonic variation (Fig. 4, 5) in crack growth rate

Fig. 3 Heuristic multistage modeling framework for nucleation and growth of fatigue cracks. Cycles NMSC and NPSC,
respectively, represent the number of cycles to propagate the crack(s) in the regimes of microstructurally small

crack (MSC) growth (normally 3–10 times the grain or second-phase size/spacing that affects retardation of the crack
driving force; see inset figure at lower right. Source: Ref 7), physically small crack (PSC) growth, and long crack (LC)
growth. In the PSC regime, the crack is suitably long to be treated using conventional linear elastic fracture
mechanics (LEFM) but is still below the size considered amenable to a definition of the initial crack length for
propagation analyses using LEFM. Crack tip displacement (CTD) is comprised of crack tip opening (CTOD) and
sliding (CTSD) components. Constants F and M govern the long crack growth rate for a given R-ratio, and U(*) and H
(*) are functions of their arguments.

Table 1 Relative emphasis on fatigue micromechanisms in the low-cycle (LCF)
and high-cycle (HCF) regimes

Mechanisms LCF—Extensive plasticity HCF—Microstructure-scale (constrained) plasticity

Crack formation Propagation-dominated: largest grains or
inclusions establish initial crack length in
propagation analysis.

Initiation-dominated: largest grains or inclusions control
number of cycles to form a crack or to propagate past
arrest limits.

Microstructurally
small crack
growth

Multiple cracks grow in elastic-plastic field
with less microstructure influence.

First few microstructural barriers control fatigue limit
and scatter of lifetime.

Physically small
and long crack
growth

Elastic-plastic growth persists well into crack
growth history; coalescence of multisite
cracks can occur.

Transition to linear elastic fracture mechanics-dominated
homogeneous crack growth; single dominant crack is
common.

410 / Phenomenological or Mechanistic Models for Mechanical Properties

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



occurs for each crack, resulting in considerable
scatter for a population of specimens. This
point is clearly demonstrated for two different
materials in Fig. 4 and 5. For an Fe-2 wt%Si
alloy in Fig. 4 (Ref 20), certain grain bound-
aries correlate directly with periodic crack

growth deceleration. For Ti-6Al-4V (Ref 21,
22), as shown in Fig. 5, it was shown that oscil-
lations of the FCGR were observed with wave-
lengths on the order of 7.5 mm for the cracks
smaller than a = 50 mm, and average wave-
lengths of 22 mm for the cracks between a =
50 and 100 mm. This suggests that both grain
size and microtexture (the a- and b-rich bands)
are the characteristic microstructure attributes
in the thickness direction affecting growth
rates.
Figure 6 schematically compiles these MSC

growth rate effects for a population of speci-
mens with naturally occurring fatigue cracks
in terms of resulting scatter when plotted
against the conventional LEFM driving force,
DK. Beyond the MSC regime, compounding
effects of plasticity and roughness-induced clo-
sure are often considered. In the MSC regime,
particularly in the transition from stage I to II
growth, crack path tortuousity and roughness
effects can play a role, although wake contact
effects due to plastic deformation are typically
quite limited. More important in the MSC
regime is the anisotropy of slip and its planar
nature.

Miller (Ref 23, 24) argued for recognition of
multiple thresholds for fatigue, depending on
crack length relative to microstructure, load his-
tory, and environment. For example, Fig. 7
shows simple fatigue crack growth relations
proposed by Wang and Miller (Ref 25) for car-
bon steel, as supported experimentally under
cyclic shear loading for crack lengths up to
approximately 1 mm. Here, ta is the maximum
shear stress amplitude; thresholds indicated by
Btbaa! D and (d � a) ! 0 reflect physically
small crack and microstructurally small crack
thresholds, respectively, where d is the limiting
microstructure barrier spacing. Figure 7 com-
pares the characteristic predictions of MSC
growth models based on continuously
distributed dislocation theory (solid line) as
developed by Navarro and de los Rios (Ref
26) with results of this kind of simplified model
(dashed line). The key aspects of attenuation of
MSC growth, elevated growth rates below the
LEFM threshold, and a fatigue limit for con-
stant amplitude loading are reproduced by the
simplified model. McDowell (Ref 27, 28) fur-
ther introduced extensions of these kinds of
simplified models to achieve consistency with
multiaxial fatigue parameters (Ref 9) and
strain-life relations in tension-compression and
cyclic shear, introducing multistage growth
relations that eventually merge with long crack
FCGR behavior.
This notion of a cascade of distinct thresholds

is very important, because it arises naturally in
consideration of microstructure effects. In fact,
a hierarchy of thresholds can be identified. In
ascending order of stress amplitude (and, to a
large extent, length scale), they are listed as:

� Onset of microplasticity (or elastic
shakedown)

� Crack nucleation (cyclic slip irreversibility
that forms crack embryos)

Fig. 4 Variation of da/dN versus distance to initial
crack tip as dictated by interaction with

microstructure for a coarse-grained Fe-2wt%Si alloy.
Source: Ref 20

Fig. 5 (Top) Comparisons of experimentally measured room-temperature da/dN for two different maximum stress
levels and predictions using a model based on discrete dislocation mechanics. Source: Ref 21. (Bottom)

Micrograph showing a- and b-rich bands in microtextured duplex Ti-6Al-4V. Source: Ref 22

Fig. 6 Characteristic variability of fatigue crack growth
rate for microstructurally small cracks (MSC) in

a population of specimens when plotted in terms of
linear elastic fracture mechanical driving force.
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� Nonpropagating MSC crack due to interac-
tion with microstructure barriers

� Nonpropagating crack at a macronotch root
� LEFM threshold

Note that the latter two thresholds are often
measured and stated within the context of
LEFM analyses that consider plasticity-induced
crack closure effects as well. Figure 8 illustrates
these various thresholds on a Kitagawa diagram
for completely reversed loading. Systematically
mapping these thresholds as a function of
microstructure is one of the major tasks of a
hierarchical fatigue modeling strategy based on
computational micromechanics. Miller (Ref 23)

further indicated the importance of considering
environmental effects in overcoming or eradicat-
ing MSC thresholds, although they are not
indicated on Fig. 8.

Design Against Fatigue Crack
Initiation

Experiments are typically used to character-
ize both mean fatigue resistance and scatter in
fatigue response as a function of microstructure
to facilitate tailoring of microstructure to
improve component-level fatigue resistance.
Recently, there has been an emphasis on

applying computational micromechanics (Ref
5, 6, Ref 29–33) to hierarchical microstructures
(phases, grains, inclusions, etc.) to characterize
cyclic plasticity that drives crack formation at
microstructure scales. Goals of such studies
are varied and include:

� Reduction of the number of experiments
required to assess scatter in fatigue via aug-
mentation with computational simulations

� Parametric exploration of various fatigue
damage mechanisms to support probabilitis-
tic approaches or worse-case scenarios for
fatigue-life prediction schemes

� Sorting out behaviors associated with crack
formation, MSC growth, and long crack
growth to support the design of fatigue-resis-
tant microstructures and process parameters
(Ref 5, 6). This relies more on obtaining
proper trends of models rather than absolute
accuracy of correlations/predictions.

� Informing microstructure-sensitive para-
meters in macroscopic cyclic plasticity and
fatigue models for structural applications

One may pursue multiple pathways in
designing HCF-resistant microstructures. One
way is to reduce nucleation probability though
refinement and strengthening of microstructure
(or nanostructure) or to decrease the number
density of nucleation sites by controlling mor-
phology. Another is to increase the threshold
for MSC propagation by reducing barrier
spacing, promoting extension of stage I propa-
gation, or increasing barrier strength.
From a top-down perspective, the methodol-

ogy of quantifying the effects of microstructure
morphology on the mean fatigue response or
variability thereof is a logical component of
microstructure-sensitive design and prognosis
strategies. Figure 9 provides a philosophical
construct for using computational micromecha-
nics to relate variation of microstructure (within
a single sample or a population) to variability in
fatigue response (or properties). We note that
although a given simulation is deterministic,
statistics are compiled by simulating a popula-
tion of microstructures and related attributes.
In the absence of robust and reliable damage-
state detection methods capable of sensing and
distinguishing small fatigue cracks with dimen-
sion on the order of microstructure (e.g., grain
size, phase size), this kind of scheme is able
to deliver information related to the expected
distribution of initial cracks that would propa-
gate to detectable lengths. Moreover, such
approaches can be pursued to explore effects
of microstructure attributes that contribute to
extreme-value fatigue responses that populate
the tails of probability distributions of surface
and subsurface fatigue crack initiation sites,
including transitions between mechanisms of
crack formation, surface-to-subsurface transi-
tions, and so on (Ref 34–36).
Recent research has advanced the computa-

tional modeling of detailed, specific microstruc-
tures to identify and characterize the existence

Fig. 7 Simplified microstructurally small crack (MSC) and physically small crack (PSC) growth relations proposed by
Wang and Miller (Source: Ref 25) addressing distinct MSC and PSC thresholds, and comparison of resulting

fatigue crack growth rate behavior (dashed line) with characteristic results of continuously distributed dislocation
models (solid line). Source: Ref 26

Fig. 8 Hierarchical thresholds for propagating cracks in a plot of completely reversed applied stress amplitude versus
maximum inclusion size (thresholds for nucleation not shown). MSC, microstructurally small crack; PSC,

physically small crack; LEFM, linear elastic fracture mechanics
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of local material hot spots controlled by intrin-
sic (e.g., local grain orientations) or extrinsic
(distribution of inclusions or precipitates) attri-
butes. For example, McDowell and colleagues
have developed schemes by which microstruc-
ture-sensitive polycrystal plasticity models for
duplex Ti-6Al-4V (Ref 37–39) and g-g0
nickel-base superalloys (Ref 40–42) are ana-
lyzed in terms of distributions of slip and vari-
ous fatigue indicator parameters (FIPs). These
FIPs enable assessment of the relative potency
of fatigue crack formation based on contin-
uum-level quantities associated with each rele-
vant mechanism. For example, the Fatemi-
Socie (Ref 43, 44) shear-dominated parameter
can be assessed by postprocessing numerical
simulation results and has been shown to corre-
late very well the multiaxial fatigue crack initi-
ation data in both LCF and HCF regimes (Ref
8). It is defined by:

PFS ¼ Dgp


max

2
1þK0

sn
max

sy

� �
(Eq 2)

where Dgp


max=2 is the nonlocal maximum cyclic

plastic shear strain averaged over a finite vol-
ume of material, sn

max and sy are the normal
stress normal to the plane of Dgp



max=2 and

cyclic yield strength, respectively, and K0 is a
constant that mediates the influence of normal
stress (Ref 8, 44). Goh (Ref 45) has cast this
parameter in terms of a modified Coffin-Man-
son law for crack formation and early growth,
that is, PFS ¼ ~g0f 2Nincð Þc, where ~g0f is a coeffi-
cient applicable to the microstructure scale con-
sidered, and c is the Coffin-Manson exponent.
The spatial volume for nonlocal averaging of
the driving force is the lesser of approximately
1 mm3 or ‘3, where ‘ is the scale of the transi-
tion crack length at which the crack grows out

of the influence of the microstructure notch root
field (plastic strain intensification) at which it
forms. The initial crack size for propagation
analysis then corresponds to this scale. The pre-
cise form of the nucleation relation is system-
specific in terms of slip character and slip irre-
versibility, comprising a topic of basic research
in its own right (Ref 46–49).
Of course, classical to-and-fro slip is not

responsible for all crack formation and propa-
gation mechanisms at the microstructure scale.
Cyclic plastic strain behavior is generally clas-
sified into three regimes: elastic shakedown,
reversed cyclic plasticity, and plastic ratcheting
(Ref 45, 50). Progressive pileup of dislocations
in slip bands (Zener mechanism) that impinge
on grain or phase boundaries, or at oxidized
inclusion interfaces, can lead to formation and
propagation of small cracks in the microstruc-
ture. In fretting fatigue, for example, progres-
sive plastic deformation of surface layers has
been shown to contribute significantly to forma-
tion and early growth (Ref 51, 52) of cracks on
the order of grain size under ostensibly HCF
conditions. An appropriate measure of plastic
strain to reflect this sort of driving force is a
nonlocal measure of the increment of cyclic
rate of ratchet strain accumulation, Dgp



max;ratch,

or its cumulative value. Manonukul and Dunne
(Ref 53) and Dunne et al. (Ref 32, 54) have
adopted a similar approach, with cumulative
plastic strain as a measure of driving force to
form subgrain size cracks in HCF of nickel-
base superalloys; they have found reasonably
good correlation with the sites for crack nucle-
ation in sets of surface grains characterized by
electron backscatter diffraction to render local
orientation. Figure 10 illustrates FIPs that may
be employed to parametrically explore driving
forces for slip band cracking and slip band

impingement on grain or phase boundaries,
respectively. Depending on the micromechan-
isms of fatigue crack nucleation and early
growth, reversed plasticity or ratcheting may
dominate. Accordingly, continuum measures
of plastic strain to support fatigue design
must be consistent with understanding of
mechanisms.
Using FIPs, different microstructures can be

compared in terms of their expected values
and distributions of driving force(s) to form
and grow small fatigue cracks. The primary
objective of this kind of modeling strategy is
to estimate the sensitivity of fatigue responses
to microstructure variation (either within a
given microstructure or among comparison
microstructures), thereby using modeling and
simulation to substantially leverage costly
experimental characterization of the variability
of fatigue life or fatigue strength in smooth
and notched specimens.
It is noted that more mechanistic forms for

crack formation and growth relations in the
microstructure-scale regime are rapidly devel-
oping. However, the basic multistage frame-
work in Fig. 3, when combined with
mechanism-based simulations to describe
cyclic plasticity in heterogeneous microstruc-
tures, can explore effects of microstructure
morphology at various scales on variability in
fatigue response, providing a means of rank-
ordering different microstructures with regard
to resistance to LCF or HCF. At present, the
philosophy adopted in most work is that the for-
mulation should be calibrated to mean fatigue
behavior for selected microstructures, thereafter
providing capability to assess sensitivity of
fatigue-life predictions to variations of micro-
structure within the range of microstructures
calibrated. Truly predictive methods for mean
fatigue life remain as a substantial challenge
for future work.

Examples of Microstructure-
Sensitive Fatigue Modeling

In addition to these microstructure attributes,
loading parameters such as the amplitude of the
applied strain, the R-ratio, and multiaxiality can
each have a significant effect on various stages
of small fatigue crack formation and growth.
Microstructure-sensitive modeling has recently
been applied to model fatigue of several classes
of advanced engineering alloys, including:

� Cast A356-T6 aluminum alloys (Ref 10,
58–60)

� g-g0 nickel-base superalloys (Ref 40–42, 61)
� a-b titanium alloys (duplex Ti-6Al-4V) (Ref

37–39, 45, 51, 52)
� Martensitic gear steels strengthened by car-

burization and shot peening (Ref 62, 63)

As a specific example, the Fatemi-Socie
parameter (Ref 43) PFS has proven successful
in multiaxial fatigue crack initiation (typically,

Fig. 9 Philosophical construct for simulation-assisted fatigue analysis as focused on relating variability of structure to
properties or responses, with emphasis on distributions and probabilistic approaches. LCF, low-cycle fatigue
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crack lengths on the order of hundreds of
microns) correlations for materials that undergo
shear-dominated cracking (Ref 8, 9) and has
been examined in terms of its association with
mixed sliding and opening modes of small
crack growth under single slip-dominated stage
I fatigue (Ref 64, 65). Such measures are com-
puted as averages over some process zone
selected as representative of the scale of a criti-
cal embryo for crack nucleation, typically on
the order of grain size. The parameters are
assessed by postprocessing numerical simula-
tion results. For example, the distribution of
PFS is shown in Fig. 11 for completely reversed
cyclic straining of four different dominant tex-
tures of duplex Ti-6Al-4V alloy; note that the
basal texture has a heavier tail of the distribu-
tion at higher values of PFS for the same
applied loading condition, indicating increased
susceptiblity to fatigue crack formation with
the basal texture. A tendency toward basal
plane cracking in grains that are oriented for
basal slip is experimentally observed (Ref 66),
although there is a compounding influence of
soft orientation of neighboring primary a or
lamellar regions for this to occur in lieu of
cracking on prismatic slip planes.
Such FIPs have been employed in modified

Coffin-Manson laws for crack formation nucle-
ation within a finite process zone. In view of its
association with mixed-mode driving force
for shear-dominated propagation (Ref 9, 64),
it is clear that an expression such as

PFS ¼ ~g0f 2Nnuclð Þc relates over scales on the
order of microns to the formation of a crack
embryo at much finer scales, with subcritical
propagation to a length at which crack growth
is amenable to fracture mechanics concepts
such as the cyclic crack tip displacement range,
DCTD (Ref 12, 13, 26, 67–69).
Prasannavenkatesan et al. (Ref 62) have

found that the depth of subsurface crack nucle-
ation at Al2O3 inclusion clusters in carburized
and shot-peened martensitic gear steels is more
accurately predicted using the PFS parameter
than the cyclic plastic shear strain range or
cumulative shear strain. Bridier et al. (Ref 66)
have found that parameters that combine effects
of plastic shear strain range with normal stres-
ses on such planes are necessary to describe
individual grains where cracks nucleate and
grow in duplex Ti-6Al-4V. Standard crystal
plasticity models typically predict too many
operative slip systems for this class of alloys,
so provision must be made for preferred soften-
ing of initially activated systems due to break-
down of short-range order (Ref 39, 70); this
demonstrates the importance of constitutive
modeling in applying these types of FIP-based
algorithms. Research on this alloy (Ref 54)
has shown that nonintuitive results are some-
times observed in terms of fatigue crack
initiation.
Bennett and McDowell (Ref 71) showed that

martensitic-ferritic steel data for number density
of lengths of surface fatigue cracks (Ref 72) up

to approximately 250 mm were well described
by an MSC growth law based on the PFS FIP,
assuming an initial crack size of 10 mm for all
cracks (Fig. 12); this was in the HCF-LCF tran-
sition regime where MSC/PSC crack growth is
significant.
A multistage approach has recently been

used along with hierarchical polycrystal plastic-
ity simulations for g-g0 nickel-base superalloys
(Ref 40–42) to estimate the nucleation and
growth of distributed small fatigue cracks for
a range of powder metallurgy-processed IN
100 microstructures as a function of applied
strain amplitude to support design of heat treat-
ment (and associated precipitate distribution)
for HCF resistance. Figure 13 illustrates the
application of a combined crack nucleation
and MSC growth algorithm for IN 100 (Ref
41) to estimate the fraction of grains with
cracks that reach a length three times mean
grain size (40 mm) as a function of applied
loading cycles (lower right) for multiple statis-
tical realizations of equiaxed polycrystalline
IN 100 microstructures with log normal grain
size distribution.
The field of microstructure-sensitive crystal-

plasticity relations is rapidly evolving. Indeed,
efforts at the Air Force Research Laboratory
(Ref 74, 75) and elsewhere (Ref 30) have
high value in leading toward next-generation
models. Moreover, other nonlocal FIPs can be
employed that account for effects of directional
strain accumulation (e.g., pileups) at grain
or phase boundaries (Ref 45), as shown in
Fig. 10. A number of authors in the literature

Fig. 10 Candidate fatigue indicator parameters with combined plastic shear strain and normal stress effects on
candidate planes for crack nucleation and early growth along slip bands or grain boundaries for Ti-6Al

and nickel. Source: Ref 55–57

Fig. 11 (Top) Pole figures for crystallographic
orientation distribution. RD, rolling

direction; TD, transverse direction. (Bottom) Distribution
of Fatemi-Socie parameter (PFS) for these textures, with
loading along the transverse direction
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have appealed to FIPs that reflect cumulative
plastic strain, regardless of sign, as a measure
of progression to the point of crack nucleation
in grains in polycrystals (Ref 32, 53, 54). In
fact, a number of parameters suitable for

multiaxial loading have been proposed and
employed (Ref 76, 77) at the grain scale, some
with more intimate potential link to fine-scale
driving forces for crack nucleation and early
propagation. Following McDowell and Berard

(Ref 64), McDowell and Bennett (Ref 65) made
the connection more strictly to the cyclic crack
tip displacement range, DCTD, as suggested by
the growth law used in the MSC regime for IN
100 in Fig. 13. Moreover, numerous experi-
ments and modeling efforts in the literature
(Ref 4) point to the efficacy of DCTD (opening
and sliding) to correlate crack advance (Ref 12,
13, 67–69).
Figure 14 summarizes some interesting

recent work of Kunkler et al. (Ref 7) in which
two-dimensional (2-D) grain-level simulations
of duplex steel are modeled using strip yield-
zone models based on the continuously
distributed dislocation theory coupled with the
crack tip sliding displacement range (DCTSD)
to model mixed transgranular-intergranular
MSC growth in polycrystals; the prediction of
high growth rates in the MSC regime well
below the LEFM threshold for long cracks is
reasonably accurate. They assume that crack
advance occurs by virtue of unbalanced disloca-
tion nucleation and migration at the crack tip
during forward and reverse loading (disloca-
tions of opposite sign are involved). As in
Fig. 3, the exponent on DCTSD in the growth
law is unity. Arbitrary planes of crack extension
are allowed by the use of sensor elements. Of
course, such analysis schemes are constrained
by the assumption of continuously distributed
dislocation theory, essentially an extension of
the simple model of Navarro and de los Rios
(Ref 26) to a more complex 2-D microstructure.
Moreover, the elements of the MSC and PSC
regimes in Fig. 14 are essentially the same as
those of the heuristic framework outlined in
Fig. 3.

Closure—Challenges for
Microstructure-Sensitive
Fatigue Modeling

With increased emphasis on reducing materi-
als development and insertion cycle times and
design of reliable fatigue-resistant materials,
modeling and simulation come to the forefront.
Achieving enhanced predictive capability is a
major current research driver for simulation-
based design. There are clearly a number of
approximate assumptions invoked in the forego-
ing relations for crack nucleation and subcritical
growth up to the scale of a microstructurally
small crack. Several compelling avenues for
future development are:

� Crack nucleation is material-specific and
predictive relations are lacking.

� Crack growth is related to irreversibility of slip
arising from nucleation, migration, and inter-
action of point and line defects, yet continuum
crystal-plasticity slip measures do not reflect
this irreversibility, nor do they employ any pre-
dictive means to account for it.

� Grain boundaries are treated largely as com-
patibility surfaces (mechanical effects of
misorientation) without acknowledging

Fig. 12 Comparison of (a) measured number density of surface cracks of different lengths in low-cycle fatigue of
polycrystalline martensitic-ferritic steel (Source: Ref 72) with (b) predicted distribution, assuming initial

crack size of 10 mm in each grain, propagated using the fatigue indicator parameter relation da/dN = C(av PFS)a

Fig. 13 Estimated distribution for fraction of grains with cracks that reach a length three times mean grain size (40
mm) as a function of applied loading cycles (lower right) for multiple statistical realizations of equiaxed

polycrystalline IN 100 microstructures with log normal grain size distribution (top right) subjected to completely
reversed strain-controlled cycling (Re = �1) at T = 650 �C (Source: Ref 41). Ellipses encapsulate the tails of the
distributions that correspond to the worst-case cracking scenarios; the data at upper left (Source: Ref 73) are for
another nickel-base alloy system, René 88, and pertain to the number of cracks observed as a fraction of the total
fatigue life.
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effects of their structure on dislocation
mediation. Grain-boundary engineering is
appealing as a context for design using
microstructure-sensitive fatigue. Gao et al.
(Ref 78) have shown, for example, that
grain-boundary-engineered polycrystals of
ME3 nickel-base superalloy can achieve
reduced average crack growth rates in the
MSC regime compared to as-received mate-
rial. Existing methods to account for grain
boundaries are of simplified nature.

� Strain localization processes associated with
dislocation substructure formation (e.g., slip
bands) are not treated explicitly in the con-
tinuum representation of slip. The relative
ratios of transgranular and intergranular

crack nuclei cannot presently be predicted
nor can the fractions of transgranular and
intergranular growth paths in the MSC
regime. Calibration is necessary.

� Criteria for growth of microstructurally
small fatigue cracks, including dependence
on stress range and R-ratio, are of phenome-
nological character and reflect influence of
microstructure morphology rather than
incorporating material-specific details of
irreversible processes of dislocation and
point defect nucleation and migration near
the tip of slip bands and cracks, as well as
discrete dislocation effects.

� HCF and particularly VHCF are character-
ized as extreme value problems in terms of

the relevant statistics that govern reliability.
Multivariate extreme value statistics are nec-
essary to address these issues and are not
presently well developed.

� Crack nucleation and growth from micron-
scale inclusions or pores within the micro-
structure do not address the important role
of discrete dislocations at such scales.

A challenging, high-payoff objective for
multiscale modeling is the growth of small
cracks, likely requiring linkage of atomistic
and discrete dislocation scales. Multiscale mod-
eling approaches that employ domain decompo-
sition of models with resolution ranging from
atomic-level fidelity to representative volumes
of microstructure are necessary to shed light
on these issues (Fig. 15). Atomistic models
can shed light on nucleation relations (with an
important role of atomistics) and computation
of the irreversibility factor, f, in the micro-
scopic MSC growth relation:

da

dN

����
MSC

¼ f DCTD� Zb (Eq 3)

which has generally eluded treatment from a
continuum perspective. Parameter f carries
the “imprint” of atomic-scale processes of new
crack surface creation, owing to slip irreversi-
bilities, and can affect interactions with precipi-
tates and impurities. The threshold Zb here is a
conceptual form that characterizes the level of
irreversible range of the DCTD below which
the crack should not extend, where b is the
magnitude of the Burgers vector—we reckon
Z to be on the order of unity (Ref 10). This is
a rich problem domain for computational mate-
rials science and mechanics.
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Modeling Creep Fatigue
Jeffrey L. Evans, University of Alabama in Huntsville
Ashok Saxena, University of Arkansas

THERE ARE NUMEROUS APPLICATIONS
in the modern engineering world that involve the
use of metals under conditions of cyclic loading
in operating conditions that can cause creep
and/or environmental interactions with time-inde-
pendent, mechanical fatigue processes. The
interrelationships between the various damage
mechanisms that occur under such severe service
conditions are complex. Thus, the development
of physics-based models for predicting design or
remaining life must be guided by experimental
studies that are specifically aimed at fundamental
understanding of these mechanisms. These
experiments are challenging and demand precise
environmental-control capability and extremely
high resolution in the measurement of displace-
ments in cracked bodies associated with creep
strains and in the measurement of crack incre-
ments at high temperatures. Such experimental
capabilities and the concepts of nonlinear fracture
mechanics that can account for crack-tip creep
strains have only recently become available (Ref
1). Also, simulation tools are now available that
enable the numerical modeling of the aforemen-
tioned complex interactive phenomena that can
aid in extracting the most information out of these
carefully planned experiments.
Recent advancements in analytical, experi-

mental, and computational techniques can be
used in concert to enable very significant
advances in the understanding of these life-lim-
iting considerations that are currently not well
understood. Much of the recent progress in
understanding these interactions has been in
the study of materials used in gas turbine
machines. Turbine disks are subjected to tem-
peratures in the range of 650 to 700 �C for sus-
tained periods during normal operation. The
typical duty cycle for a disk is modeled as a
fatigue stress cycle with dwell or hold time
for the purposes of predicting crack initiation
and propagation life. These operating tempera-
tures are in the range where several time-depen-
dent damage mechanisms can exist during the
cyclic loading and during the dwell period and
are therefore a design and operational concern.
Stress relaxation occurs during cruise due to
creep deformation, while simultaneously, oxi-
dation in the crack-tip region and oxygen

ingress along grain boundaries occur that, in
addition to causing material damage, also lead
to microstructural changes. Each of the distinct
time-dependent damage mechanisms is
expected to have its unique kinetics that are
based on the characteristics of the rate-
controlling step. Thus, to accurately predict
the dwell-time effects on the fatigue crack
growth behavior in turbine disk materials at ele-
vated temperatures, accurate descriptions of the
kinetics of each damage mechanism are needed.

Modeling Methodology

Over the past two decades, several experi-
mental studies have been conducted to charac-
terize the elevated-temperature crack growth
behavior in nickel-base superalloys, focusing
on the effects of loading frequency, tempera-
ture, microstructure, and dwell time, but few
have attempted to systematically quantify the
effects of environment on the kinetics of crack
growth at elevated temperatures. Even fewer
have attempted to systematically study the
kinetics of the various synergistic and compet-
ing time-dependent mechanisms. Also, almost
all the data have been generated within the
framework of linear elastic fracture mechanics
(LEFM), which is unable to explicitly account
for the effects of creep deformation that may
play a significant role in determining the crack
growth behavior and its interaction with micro-
structure and environment.
Figure 1 shows a schematic of a comprehensive

methodology for ensuring structural integrity of
elevated-temperature components. The impor-
tance of the role of crack growthmodels that apply
to creep-fatigue-environment conditions while
also accounting for microstructural changes is
apparent. If more accurate crack growth models
were available, Fig. 1 illustrates how they can be
interfaced with constitutive and crack initiation
models to significantly impact the ability to pre-
dict component behavior during service and in
the design of better materials.
Analytical Models. The overarching goal of

current life-prediction research is to develop
models for the various types of time

dependencies in the crack-tip damage accumu-
lation that occur in materials subjected to
elevated temperatures. These consist of:

� Evolution of crack-tip stress fields due to
creep

� Oxidation kinetics
� Oxygen ingress
� Change in microstructure

In the subsequent discussion, each of these is
considered.

Time-Dependent Damage Evolution

In the past, some limited elevated-tempera-
ture hold-time studies have been performed in
vacuum to investigate the relative contribution
of the environment and creep deformation to
the crack growth rate. The results of these stud-
ies are briefly described to illustrate how useful
some of these experiments can be if performed
now with access to far superior experimental
and simulation capabilities as well as much
better access to time-dependent fracture
mechanics concepts.
Figure 2 schematically shows the deforma-

tion/damage zones ahead of a crack tip at ele-
vated temperature (Ref 3). The three zones
consist of the plastic zone, a creep zone, and
an environmentally affected zone. The plastic
zone remains fixed with time for a stationary
crack, while the environmentally affected zone
and the creep zone grow with time. The relative
kinetics of the two processes must determine
the one that dominates. If one assumes that
environmental damage dominates and deter-
mines the time-dependent crack growth rates,
with the rates being controlled by some diffu-
sion-related phenomena, the following equation
has been formulated to represent the dwell-time
effects (Ref 3):

da

dN
¼ c1ðDKÞn1 þ c2ðDKÞn2

ffiffiffiffi
th
p� 	

(Eq 1)

where a is crack size; N is fatigue cycles; DK is
the cyclic stress-intensity parameter; n1, n2, c1,
c2 are regression constants obtained from crack
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growth data obtained using a fast, continuous
fatigue cycle; and th is the dwell (or hold) time.
Figure 3 shows the predictions of dwell-time
effects using this simple model on Astroloy
(UNS N13017) at 655 �C (1211 �F), which
compare very well with the data. In this figure,
the data from 0 and 2 min of dwell time are
used to generate the constants in Eq 1, and the
rates for 15 min hold time are predicted and
compared with the experimental data.
In the aforementioned example, the dominat-

ing time-dependent damage mechanism was the
environment and the resulting embrittlement,
but without due consideration to the separate
roles of oxidation and oxygen ingress. In
creep-ductile materials, where creep is assumed
as the dominating mechanism, the average time
rate of crack growth, (da/dt)avg, during the
dwell period, th, is correlated with the average
value of the Ct parameter, (Ct)avg, defined in
the following way (Ref 1):

da

dt

� �
avg

¼ 1

th

ðth
0

da

dt

� �
dt (Eq 2)

Ctð Þavg¼
1

th

ðth
0

Ctdt (Eq 3)

where Ct is a crack-tip parameter related to
the rate of expansion of the creep-zone size
under the conditions of small-scale creep
and is estimated by Eq 4 for a cracked body
of thickness B, width W, and crack size a
(Ref 1, 5):

Ct ¼ P _Vc

BW
ðF=F 0Þ (Eq 4)

where _Vc is the instantaneous load-line
displacement rate in response to the applied
load, P, and F and F0 are defined as follows:

Fig. 1 Methodology for assessing integrity of structural components that operate at high temperatures. TMF, thermomechanical fatigue; NDE, nondestructive evaluation; LCF, low-
cycle fatigue; HCF, high-cycle fatigue. Source: Ref 2
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Fig. 2 Schematic of the various zones in the region
of a stationary crack showing the various

deformation and damage zones ahead of the crack tip.
Source: Ref 3
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F ¼ K

P
BW 1=2 (Eq 5)

F 0 ¼ dF

dða=WÞ (Eq 6)

Under the conditions of extensive creep, Ct is
identical to a path-independent integral, C*,
defined by the following:

C
 ¼
ð
G

W 
dy� Ti
@ _ui
@x

� �
ds (Eq 7)

In Eq 7, W 
 is the rate of strain-energy density,
Ti are components of the traction vector, _ui are
components of the displacement vector, and G
is an arbitrary counterclockwise contour that
begins on the lower crack surface and ends on
the upper crack surface while enclosing the
crack tip. The C*-Integral uniquely charac-
terizes the crack-tip stress field for a cracked
body subjected to extensive creep conditions.
The model used to estimate creep-fatigue crack
growth rates for loading cycles with hold times
is given by Eq 8 (Ref 6):

da

dN
¼ c1 DKð Þn1þH Ctð Þavg

h iq
th (Eq 8)

Chromium-Molybdenum Steel. An exam-
ple of the correlation for 1.25Cr-0.5Mo steel at
538 �C (1000 �F) is shown in Fig. 4 (Ref 6). In
Fig. 4(a), the data for various dwell times ranging
from 0 to 24 h are plotted as a function ofDK. It is
apparent that time-dependent creep deformation
is more widespread, and there is a lack of correla-
tion between crack growth rate and DK. The
same data when plotted with (Ct)avg consolidates
into a single trend, shown in Fig. 4(b). The (Ct)avg
can be measured at the loading pins, provided
accurate displacement changes during hold time
can be measured.
Superalloys. It is not uncommon for time-

dependent crack propagation in commercial
nickel-base superalloys to be environmentally
controlled and/or dominated. Experiments on
five commercial nickel-base superalloys under
static crack growth conditions are shown in
Fig. 5 for air and inert environments (Ref 7).

The data show marked differences in these five
alloys in air, and a single scatter band for inert
environment.

Evolution of Crack-Tip Stress Fields
Due to Creep

During the past decade, significant analytical
advances have occurred in nonlinear fracture
mechanics concepts to account for creep defor-
mation at the crack tip. A new field, referred to
as time-dependent fracture mechanics (TDFM),
has emerged that allows the incorporation of
creep deformation effects ranging from small-
scale creep to extensive creep, including effects
of cyclic loading in characterizing the crack
growth behavior at elevated temperature (Ref
1). These concepts have been developed and
primarily applied to elevated-temperature
behavior of ferritic and austenitic stainless
steels that are fundamentally different from
nickel-base alloys. The ductility of these steels
under creep conditions (10% or higher) is sub-
stantially higher than in the case of nickel-base
alloys (1 to 5%). Consequently, crack growth
under elevated-temperature conditions in these
materials is always accompanied by significant
creep deformation. Crack-tip parameters such
as C* and Ct based on the assumption of
stationary crack or very slow crack growth (in
comparison to the kinetics of creep deforma-
tion) are successful in predicting the crack
growth rate. This is not the case for nickel-base
alloys that are much more creep resistant, and
their ductility is further reduced by the presence
of an aggressive environment at high tempera-
tures. Thus, crack growth in these materials is
accompanied by creep strains, but the

Fig. 4 (a) Dwell-time fatigue crack growth data expressed as a function of DK for various hold times ranging from 0 to 24 h for 1.25Cr-0.5Mo steels. (b) The same data plotted in the
form of (da/dt )avg versus (Ct)avg. Source: Ref 6

Fig. 3 da/dN versus DK behavior in Astroloy at 655 �C
(1211 �F) for hold times of 0, 2, and 15 min.

Source: Ref 3, 4
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magnitude of these strains is not sufficient to
completely dominate over the elastic strains.
Further, the presence of creep strains may be
limited to the immediate vicinity of the crack
tip, making the stress-intensity parameter, K, a
valid far-field parameter. This explains the lim-
ited success in the use of K for characterizing
crack growth, but it also is clear that the use
of LEFM alone does not provide the range of
capability needed.
The applicability of TDFM parameters to

nickel-base alloys using continuum mechanics
models that clearly account for crack growth
in the evolution of crack-tip stress fields in
addition to creep still need to be completely
examined. The TDFM parameters such as Ct

or C* may not be directly applicable to these
much more complex phenomena that include
creep-brittle behavior exacerbated by the
effects of environment, which are not a signifi-
cant consideration in ferritic and austenitic
steels. Combined creep and environmental
effects can drive the crack growth at rates that
keep pace with the development of creep strains
ahead of the crack tip. This condition can lead
to non-self-similar creep-zone evolution for an
extended period, thus further complicating the
establishment of a single crack-tip parameter
for characterizing crack growth. This brings to
question whether a single parameter even exists
that will uniquely characterize the crack-tip
conditions and therefore the crack growth rates.

Sufficient understanding now exists from ear-
lier work on aluminum alloys (Ref 8) that
behave in a creep-brittle fashion to guide future
research to address the aforementioned con-
cerns and bring closure to the questions. Figure
6 shows the finite-element simulation of the
development of a crack-tip creep zone in a
compact-type specimen of 2519 aluminum
alloy (UNS A92519). In this simulation, the
crack tip is advanced by releasing nodes at a
rate measured in an actual test conducted under
loading and temperature conditions that are
identical to the conditions used in the experi-
ment. The creep zone in this case is always

small in comparison to the pertinent length
dimensions of the specimen, such as the crack
size and the uncracked ligament, making the
applied value of K a relevant crack-tip parame-
ter. However, it is also clear that in addition to
size, the shape of the crack-tip creep zone is
constantly evolving in this experiment, ques-
tioning the uniqueness of K alone as being the
crack-tip parameter. Figure 7 shows the evolu-
tion of the creep zone along the x- and y-axes,
clearly showing the lack of self-similarity in the
growth pattern of the creep zone. Figure 8(a)
shows the correlation between creep crack
growth rate and K for several specimens of

Fig. 6 Evolution of crack-tip creep zone in a 2519 aluminium compact specimen at various times. The measured
crack-size-versus-time profile was input into the analysis. Note the change in creep-zone shape as a

function of time. Source: Ref 8

Fig. 5 Static crack growth rates for five nickel-base
superalloys at 650 �C, showing that the

differences in their behavior in air are dominated by
environmental interaction. Source: Ref 7
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2519 aluminum, showing that a unique correla-
tion does not exist during the initial portion of
the test during which the creep zone evolves in
size and shape, but the results do converge after
substantial amounts of crack growth have
occurred. Figure 8(b) shows the same data plot-
ted against a parameter based on K but modified
to include the size of the creep zone, K=rqcA,
where rcA is the creep zone size for y = 90�, and
q is a parameter that depends on the creep defor-
mation exponent for the material. This parameter
is equivalent to using Ct (Ref 5) but defined for a
growing crack (Ref 8).

Time-Dependent Environmental
Degradation

The primary time-dependent degradation
mechanisms in nickel-base alloys at elevated
temperature are microstructural evolution,
creep, and environment. This article focuses
on describing the models based on creep and
oxidation kinetics. However, some aspects of
microstructural evolution are intimately linked
to oxidation and therefore must be considered
as part of oxidation-damage kinetics.
The nucleation and growth of cavities at the

grain boundaries due to creep result in almost
purely intergranular fracture. When creep
deformation is localized near the crack tip,
damage in the form of grain-boundary cavita-
tion evolves ahead of the crack tip. The cavities
can grow both in numbers and size and can
eventually coalesce to advance the crack. Such
crack growth is dominantly intergranular. The
kinetics of cavity growth have been modeled
as either diffusive growth or as growth con-
strained by the deformation of the surrounding
grains. These have led to models for rationaliz-
ing the correlation between creep crack growth
rates and the time-dependent fracture mechan-
ics parameters (Ref 9–11). The usefulness of

these models lies in understanding the micro-
structural parameters that may be pertinent in
determining the creep crack growth behavior
and in understanding the kinetics of this form
of crack-tip damage. The rate of grain-bound-
ary cavity growth can be influenced by oxygen
diffusion along the grain boundaries, which
must be addressed to gain full understanding
of this damage-evolution mechanism. The
interpretation of these cavities is further com-
plicated by the fact that such cavities can also
be formed in the absence of externally applied
stress. In studies on commercially pure nickel,
grain-boundary cavities have been induced by
static oxidation (Ref 12). These authors also
found that these cavities were not formed when
samples were statically exposed in vacuum or if
the material was statically exposed in air after
annealing in hydrogen to decarburize the
samples.
Environmental degradation potentially plays

a major role in crack growth during dwell peri-
ods. Oxygen undergoes both short- and long-
range diffusion processes in nickel-base alloys
at elevated temperature (Ref 13). An oxide
layer forms at the crack tip in the short-range
diffusion process, resulting in even higher stres-
ses at the crack tip. The rupture of wedge-
shaped regions due to oxygen ingress from the
short-range diffusion process can accelerate
the intergranular crack growth rates. The long-
range diffusion process involves the oxygen
traveling along paths such as slip bands and
grain boundaries to form internal oxide sites,
cavities, or solute segregations. Figure 9 shows
how the time-dependent crack growth rate in a
nickel-base alloy N18 increases significantly
with oxygen partial pressure (Ref 13). In Figure
9(a), the crack growth rate is found to be a
function of the applied K level, but the thresh-
old partial pressure at which oxidation plays a
significant role is independent of the applied K
(at least over the range of K tested here). Figure
9(b) shows how the temperature affects the
time-dependent crack growth at various oxygen
partial pressures. The temperature influences

both the crack growth rate and the threshold
oxygen partial pressure, at which instance
time-dependent crack growth becomes
significant.
For cyclic crack growth, varying the amount

of time allowed for environmental interaction
at the crack tip gives an analogous transitional
effect to varying the oxygen partial pressure at
a fixed waveform. Figure 10 shows data from
cyclic crack propagation tests on a nickel-base
superalloy of 40 mm grain size at 650 �C in
air (Ref 14). The crack propagation data at a
fixed cyclic stress-intensity factor are plotted
in the left-hand graph as crack advance per unit
cycle and in the right-hand graph as crack
advance per unit time for total cyclic periods
ranging from 0.1 to 3200 s. The data shown
are characterized by a bilinear fit on the log-
log plots. The data are time-dependent at all
the periods tested; that is, the data cannot be
described by a horizontal line on the left-hand
graph. Examination of the right-hand graph
shows that for cyclic periods beyond 30 s, the
data can be described by a horizontal line. This
regime thus represents full time dependence;
that is, the crack growth rate per unit time is
constant. A critical test of future physics-based
models will be their ability to predict the transi-
tion from time-independent behavior (not seen
in this particular data set) to partially time-
dependent behavior (from 0.1 to 30 s in this
particular data set) to fully time-dependent
behavior (beyond 30 s in this particular data
set). The kinetics of these transitions can be
used as a metric for the ability of an alloy to
resist time-dependent crack propagation.

Oxidation Mechanisms

Nickel-base superalloys exhibit oxidation
resistance by forming a protective oxide layer.
These alloys are classified into those that form
chromia and those that form alumina protective
scales. The alumina-forming alloys have
higher-temperature oxidation resistance. Ni3Al

Fig. 7 Ratio of creep-zone size along the y-axis
(y = 90) with that along the x-axis (y = 0) in the

example shown in Fig 6. Self-similar creep-zone expansion
occurs only after approximately 0.15 cm crack extension.
BCH-6 is a specimen identification. Source: Ref 8

Fig. 8 Creep crack growth rate, da/dt, for aluminium AA2519 alloy. (a) As a function of K, the specimen BCH-1 was
6.25 mm thick, while the others were 25.4 mm thick. (b) The same data as in (a) except correlated to K/rqcA,

where rcA is the instantaneous creep zone size, and q is the fitting constant. Source: Ref 8
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precipitates form in these types of alloys,
providing sufficient high-temperature strength.
The chromia-base alloys are limited in their
high-temperature use because the protective
oxide decomposes into a volatile CrO3 above
900 to 950 �C, leaving the remaining oxide
layer nonprotective (Ref 15). However, another
source states that the high-temperature oxida-
tion resistance of nickel-base superalloys
depends mostly on the presence of chromium
(Ref 16).
The oxidation mechanisms of nickel-base

alloys have been shown to contribute to crack
initiation and propagation at elevated tempera-
ture (Ref 17). Andrieu et al. (Ref 17) state that
some early oxidation research indicated that
oxygen is most detrimental to an existing crack
by penetrating to the crack tip. Oxide formation
at the crack tip can produce wedge-shaped
intrusions along the crack front, increasing the
stress in that area. These wedges can then rup-
ture at grain-boundary intersections, causing
an increase in intergranular crack growth. The
oxygen can also diffuse along slip planes or
grain boundaries, allowing internal oxides or
cavities to form, or may take part in other
chemical reactions, producing agents that
embrittle the grain boundary (Ref 17).
One mechanism for grain-boundary oxida-

tion has been proposed and experimentally
studied by Andrieu et al. (Ref 17). That study
suggests that the oxidation occurs in a two-

stage process. The first step, controlled by the
oxygen partial pressure in the atmosphere,
results in the formation of NiO and FeO and
their spinels. These oxides are porous and allow
oxygen diffusion to occur. This diffusion signif-
icantly determines the reaction rate over time.
Once these oxides form on the surface, the oxy-
gen partial pressure at the oxide-metal interface
is reduced. This would provide the required
environment for the formation of the protective
Cr2O3. This can contribute to passivation at the
crack front. Fatigue experiments of alloy 718
were conducted at 650 �C in vacuum and in
air. Two oxide layers were observed using a
transmission electron microscope. The inner
oxide was Cr2O3 and the outer oxide was the
spinel oxide Ni(FeCr)2O4.
Molins et al. (Ref 18) propose that a nickel-

rich oxide forming in the early stage of oxida-
tion is the cause of alloy embrittlement at high
temperatures. Three possible mechanisms of
oxidation crack propagation are proposed that
involve the local mechanical behavior at the
crack tip and consequences of the nickel oxide
nucleation and growth. One mechanism is the
short-range intergranular oxygen diffusion.
From the experimental results reported, chro-
mia nuclei act as oxygen getters, slowing the
diffusion, and nickel oxide nuclei allow the
oxygen to diffuse to the grain boundaries,
embrittling the alloy. Another mechanism is
vacancy injection into the grain boundaries.

Vacancies are generated during mechanical
deformation and as a result of the NiO growth.
The nickel oxide grows epitaxially, preventing
vacancies from being annihilated at the oxide-
metal interface. The vacancies then are forced
along the grain boundaries in front of the crack
tip, accumulating and contributing to the
embrittlement. The third mechanism is that of
chromium enrichment at the alloy subscale
surface.
An alternative controlling oxidation mecha-

nism has been proposed by Gao et al. (Ref
19). X-ray photoelectron spectroscopy analysis
of fracture surfaces of alloy 718, which had
been tested in fatigue at 975 K (702 �C) in
air, showed a high niobium concentration, most
likely in the form of Nb2O5-type oxides. These
are nonprotective brittle oxides and could be a
contributing factor to enhanced crack growth
rate. They therefore concluded that niobium is
the primary crack growth rate controlling spe-
cies in elevated-temperature fatigue of alloy
718. They supported this conclusion by testing
a niobium-free Ni-18Cr-18Fe alloy under the
same conditions as alloy 718 and found that
oxygen had no influence on the crack growth
rates. Gao et al. then proposed an environmen-
tally enhanced crack growth process of alloy
718 that included, diffusion of oxygen to the
crack tip. The oxygen reacted with niobium
oxides and other exposed particles, resulting in
the formation of niobium oxides and a nio-
bium-enriched fracture surface. The oxide film
grew and mechanically ruptured, causing an
increase in crack growth rate. Thin, brittle nio-
bium oxide films found at the grain boundaries
of the highly stressed crack-tip region were also
found by Kang et al. (Ref 20) to be the cause of
intergranular embrittlement of alloy 718 when
tested in air at 650 �C.
One study evaluated the microstructural

characteristics of high-temperature oxidation
of nickel-base superalloy Hastelloy C-4 (UNS
No 6455) (Ref 21). The authors of that study
found large amounts of manganese and chro-
mium in the oxide layer. This indicated that
the predominant oxide was Cr2O3 and some
form of complex spinels. Greater concentra-
tions of chromium and manganese were found
in the external oxide as opposed to the internal

Fig. 9 Effect of oxidation at the crack tip in alloy N18 as a function of (a) applied K value and (b) temperature. Source: Ref 13

Fig. 10 Cyclic crack growth as a function of total period, showing transition to fully time-dependent crack growth.
Source: Ref 14
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oxide. Voids were also present in the oxide and
in the matrix material. The external oxide was
formed during air exposure at 1200 �C for 6 h,
and the layer was observed to have cracked and
spalled during the oxidation process. It was obvi-
ous that the internal oxidation had internal voids
that had formed along grain and twin boundaries.
This could be explained by rapid diffusion of
oxygen along these boundaries.
Garat et al. (Ref 22) found two modifications

at the surface of the material induced by oxida-
tion of alloy 718 in air at 1000 �C for 1 h. Both
an external scale of approximately 1 mm thick
and an intergranular oxide penetration that had
a depth of approximately 7 mm after oxidation
were observed. Using secondary ion mass spec-
trometry, this study found no significant
amounts of oxygen ahead of the tip of the inter-
granular oxide penetration region. The most
prevalent internal oxide was observed to be
alumina.
Evaluating Rene N4 (single crystal in air at

870 �C during fatigue testing), Khobaib et al.
(Ref 23) concluded that the oxidation kinetics
are fast enough to produce an oxide layer of
reasonable size on the freshly exposed crack
surface at frequencies as high as 1.0 Hz. Yuen
et al. (Ref 24) also found that the oxidation
kinetics significantly affected the oxide growth
on the exposed fatigue fracture surfaces in air
at 427 to 649 �C for alloy 718.

Fracture Mechanisms

Elevated-temperature creep and fatigue tests
in air or in an oxygen partial pressure environ-
ment of nickel-base superalloys have been
shown to increase the crack growth rate (Ref
17, 25, 26), however, in some cases, only at
high strain ranges where plastic deformation is
greatest (Ref 27). The actual mechanism for
such an enhancement has been studied and pro-
posed by several researchers. Oxidation at the
crack tip and at the grain boundaries has been
proposed as the most likely reason for this
reduction in fatigue and creep strength; how-
ever, universal agreement does not exist.
As was previously discussed, oxygen can dif-

fuse rapidly to the crack tip and along the inter-
nal grain boundaries. The oxygen then forms an
oxide with niobium, chromium, nickel, and/or
iron. Researchers disagree as to which is the
dominant oxide controlling the embrittlement
mechanism. The oxide can form a wedge at
the crack tip, creating high stresses that could
be transmitted to the substrate material (Ref
17). Long-range diffusion of oxygen into the
grain boundaries has been shown to produce
an embrittling effect by weakening the grain
boundaries through oxidation. Woodford and
Bricknell (Ref 28) stated that reactions along
the grain boundaries with oxygen could release
embrittling agents. Other researchers propose
that the brittle nature of the oxide that forms
at the grain boundary is the actual weakening
mechanism (Ref 26).

Fractographic analysis has been conducted,
finding that the fracture mechanism of
embrittled specimens is intergranular fracture
(Ref 27). Therefore, the grain size, which con-
trols available grain boundary, is also a factor
to be considered (Ref 29). An oxygen partial
pressure threshold has been observed for the
transition from transgranular to intergranular
fracture (Ref 17). This variation in fracture
mode with a change in partial pressure of oxy-
gen is shown in Fig. 11 for alloy 718.
The effects of oxidation have been observed

to decrease the crack growth rate. Yuen et al.
(Ref 24) reported experimental results of the
threshold DK increasing with increasing tem-
perature for alloy 718. In this case, oxidation
is described as a decelerating mechanism. The
oxide forms at the crack tip and can create a
wedge, causing oxide-induced crack closure or
crack blunting. Gabrielli (Ref 30) conducted
high-temperature fatigue tests of an oxygen-dis-
persion-strengthened nickel-base alloy (ODS
MA 6000) in air and in vacuum. He found that
the crack growth rate was substantially higher
for the specimens tested in vacuum in all the
test conditions. Thick fragments of oxide were
observed on the fracture surface, and he con-
cluded that these oxides induced blocking at
the crack tip. He also stated that at high temper-
ature, creep may promote ductility of the oxide,
thereby enhancing a blocking mechanism. Kang
et al. (Ref 20) also found that crack-tip blunting
can reduce the embrittlement caused by stress-
assisted grain-boundary oxidation.
Fatigue crack growth rate studies of Ni-18Cr-

18Fe conducted by Chen and Wei (Ref 31)
show that crack growth rate doubled in the
presence of oxygen at temperatures of 873,
923, and 973 K. As part of this study, creep
tests were conducted at elevated temperature,
and they found that grain-boundary cavitation,
not oxidation, was the controlling failure mech-
anism. One conclusion made by Chen and Wei
is that, given limited sensitivity to oxygen, the
oxidation of nickel, chromium, and iron had lit-
tle effect on the crack growth rate.
Hancock (Ref 32) provided some interesting

insight into the failure mechanisms of nickel-
base superalloys at high temperature under
cyclic loading. He concluded that for the envi-
ronment to have an effect, it must have access
to the crack tip. He also stated that the

environmental effect is only pronounced for
the fatigue crack initiation stage and does not
increase the fatigue crack growth rate at ele-
vated temperature because, as he states, “at
high temperature, when oxidation occurs at
the tip of the crack, the environment is effec-
tively excluded when the small strain ampli-
tudes that would be experienced in service
conditions are considered.” Therefore, he pos-
tulates that the environmental influence is
dependent on whether or not the structure has
existing cracks. Pre-existing surface cracks are
not expected on turbine blades; therefore, envi-
ronment will be the controlling failure mecha-
nism for such an application.
The state of stress of a component has also

been shown to play a role in whether or not oxi-
dation controls crack extension in fatigue (Ref
33). Crack-tip oxidation, which promotes inter-
granular fracture, is accelerated under plain-
strain conditions, while a transgranular cyclic
plasticity crack growth mechanism is predomi-
nant in plane stress. Therefore, the oxidation
mechanism occurs in the plane-strain interior,
and the cyclic plasticity mechanism was
observed near the surface. However, Pandey
(Ref 26) concluded that the effect of oxidation
on the creep properties of alloy X-750 was
more pronounced for thin-sized testpieces,
which would increase the likelihood of plane-
stress conditions. The section size effect, how-
ever, vanished when the depth of oxygen diffu-
sion was normalized by specimen radius. From
tests conducted by Kang et al. (Ref 20) of alloy
718, the conclusion was that KI can be used as
the governing parameter of the stress-strain
field ahead of the crack tip during creep crack
growth in air.
Microstructure also has an effect on the high-

temperature creep properties. Pandey (Ref 26)
found that the g0 phase was depleted during
air exposure of alloy X-750. This led to a deg-
radation of the creep properties of this alloy.
Grain-boundary cavitation has been shown to

be enhanced by the formation of gaseous bub-
bles in high-temperature creep conditions.
Osgerby and Dyson (Ref 34) saw a large
amount of cavitation below the surface of
embrittled Inconel X-750. Pandey (Ref 26) also
provided evidence of diffusing oxygen forming
titanium oxide and carbon monoxide bubbles
during high-temperature creep testing.

Fig. 11 Fracture surfaces corresponding to different oxygen partial pressures. (a) 10–4 Torr. (b) 1 Torr. (c) 4 Torr.
Source: Ref 17
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Summary of Creep-Fatigue
Modeling Approaches

Various approaches for modeling creep-
fatigue crack growth behavior have been pro-
posed to capture the various types of damage
that is occurring. These include mechanistic
modeling, crack growth modeling using the
method of superposition to incorporate time-
dependent and cycle-dependent components,
and numerical modeling.
A number of phenomena have been investi-

gated to obtain a better understanding of the
fundamental creep-fatigue crack growth pro-
cess. As previously mentioned, during the dwell
period in creep-fatigue loading, several time-
dependent processes are operational at elevated
temperature, which include surface oxidation,
oxygen diffusion along grain boundaries, and
creep deformation/stress relaxation at the crack
tip. Each of these can be characterized by eval-
uating the kinetics of the process. The entire
creep-fatigue crack growth process can then
be modeled in terms of a rate-controlling step.
This requires knowledge of the oxygen diffu-
sion rate along grain boundaries, the oxide
growth kinetics, and the rate of the crack-tip
creep/stress relaxation. Also, at elevated tem-
perature, dislocation motion is enhanced during
fatigue cycling. Several of these processes can
be coupled, such as the diffusion of oxygen
being affected by the stress-relaxation rate
(Ref 17, 35). This makes the kinetic modeling
approach a very difficult endeavor.
Predicting the crack growth rate using the

method of superposition has also been used as
an effective way to model the process. This
method was first proposed for modeling a cor-
rosion-fatigue process (Ref 36). It was also later
applied to the creep-fatigue process in the fol-
lowing form (Ref 37):

da

dN
¼ da

dN

� �
cyc

þ da

dN

� �
time

(Eq 9)

where da/dN is the total crack growth rate, (da/
dN)cyc is the cycle-dependent component of the
crack growth rate, and (da/dN)time is the time-
dependent component of the crack growth rate.
This type of approach allows for a generalized
crack growth rate model to be developed that
can potentially incorporate the cycle-dependent
and time-dependent mechanisms in the crack
growth rate process. Currently, the superposi-
tion model requires a significant amount of
detailed test data in order to use it to predict
creep-fatigue crack growth for a variety of alloy
systems.
The need to reduce cost during the design of

new materials and components has led to a sub-
stantial increase in the use of computational
techniques to model mechanical behavior,
including creep-fatigue crack growth. This type
of modeling approach has the potential of
reducing the time and cost associated with
extensive laboratory testing, and it can also

provide information not readily obtainable
using traditional test methods. Finite-element
modeling (FEM), as previously mentioned, has
been used to investigate the evolution of
crack-tip stress fields during creep fatigue (Ref
8). Also, FEM has been shown to be an effec-
tive tool for failure analysis and fatigue-life
prediction of a gas turbine disk when subjected
to creep-fatigue loading (Ref 38).
In addition to FEM, a new computational

technique to evaluate materials behavior on an
atomistic level has been developed, known as
molecular dynamics (MD). The MD models
can be coupled with finite-element solutions to
provide a multiscale modeling capability. The
MD and FEM are seamlessly coupled using a
concurrent length-scale approach suggested by
Broughton et al. (Ref 39). By this process
instead of considering a number of atoms in
the range of 108 to 109 only 103 to 104 will suf-
fice. The multiscale approach uses the appropri-
ate theories in the proper places and saves
computer time. Preliminary work on modeling
crack propagation (Ref 40) using MD is illu-
strated in Fig. 12. This simulation grows the
crack when the stress exceeds the cohesive
interatomic forces, providing a means to predict
fracture from first principles. However, no such
studies have been reported in the literature that
model crack growth under creep-fatigue condi-
tions; however, the potential for such modeling
is apparent.

Recommendations for Future Work

Although progress has been made in under-
standing and predicting creep-fatigue behavior,
a number of significant challenges remain.
The constant desire for improved efficiency of
various energy-conversion systems will require
components to withstand more aggressive ther-
mal and environmental conditions. The need to
accurately predict component life at elevated

temperatures in a creep-fatigue-environment
operating regime will continually motivate
future work in this critical research area. To
push the analytical models for predicting
creep-fatigue-environment interactions to the
next level of sophistication will require system-
atic experimental and computational work that
is carried out side by side. Several recent
advancements in computing and experimental
capabilities provide a new set of tools that can
be used to develop new insights into this convo-
luted problem.
As described in this article, most crack

growth rate models are empirical or semiempir-
ical in nature. These models require expensive
and time-consuming tests in order to develop
the needed parameters and, at best, provide
interpolative capability for predicting time and
temperature and loading effects. Future creep-
fatigue crack growth rate models will need to
be more physics-based, with a good understand-
ing of their limitations but with considerable
capability for extrapolation. It will also allow
the integration of the various models such that
between them a wide temperature and time
range is addressed accurately. This type of ana-
lytical tool would allow the direct calculation of
the crack growth rate, making life prediction
more tractable and reliable. However, in order
to develop such a model, the unique kinetics
of the various time-dependent mechanisms
must be quantitatively described, so a rate-lim-
iting step can be determined for wide time and
temperature regimes. Models based on these
various crack growth mechanisms can then be
integrated to provide a more comprehensive
approach to life prediction. The kinetics of
these mechanisms can be investigated through
carefully controlled experiments and accurately
developed computational models.
Experimental studies must be designed and

conducted to address the interactions between
creep, fatigue, and the environment. More
extensive creep-fatigue crack growth tests, with

Fig. 12 Studies of crack propagation using molecular dynamics
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and without hold times, conducted in air, vac-
uum, and controlled environments such as vary-
ing partial pressures of oxygen would provide
necessary experimental evidence to understand
the environmental effect on the crack growth
rate, as well as potentially shed light on the
embrittling mechanism(s) that lead to the
creep-brittle behavior in some materials. Also,
experiments that characterize creep at the crack
tip during long hold times at elevated tempera-
ture for creep-brittle materials would be of
substantial value in developing a more compre-
hensive understanding of the crack driving
force during the hold time of a creep-fatigue
test. Development of a creep-fatigue testing
database would also be enormously valuable
to the design and prediction of materials behav-
ior. A database could foster the use of more
probabilistic design and structural reliability
analyses.
Finite-element analysis and molecular

dynamics simulations are two computational
techniques that can be employed to help pro-
vide greater understanding of the fundamental
crack growth process at elevated temperature.
These tools can also be used to supply the nec-
essary understanding of the fundamental behav-
ior of the materials. This can then be fed back
into the design and development of new materi-
als, which would have enhanced creep-fatigue
properties. One way this may be achieved is
by using molecular dynamics simulations to
investigate the grain-boundary character and
interaction with some environmental species.
The cohesive strength of the grain boundaries
could be determined in the presence of some
diffusing atomic species. This could lead to
new materials with engineered grain boundaries
to prevent intergranular fracture, as well as
offer more understanding of the damaging
mechanisms. The finite-element analysis tech-
nique can help in determining local crack-tip
stresses and the evolution of the crack-tip plas-
tic zone during elevated-temperature cyclic
loading under growing crack conditions. The
analytical present solutions are limited to sta-
tionary crack assumptions that are simply not
valid for creep-brittle materials. Thus, this type
of analysis could be used to help in the under-
standing of creep-brittle behavior.
The experimental and computational future

work described previously could immeasurably
assist the manufacturers in designing and devel-
oping new materials as well as in predicting the
life of in-service components.
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Modeling Fatigue Crack Growth
Andrew H. Rosenberger, Air Force Research Laboratory

UNDERSTANDING FATIGUE CRACK
GROWTH is critical for the safe operation of
many structural components and has seen a
widespread implementation, especially in the
aerospace community where failure of a struc-
tural component is often catastrophic. Typi-
cally, structures are designed for the cyclic
loading that they will see in service, and this
constitutes the safe life fatigue design philoso-
phy. This assumes that all components are
machined to a minimum tolerance and are man-
ufactured from materials meeting a minimum
fatigue allowable. The United States Air Force,
for example, goes beyond this design approach
by additionally requiring damage tolerance,
wherein the structure is designed such that
a small flaw, due to a rogue material defect
(e.g., forge induced porosity, casting defect, or
remnant unrecrystallized microstructure) or
machining error, will not grow to a catastrophic
size before a safety inspection or retirement
(Ref 1). This requires the application of crack-
growth modeling on the specific component
geometry subject to the anticipated loading of
the structure. Many different aspects of the load-
ing environment and geometry must be taken
into account to accurately model the crack prop-
agation in the structure. The loading environ-
ment would include the type of cyclic load
applied to a component. A simple rotating shaft
having a slight misalignment will see a simple,
fully reversed, constant-amplitude load cycle
each revolution of the shaft. The wing on an air-
craft will see a simple load cycle each flight due
to a change in loading, wherein the fuselage sup-
ports the wing when the aircraft is on the
ground, but the wing will support the fuselage
when the aircraft is in the air. In addition to this
simple cycle, there will be a highly variable
loading due to the wind gust loading and maneu-
ver loading. In this case then, the loading that
must be taken into account in the crack-growth
analysis is very complicated. The geometry of
the crack or the component that contains the
crack will have a significant influence on the
stress-intensity factor (Eq 1) of the crack, affect-
ing the speed that the crack will grow. Simple
closed-form approximations exist (Ref 2) for
many of the crack shape geometries and struc-
tural configurations, provided that the crack is

subject to a uniform applied stress. Cracks that
are geometrically simple but in a nonuniform
stress field, e.g., notch locations or surfaces hav-
ing residual stress, can be treated using a weight
function K solution (Ref 3). Advanced numerical
methods exist to model the crack stress intensity
factor in more complicated conditions involving
complex geometry, stress conditions, and load-
ing (Ref 4).
This article reviews standard fracture mechan-

ics and the methods to determine the crack-
growth rate for a material and loading condition
experimentally. Then, the two most important
aspects of crack-growth modeling are addressed:
the loading environment and the crack geometry.
Finally, future directions of crack-growth model-
ing development are discussed.

Basic Crack-Growth Considerations

This chapter focuses on linear elastic fracture
mechanics where the stress field at the crack tip
can be described by the stress-intensity factor,
K (Ref 5):

K ¼ Ys
ffiffiffiffiffiffi
pa
p

(Eq 1)

where Y is a correction factor for the geometry
and loading, s is the applied stress, and a is the
crack length. Simply put, K is a single factor
that relates stress and crack size to the growth
of a crack in a material. For more depth on this
subject, see a fracture mechanics text, for
example Ref 5 and 6, for a more detailed
description of Y and the stress-intensity factor.
Testing has shown that under controlled con-
stant-amplitude fatigue loading, the crack-
growth rate, da/dN, depends on the range of
the stress-intensity factor, DK = Kmax – Kmin,
and is independent of geometry, provided the
correct geometry correction, Y, is used (N is
the number of load cycles). DK is calculated as:

DK ¼ YDs
ffiffiffiffiffiffi
pa
p

(Eq 2)

where the terms are as before, and Ds is the
applied stress range (Ds = smax – smin).
The crack-growth rate for a material and

loading condition is measured using a

standardized method, such as ASTM standard
E 647 (Ref 7), and can be represented as a
crack-growth rate versus stress-intensity factor
range curve, as shown in Fig. 1. Here, the three
regions of crack-growth behavior can be
observed. The first, region I, is characterized
by slow growth with a decreasing slope of the
crack-growth rate curve. The threshold stress-
intensity factor range, DKth, bounds this region
on the left and is operationally defined as the DK
that produces a crack-growth rate of 1 � 10�10

m/cycle (Ref 6). The linear region (in log-log
space), region II, is called the Paris law or power
law region, because Paul Paris first noted that a
power law would fit the crack-growth rate data in
this region (Ref 8). That is:

da

dN
¼ CDKn (Eq 3)

where C and n are constants that depend on
material and loading conditions. Region III is
the accelerating portion of the crack-growth
curve that approaches the fracture toughness,

Fig. 1 Schematic of log crack-growth rate (da/dN)
versus log applied stress-intensity factor range

(DK) showing the decreasing crack-growth rate region (I),
the linear (or Paris law) region (II), and the accelerating
region (III)
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KIc, for the material. From a damage-tolerance
point of view, this portion of the curve is of lit-
tle value, because there is usually precious little
life left once the crack-growth rate starts to
rapidly accelerate.
There are other, more elegant, ways to model

the fatigue crack-growth curve that capture the
nonlinearity near threshold and fracture tough-
ness, that is, have a sigmoidal shape. One that
does a good job in an empirical sense uses the
hyperbolic sine function (Ref 9):

log
da

dN
¼ C1 sin h½C2 logðDKÞ þ C3� þ C4 (Eq 4)

where C1 is a material constant, and C2, C3,
and C4 are functions of load ratio, loading
frequency, and temperature. A popular sigmoi-
dally shaped crack growth rate equation is the
NASGRO equation from Forman and Mettu
(Ref 10):

da

dN
¼ C

1� f

1�R

� �
DK

� �n 1� DKth

DK

� 	p
1� Kmax

Kcrit

� �q (Eq 5)

where C, n, P, and Q are empirical constants
and f is a function of the crack closure (crack
closure is discussed later). DKth is the crack
growth threshold that is a function of crack
closure and the stress ratio,

R ¼ smin

smax

and Kcrit is a thickness modified fracture tough-
ness, KIC. This formulation for crack growth is
available in many commercially available crack
growth codes.

Load Interactions—Empirical
Models

The previous models work nicely on simple
constant-amplitude fatigue crack growth, which
is seldom the case in service. The first additional
loading term that must be included is the stress
ratio, R = smin/smax, of the loading. Stress ratio
has a pronounced effect on the crack-growth rate,
and any variable-amplitude-load crack-growth
model first must address this behavior. Walker
(Ref 11) introduced an effective DK such that:

da

dN
¼ CDK

n
(Eq 6)

where

DK ¼ Ysmax
1�mDsm

ffiffiffiffiffiffi
pa
p ¼ Ysmaxð1� RÞm ffiffiffiffiffiffi

pa
p

and m is known as the Walker exponent and is
experimentally determined. This formulation
effectively collapsed the crack-growth curves in
2024-T3 and 7075-T6 aluminum for stress ratios
ranging from 0.655 to 0.059 (Fig. 2). It should
be noted that different values of the Walker
exponent may be required to collapse positive
and negative stress ratios to a single curve.
Forman et al. (Ref 12) had a similar formula-

tion but argued that the crack-growth rate should
become infinite as the crack reaches a critical
size, that is, Kmax approaches KIc. They found:

da

dN
¼ CDKn

ð1� RÞKIc �Kmax

¼ CDKn

ð1� RÞðKIc �KmaxÞ
(Eq 7)

where C and n are material- and frequency-
dependent constants.
These two model forms are not significantly

different and do not have general applicability
but are useful in specific, limited regions of
analyses. Generally, they effectively capture

the stress-ratio effects and the term (1 � R)w

is found in many “Walkerized” fatigue models.
Effects of temperature, frequency, and corro-
sive environments are introduced into the mod-
els by conducting the experiments under those
controlled conditions and fitting the model con-
stants to the data. These models are only appli-
cable to simple, constant-amplitude loading.
Real-world loads are incorporated in fatigue

crack-growth life analyses using models that
account for variable-amplitude or random load-
ing. To illustrate how variable-amplitude load-
ing affects the fatigue crack growth, consider
constant-amplitude loading with only a single
overload or a single overload/underload (fully
reversed cycle) (Fig. 3) (Ref 13).
After the application of a single overload (line

C), there is a profound retardation in the crack-
growth rate. After a number of cycles and/or crack
extension, the crack-growth rate is the sameas that
for a sample exposed to continuous cycling only
(line A). Also note that overloads at longer crack
lengths have a greater effect in both the number
of cycles and the amount of crack extension (the
ordinate is nonlinear) that the overload affects.
The application of an overload/underload cycle
(line B) resulted in a significantly smaller retarda-
tion, but the general trends are the same. Themain
drivers for retardation are the change in the crack
tip plastic zone and the resultant change in crack
wake plasticity that affects the crack closure.
The overload substantially increases the mono-
tonic plastic zone size (Fig. 4a). This stretched
material must fit within the surrounding elastic
material, so it results in a compressive zone at
the crack tip (Fig. 4b). The crack-growth rate is
reducedwhile the crack tip is within some fraction
of the stretch zone. It then makes sense that the
retardation is more pronounced when the crack
length is longer—the overload plastic zone will
be larger. Also, an overload/underload will par-
tially reverse the plasticity at the crack tip so there
is less retardation.

Fig. 2 Crack growth in 2024-T3 and 7075-T6
aluminum alloys at various stress ratios.

Source: Ref 11
Fig. 3 Retardation as a result of overloads in 2024-T3 aluminum alloy. Source: Ref 13
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The two most common load-interaction mod-
els deal with the size of the crack tip plastic
zone and its relationship to the crack tip. The
Wheeler retardation model (Ref 14) modifies
the current crack-growth rate using a knock-
down factor, g, based on the ratio of the current
yield zone to the difference of the effective
crack length of an overload condition and the
current crack-growth length. That is:

da

dN
¼ g

da

dN

� �
(Eq 8)

where

g ¼ Ry

aeffðolÞ � a

� �m

Ry ¼ Kmax

sYS

� �2
1

pPSX

� �

and a is the current crack length, aeff is the cur-
rent crack length plus the remaining monotonic
plastic zone size, sYS is the yield stress, PSX is
the stress-state factor (PSX = 2 for plane stress;
PSX = 6 for plane strain). The subscript (ol)
indicates the overload condition that is updated
each time a new maximum load is reached or
the current yield zone, Ry, grows beyond the
overload plastic zone size. Figure 5 shows the
relationship between the overload plastic zone
and the current plastic zone to help clarify the
model approach. The Wheeler exponent, m, is
determined empirically from test data. As the
crack grows, the knock-down factor increases
to 1 when the cyclic crack tip plastic zone
reaches the edge of the overload plastic zone.
The generalized Willenborg model (Ref 15,

16) is more popular and is used more often than

the Wheeler model. It uses an effective stress-
intensity factor based on the size of the yield
zone at the crack tip and can be viewed as
affecting the maximum K in the cycle due to
the overload compressive residual. That is:

KmaxðeffÞ ¼ Kmax �Kred

KminðeffÞ ¼ Kmin �Kred

where

Kred ¼ j KmaxðolÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða� aðolÞ

RyðolÞ

s
�Kmax

 !

j ¼ ð1� DKth=KmaxÞ
ðSOLR� 1Þ

RyðolÞ ¼
KmaxðolÞ
sYS

� �2
1

p PSX

� �

and a is the current crack length, a(ol) is the
crack length at overload, DKth is the threshold
value of DK at R = 0, SOLR (shutoff overload
ratio) is the overload required to arrest further
crack growth at the nominal loading condition,
sYS is the yield stress, and PSX is the stress-
state factor (PSX = 2 for plane stress; PSX = 6
for plane strain). Again, the subscript (ol) indi-
cates the overload condition that is updated
each time a new maximum load is reached or
the current yield zone, Ry, grows beyond the
overload plastic zone size, Ry(ol).
These two models do predict the number

of cycles of retarded crack growth and the length
of the affected growth reasonably well. There
are limitations to these methods in that

they require experimental calibration and cannot
account for all levels of load interaction (Ref 17).
They also do not address compressive loading or
underload effects since under compressive load-
ing there is no change in the crack tip plasticity!

Crack Closure

An alternative approach to account for load
interaction uses the concept of crack closure,
wherein the crack flanks come into contact
before reaching the minimum load of the fatigue
cycle, thereby reducing the crack-growth driving
force. The overload and underload modifies the
crack wake plasticity and affects the crack
growth rate. Elber (Ref 18) was the first to dis-
cover crack closure in 1968 during his disserta-
tion research. A once-controversial theory has
now been generally accepted, and much litera-
ture exists to describe its mechanisms, measure-
ments, analyses, and applications (Ref 19).
Crack closure affects the total crack driving
force, DK by affecting the minimum K of the
cycle. The reduced driving force is the effective
stress intensity factor range, DKeff:

DKeff ¼ Kmax �Kop

where Kop is the measured K that must be applied
to the sample or structure to first open the crack.
Typical crack-opening behavior is shown in
Fig. 6. It can be observed that the crack is always
open at high stress ratios and approaches a

Fig. 4 Residual compressive stresses at a crack tip as a result of an overload. (a) Monotonic plastic zone. (b) Cyclic
plastic zone after overload. Source: Ref 5

Fig. 5 Relationship between the overload plastic zone
and the current plastic zone

Fig. 6 Typical stress-intensity factor to open a crack,
Kop, versus the stress-ratio relationship, R, for

a fatigue crack
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constant opening level at some value of negative
stress ratio.
A popular approach to predict the crack open-

ing load is to use a strip yield model to assess
the plasticity-induced crack closure, and it can
also predict the closure under variable loading
cycles. The strip yield closure model is a Dug-
dale (Ref 20) model that is modified to leave
plastically stretched material in the wake of the
crack. The crack opening load is then calculated
as the loading moment when the stress at the
crack tip ligament crosses zero (Fig. 7). Newman
(Ref 21) derived a simple set of equations to cal-
culate the crack opening load:

Kop

Kmax

¼ A0 þA1Rþ A2RþA2R
2 þA3R

3

for R � 0

Kop

Kmax

¼ A0 þA1R for R < 0

where A0-A3 are constants that depend on the
constraint (a, of the crack, a =1 for plane stress,
a = 3 for plane strain). This model approach has
been implemented in a computer code, FAS-
TRAN-II (Ref 22), that can predict the crack
growth under a range of spectrum loading con-
ditions. Additions to this model approach (FAS-
TRAN V5) are shown in the work of Newman
et al. (Ref 23) that appears to improve its spec-
trum crack-growth prediction ability. These
additions include refining the elements at the
crack tip such that they are 5% or less of the
plastic zone and improved crack opening stress
calculations under spectrum loading. Crack
growth in thin sheet materials is influenced by
the loss in constraint at the crack tip as the

stress intensity factor increases. This results in
a transition from flat to slant crack growth as
DK increases. This is not physically modeled
but incorporated by linearly transitioning
from the plane-strain to plain-stress growth
modes dependent on the crack-growth rates.
Figure 8 shows crack growth in aluminum alloy
7075-T7351 subject to a wing gust and maneu-
ver load spectrum (Ref 23). A comparison of
predictions between the experimental results
and the FASTRAN model shows that incorporat-
ing the constraint loss is important in this case.
Life-Prediction Codes. The models for

crack growth life-prediction have been imple-
mented in several, popular computer codes that
are widely used to perform damage tolerance
analyses on structures. NASGRO (Ref 24) was
originally developed by NASA and includes
many of the model approaches discussed above;
various crack growth rate equations, load inter-
action models, crack closure and multiple K
solutions. NASGRO also has an extensive data-
base that can be used to perform analyses.
AFGROW is another computer code that is

well formulated to incorporate load interaction
models, closure models, and many crack geome-
tries (Ref 25). This model can handle two inde-
pendent cracks (under limited conditions and
geometry) and empirically address their interac-
tion. Cracks in plate structures can be modeled
to include nonsymmetric corner cracks in holes
under tension, bending, and bearing loading. As
such, it is ideally suited to assess the structural
integrity of built-up airframe structures.
These are just two examples of the damage

tolerance life-prediction codes that are avail-
able for use. They are commercially supported

and continue to add new capabilities to improve
their speed, accuracy and analytical suitability.

Geometric Considerations

The prior sections discuss the model
approaches that are used to predict crack
growth under simple and complex load spectra
for known geometries that have a known
stress-intensity factor, K. These geometries
include fracture mechanics specimens as well
as crack in notches, tubes, bolt holes, and so
on subject to axial and bending loading. Crack-
ing in real-world structures seldom have simple
K solutions that can be found in a reference
book (Ref 2). Weight function K solutions can
be used for cracks having a stress gradient on
the crack plane. 1-D stress gradients are com-
monly encountered at bolt holes or notches
and were treated by Glinka and Reinhardt
(Ref 3) and are available in some standard soft-
ware, e.g. AFGROW (Ref 25). Now 2-D stress
gradients can be addressed by weight functions
(Ref 26) and will likely be coded soon. Several
finite-element- or boundary-element-based
tools exist that can be used to compute the
K’s and predict the shape of cracks in complex
geometric structures subject to complex, multi-
axial loading. In the early 2000’s these model
approaches were two-dimensional, but now
fully three-dimensional methods are available,
for example, FRANC3D (Ref 4) and Zencrack
(Ref 27). These advanced tools can read meshes
from commercial finite-element software, such

Fig. 7 Schematic of analytical crack-closure model under cyclic loading. (a) Maximum stress. (b) Minimum stress.
Source: Ref 22

Fig. 8 Crack growth in 7075-T7351 aluminum alloy
subject to spectrum loading. (a) Crack-growth

comparison between model and experiment. LCD is a
linear-cumulative damage model, and a = 1.8 is a
constant constraint model. (b) Wing gust and maneuver
loading spectrum. Source: Ref 23
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as ANSYS or ABAQUS, and allow the engineer
to insert a crack into the geometry. The shape,
size, and orientation of the crack are chosen,
and the software automatically remeshes around
the crack geometry. The cracked mesh is then
sent back to the finite-element software for anal-
ysis. A nice example is shown in Fig. 9 for a
crack in a spiral-bevel gear. This demonstrates
the complexity of geometry that can be
incorporated in this type of model.
These types of analyses incorporates mixed-

mode crack growth wherein the opening, sliding,
and tearing modes (KI, KII, and KIII, respectively)
are important. These can be combined in terms
of an equivalent energy-release rate, such that:

Gequivalent ¼ 1� v2

E
ðK2

I þK2
IIÞ

þ ð1þ vÞK2
III ðPlane strainÞ

Gequivalent ¼ 1

E
ðK2

I þK2
IIÞ

þ ð1þ vÞK2
III ðPlane stressÞ

where E is the Young’s modulus, and n is the
Poisson’s ratio. A clear example of mixed-mode
crack growth is shown in Fig. 10 (Ref 28). Here,
all three modes of cracking appear to be present.
These models accurately portray the cracked

geometry and offer the possibility of obtaining
the correct crack tip stress fields and driving
forces by using a linear elastic fracture mechan-
ics or energy-based continuum approach.
Because of this, they can offer some insight
into the forces that drive the crack, but they
are still dependent upon the experimental
crack-growth data that incorporates the stress-
ratio effects, load-interaction testing, and so
on. Often, they use empirical-based Wheeler
or Willenborg (Ref 14, 16) retardation models,
because they do not fully capture the deforma-
tion history at the crack tip. The material is
treated as a continuum (either isotropic or
anisotropic) but cannot capture the complex
stress-strain history at the crack tip any better

than the constitutive model that is used in the
finite-element model.

Recommendations for Future Work

Crack-growth models have been incorporated
in a large number of commercial applications
where the cost of failure is high. Damage-toler-
ant structural analysis is here to stay and appears
to be growing in the commercial aviation, power
generation, and transportation sectors. It will,
however, require improvements in the analysis
tools and models to reduce the cost of a dam-
age-tolerance analysis. The most advanced
crack-growth models still fail to seamlessly track
load interaction and do not account for the actual
mechanisms of crack growth.
Crack growth is a complex phenomenon

depending on the loading and load interaction
as well as the geometry of the cracking struc-
ture and its multiaxial loading. Currently, tools
such as FRANC3D (Ref 3) and Zencrack (Ref
27) do an excellent job of capturing the driving
force from a continuum point of view but oper-
ate outside of, or on the fringe of, the design
finite-element environment. Integrating this
capability within the finite-element software
could make crack-growth assessments easier
to use and therefore more often used in design.
They do lack a true predictive capability
because they depend on experimental data and
other representations of the crack-growth
behavior for their prediction of growth. The
more-analytic models to predict the crack-
growth behavior, that is, Wheeler or Willenborg
(Ref 14, 16), do capture the trends in crack
growth but lack a strong physical basis in their

prediction. It is critical that new, advanced
models are developed that take into account
the deformation history at the crack tip, the
mechanisms of cracking, and the slip character
at the crack tip.
Future advances will be seen by a continued

linking of experiment and analysis. There may
be benefit from applying molecular dynamics
tools to look at the mechanisms of crack
advance, although this appears to be just begin-
ning. The application of cohesive zone models
for fatigue crack growth that results in inter-
granular failure due to environmental or chemi-
cal attack may lead to better predictive model
approaches that depend less on experimental
crack-growth calibration. All modeling efforts
should have the goal of developments that will
require less experimental calibration and take
into account the mechanisms of crack growth.
These are high goals, but the advance in
computational tools is still very bright.
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Neural-Network Modeling
H.K.D.H. Bhadeshia and H.J. Stone, University of Cambridge

EMPIRICAL METHODS are regarded as
less desirable than those based on physical prin-
ciples, primarily because the former are per-
ceived to be limited to the knowledge base on
which they are created and hence may not gen-
eralize well. The interpolation or extrapolation
of regression equations is associated with
unspecified uncertainty, even when the fit with
the known domain is good. Yet, when dealing
with complicated mechanical properties such
as ductility, fatigue, or creep, physical models
are less than useful in dealing with the com-
plexities of technology and often are limited
to making qualitative and simplistic inferences.
Empirical modeling has, however, taken a

turn for the better with the advent of neural net-
works, which permit the discovery of fundamen-
tal relationships and quantitative structure within
vast arrays of ill-understood data. The significant
factor in this success has been in the understand-
ing of the rules for creating robust models and in
the treatment of noise and uncertainties. It is now
well established that the method is not only
capable of representing known data but can also
lead to the discovery of novel concepts (Ref 1 to
3). To begin, the method is introduced.

The Method

In regression analysis, the data are best–fitted
to a specified relationship that is usually linear.
Each of the inputs, xj, is multiplied by a weight,
wj; the sum of all such products and a constant,
y, then gives an estimate of the output
y ¼P jwjxj þ y. Equations such as these are
used widely, for example, in estimating the
yield strength (YS) of certain weld metals as a
function of the chemical composition:

YS ðMPaÞ ¼ 326þ 80� xMn

for 0:6xMn1:85 with standard

error þ�18
(Eq 1)

where xMn is the concentration of manganese in
weight percent. The standard error is a reflec-
tion of the noise in the data, that is, changes
in the strength as a result of uncontrolled vari-
ables. It is well understood that there is risk in

using the relationship beyond the range of the
fitted data, but the risk is not quantified.
With neural networks, the input data xj are

again multiplied by weights, but the sum of
all these products forms the argument of a flex-
ible mathematical function, often a hyperbolic
tangent. The output y is therefore a nonlinear
function of xj. The shape of the hyperbolic tan-
gent can be changed by altering the weights
(Fig. 1a). Additional flexibility in the nature of
the mathematical function used to represent
the data can be introduced by combining sev-
eral of these hyperbolic tangents (Fig. 1b). In
this way, the network is able to capture almost
arbitrarily nonlinear relationships.
Figure 2 illustrates the complexity of the

three-dimensional surface that can be produced
when representing the output (vertical axis) as a
function of two inputs using just five hyperbolic
tangents.

Overfitting

Given that the function representing the neu-
ral network can be engineered to comply with
any set of data, including a random set, it is
possible to overfit. One may be modeling noise
rather than an underlying relationship. It is not
clear from Fig. 3, in the absence of any guiding
physical principles relating x to y, whether it is

the straight line or the polynomial curve that is
the correct function to extrapolate in order to
make a prediction.
This particular problem is relatively easy to

overcome. The model can be tested to avoid
this difficulty. The experimental data can be
divided into two sets: a training dataset and a
test dataset. The model is produced using only
the training data. The test data are then used
to check that the model behaves itself when
presented with previously unseen data. This is
illustrated in Fig. 4, which shows three attempts
at modeling noisy data for a case where y
should vary with x4. The solid data points repre-
sent the arbitrary training data, and the open
circles are the test data. A linear model
(Fig. 4a) is too simple and does not capture
the real complexity in the data. An overcom-
plex function, such as Fig. 4(c), accurately
models the training data but generalizes badly.
The optimum model is illustrated in Fig. 4(b).
The training and test errors are shown schema-
tically in Fig. 4(d). As expected, the training
error tends to decrease continuously as the
model complexity increases. The minimum in
test error represents the optimum choice of
model complexity; having established this, the
entire data can be used to retrain the model
without changing its complexity from the opti-
mum configuration. There are other techniques
to supplement this procedure (Ref 4, 5).

Fig. 1 Fitting hyperbolic tangent functions. (a) Three hyperbolic tangent functions, generated by varying the weights,
illustrate the flexibility of the function. (b) A combination of two hyperbolic tangents produces a more

complex model.
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Noise and Uncertainties

There are two kinds of errors to consider when
conducting experiments. Noise results in a differ-
ent output for the same set of inputs when an
experiment is repeated. This is because there are
variables that are not controlled, so their influ-
ence is not included in the analysis. The second
kind deals with the uncertainty of modeling.
There may exist many mathematical functions
that adequately represent the same set of empiri-
cal data but behave differently in extrapolation.
The noise in the output can be assessed by com-
paring the predicted values (yj) of the output
against those measured (tj), for example:

ED /
X
j

ðtj � yjÞ2 or s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðtj�yjÞ2
n2

vuut (Eq 2)

where ED and sSE are expected to increase if
important input variables have been excluded
from the analysis. Figure. 5(a) shows this kind
of noise, where data have been fitted to a
straight line with a standard error of þ�2s in
the estimation of the output y. ED and sSE have

fixed values and indicate noise but are not satis-
fying descriptions of the uncertainties of predic-
tion. In contrast, the uncertainty of modeling is
illustrated in Fig. 5(b), where a set of precise
data (x = 2, 4, 6) is fitted to two functions,
one linear and the other nonlinear (Ref 6):

y ¼ �x3=44þ 3x2=11þ 34=11 (Eq 3)

Both of the functions illustrated reproduce
these experimental data precisely but behave
quite differently when extrapolated (or indeed,
interpolated, for x = 3, y = 4.931, not y = 5
according to the linear function y = x +2). The

difference in the predictions of the two func-
tions in domains where data do not exist is a
measure of the uncertainty of modeling, since
both functions correctly represent the data
x = 2, 4, 6 used in creating the models. The
magnitude of the modeling uncertainty is not
constant but varies as a function of the position
in the input space. It becomes larger in domains
of the input space where knowledge is sparse or
nonexistent (Fig. 5b). One way of representing
the uncertainty is to create a large variety of
models, all of which reasonably represent the
experimental data. The predictions made by
these models will not be identical; the standard

Fig. 3 The points represent noisy data. There are two
fitted functions: a straight line and a nonlinear

polynomial curve.

Fig. 4 Test and training errors as a function of model complexity for noisy data in a case where y should vary with x4.
The solid data points were used to create the models (i.e., they represent training data), and the open circles

constitute the test data. (a) Linear function that is too simple. (b) Fourth-order polynomial with optimum representation
of both the training and test data. (c) Fifth-order polynomial that generalizes poorly. (d) Test and training errors as a
function of the model complexity

Fig. 5 Types of error. (a) Noise. (b) Uncertainty

Fig. 2 Variation in the output (vertical axis) as a
function of two input variables (horizontal

axes). The complex surface is generated using just five
hyperbolic tangent functions.
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deviation in the predicted values then is a quan-
titative measure of the modeling uncertainty.
Figure 6 illustrates the problem of modeling

uncertainty. The practice of using the best–fit
function (i.e., the most probable values of the
weights) does not adequately describe the
uncertainties in regions of the input space
where data are sparse (region B) or where the
data are particularly noisy (region A).
In the Bayesian method (Ref 4, 5), the mod-

eling uncertainty is expressed by not having a
unique set of weights but rather a probability
distribution of sets of weights. This recognizes
the existence of many functions that can be
fitted or extrapolated into uncertain regions of
the input space, without unduly compromising
the fit in adjacent regions that are rich in accu-
rate data. The error bars depicting the modeling
uncertainty then become large when data are
sparse or locally noisy, as illustrated in Fig. 6.
Suppose there exist two models H1 and H2.

Bayes’ theorem can then be used to find the
probability ratio between the two theories as
follows (Ref 7):

P ðH1jDÞ
P ðH2jDÞ ¼

P ðH1Þ
P ðH2Þ �

P ðDjH1Þ
P ðDjH2Þ (Eq 4)

where P ðHijDÞ is the plausibility of Hi given
the data D and P ðHiÞ is the prior plausibility
of Hi. The first ratio on the right measures
how much our initial beliefs favor H1 over
H2, and the second ratio measures how well
the observed data were predicted by H1 com-
pared to H2 (Ref 7). The second ratio also
incorporates Occam’s razor because a more
complex model will be capable of making a
greater variety of predictions and hence its pre-
dictive probability P ðDjHÞ is more thinly
spread out over the data, so if both a simple
and complex model are capable of representing
the data, then the simple model is more
probable.
A neural network is capable of producing a

vast range of models depending, for example,
on different architectures, starting values of
weights, etc. In the Bayesian framework, the

posterior probability of the weight parameters
w; P ðwjD;HÞ, for a particular model is
assessed using the Bayes’ theorem and in this
way a probability distribution of w is obtained,
the width of which is related to what we have
described as the modeling uncertainty.
This methodology has proved to be extremely

useful in materials science (Ref 1, 2), where prop-
erties must be estimated as a function of a vast
array of inputs. It is then most unlikely that the
inputs are uniformly distributed in the input space.
It is important to note that a large modeling

uncertainty implies a lack of knowledge (sparse
or noisy data). There are advantages to making
uncertain predictions in the present context. A
large uncertainty indicates a domain where it
is useful to conduct new research. A small
uncertainty, by contrast, could be interpreted
to mean that new experiments are not needed.
The estimate of uncertainty can therefore be
used to design experimental programs.
A large modeling uncertainty does not neces-

sarily imply that the estimate is incorrect.
Figure 7 shows that, in spite of the calculated
uncertainties (the upper and lower bounds indi-
cated by the two broken lines), novel data are
accurately predicted because of the robust
design of the neural network, based on mean-
ingful inputs (Ref 8).

Transparency

Neural networks are sometimes referred to as
black boxes, presumably because those who use
them cannot access the mathematical functions
that describe the relationship between the inputs
and outputs. Their mysterious nature is com-
pounded by making inappropriate comparisons
to biological systems and synapses. A complete
mathematical description of the network is
actually straightforward.

It is a fact, however, that a network is a sim-
ple combination of transfer functions (e.g.,
hyperbolic tangents) and weights. The number
of hyperbolic tangents used is said to be the
number of hidden units. The function for a net-
work with i hidden units, connecting the inputs
xj to the output y, is given by:

y ¼
X
i

w
ð2Þ
i hiþyð2Þ

with hi ¼ tanh
X
j

w
ð1Þ
ij xj þ yð1Þi

 !
ðEq 5Þ

where w represents weights and y the constants,
as described in the context of linear regression.
The influence of the inputs on the output variable
is, together with the transfer functions, implicit
in the values of the weights. The weights may
not always be easy to interpret, given that there
may be high–order interactions between the vari-
ables. For example, there may exist more than
just pairwise interactions, in which case the
problem becomes difficult to visualize from an
examination of the weights. This visualization
problem is a feature of all nonlinear methods
but is not a limitation, because it is simple to
use the trained network to make predictions, plot
them, and to see how these depend on various
combinations of inputs.

Examples

Examples of the application of neural-net-
work modeling to the behavior of metals
include the following.
Example 1: Fatigue Crack Growth. It is

understood that fatigue crack growth is a conse-
quence of the accumulation of damage by
deformation in the plastic zone at the crack
tip. At low loads the deformation is governed
by the cyclic variation in the stress–intensity
range DK. The crack extension per cycle (da/
dN) becomes measurable at a threshold DKth,
followed by the slower extension rate in the
Paris Law regime (Ref 9–12) described by the
proportionality

logDK / log
da

dN

 �m

(Eq 6)

where da/dN is the average crack advance per
cycle, and m is known as the Paris exponent.
The equation can be interpreted in terms of a
variety of physical mechanisms (Ref 13, 14)
in which case the proportionality constant (C)
becomes a function of the Young’s Modulus
E, the Poisson’s ratio v, and the yield and ulti-
mate tensile strengths sY and sU respectively.
Based on the possible mechanisms consistent
with the Paris Law, attempts have been made
to generally interpret fatigue crack growth data
on the basis of just the mechanical properties of
the material (Ref 13, 14), Duggan (Ref 15) for
example, expressed the crack growth rate in
terms of the elastic modulus, toughness, and
ductility:

Fig. 6 Illustration of the uncertainty in defining a
fitting function in regions where data are

sparse (B) or where they are noisy (A). Three possible
functions are shown. Fig. 7 Comparison of the predictions of a neural-

network model (central curve) with
experimental data that were not included in the creation
of the model. The modeling uncertainty is indicated by
the upper and lower error bounds (broken lines).
Source: Ref 6, 8
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da

dN
¼ �
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2 1

Z
2

efEðKIc �KmaxÞ 1� K

KIc

� �� �1


K
2


(Eq 7)

where Z and e are the fatigue ductility exponent
and coefficient respectively, E is the elastic mod-
ulus, KIc is the critical stress intensity for frac-
ture. Since then, there have been a number of
other similar models in which fatigue is
expressed as a function of mechanical properties
alone, without making explicit reference to the
material type. Dimitriu followed this principle
to design a neural network model based on the
elongation, tensile strength, proof strength, spec-
imen dimensions, stress ratio and frequency of
loading (Ref 16). The network was created on
the basis of a very large quantity of published
data on steels. Since the model did not contain
material-specific inputs, it succeeded in making
predictions on nickel, titanium and aluminium
alloys without modification. In other words, the
model generalised well to materials not included
in the training data; the accuracy of this general-
ization is illustrated in Fig. 8. The essential point
here is that a well-designed neural network
model, one which makes use of known physics,
can make predictions well beyond the range of
the training information.
Example 2: Creep Rupture and Hot-

Strength. Creep rupture tests are expensive to
conduct because to obtain results representative
of service, the tests may require many years
before rupture occurs. It was discovered using
neural network analysis (Ref 17) that the tem-
perature dependence of the strength of creep-
resistant steel cannot be explained by the varia-
tion in the intrinsic strength of pure iron or of
solid-solution strengthening as a function of
temperature (Fig. 9a). The hot-strength can be
categorized into two temperature regimes, one
where there is only a minor variation, followed
by a more dramatic decline beyond about
780 K. This latter regime is explained by the
increased ability of dislocations to overcome
obstacles with the help of thermal activation.
It is therefore not surprising that the tempera-
ture sensitivity to hot-strength at high tempera-
tures is replicated by that of creep rupture data
(Fig. 9b). This suggests that hot-strength tests
could be used as indicators of the temperature
sensitivity of creep rupture data, in which case
the number of rupture tests required can be dra-
matically reduced. This second example
demonstrates how a well-designed network is
able to capture physical phenomena which can
then be exploited more widely than the original
intention in creating the model.
For more on the training of neural networks

and their uses, see the article “Application of
Neural-Network Models” in this Volume.
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PhaseEquilibriaandPhaseDiagramModeling
Y.A. Chang and H.-B. Cao, University of Wisconsin
S.-L. Chen, F. Zhang, Y. Yang, W. Cao, and K. Wu, CompuTherm, LLC

A PHASE DIAGRAM is a graphical repre-
sentation of the phase equilibria of materials
in terms of temperature, composition, and pres-
sure. However, since most, if not all, of the
phase diagrams in the field of materials science
and engineering are presented at a constant
pressure of 1 bar, all diagrams presented in this
article are at 1 bar unless noted otherwise. The
most familiar phase diagram of a binary is the
temperature-composition diagram, and that of
a ternary is an isothermal section displaying
the compositions of phases in equilibrium with
each other using a Gibbs triangular paper, that
is, an equal-angle triangular paper. Two other
common diagrams of a ternary are an isopleth,
that is, a temperature-composition section, with
one constraint such as keeping the composition
of one component constant, and a projection of
the liquidus or solidus surface onto a two-
dimensional Gibbs triangular paper. However,
an isopleth presents only the stability of phase
fields; the tie lines that represent phase equili-
bria between two phases normally do not lie
in the plane of the temperature-composition
section. A pseudobinary is a special case of an
isopleth when the two end phases exhibit a
small range of homogeneity and melt con-
gruently. In such a diagram, the tie lines do
lie in the temperature-composition plane, just
like a binary phase diagram. The most fre-
quently used phase diagram of a multicompo-
nent (n) system beyond binaries is an isopleth,
that is, a temperature-composition section with
(n – 2) constraints—one for a ternary, two for
a quaternary, three for a quinary, and so on.
This article provides an overview on the

background of phase diagram calculation soft-
ware. Significant advancements in calculating
a variety of multicomponent phase diagrams
have been possible with the development of
reliable thermodynamic databases and the
robustness of the computer software. This has
been greatly enhanced with the availability of
second-generation phase diagram calculation
software. It is noteworthy to point out that
many of the first-generation software also have
since attempted to calculate the stable dia-
grams. After the overview, the following topics
are discussed in this article:

� An algorithm to calculate binary stable
phase equilibria

� A rapid method to obtain a thermodynamic
description of a multicomponent system

� Thermodynamically calculated phase
diagrams

� Concluding remarks

Overview and Background

Even though phase diagrams and thermody-
namics are two aspects of the same subject, his-
torically there are two groups of researchers in
studying phase equilibria and thermodynamics.
One group of researchers focuses on establish-
ing phase equilibria experimentally using tech-
niques such as cooling/heating curves, x-ray
diffraction (XRD), electron probe microanaly-
sis (EPMA), and microstructure characteriza-
tion using optical, scanning electron, and
transmission electron microscopy, denoted as
OM, SEM, and TEM, respectively. The other
group measures the thermodynamic properties
of materials, such as the chemical potentials
of the component elements in solutions, using
techniques of vapor pressure, galvanic cells,
equilibration, and so on and the enthalpies of
formation and the specific heats of single phase
using a variety of calorimetric methods.
Kubaschewski and Alcock (Ref 1) gave a sum-
mary of the many techniques used in practice.
More recently, many researchers obtained the
enthalpies of formation of phases at 0 K using
first-principle calculations. In many cases, the
calculated values approach the accuracy of
those measured experimentally.
On the one hand, the goal of these experi-

mentally measured and theoretically calculated
thermodynamic quantities is to attain a basic
understanding of the stabilities of the phases
and, on the other, to obtain the Gibbs energies
of single-phase materials as a function of com-
position and temperature, and occasionally also
of pressure primarily in the geological commu-
nity, for practical applications. In principle,
when the Gibbs energies of all the phases in

an alloy system are known as functions of tem-
perature and composition, it becomes possible
to calculate the phase diagrams of the system
in question, as shown in Fig. 1 (Ref 2). It is
worth noting that more than a century ago,
Van Laar (Ref 3, 4) calculated a large number
of prototype binary phase diagrams using the
one-parameter regular solution model. Approx-
imately half a century later, Meijering extended
these calculations from binaries to ternaries
(Ref 5–9). Although these calculated phase dia-
grams in many cases cannot be used for practi-
cal applications, they had made a paramount
contribution to understanding the relationships
between the topological features of phase equi-
libria in terms of the relative stabilities of the
phases involved (Ref 10).
Even though the phase diagram of an alloy

system can, in principle, be calculated from
the Gibbs energies of the constituent phases, it
is, in practice, very challenging to achieve this
goal, because a small uncertainty in the Gibbs
energy values leads to a different type of phase
equilibrium. The experimental phase equilib-
rium data are essential to calculate a correct
phase diagram in many cases. In this article,
the phenomenological or Calphad approach is
used to calculate phase diagrams. The essence
of this approach is to obtain thermodynamic
descriptions of the lower-order systems, bin-
aries and ternaries, in terms of both the

Fig. 1 Schematic diagram showing that a phase
diagram can be calculated using

thermodynamic relations, knowing the Gibbs energies of
the phase involved. These values can be obtained from
the enthalpies, specific heats, and the chemical
potentials of the components obtained experimentally as
well as from first-principles calculations.
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experimentally measured/theoretically calcu-
lated thermodynamic data and the measured
phase equilibria data. The term thermodynamic
description denotes that the values of a set of
thermodynamic parameters for all phases in a
system are known. On the basis of the known
descriptions of the constituent lower-order sys-
tems, a reliable description of a higher-order
system can be obtained via an extrapolation
method (Ref 11). This description enables one
to calculate reliable phase diagrams of the
higher-order system in many instances. Experi-
mental investigation is then required for confir-
matory purposes and not for the determination
of the entire phase diagrams.
Figure 2 shows the methodology of multicom-

ponent phase diagram calculation using the Cal-
phad or phenomenological thermodynamic
approach. It is worth noting that the term ther-
modynamic database or simply database is occa-
sionally used in this article instead of
thermodynamic description, particularly for mul-
ticomponent systems. Chang et al. (Ref 12) have
given a summary of development in this field
that needs not be repeated here. However, it
should be stressed that significant progress could
not have been made in this field without the
availability of the first-generation phase diagram
calculation software developed in the 1980s and
1990s, such as the Lukas program (Ref 13),
ThermoCalc (Ref 14), ChemSage (Ref 15),
MTDATA (Ref 16), and FACT (Ref 17).
With the development of the first generation

of phase diagram calculation software
packages, it became possible to introduce more
realistic thermodynamic models for ordered
phases such as the beta-brass B2 intermetallic
phases in copper-zinc and nickel-aluminum
and the ordered phases based on the face-cen-
tered cubic (fcc) structures in copper-gold. Both
copper and gold exhibit the fcc structure and

form a series of continuous solutions at high
temperatures. With decreasing temperature,
the disordered fcc phase transforms to ordered
intermetallic phases at the compositions of
Cu0.25Au0.75 and Cu0.75Au0.25 (with an ordered
cubic structure designated as L12) and that of
Cu0.5Au0.5 (with a tetragonal structure desig-
nated as L10). The degree of ordering in these
phases increases with further decreasing tem-
perature and becomes completely ordered at
0 K, assuming there is no kinetic barrier. For
the L12 phases, three Cu(Au) atoms occupy
the face-centered positions of the unit cell,
and one Au(Cu) atom occupies the corner posi-
tion of the unit cell when perfect order prevails.
For the L10 phase, the copper atoms occupy one
layer in the c-direction and the gold atoms the
next layer.
It is obvious that the regular solution-type

model, even with additional parameters used
for disordered solution phases, is no longer suit-
able for describing these types of intermetallic
phases mentioned previously, as well as many
other similar intermetallic phases. Numerous
thermodynamic formalisms have been formu-
lated in the literature (Ref 18–23) for these
phases. All of them are based on the
Bragg-Williams or point approximation and
are mathematically equivalent; it is possible to
transform the model parameters in a thermody-
namic formalism with more constraints to one
with fewer, but not the reverse (Ref 23).
Because of the importance in developing ther-
modynamic databases for practical applications
and the need for model compatibility, nearly all
the software programs adopted the compound
energy formalism (Ref 18) first used in Ther-
moCalc. Unfortunately, the point approxima-
tion has its limitation, since it neglects the
existence of short-range ordering in the lattice.
As a result, this model is unable to describe

the correct topological features of the copper-
gold phase diagrams, demonstrated as early as
1938 by Shockley (Ref 24). Even with this
shortcoming, tremendous advancement of the
Calphad approach in phase diagram calculation
has been made. In addition to this model for
ordered phases, there was also a need to
improve the first-generation phase diagram cal-
culation software, since the algorithms used
were based on local function minimization rou-
tines. This means that (unless appropriate initial
values are provided by a user) metastable phase
equilibria may be calculated instead of the sta-
ble ones.
Occurrence of the metastable equilibria is

often a result of multiple minima in the Gibbs
energy of a phase involved in the calculation,
such as a phase with miscibility gap. Indeed,
Chen et al. have found that some of the calcu-
lated phase diagrams in the literature are meta-
stable with respect to the authors’ model
parameters (Ref 25), and Chang et al. (Ref 12)
had presented a number of such examples. Rea-
lizing the challenge in using the first-generation
software for phase diagram calculations, Chen
et al. (Ref 26, 27) attempted to develop an algo-
rithm to automatically calculate stable phase
diagrams without the user’s input of any initial
values (Ref 25, 28, 29). Their initial ideas were
subsequently extended and implemented to
multicomponent systems, with Pandat being
the product in 2000 (Ref 28). A new version
of this software was released in 2007, including
an optimizer and additional features such as
superior graphical capability and significantly
improved computational speed (Ref 30). Even
though Pandat automatically calculates the sta-
ble phase diagram with a given thermodynamic
database without initial values, the user can
always calculate a variety of metastable phase
diagrams at the user’s choice by suspending
some stable phases. All calculations presented
in this article have been carried out using
Pandat. It is noteworthy to point out that many
of the first-generation software have since
attempted to calculate the stable diagrams.

An Algorithm to Calculate Stable
Phase Equilibria

This section first illustrates that the common
tangent approach presented in nearly all the
thermodynamic textbooks to calculate phase
equilibria is only a necessary but not sufficient
condition to obtain the stable equilibrium. The
stable equilibrium of a mixture of phases corre-
sponds to the condition that the Gibbs energy of
this mixture attains the minimum. The common
tangent approach could, in some cases, yield a
metastable equilibrium. Figure 3 shows the
Gibbs energies of the fcc and hexagonal close-
packed (hcp) phases at constant temperature
(T) and pressure (p), with the former exhibiting
double minima and the later one minimum. It is
evidently clear from this figure that there exist
three common tangents between these two

Fig. 2 The Calphad or phenomenological thermodynamic approach to obtain a thermodynamic description or
database of a multicomponent system
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phases, but only one of the three is the stable
one. It is a mixture of fcc1/hcp. The other two
(fcc1/fcc2 and fcc2/hcp) are metastable, because
the Gibbs energy for either of these two mix-
tures is higher than that of the fcc1/hcp mixture.
A software package to calculate phase equili-
bria should automatically seek the stable equi-
librium of the fcc1/hcp mixture for the case
shown in Fig. 3 and not depend on the user to
instruct the software ahead of time that a spe-
cific fcc1/hcp mixture is the stable equilibrium;
the only demand on this software is to calculate
the compositions of these phases in equilibrium
with each other. The user often does not have
any prior knowledge of the stable equilibrium
of the phases under consideration, even in some
binaries not mentioning the higher-order sys-
tems. In addition to solution phases exhibiting
miscibility gaps, an ordered intermediate phase
with multi-sublattices can also exhibit more
than one minimum in the Gibbs functions.
Now consider using the Graham scan algo-

rithm to automatically calculate the stable
phase equilibria of a binary without a user’s
input of any initial values, as discussed in the
work of Chen et al. (Ref 31). As shown in
Fig. 4(a), the Gibbs energy of the solution a
has only one minimum but that of b has two;
the Gibbs energies of g and d exhibit singular
values at specified mole fractions of B. It is
clear from Fig. 4(a) that the convex hull repre-
sented by the thick line (shown at the lower part
of the figure) defines the Gibbs energies of the
stable phase equilibria. The stable phases are
a, b, and g, and the phase d is unstable. The
phase composition of a in equilibrium with g
can be obtained from a common tangent between
a and g, denoted as xa(a + g). In a similar man-
ner, the phase composition of b is obtained in
equilibrium with g, that is, xb(b + g).
The challenge here is to develop a reliable

and efficient algorithm to calculate the stable
equilibria. Using a generalized scan algorithm
to locate a two-dimensional convex hull

developed by Graham in 1972 at Bell Labs
(Ref 32–35), Chen et al. (Ref 31) calculated
the stable phase equilibria of binaries. The
computational cost of this algorithm is
O(nlogn) instead of O(n2), the cost for a simple
comparison method. This represents a signifi-
cant decrease in the computational cost. Since
this program was designed for locating a gen-
eral convex hull, Chen et al. made a slight mod-
ification of the Graham scan algorithm for
locating the convex hull of the Gibbs energies
of phases for phase diagram calculation. The
computational complexity of the modified Gra-
ham scan algorithm is O(n), which provides a
further decrease in the computational cost.
The modified Graham scan algorithm by

Chen et al. is described here to calculate the
stable binary phase equilibria, although readers
are encouraged to read the paper of Chen et al.
(Ref 31) and the reference cited (Ref 32–35) for

details of the original Graham scan algorithm.
With the modified Graham scan algorithm,
refer to Fig. 4(a) again. The Gibbs energies of
the two solutions a and b are plotted as a func-
tion of x and those of the two stoichiometric
intermetallic phases of g and d as two solid cir-
cles at specific compositions. The Gibbs energy
curve for a and b is first partitioned into n inter-
vals along the compositional axis. These n + 1
intersection points are denoted as open circles
in Fig. 4(b). In this figure, n = 10 for purpose
of illustration, counting the pure A and B. As
shown in Fig. 4(c), only the lowest intersection
points at each composition are plotted. For
instance, at x = 0.1, there are two points, one
from the Gibbs energy of a and the other from
the Gibbs energy of b, with the Gibbs energy
of a being the lower one. This lower point,
denoted as “2” in Fig. 4(c), is so selected. In
addition to the lowest intersection points from

Fig. 3 Given the Gibbs energies of the face-centered
cubic (fcc) and hexagonal close-packed (hcp)

phases in a binary, shown in this figure at constant
temperature and pressure, it becomes possible to
calculate a metastable two-phase equilibrium, unless the
software used is capable of automatically seeking the
global minimum of the Gibbs energy of the stable phases.

Fig. 4 (a) Given the Gibbs energies of two solution phases, a and b, and two stoichiometric intermetallic phases, g
and d, at constant temperature and pressure, the heavy curve at the bottom of the Gibbs energies from pure A

to B is the convex hull or the lowest Gibbs energies of the phases in the binary A-B. The stable phases are a, g, and b,
with two two-phase equilibria of a + g and g + b. (b) The convex hull is obtained when connecting the lowest Gibbs
energy values of the stoichiometric phases g and d as well as the apparent stoichiometric phases portioned from the
solutions phase of a and b. When the number of partitions for these solution phases increases, the convex hull
becomes the same as that shown in (a). (c) Illustration of the modified Graham scan algorithm to drop point 6, since
the angle 5!6!7 is a nonleft turn, but point 6 is a left turn. (d) Illustration of the modified Graham scan algorithm
to drop point 5, since the angle 4!5!7 is a nonleft turn. For the same reason, point 4 is dropped until 2!4!7 is a
left turn.
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each solution phase, the Gibbs energy of the
stoichiometric phase also needs to be included
for comparison. Therefore, a total of 13 Gibbs
energy points are included in Fig. 4(c); pure A
is chosen as “1”, B as “13,” and so on.
According to the modified Graham scan

algorithm, the convex hull can be sorted out
in the following manner. Start from the line
segment 1!2 given in Fig. 4(c) and keep add-
ing points, one by one, from “3” through “6.”
Each of these added points forms a left turn
with two previous points, such as 1!2!3,
2!3!4, and so on until 5!6!7. Point “7”
makes a nonleft turn, as shown in Fig. 4(c).
Under such a condition, drop point “6” and go
back to evaluate 4!5!7, shown as a dashed
line in Fig. 4(d). Since this turn is also nonleft,
point “5” is thus dropped. For the same reason,
point “4” is also dropped. Then, examine
2!3!7 and again find a left turn, as shown
in Fig. 4(d). This procedure continues until the
last point, “13,” is reached. The final lower con-
vex hull vertex list is 1!2!3!7!12!13,
which is the same as that shown in Fig. 4(b).
On the other hand, when a software package
uses a local algorithm to calculate the composi-
tions of two phases at equilibrium using the
common tangent approach, the calculated com-
positions depend on the initial values used. For
instance, when calculating the g/b phase equi-
librium, the correct solution is obtained when
a value of xb close to 1 is chosen as the initial
value. On the other hand, when the initial cho-
sen value of xb is small, a metastable g/b with
xb close to 0.2 is obtained.
The present example using a modified Gra-

ham immediately leads to the convex hull of
the Gibbs energies of all phases existing in a
binary system. As noted earlier, one can use a
simple comparison algorithm to calculate the
convex hull, but the computational cost in that
case would be O(n2). The computational cost
of the modified Graham scan method used here
is only O(n). The Pandat software package was
developed using a more general global optimi-
zation algorithm (Ref 25, 36). It is able to auto-
matically calculate the stable phase diagram for
a given thermodynamic description as well as
calculate a variety of metastable phase dia-
grams at the demand of the user by deselecting
the stable phases. Chang et al. (Ref 12) had pre-
sented a number of examples showing that the
Pandat-calculated phase equilibria, using the
published thermodynamic descriptions, differ
from those calculated from the first-generation
software.
In all these cases, Pandat has found the stable

phase equilibrium, while others calculated the
metastable one without the authors being aware
of them. Since the thermodynamic descriptions
were obtained by comparing the calculated phase
equilibria with those determined by experiments,
the consequence of comparing the mistakenly
calculatedmetastable phase equilibria with those
experimentally stable ones is the development of
incorrect thermodynamic descriptions. After this
was pointed out by Chen and Chang (Ref 12, 28),

many of the first-generation software packages
have incorporated improvements to minimize
some of the pitfalls, yet Pandat is the only
software that uses the global minimization algo-
rithm in search of the stable phase equilibrium
for zero-, one-, and two-dimensional calcula-
tions. More importantly, the calculation speed of
Pandat has been greatly enhanced in the past sev-
eral years and is currently comparable to those
using local minimization algorithm (Ref 37).

Rapid Method for Obtaining a
Thermodynamic Description of a
Multicomponent System

As described in Fig. 2, the development of a
thermodynamic database of a multicomponent
system, that is, higher than ternaries, depends
on thermodynamic descriptions of the constitu-
ent lower-order systems, that is, binaries and
ternaries. The descriptions of the binaries are
obtained based on the first-principles calculated
and experimentally measured thermodynamic
values of the phases in question as well as the
experimentally determined phase equilibria.
The authors believe that in the foreseeable
future, the phase equilibria data will always be
needed, since the uncertainties of the thermody-
namic data in many instances are too large to
define the stable phase equilibria. Very often,
obtaining a thermodynamic description of a ter-
nary is less demanding when compared to that
of a binary when thermodynamic descriptions
for all three binaries are well developed.
As an example, the combined computational/

experimental approach is described here to rap-
idly obtain a description of a ternary Mg-Al-Sr
system. This system was chosen since recent
interest in reducing fuel consumption has moti-
vated global effort in developing/commercializ-
ing cost-affordable low-density magnesium
alloys for heavy powertrain components at high
temperatures, such as engine blocks and trans-
mission cases (Ref 38, 39). The descriptions
of this and other ternaries are needed to obtain
a description of a higher-order system such
Mg-Al-Ca-Sr via extrapolation. Experience
has shown that this approach works quite well
in many cases (Ref 12, 40). Even though
numerous extrapolation methods are available
(Ref 11), the one most frequently used is that
due to Muggianu et al. (Ref 41). However, the
calculated multicomponent phase diagrams
using the descriptions obtained by extrapolation
from the lower-order systems need to be vali-
dated only with selected key experiments. The
amount of experimental effort involved is insig-
nificant when compared to pure experimenta-
tion over all compositions and temperatures,
as was done in the past. For the rare cases when
quaternary phases do exist in the systems, such
as some of the quaternary aluminum alloys (Ref
42–44), optimization of model parameters for
the quaternary phases in question is necessary,
but the amount of effort involved is minimal.

The other case is when a phase extends its
range of stability into the quaternary composi-
tional space; for such cases, limited additional
experimental effort is needed, such as in the
Mo-Si-B-Ti system (Ref 45).

Developing a Thermodynamic
Description of Mg-Al-Sr

The efficient method to obtain a description
of a ternary, using Mg-Al-Sr as an example, is
to:

1. Calculate a tentative phase diagram using an
approximate thermodynamic description of
Mg-Al-Sr obtained via extrapolation from
those of the constituent binaries

2. Identify key samples for experimentation
3. Characterize each of the key samples in the

as-cast and annealed states using XRD,
SEM, EPMA, and TEM when necessary

4. Use these results to improve the approximate
thermodynamic description

5. Have additional experimentation to validate
this improved description.

For this example, the results obtained from
three samples identified from a tentative phase
diagram were used to develop a reliable
description for the magnesium-rich Mg-Al-Sr
ternary, as given subsequently.
Figure 5 is a tentative 400 �C isotherm of

Mg-Al-Sr calculated from an approximate ther-
modynamic description by Cao et al. (Ref 46).
This description was obtained from those of
the three binaries: magnesium-aluminum (Ref
47), magnesium-strontium (Ref 48), and alumi-
num-strontium (Ref 49). Since only the phase
equilibria in the magnesium-aluminum-rich
region is of interest, a total of five samples with
strontium concentrations less than 20 mol%
were identified for investigation. The composi-
tion of sample 1 lies in the calculated three-
phase equilibrium of (Mg) + g-Mg17Al12 +
Al4Sr; that of sample 2 in the two-phase equi-
librium of (Mg) + Al2Sr, perhaps in the three-
phase equilibrium of (Mg) + Al2Sr + Mg17Sr2;
that of sample 4 in the three-phase equilibrium
of (Mg) + Al4Sr + Al2Sr; and those of samples
3 and 5 in the three-phase equilibrium of (Mg)
+ Al2Sr + Mg17Sr2. These samples prepared in
the as-cast and the 400 �C annealed states were
subsequently characterized. The experimental
results obtained were then used to obtain a ther-
modynamic description of Mg-Al-Sr, as given
subsequently. Since a detailed account of the
experimental studies has been published (Ref
46), only a brief summary is given. Alloys were
prepared with raw materials of magnesium
ingot (99.9%), aluminum lump (99.5%), and
strontium ingot (99%) by induction melting in
a mild steel crucible with a flowing gas mixture
of 99% Ar and 1% SF6. The solidified samples
were then remelted with stirring and next cast
into a BN-coated steel bowl. Each of the cast
samples was cut into two pieces; one piece
was characterized by SEM, EPMA, and XRD
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for the primary phase of solidification and the
phases formed, including the compositions and
crystal structures of these phases. The other half
was annealed at 400 �C for 770/835 h in an
ultrahigh-purity argon atmosphere (99.998%
Ar). Each of the annealed samples was also
characterized using SEM, EPMA, and XRD.
Since samples 4 and 5 were overly oxidized,

the results obtained for these samples were not
used in developing a thermodynamic descrip-
tion of this ternary.
The thermodynamic models used for the

phases in Mg-Al-Sr are now presented. There
are three types of solution phases: the liquid
phase, the solid metallic phase, and the pseudo-
binary phases of stoichiometric binary

intermetallics such as (Mg,Al)17Sr2 and one
intermetallic phase, g-Mg17Al12, with its homo-
geneity extending to the ternary compositional
space. The Gibbs energy of a phase normally
consists of three terms: the Gibbs energy of
the components in the reference state, the ideal
Gibbs energy of mixing, and the excess Gibbs
energy. For the liquid and the solid metallic
phases, the excess term is represented by the
following equation:

exG’
m ¼ XMgXA1L

j
Mg;A1 þXMgXSrL

j
Mg;Sr

þXA1XSrL
j
A1;Sr þXMgXA1XSrL

j
Mg;A1;Sr

(Eq 1)

The term G is the Gibbs energy, with the super-
script “ex” indicting that this G is an excess
quantity; xi is the mole fraction of the compo-
nent i; and Lj

s is the interaction parameter of
the binary and ternary phases, respectively.
Values of the binary parameters were obtained
in terms of experimental data for the phases in
question, and those of the ternary parameters
are likewise obtained. However, a preliminary
value of the ternary parameter was set to be
zero via extrapolation. These parameters were
optimized using experimental data of the ter-
nary phase equilibria.
For the second type of phases, a two-sublat-

tice model is represented by (Mg,Al)1-xSrx, with
magnesium and aluminum occupying one sub-
lattice and only strontium the other. A familiar
example of this type of phase is a solution of
NaCl and KCl, normally represented by (Na,
K)Cl. It is like a pseudobinary that can be trea-
ted as an interaction between magnesium and
aluminum on one sublattice in a way similar
to binary (Mg,Al), while the other sublattice is
occupied exclusively by strontium. The g-
(Mg17Al12) is described using a simpler three-
sublattice model, (Mg,Sr)10(Mg,Al)24(Al,
Mg)24 (Ref 46, 47, 50). This is a simplified
model, since a four-sublattice model is more
consistent with its crystal structure. The ele-
ment in bold denotes that the element is pre-
dominant on that particular sublattice. A
detailed description of this model was given
by Cao et al. (Ref 46) and is not repeated here.
The experimental results obtained for sam-

ples 1 to 3 annealed at 400 �C and the primary
phases of solidification for these samples are
given in Table 1. While the approximate
description was obtained assuming no solubili-
ties in any of the binary intermetallic phases,
the experimental results show that this is
not the case. An improved thermodynamic
description was obtained in terms of the exper-
imental data derived from these three samples.
The calculated phase equilibria from this
description as well as the experimental data
are shown in Fig. 6.
Focus first on sample 1. The overall compo-

sition, represented by a solid square, lies in
the three-phase equilibrium of (Mg) +
(g-Mg17Al12) + (Al4Sr). The parentheses indi-
cate that the phase in question has a range of

Fig. 5 Based on a tentative isotherm of Mg-Al-Sr at 400 �C (673 K) calculated from an approximate thermodynamic
description, the compositions of five alloy samples, No. 1 to 5, were selected for experimentation.

Table 1 Electron probe microanalysis-measured compositions of phases in the equilibrated
samples at 673 K (400 �C) and the primary phase of solidification for these samples

Alloy No. mol% Heat treatment Phases Mg, mol% Al, mol% Sr, mol%

Primary

phase of

solidification

1 Mg-3.4Sr-32.5Al 673 K, 770 h Al4Sr 6.08 72.85 18.78 Al4Sr
g-Mg17Al12 57.13 37.28 3.91
(Mg) 92.60 6.36 0.01

2 Mg-8.5Sr-16.5Al 673 K, 835 h Al4Sr 13.42 63.93 18.59 Mg17Sr2
Mg17Sr2 75.13 13.75 9.26
(Mg) 98.18 0.57 0.38

3 Mg-16Sr-26Al 673 K, 770 h Al4Sr 15.60 63.46 19.12 Al4Sr
Mg38Sr9 61.56 20.43 15.87
Mg17Sr2 76.53 11.15 9.71

Note: The sum of the measured compositions in each of the single phases does not add up to 100%. The difference is the oxygen contents, also
measured experimentally. The measured compositions of (Mg) had large uncertainties, since they were obtained from energy-dispersive spectros-
copy. Using the measured contents of the metals, the ranges of homogeneity of the (Mg) phase and of the intermetallic phases are as shown in
Fig. 6.

Fig. 6 Comparisons of the calculated isotherm of Mg-Al-Sr at 400 �C (673 K) from the thermodynamic description,
obtained in terms of the results of alloy samples 1, 2, and 3, with the experimental data
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homogeneity, such as (Mg,Al), (g-Mg17Al12)
and (Al4Sr). The open triangles represent the
compositions of the three co-existing phases,
(Mg,Al), (g-Mg17Al12), and (Al4Sr), obtained
from EPMA. Figures 7(a) and (b) show the
backscattered electron images of sample 1 in
the as-cast state and that annealed at 400 �C.
The annealed sample shows the existence of
three phases, (Mg) + (g-Mg17Al12) + (Al4Sr),
while the as-cast sample shows the presence
of (Mg) and (Al4Sr), with the latter being the
primary phase of solidification. The calculated
liquidus projection is compared later with the
observed primary phases of solidification of
the as-cast alloys. Since the calculated compo-
sitions of the co-existing phases agree with the
experimental data for magnesium-aluminum-
rich alloys, the calculated phase boundaries in
the magnesium-aluminum-rich region (i.e., less
than 20 mol% Sr) are shown as solid lines. On
the other hand, since the thermodynamic
description was obtained only for the magne-
sium-aluminum-rich region of Mg-Al-Sr, the
calculated phase boundaries in the strontium-
rich region are not expected to be correct. The

calculated boundaries are thus shown as dashed
lines. In view of the appreciable solubilities
observed in the magnesium-strontium and alu-
minum-strontium intermetallics in the magne-
sium-aluminum-rich region, it is likely that
appreciable solubilities also exist in the stron-
tium-rich intermetallics.
However, when focusing on the phase equili-

bria in the magnesium-aluminum-rich region,
there is agreement between the model-calcu-
lated and experimentally measured phase equi-
libria within the uncertainties of the
experimental data, estimated to be approxi-
mately 1 to 2 mol%. One noticeable exception
is the calculated composition of (Mg38Sr9) in
the three-phase equilibrium of (Mg38Sr9) +
(Mg17Sr2) + (Al4Sr). This is due to the use of
a simplified two-sublattice model for the (Mg,
Al)38Sr9 phase, maintaining constant strontium
composition. Had a more realistic model been
used, such as a three-sublattice model for g-
Mg17Al12 (or a four-sublattice model), it would
have been possible to properly describe the
range of homogeneity of this phase in terms
of the three component elements. However,

because the magnesium concentration in most
of the commercial alloys is higher than 90
mol%, this phase is unlikely to form during
solidification. Therefore, it is not necessary to
use a highly complicated thermodynamic
model.
As shown in Fig. 8, the observed primary

phases of solidification for samples 1 to 3 are
in accord with the calculations, as expected,
since these data were considered in obtaining
a description of this ternary. The observed pri-
mary phase of solidification for sample 4 is
(Al4Sr), which was not used in the modeling,
and it is also consistent with the calculation.
For sample 5, first calculate the path of solidifi-
cation of this sample using the Scheil model
before examining the observed microstructure
of sample 5 with the calculated phase equili-
bria. The calculated results given in Fig. 9 show
the primary phase of solidification is (Mg38Sr9)
when the temperature reaches the liquidus sur-
face at 592.6 �C. With an additional decrease
of only 0.4 �C, the second solid phase
(Mg17Sr2) forms; the liquid now co-exists
simultaneously with (Mg17Sr2) and (Mg38Sr9).

Fig. 7 Backscattered electron images of sample 1 (Mg-32.5Al-3.4Sr) in the (a) as-cast and (b) 400 �C annealed states

Fig. 8 Comparisons of the calculated liquidus projection of Mg-Al-Sr from the thermodynamic description, obtained
in terms of the results of samples 1, 2, and 3, with the experimental data. The results of samples 4 and 5 were

not used in obtaining the thermodynamic description.
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Fig. 9 (a) Calculated temperatures as a function of the
fraction of solids of sample 5 (Mg-15.6Sr-

12.2Al, at.% composition point in Fig. 5) using the
Scheil model and the thermodynamic description
obtained in terms of the results of samples 1, 2, and 3.
(b) Calculated temperatures as a function of the phase
fractions formed. The calculated fraction of the liquid at
the invariant reaction is approximately 2%, and that of
(Al4Sr) formed from the invariant reaction is less than
0.05%.
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Figure 10 shows a calculated isotherm at
~585.6 �C, 0.5 �C higher than 585.1 �C, the
type II invariant temperature. When the temper-
ature decreases to the invariant temperature, the
liquid (L) co-exists with (Mg38Sr9), (Mg17Sr2),
and (Al4Sr), as shown schematically as an inset
in Fig. 10. At this temperature, L can react with
(Mg38Sr9) to form (Mg17Sr2) and (Al4Sr). This
four-phase equilibrium shows qualitatively that
the amount of (Mg17Sr2) solidified is the great-
est among the three solids, that of (Mg38Sr9) is
next, and that of (Al4Sr) is least. Even though
(Mg38Sr9) is the primary phase of solidification,
its amount as shown in Fig. 10 should be less
than that of (Mg17Sr2), which forms subse-
quently. The microstructure observed, as shown
in Fig. 11, is indeed consistent with this calcu-
lation, using the thermodynamic description
developed coupled with the Scheil model.
One may raise the question why the exis-

tence of (Al4Sr) is not observed in this micro-
structure. The four-phase equilibrium in the
inset of Fig. 10 provides the answer. The
amount of (Al4Sr) formed is anticipated to be
small. Unless one is extremely lucky, it is
unlikely that the presence of this phase will be
seen in the solidified structure. Returning to
Fig. 9(b), the calculated fractions of the solids
formed at the invariant temperature are approx-
imately 20% for (Mg38Sr9), 80% for (Mg17Sr2),
and only 0.4% for (Al4Sr). The amounts of
(Al4Sr) formed are so small that they are not
plotted in this figure. The results of sample 5
further support the thermodynamic description
obtained for the magnesium-aluminum-rich
Mg-Al-Sr ternary.

Subsequent to obtaining the thermodynamic
description of Mg-Al-Sr (Ref 46), Parvez et
al. published a paper on the phase equilibria
of Mg-Al-Sr (Ref 51). They studied a total of
22 alloys prepared by induction melting under
an atmosphere of argon with 1% SF6, followed
by slow cooling. These slowly cooled samples
were characterized by XRD, metallography,
and differential scanning calorimetry (DSC),
with a slow heating and cooling rate (2 to 5
�C/min). They reported the existence of several
new ternary phases in this system. However,
Cao et al. concluded that these phases are not
new phases but solid solutions of the binary
intermetallic phases. Their alloys were not
annealed at a specified temperature but cooled
slowly to ambient temperature; the microstruc-
ture taken from different locations in the as-cast
and post-DSC samples were observed to be
similar.
It is likely that the phases obtained by Cao et

al. may not differ significantly from those at
400 �C. Indeed, as shown in Fig. 12(a), their
experimental results are not inconsistent with
the authors’ calculated isotherm at 400 �C.
The symbols ▪, ▲, �, and so on represent the
gross compositions of the alloy samples. For
example, samples 10 and 11 (solid triangles
with one corner pointed upward) were reported
by Parvez et al. (Ref 51) to be in the (Mg) +
Al4Sr + t2 three-phase field, likely due to their
misidentification of the XRD patterns, as a
result of the existence of (Mg0.2Al0.8)4Sr
instead of Al4Sr. As shown in Fig. 12(b), the
primary phases of solidification for 19 out of
their 22 alloy samples are consistent with the
calculated liquidus projection. (The primary

phase information for samples 12 to 14 was
not clearly given by Parvez et al., Ref 51).
Thus, it can be concluded that the thermody-

namic description obtained by Cao et al. (Ref
48) provides a reasonable understanding of the
phase equilibria in the (Mg, Al)-rich region of
the Mg-Al-Sr system. However, as noted ear-
lier, the calculated phase equilibria using this
description for alloys in the compositional
vicinity of the Mg38Sr9 phase and for composi-
tions higher than 20 at.% Sr must be used with
caution. Additional experimental data are
needed.

Obtaining a Thermodynamic
Description of Mg-Al-Ca-Sr

To obtain a thermodynamic description of this
quaternary, one must first have descriptions of
the constituent lower-order systems. Descriptions
for two of the four constituent ternaries are
known; one is Mg-Al-Sr, as given previously,
and the other is Mg-Al-Ca (Ref 52, 53). Thermo-
dynamic descriptions for Mg-Ca-Sr and Al-Ca-
Sr are not available due to lack of phase equilib-
rium data. Thermodynamic descriptions of these
two ternaries were obtained via extrapolation
from those of the constituent binaries (Ref 54).
On the basis of the descriptions of these tern-
aries, a description of Mg-Al-Ca-Sr was obtained
via extrapolation (Ref 54). As shown in Fig. 13,
the model-calculated liquidus and solidus for the
isopleth from Mg-5Al-3Ca to Mg-5Al-3Sr (in wt
%) are in good accord with the measured data
(Ref 55). However, there is no phase equilibrium
data at lower temperatures to validate the calcu-
lated phase equilibria. Suzuki et al. found that in
seven as-cast alloys, the primary phase of solidi-
fication is a(Mg), which is consistent with the
calculated isopleth. When the concentration of
strontium is 0 to 1.26%, the second phase formed
is C36-(Mg,Al)2Ca, and when the strontium con-
centration is 1.16 to 1.70 wt%, the second phase
formed is Mg17Sr2. The calculated phase equili-
bria shown in Fig. 13 again account for the

Fig. 10 Calculated isotherm of Mg-Al-Sr at 585.1 �C showing the existence of a type II1 four-phase equilibrium of L
+ (Mg38Sr9) = (Mg17Sr2) + (Al4Sr). The II1 four-phase equilibrium, with some exaggeration in compositions, is

shown as an inset.

Fig. 11 Backscattered electron image of sample 5
(Mg-15.6Sr-12.2Al) in the as-cast state

showing the primary phase of solidification of (Mg38Sr9),
with that of the next phase formed being (Mg17Sr2)
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microstructures observed. In short, the experi-
mental data of Suzuki et al. support the calcu-
lated isopleth. A fair question to raise is why
the quaternary description is satisfactory when
only two of the constituent ternaries were mod-
eled. A simple answer is that the quaternary

alloys contain a small amount of strontium and
calcium. As shown in Fig. 6, the thermodynamic
description obtained is valid up to 20 at.% Sr
(approximately 46 wt% Sr), and that for Mg-
Al-Ca is valid to even a higher calcium concen-
tration. It is evidently clear that when the

concentrations of calcium and strontium increase
to much higher concentrations, the calculated
phase equilibria are unlikely to be quantitatively
reliable.

Thermodynamically Calculated
Phase Diagrams

Binary Phase Diagrams

This section presents thermodynamically cal-
culated phase diagrams that do not differ from
the experimentally determined ones. However,
more information can be obtained from a ther-
modynamic database of a system in question
than simply the temperature-composition phase
diagrams given in classical reference books,
such as Ref 56. Not only can information be
obtained on the compositions of phases in equi-
librium with each other as a function of temper-
ature at constant p, but thermodynamic
information is also obtainable. Unless noted
otherwise, all diagrams presented are at p = 1
bar. For instance, the calculated binary phase
diagrams in terms of temperature either as a
function of composition or chemical potential
of a selected element are presented at p = 1
bar. In the past, the phase diagrams of a ternary
system were usually determined at a limited
number of temperatures, often one or two. Edu-
cational estimates of the phase equilibria in
between the measured temperatures often had
to be made. Today (2009), the calculation can
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simply be carried out using a commercial soft-
ware package and the thermodynamic database
of the system to obtain the phase equilibria at
any temperature of interest. Examples are pre-
sented to illustrate this point, first for a binary
and then a high-order alloy system. The phase
diagrams presented in this article are calculated
using Pandat software (Ref 31).
Figure 14(a) shows a calculated binary phase

diagram of aluminum-zinc in terms of T versus
xZn, using the description of Chen and Chang
(Ref 57). As shown in this figure, there exist
three phases in this binary, designated as L
(the liquid phase), fcc (the aluminum solution
phase), and hcp (the zinc solution phase). While
the solubility of zinc in the fcc phase is large,
that of aluminum in the hcp phase is small.
Moreover, there exists a miscibility gap in the
fcc phase. Figure 14(b) shows another form of
the aluminum-zinc phase diagram: the relation-
ship between the temperature and chemical
potential of zinc, mZn, with the reference state
being pure zinc (hcp). This diagram provides
the complementary information to that shown
in Fig. 14(a). While the former diagram pre-
sents the compositions of the phases in equilib-
rium with each other at different temperatures,
the latter shows the chemical potentials of zinc,
mZn, for the co-existing phases as a function of
temperature. The former is referred to as a

field-density phase diagram and the latter as a
field-field phase diagram (Ref 2). There are
two invariant equilibria, that is, the eutectic,
L = fcc2 + hcp, and the monotectoid, fcc2 =
fcc1 + hcp, in this binary. In addition, there is
a critical point when the compositions of fcc1
and fcc2 merge to become fcc at this tempera-
ture, with a unique value of mZn. This diagram
is reminiscent of the p versus T diagram for a
pure substance, such as water, given in nearly
all the thermodynamics and phase diagram text-
books. In addition to Fig. 14(b), a similar dia-
gram can also be plotted in terms of T as a
function of mAl. The topological features would
be identical. Instead of Fig. 14(b), a more prac-
tical phase diagram is a T versus pZn diagram,
another field-field phase diagram. Such a dia-
gram is given in Fig. 14(c) in terms of 1/T ver-
sus log10(pZn/bar). Because the details involved
in the invariant equilibria cannot be resolved as
given in Fig. 14(c), an enlarged schematic dia-
gram is presented in Fig. 14(d). Point “A” in
this diagram represents the monotectoid, “B”
the critical point for the miscibility gap of the
fcc phase, and “C” the eutectic. Point “D” is
the triple point of zinc, that is, the co-existence
of Zn(hcp), Zn(L), and Zn(g) at a total pressure
of 1 bar. At any temperature greater than that at
the triple point, that is, point “D”, when
log10pZn is higher than that represented by the

line DE in Fig. 14(d), pure Zn(L) may form.
Conversely, at the temperature lower than that
at the triple point, when log10pZn is higher than
that represented by line DF, Zn(hcp) may form.
It can thus be concluded that the development
of the Calphad approach to obtain a thermody-
namic database makes a significant improve-
ment in generating valuable data beyond the
temperature-composition phase diagrams for
practical utility.

Higher-Order Phase Diagrams

As presented earlier, visualization of binary
phase diagrams at constant p is straightforward
since they are all two-dimensional diagrams,
such as T versus composition and T versus mi
at constant p. This is also true for a ternary
phase diagram at constant T and p. In such an
isothermal phase diagram of a ternary system,
only the compositions of the phases are in equi-
librium with each other at a given T. For infor-
mation on how the phase compositions change
at different temperatures, a three-dimensional
diagram is necessary. Visualization of such a
diagram then becomes challenging. Neverthe-
less, three-dimensional representations can be
analyzed when the information of the three-
dimensional space is projected onto a two-
dimensional plane, such as the liquidus projec-
tion of a ternary system. Such diagrams can
be readily used to obtain the phase formation
sequences during solidification of an alloy in a
ternary with relative simple phase equilibria.
On the other hand, the task becomes much
more challenging when carrying out such an
analysis for a quaternary, not to mention an
even higher-order system. Yet, most real alloys
consist of at least four component elements. In
the following, an example illustrates the use
of a thermodynamically calculated liquidus pro-
jection of Mg-Al-Ca-Sr in the magnesium-rich
corner to visualize the solidification path of a
quaternary magnesium-rich alloy.
Figure 15 shows calculated liquidus projec-

tions of three magnesium constituent tern-
aries—Mg-Al-Sr, Mg-Sr-Ca, and Mg-Ca-Al—
of Mg-Al-Ca-Sr, with the compositions given
in weight fraction, denoted as w(Mg), w(Al),
w(Ca), and w(Sr), respectively. The symbols
a, g, Al4Sr, Mg17Sr2, C14, C15, and C36 denote
the hcp-(Mg) phase, the g-(Mg,Sr)0.172(Mg,
Al)0.414(Al,Mg)0.414 intermetallic phase, the
tetragonal-(Al4Sr) phase, the hexagonal C14-
(Mg,Al)0.667(Ca)0.333 Laves phase, the cubic
C15-(Mg,Al)0.895(Sr)0.105 Laves phase (Ref
48), and the hexagonal C36-(Al)0.500(Mg,
Al)0.167(Ca,Mg)0.333 Laves phase (Ref 55),
respectively. The element in bold denotes the
predominant element on the sublattice in ques-
tion, as noted earlier in this article. The three
magnesium-rich binary eutectics are denoted
as e1: L = a + Mg17Sr2 (589 �C); e2: L = a +
C14 (517 �C); and e3: L = a + g (436 �C).
The two ternary eutectics are denoted as I1:
L = a + C14 + C36 (Mg-Al-Ca, 516 �C) and

Fig. 14 Calculated phase diagram of aluminum-zinc. (a) Temperature vs. composition. (b) Temperature vs. chemical
potential of zinc. (c) Reciprocal of temperature vs. log10(pZn). (d) Enlarged schematic diagram depicting the

invariant equilibria shown in (c). fcc, face-centered cubic; hcp, hexagonal close-packed
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I2: L = a + C14 + Mg17Sr2 (Mg-Ca-Sr,
508.6 �C). The three type II ternary invariants
are II1: L + Mg17Sr2 = a + Al4Sr (Mg-Al-Sr,
509 �C); II2: L + Al4Sr = a + g (Mg-Al-Sr,
489 �C); and II3: L + C36 = a + g (Mg-Al-
Ca, 458 �C). The subscript “1” for the type I
invariant indicates it is the highest-temperature
type I invariant, and the “2” indicates the next
highest and, in this case, also the lowest; the
same holds true for the type II invariants, with
“1” being the highest temperature and “3” the
lowest. In addition to these invariant equilibria,
there are two saddle points in the Mg-rich cor-
ner of Mg-Al-Ca. There are S1: L = a + C36
(527 �C) and S2: L= a + C14 (519 �C). As
shown in Fig. 15, both saddle points are tem-
perature maxima. In this section, the notations
of Rhines (Ref 58) are adopted for the invariant
equilibria, and the format used by Chang and
co-workers (Ref 12, 59–62) is followed.
The lines in Fig. 15 are plotted in a three-

dimensional diagram in Fig. 16(a). The z-axis
(or calcium axis) starts from pure magnesium
to wCa � 0.24, the x-axis (or aluminum axis)
from magnesium to wAl � 0.7, and the y-axis
(or strontium axis) from magnesium to wSr �

0.24. The compositions of the liquid in equilib-
rium with two solid phases are given in the
two-dimensional planes of z-x for Mg-Al-Ca,
z-y for Mg-Ca-Sr, and x-y for Mg-Al-Sr, respec-
tively. Next, the compositions of the liquidus
emanating from the ternary invariants, Ii and
IIi, to the three-dimensional x-y-z space are
extended. When four such monovariants inter-
cept each other, a five-phase invariant forms
in the quaternary. There are a total of four types
of invariant reactions in a quaternary system,
represented as I(q), II(q), III(q), and IV(q)
(Ref 60). The symbol (q) indicates it is a qua-
ternary invariant, differentiating it from a ter-
nary invariant. In the magnesium-rich Mg-Al-
Ca-Sr quaternary shown in Fig. 16(b), there is
one type I quaternary invariant, I1(q), that is, a
quaternary eutectic; four type II invariants,
from II1(q) to II4(q); and one type III quater-
nary invariant, III1(q). As shown in this figure,
the quaternary monovariant liquidi are shown
in red to differentiate them from the ternary
monovariant liquidi. Also shown in this figure
are four quaternary saddle points, from S1(q)
to S4(q). The calculated compositions of the
co-existing phases at the invariants are given

in Table 2. In addition to the phase equilibria
given in Fig. 16(b) and the invariant equilibria
given in Table 2, the reaction sequences start-
ing from the liquid to the solid phases at lower
temperatures are presented in Fig. 16(c). All
data given in these figures aid in better compre-
hending the complex heterogeneous equilibria
involving the liquid and solid phases in the
Mg-Al-Ca-Sr quaternary.
Next, the calculated solidification path of the

commercial alloy AXJ530 (5 wt% Al, 3 wt%
Ca, and 0.15 wt% Sr) is plotted in Fig. 16(d)
as open blue circles. When the temperature
reaches the liquidus surface, P0 (609 �C),
a forms as the primary phase of solidification;
L + a exists. With further decrease in tempera-
ture to P1 (526 �C), another phase, C36, solidi-
fies, forming a three-phase equilibrium of L + a
+ C36. When the liquid reaches P2 (510.2 �C),
a specific composition on the monovariant
liquidus emanating from S2(q), C15, appears,
forming a four-phase equilibrium of L + a +
C36 + C15. A four-phase equilibrium of
L + a + C36 + C15 now exists. Note that, sub-
sequently, the liquid composition moves from
one monovariant liquidus at P2 (510.2 �C) to
another monovariant liquidus at P3 (507 �C)
of L + a + C15 + C14. In between these two
temperatures, the liquid is in equilibrium with
a + C15. The liquid composition eventually
reaches the quaternary eutectic, I1(q), that is,
L + a + C14 + C15 + Mg17Sr2. The eutectic liq-
uid would next solidify to form a four-phase
mixture of a + C14 + C15 + Mg17Sr2. One
may raise a question why the liquid does not
follow the liquidus of the monovariant reaction
to II1(q) instead of moving to the liquidus of
another monovariant reaction, eventually to
I1(q). The answer lies in the geometrical rela-
tionship between the compositions of the solid
phases with respect to that of the liquid. The
reader is referred to a paper by Yang et al.
(Ref 63), which gives a clear explanation. Even
though it is possible to follow the sequence of
the path of solidification of such as quaternary
alloy qualitatively after mastering the liquidus
projection given in Fig. 16(d) and the reaction
sequence given in Fig. 16(c), it is extremely
challenging, if not nearly impossible, to compre-
hend the phases formed sequentially, not to
mention the temperatures. This example demon-
strates the difficulty in fully understanding the
liquidus projection of a quaternary when com-
pared with that for a ternary. The subsequent
text demonstrates how a robust software such
as Pandat (Ref 31), integrating phase diagram
calculation with the basic Scheil solidification
model for substitutional alloys, can readily cal-
culate and plot the solidification path of an alloy
such as AXJ530. The plots show not only the
fractions of solids formed as a function of tem-
perature but also the amounts of the phases
formed. As shown in Fig. 17(a), the sequence
of phase formation is P0, L ! L + a (P0,
609 �C) ! P1, L + a + C36 (P1, 526 �C) !
P2, L + a + C36 + C15 (P2, 510.2 �C) ! P2–
P3, L + a + C15 (510.2–507 �C) ! P3, L + a
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rich corner, using Pandat. Source: Ref 30
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+ C15 + C14 (P3, 507 �C)! I1(q), L = a + C15
+ C14 + Mg17Sr2 (I1(q), 504

�C) ! a + C15 +
C14 + Mg17Sr2 (<504 �C). As shown in
Fig. 17(a), the quaternary eutectic formed of a,
C15, C14, and Mg17Sr2 is approximately 1%.
Next, it is shown that the results obtained

from a directionally solidified alloy AXJ530
are consistent with the calculated path of

solidification (Ref 54). It is clear from Fig. 17
(a) that the primary phase of solidification is
the a(Mg) phase; the second phase formed is
C36, followed by C15, C14, and lastly the qua-
ternary eutectic (I1(q)). The fraction of the
eutectic is �1%, as shown in this figure. The
calculated temperature as a function of the
phase fractions presented in Fig. 17(b) shows

that the primary solidified a(Mg) phase has
the largest amount, followed by C36; the
amounts of the other phases are rather small,
1% or less. Figure 17(c) shows an optical
micrograph of a directionally solidified alloy
AXJ530 at the solid/liquid interface. This
micrograph clearly shows the dendrite structure
of the a(Mg) phase and the quenched-in liquid.

Fig. 16 (a) Calculated liquidus projections of Mg-Al-Ca-Sr in the magnesium corner showing the liquid compositions of the binary eutectics, e1, e2, and e3, as well as those of
the monovariant equilibria emanating from the binary eutectics to the three ternary regions, including those at the four-phase invariant equilibria. The primary phases

of solidification in the respective ternaries are also shown. The compositions are given in wt%. (b) Calculated liquidus projections of Mg-Al-Ca-Sr in the magnesium corner
showing the liquid compositions of the binary invariant reactions, e1, e2, and e3; the ternary invariant reactions, I1 and I2, as well as II1, II2, and II3; and those of the monovariant
four-phase equilibria emanating from the ternaries to the quaternary space, including those at the five-phase invariants. All the liquid composition curves and the primary phase
of solidification are presented in red. The symbols I1(q), II1(q) to II4(q), III1(q), and so on refer to the types of invariants for the quaternary Mg-Al-Ca-Sr system. The compositions
are given in wt%. (c) Reaction sequences for the invariant equilibria in the liquidus projection of Mg-Al-Ca-Sr (see b). The four-phase invariant equilibria enclosed in dashed-line boxes
are not shown in (b). (d) Calculated solidification path of alloy AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%) according to the Scheil solidification condition shown on the liquidus surface of the
magnesium-rich corner of Mg-Al-Ca-Sr. At P0, 609 �C: L + a; at P1, 526 �C: L + a + C36; at P2, 510.2 �C: L + a + C36 + C15; at P2–P3, 510.2–507 �C: L + a + C15; at P3, 507 �C: L + a
+ C15 + C14; at 504 �C: (I1(q)) L + a + C15 + C14 + Mg17Sr2
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Figure 17(d) shows an SEM/backscattered
electron cross-sectional micrograph of the
directionally solidified alloy in the mushy
zone. This micrograph consists of primary
a(Mg) and the eutectic-like microstructure.
The TEM/selected-area diffraction shows that
the second phase is C36, which is consistent
with the calculated sequence of phase forma-
tion. The micrograph in the steady-state zone
in Fig. 17(e) shows the presence of a(Mg) as
the primary phase of solidification, with
a subsequent eutectic-like microstructure of
a(Mg)/C36. The phase in the lower-right cor-
ner is a strontium-rich phase, likely to be
Mg17Sr2. In view of the small amount of other
phases according to the Scheil calculation,
they were not found in the selected micro-
structure. It can thus be concluded that the
results of the solidification experiments sup-
port the reliability of the database and the
solidification simulation.

Partition Coefficients

Prior to the age of computational thermody-
namics, the normal approach in calculating
microsegregation in multicomponent alloys
was to assume the partitioning coefficients to
be constant (Ref 64, 65). A partitioning coeffi-
cient is the ratio of the compositions of the
solid and liquid in equilibrium with each other
at a specified temperature. While it is reason-
able to make this assumption for binary alloys
for back-of-envelop calculations of microsegre-
gation during solidification, this assumption is
not acceptable for multicomponent alloys.

Chang et al. (Ref 62) had demonstrated that
while the partition coefficients of copper in
binary Al-3.28wt%Cu alloy change slightly
with temperature, those of copper in higher-
order aluminum alloys, such as Al-3.28wt%
Cu-5.9wt%Si, Al-3.28wt%Cu-5.9wt%Si-
0.42wt%Mg, and the seven-component B-319
alloys, change appreciably with temperature.
Figure 18 shows that while the partition coeffi-
cients of aluminum in Mg-5wt%Al change
slightly with temperature, those of aluminum
in a ternary Mg-5wt%Al-3wt%Ca alloy and a
quaternary Mg-5wt%Al-3wt%Ca-0.15Sr alloy
change noticeably with temperature. With the
availability of phase diagram calculation soft-
ware such as Pandat and thermodynamic data-
bases such as PanAl, PanNi, PanMg, PanCu,
and so on, it becomes straightforward to carry
out microsegregation calculations without
making this assumption. This clearly is another
advancement made by computational
thermodynamics.

Concluding Remarks

It is well-recognized that the Calphad
approach has made significant advancements
in calculating a variety of multicomponent
phase diagrams for materials/processing devel-
opment and/or improvements in a timely man-
ner. This success, which depends on the
reliability of the thermodynamic database and
the robustness of the computer software, has
been greatly enhanced with the availability of
second-generation software such as Pandat.

This software was initially available in 2000
(Ref 12) to automatically calculate the stable
phase diagrams given by a thermodynamic
database of an alloy system in question. The
current version of Pandat (Ref 30, 37) makes
such complex calculations effortless, so that
the materials scientists/engineers can focus
their efforts on materials development instead
of first becoming experts in such calculations.
Nevertheless, there remains a challenge to con-
tinuously improve the thermodynamic models
used for describing alloys with order/disorder
phase transformation, as noted in the opening
section of this article. The currently used for-
mulism based on the Bragg-Williams or point
approximation (Ref 66–68) is unable to prop-
erly account for the topological features of the
fcc-based phase diagrams, due to the neglect
of the existence of short-range ordering (SRO)
in the lattice (Ref 12, 24, 69, 70). On the other
hand, the cluster variation method (CVM) con-
sidering the existence of SRO does describe the
topological features of the fcc-based phase dia-
grams but is computationally demanding, par-
ticularly for multicomponent alloy systems
(Ref 71, 72). Oates et al. showed that the clus-
ter/site approximation (CSA) retaining the exis-
tence of SRO is computationally efficient (Ref
72). The CSA has since been used successfully
in describing the fcc-based phase diagrams in
binaries, ternaries, and quaternaries, such as
the technologically important nickel-base
superalloys (Ref 29, 73–79). Recently
Kusoffsky et al. (Ref 80) and Abe and Sundman
(Ref 81) made a modification of the compound
energy formalism (CEF) by incorporating addi-
tional reciprocal parameters. The modified CEF
is able to account for the topological features of
the calculated fcc-based phase diagrams but
still does not consider the existence of SRO in
the lattice, as shown in Fig. 19(b) and (c). It
is evident from Fig. 19(c) that the CVM- and
CSA-calculated entropy values are nearly the
same, while those of the modified CEF-calcu-
lated values are considerably higher. These dif-
ferences are due to the fact that SRO is
accounted for by CVM and CSA but not by
the modified CEF. In other words, the entropy
of mixing in the modified CEF remains ran-
dom. The larger entropy values obtained from
the modified CEF are compensated for by the
more positive enthalpy values, as shown in
Fig. 19(a). Thus, the modified CEF-calculated
Gibbs energy values are able to account for the
topological features, but this model does not
include SRO in the lattice. In view of space lim-
itation, the details of these models are not dis-
cussed, and the calculated Gibbs energy,
enthalpy, and entropy values are simply pre-
sented as a function of temperature using
CVM, CSA, CEF, and modified CEF for a
binary fcc solid solution at equal atomic compo-
sition. As shown in Fig. 19(b) and (c), the calcu-
lated enthalpy and entropy values using CSA are
essentially the same as those calculated using
CVM as a function of temperature but not the
modified CEF-calculated values. The modified

Table 2 Invariant equilibria in the quaternary Mg-Al-Ca-Sr system

Type of invariants Reaction Temperature, �C Phase

Composition, wt%

Al Ca Mg Sr

I1(q) L ! C14 + C15 + a + Mg17Sr2 504 L 0.105 0.105 0.696 0.094
C14 0.213 0.346 0.303 0.137
C15 0.468 0.395 0.086 0.051
a 0.013 0.002 0.985 0
Mg17Sr2 0.074 0 0.63 0.296

II1(q) L + C36 ! C14 + C15 + a 509 L 0.102 0.119 0.72 0.060
C36 0.486 0.424 0.09 0
C14 0.217 0.384 0.316 0.083
C15 0.471 0.411 0.089 0.029
a 0.013 0.002 0.985 0

II2(q) L + Mg17Sr2 ! C15 + a + Al4Sr 494 L 0.217 0.045 0.656 0.082
Mg17Sr2 0.18 0 0.528 0.293
C15 0.518 0.370 0.029 0.083
a 0.048 0 0.952 0
Al4Sr 0.466 0 0.082 0.452

II3(q) L + Al4Sr ! C15 + a + g 480 L 0.257 0.038 0.663 0.041
Al4Sr 0.487 0.001 0.063 0.449
C15 0.539 0.394 0.019 0.048
a 0.067 0 0.933 0
g 0.307 0.028 0.555 0.110

II4(q) L + C15 ! g + C36 + a 460 L 0.3 0.032 0.667 0.001
C15 0.561 0.425 0.012 0.002
g 0.381 0.067 0.541 0.011
C36 0.535 0.374 0.091 0
a 0.092 0 0.908 0

III1(q) L + Al4Sr + C36 ! C15 + g 492 L 0.372 0.037 0.573 0.017
Al4Sr 0.533 0.015 0.028 0.425
C36 0.542 0.366 0.092 0
C15 0.557 0.412 0.01 0.021
g 0.402 0.037 0.499 0.062
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CEF-calculated entropy and enthalpy values are
better than the CEF-calculated values but still
deviate appreciably from those calculated by
CVM and CSA. The readers are referred to the
literature (Ref 82) for a discussion of the suitabil-
ity of CSA in describing the thermodynamics of
fcc-based phases. The thermodynamically calcu-
lated phase diagrams of several alloy systems
presented here clearly demonstrate the advance-
ment made in this field for practical applications.
There is hope that CSA may be used in database
development, particularly for the technologically
important nickel-base superalloys in the not-too-
distant future.
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Fig. 17 (a) Calculated temperatures as a function of the fraction of solids of alloy AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%), with an enlarged inset showing the same relationship at low
temperatures according to the Scheil solidification condition. (b) Calculated temperatures as a function of the phase fractions formed under the Scheil solidification

condition, with an enlarged inset showing the same data at low temperatures. (c) Optical micrograph of a directionally solidified sample at the solid/liquid interface showing the
primary solidified a(Mg) phase exhibiting a dendritic structure and quench-in liquid. (d) Scanning electron microscope/backscattered electron (SEM/BE) micrograph of
directionally solidified structure in the mushy zone showing primary a(Mg), quenched-in liquid, and the eutectic-like a(Mg) + C36 structure. The transmission electron
microscope/selected-area diffraction image shows that one of the phases in the eutectic-like structure is C36. (e) SEM/BE micrograph of directionally solidified structure in the
steady-state zone showing primary a(Mg), eutectic-like a(Mg) + C36 structure, and a strontium-rich phase formed in the later stage of the solidification

Fig. 18 Calculated partition coefficients of aluminum
in the a(Mg) phase for a binary Mg-5Al

alloy, a ternary Mg-5Al-3Ca alloy, and a quaternary
AXJ530 (Mg-5Al-3Ca-0.15Sr) alloy. All the compositions
of these alloys are given in wt%.
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Internal-State Variable Modeling of
Plastic Flow
H. Mecking, Material Science and Technology, T U Hamburg-Harburg, Germany
A. Beaudoin, University of Illinois at Urbana-Champaign

IF AN ABSOLUTELY PERFECT SINGLE
CRYSTAL would be subjected to a tensile test,
it would deform elastically up to roughly 10%
strain. This corresponds to a stress level of
10% of the elastic modulus, at which point the
externally applied force on the atoms would
overcome their binding force, and the crystal
would fracture. This theoretical limit of
strength represents an upper limit, never
reached in practice, since a perfect lattice is a
theoretical abstraction. In reality, every crystal
contains all kinds of lattice imperfections, col-
lectively termed microstructure, that reduce
the fracture stress. Even this lower stress level,
however, can be established only under the sup-
position that the crystal does not yield first.
The yield stress is the stress level where dis-

locations are forced to move and to produce a
plastic shear strain by slip of lattice planes in
certain lattice directions. The yield strength of
a material depends on microstructure and can
be varied greatly by thermomechanical proces-
sing. There is, however, a lower limit of the
yield strength due to the intrinsic lattice resis-
tance to dislocation motion, the so-called
Peierls force (Ref 1, 2). It depends on crystal
structure and can be quite high, in particular
when covalent bonding prevails, as in the case
of many ceramics and semiconductors. These
materials suffer from inherent brittleness,
because the Peierls stress exceeds the fracture
stress, and stand in contrast to those materials
with close-packed structures, where metallic
bonding dominates.
In pure metals, the Peierls stress can be

extremely low, down to more than 6 orders of
magnitude lower than the shear modulus
(Ref 3). In reality, however, additional obsta-
cles to dislocation motion, such as vacancies,
interstitials, impurity atoms, and other disloca-
tions, are always present. These obstacles must
be passed or be cut by the traveling disloca-
tions. Therefore, even in pure face-centered
cubic (fcc) and hexagonal crystals (of approxi-
mately 99.99% purity), the yield stress (critical
resolved shear stress) is generally much higher

than the Peierls stress; in well-annealed crys-
tals, the room-temperature yield stress is typi-
cally found between 0.001 and 0.01% of the
shear modulus.
If plastic flow of a crystal is by dislocation

motion on only one crystallographic slip sys-
tem, this mode of deformation is called single
slip. It typically occurs when one slip system
is much weaker than all others; in some hexag-
onal metals, for example, cadmium, zinc, or
magnesium, slip on the basal plane is much
easier than on prismatic and pyramidal planes
(Ref 4). In single slip, deformation is carried by
only one kind of dislocation, which travels over
large distances. By way of continuous reproduc-
tion of the moving dislocations, avalanches of
dislocations of the same species are created,
which form narrow (a few nanometers wide) slip
lines at the sample surface along the trace of a slip
plane. An individual slip line is active only for a
short time and must be replaced by activation of
a new one at a different site (Ref 5). Under these
conditions, the stress required for deformation
to continue rises very slowly with strain; hence,
this stage of deformation is called easy glide.
Under suitable circumstances, the whole stress-
strain curve of a hexagonal crystal consists of
the easy glide region.
This is not so in fcc crystals. The fcc lattice

offers 12 crystallographically identical slip sys-
tems of type {111}h110i (24 if positive and
negative slip directions are counted separately).
Generally, deformation starts with easy glide
and a corresponding low hardening rate by acti-
vation of the so-called primary system, where
the applied stress has the highest resolved shear
stress compared to all other systems. This
regime of easy glide is deemed stage I. As seen
in Fig. 1, it persists only for a small range of
strain, until the hardening rate increases rapidly
and the stress-strain curve turns upward into a
steep, almost linear branch, called stage II.
The slope in this stage is athermal: It depends
on crystal orientation but not on temperature,
except for the temperature dependence of the
shear modulus. Stage III follows as the slope

of the stress-strain curve decreases gradually,
tending toward a horizontal course with zero
slope. Stage III is strongly affected by tempera-
ture and reduces the length of stage II continu-
ously with increasing temperature and
decreasing rate of deformation.
The discovery of the different stages has cer-

tainly been a milestone in the understanding of
hardening mechanisms. It has triggered a large
amount of experimental and theoretical
research activities about the dislocation pro-
cesses that govern the various stages of work
hardening. For a comprehensive update of the
actual state of the art, the reader is referred to
the literature (Ref 8, 9). – see also the “Disloca-
tions in Solids” series. In spite of still-existing
controversies about prevailing mechanisms,
the general view is undisputed: Easy glide will
end when the applied stress, in combination

Fig. 1 Resolved shear stress, t, versus shear strain, g, of
the primary slip system of a silver single crystal,

oriented for single slip and deformed in tension at room
temperature. The stages I, II, and III can be clearly
distinguished, since silver exhibits a distinct stage II, due
to its low stacking fault energy (Ref 6). The
corresponding curve of a fine-grained polycrystal (Ref 7)
exhibits stage III behavior from the beginning. Here, the
normal stress, s, and the strain, e, are converted to shear
stress and shear strain, respectively, with the help of the
Taylor factor t = s/3 and g = 3e. See the section
“Basic Relationships for Work Hardening in Stage III” in
this article.
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with internal stresses, triggers slip on secondary
systems. The contribution to the strain by sec-
ondary dislocations is negligibly small; how-
ever, since they will entangle with primary
dislocations, they have a strong catalytic effect
on the storage rate of dislocations and cause
the high hardening coef cient in stage II. As
deformation continues, dislocation arrange-
ments that have been stored at lower strain
can become unstable and partly be eliminated
under action of the higher stress at larger strain,
resulting in a loss of dislocations. These recov-
ery processes are thermally activated; they
superimpose on the athermal hardening pro-
cesses and cause the temperature and rate
dependence of stage III. It is worth emphasizing
that throughout stages I, II, and III, deformation
is carried by slip in the primary system, accom-
panied by only a small (catalytic) amount of
secondary slip.
In symmetrically oriented crystals, with the

sample axis parallel to directions h100i or
h111i, under axial loading, 8 or 6 slip systems,
respectively, are equally stressed, and deforma-
tion is by polyslip. The stress-strain curves
resemble those of polycrystalline material,
where the grains are also enforced to deform
by polyslip. Naturally, stage I is absent under
these conditions, but stage II also does not
emerge very clearly, as seen from the stress-
strain curve of a polycrysal in Fig. 1. The curve
starts after yielding, with a high slope of the
same magnitude as in stage II of the single crys-
tal (within a factor of 2 or so), but ßattens con-
tinuously from the beginning, just like stage III
of the single-crystal curve. This seems to suggest
that the whole curve consists of stage III, and
stage II has degenerated into a low-strain asymp-
tote. Considering this behavior, and instead of
introducing stages, it seems to be more appropri-
ate to refer to the different mechanisms them-
selves: athermal storage, thermally activated
recovery, and possible large strain mechanisms
of stage IV and beyond. While one of them
may dominate in a certain regime, they certainly
all occur simultaneously.
This short exposition is meant to explain how

the various regimes of stress-strain curves can
be distinguished and how they are linked to
the key processes of strain hardening.
Up to now, ab initio (from the beginning)

theories of work hardening exist only in rudi-
mentary form, since the interaction between
all dislocation segments in a network can be
dealt with only by complex computer codes
(Ref 9). There exists, however, a huge body of
experimental observations on strain-hardening
behavior in relation to the evolution of the dis-
location structure that allows modeling, based
on phenomenological connections. This article
is mainly concerned with analyzing and model-
ing of stress-strain behavior of polycrystals of
pure fcc metals in the range of temperatures
and strain rates where diffusion is not impor-
tant. Rules are presented for parameter identi -
cation and for classi cation of the various fcc
metals according to their stacking fault energy.

The backbone of the analysis is the physical
concept elaborated by Kocks and Mecking
(Ref 8), which offers a complete description
of stage II and III work hardening of pure
fcc metals, that is, in the strain regime that is
usually covered in stress-strain tests.
The whole approach is based on the assump-

tion that dislocation accumulation is governed
by only one state variable, namely, the total dis-
location density. This leads to a differential
equation, a so-called state function, for disloca-
tion accumulation in which history variables
such as strain and time only appear differen-
tially. The integral along a speci c path (con-
stant temperature and strain rate) gives the
stress-strain curve. The state function contains
only two parameters that must be determined
experimentally: The athermal storage rate is a
constant, and the recovery rate varies with
deformation temperature and strain rate. The
values of the parameters contain the complete
information about the hardening behavior of a
given fcc metal at any temperature and strain
rate. The physical concept can be extended to
other material classes, body-centered cubic
(bcc) and (in part also) hexagonal metals, and
can be used for the classi cation of alloying
systems.
The emphasis of this article is on the phe-

nomenological description of stress-strain
behavior. It also provides information about
physical background, alternative interpreta-
tions, and directions of research.

Dislocation Movement in a Field of
Point Obstacles

The physical basis for the model of work
hardening rests upon an understanding of the
motion of dislocations through a eld of obsta-
cles. An outline of the geometrical mechanism
underlying work hardening follows, with
emphasis placed on relating an evolving physi-
cal quantity, the forest dislocation density, to
the ßow stress.

Dislocation Percolation

Yielding has been simulated by determining
the con guration of dislocations in a eld of
point obstacles under the action of a continu-
ously increasing stress (Ref 10).
If the obstacles are weak, the dislocations

maintain a somewhat straight form and move
stepwise by the unzipping of kinks. In the pres-
ent context, however, strong obstacles are to be
considered, and this case is introduced in Fig. 2
for illustrating the crucial elements of motion
and storage of dislocations. As the applied
stress increases, the individual dislocation seg-
ments bow out between the obstacles and form
expanding, isolated loops. These loops build the
periphery of the blank (slipped) areas in Fig. 2
(a) and increase in size until the stress reaches
a level where some of them become unstable
and produce long-range slip along certain (soft)
channels. Although the area swept by the dislo-
cations is then in nite, they do not move to
every place in the slip plane; rather, they avoid
dense (hard) regions, with loops forming
the periphery of the shaded (hard) areas in
Fig. 2(b).
The stress level at which the slipped area is

very nearly contiguous (Fig. 2b) is then consid-
ered as the yield stress of the material. It is
given by the relationship:

t
m
/ b

l
(Eq 1)

where t is the resolved shear stress, l is the
average obstacle distance, m is the shear modu-
lus, and b is the length of Burgers vector. The
proportionality constant depends on the geo-
metrical arrangement and the pro le of the
obstacles and, if these are overcome with the
help of thermal activation, also depends on
temperature and strain rate. The ßow stress here
is determined by the situation in a few very spe-
cial areas, the critical gates that just barely
connect neighboring soft regions, and may be
envisioned as a saddle point between hard
regions.

Fig. 2 Dislocation percolation in a field of strong point obstacles. 550 randomly spaced obstacles, connected by
lines if they cannot be bypassed by a dislocation under the stress characterized by the circle in the lower-

right corner. Source: Ref 11
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Dislocation Storage

The hard regions in Fig. 2(b) are surrounded
with concave loops (loops that tend to shrink
under a positive stress). The fact that a part of
the continually ßexing and gliding dislocation
was left behind (as a kind of debris), while
other parts continued, is considered here as the
main hardening process, provided that the
debris is not unstable under further loading.
If the incremental number of concave loops per

unit volume produced is dN, then the stored dislo-
cation length is dr=LdN, wherebyL is the length
of the average periphery of a loop. The resulting
shear increment is dg = bl2 dN, where l2 is the
area swept in the average circuit around each loop
and is the square of their average spacing, l.
Therefore, the storage rate of dislocations
becomes dr/dg = L/bl2. Since L and also l cer-
tainly scale with the obstacle spacing, l, the right
side becomes L/l2 = 1/bl, with a yet unknown
value of the constant b giving:

dr
dg
¼ 1

bbl
(Eq 2)

The geometrical mechanism of dislocation stor-
age reviewed here has some very attractive fea-
tures although a number of problems remain. It
naturally leads to a heterogeneous dislocation
substructure not by the decomposition of an
assumed initially homogeneous structure, but
by increasing any existing ßuctuations. It is just
the dense areas that become denser through the
storagemechanism.One dif culty is that the con-
cave loops stored would be expected to collapse
when the next dislocation traverses the slip plane
and attempts to add another loop to the same area.
Thus, a stabilizing mechanism must be found. It
was proposed by Kocks (Ref 11) that secondary
dislocations in the neighborhood (i.e. belonging
to a slip system not active at this instant) can rear-
range locally, and would be likely to react by
entangling with the primary loop; this would
serve as a potent stabilizing mechanism. Kubin
(Ref 10) proposed another possibility based on
observations in a dislocation simulation code:
that bits of the concave loop itself engage in a
local cross-slip process. Both processes have in
common that non-coplanar slip systems are
required, which can explain rst, why these hard-
ening processes occur preferentially in materials
that more easily activate slip systems on different
planes and, secondly, how the primarily stored
mobile dislocations are converted into the forest
dislocations that control the ßow stress.
This leads to one of the major problems

in strain-hardening models (this one as well
as others): how to explain the generation of a
three-dimensional dislocation network (as a con-
sequence of two-dimensional glide). The model
of concave loops, stabilized by interactions with
other, non-coplanar slip systems (or by cross slip),
naturally calls for the formation of a more spheri-
cal than circular affected region. Thus, natural
mechanisms link neighboring storage centers in

the slip plane (as slip stops on that plane) and also
propagate storage centers perpendicular to the slip
plane.Madec et al. (Ref 12) have shown that cross
slip and short-range interactions serve to promote
organization of the microstructure. Elevated local
stress in dislocation walls promotes cross slip,
which in turn provides stabilization through relax-
ing local internal stresses.
In summary, the two-dimensional structures

that form as an immediate consequence of the
mobile dislocations having left some parts of
themselves behind are associated with an inter-
nal stress pattern that tends to propagate these
structures into the third dimension. This plastic
relaxation of the internal stresses is not an event
that actually follows the initial storage in a time
sequence but ought to occur simultaneously.
Note that the relaxation processes will always
be less than perfectly ef cient, so that a polar-
ized internal stress pattern, albeit lowered,
remains. The impact of relaxation is threefold:
The dislocation structure is stabilized, a more
three-dimensional cell structure results, and
the effect of primary dislocations is converted
into that of forest dislocations.
Certainly, the dislocations of locally activated

secondary slip systems will entangle with the
primary dislocation stored at a hard region and
make the hard spots even harder, but little is
known about the level of extra strength. Most
likely, under continuing straining the increasing
ßow stress enforces rearrangements of the local
dislocation tangles, which, in the extreme, may
even consist of a partial collapse of a hard spot,
accompanied by a loss of stored dislocations.
Instabilities of this nature are assumed to coun-
teract the storage processes described at the
beginning, with increasing frequency as the ßow
stress rises. These, in the authors view, are the
mechanisms underlying dynamic recovery that
causes a continuous decrease of the net storage
rate of dislocations as deformation proceeds.
While the storage part, by its very nature, is
athermal (not dependent on temperature or strain
rate), the loss of dislocations by rearrangement
and collapsing is enhanced by thermal activa-
tion, and so, dynamic recovery is strongly
affected by temperature and strain rate.

Basic Equations for Flow Stress
and Strain Hardening

Flow Stress

Although percolation of dislocations in a eld
of stationary network dislocations is more com-
plex than the simple situation sketched in
Fig. 2, the yield stress can be considered as the
transient point where there is a change in the
topology of moving dislocations. The critical
obstacle distance is then the separation of the
obstacle dislocations (the trees) in the critical
gates, where the soft areas merge at the yield
stress. This distance is assumed to scale with
the average dislocation density, r, so that l in

Eq 1 can be replaced by the average dislocation
separation 1=

p
r. Indeed, one of the most

surprising observations in the dislocation theory
of plasticity is that the relationship between ßow
stress, t, and dislocation density, r:

t ¼ a mb
ffiffiffi
r
p

(Eq 3)

holds with little regard to the arrangement of
dislocations.
The ßow stress discussed here relates to dis-

location interactions only. In general, there are
other contributions to the yield strength, and
the superposition law is not trivial (Ref 13).
To simplify the present discussion of strain
hardening, t is identi ed with the dislocation
part to the ßow stress only.
Because of thermal activation, a in Eq. 3

depends on temperature and strain rate. It
decreases with increasing temperature and
decreasing strain rate for each material in a
characteristic way. As dislocations bow out
under stress, interactions lead to changes in the
value of a with evolution of the dislocation den-
sity (Ref 14). However, this kind of variation is
neglected in the following since they are small,
much below the experimental and theoretical
accuracy for the actual value of a. Thus, a is con-
sidered as only depending on temperature and
strain rate for a given material:

a ¼ að _g; T Þ (Eq 4)

implying that the Cottrell-Stokes relationship
(Ref 15) is obeyed. According to this relation-
ship, the relative rate and temperature sensitiv-
ity of the ßow stress, 1/m and 1/m*:

1

m
¼ d ln t

d ln _g

� �
r;T

d lna
d ln _g

� �
T

and

1

m�
¼ � d ln t

d lnT

� �
r; _g

� d lna
d lnT

� �
_g

(Eq 5)

are constant along a stress-strain curve. The
values for m and m* can be determined experi-
mentally during a stress-strain test by back-and-
forth changes, D ln _g, of the strain rate (or DlnT
of temperature) in small strain intervals and by
monitoring the magnitude of the relative stress
jumps, Dt/t. According to Cottrell-Stokes,
Dt/t stays constant along a stress-strain curve
for a given jump, D ln _g, and so does the rate
sensitivity, 1=m ¼ D ln t=D ln _g (and 1/m* is
determined from temperature changes).
As a consequence, the activation enthalpy,

Q = kTm/m*, is constant as well during a
stress-strain test, where k is the Boltzmann
factor. The usual interpretation of these interde-
pendencies is that the thermal and the athermal
parts of the ßow stress stay in a xed relation, a
rule favoring forest cutting as the controlling
process.
The effect of thermal activation on the ßow

stress caused by dislocation interactions is not
very large, in contrast to strain hardening, which
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is also thermally activated and to a much more
sensitive extent than the ßow stress. For the rea-
son of simplicity, the temperature dependence of
the ßow stress is ignored in the following in par-
ticular because this neglect has been found to
have practically no effect on the outcome and
conclusions of the analysis.

Athermal Hardening

Because the (dislocation-caused) ßow stress
is determined by Eq 3, its increase with strain
is due to dislocation storage. If in Eq 2 the
obstacle separation l is replaced by 1=

p
r, the

rate of accumulation of dislocations can be
written as:

dr
dg
¼ 1

bb
ffiffiffi
r
p

(Eq 6)

This dislocation accumulation rate is a funda-
mental quantity in the dislocation theory of
strain hardening (Ref 16). It is accessible from
experiment; replacing the dislocation density,
r, by the ßow stress, t, with the help of Eq 3,
gives y = dt/dg:

y0
m
¼ a

2b
(Eq 7)

There, the subscript points at the athermal
nature of y0 (except for the negligibly small
effect of rate and temperature on a). The exper-
imental values of a depend on how the disloca-
tion density has been measured. For copper at
room temperature, the following values have
been found (Ref 17): a = 1, counting the etch
pit density of dislocations piercing the slip
plane; and a = 0.5, evaluating the total disloca-
tion length in transmission electron microscopy
(TEM) thin foils. The value of b can be deter-
mined from the slope of the athermal region
of stress-strain curves and turns out to be rather
sensitive to the orientation of single crystals.
Generally, single-slip orientations, after an ini-
tial ßat stage I, called easy glide, develop a
rather steep, often linear stage II (Ref 18) with
a slope of approximately m/300 not dependent
on temperature corresponding to b = 75 (for
a = 0.5). Multiple-slip orientations (with strain-
ing in directions such as h100i or h111i)
develop no stage I and only a rudimentary stage
II, which often degenerates into a temperature-
insensitive initial slope of generally up to a fac-
tor of 2 steeper than the stage II of single-slip
orientations. This behavior is quite similar to
that observed with polycrystals, for example,
the curves in Fig. 3 for polycrystalline copper
obtained at various temperatures between room
temperature and 400 �C for two strain rates.
Immediately after yielding, the curves all start
out with approximately the same slope,
Y0 � m=200, given by the dashed line, which
can be interpreted as the counterpart of the
work-hardening coef cient in stage II for single
crystals in polyslip and corresponds to

Y0 � m=200 (since Y = M2 y, with the Taylor
factor M � 3, see the text following Eq 9).

Dynamic Recovery

As was pointed out in the preceding section,
dislocations stored at a certain ßow stress
may, at a later stage, rearrange and partly be
annihilated under the action of a higher stress.
This, in the authors view, is the mechanism
underlying dynamic recovery that causes a con-
tinuous decrease of the net storage rate of
dislocations as deformation proceeds. Since
rearrangement and collapsing is enhanced by
thermal activation, dynamic recovery is
strongly affected by temperature and strain rate,
in contrast to the storage part, which is ather-
mal. This effect can be accounted for in Eq 6
by subtracting a recovery term from the storage
term in the form:

dr
dg
¼ 1

bb
ffiffiffi
r
p �Rð _g; T Þr (Eq 8)

The function Rð _g; T Þ accounts for the effect of
temperature and strain rate on dynamic recov-
ery by thermal activation. This equation takes
up the general observation that athermal storage
dominates at low strains, where r is small,
while dynamic recovery prevails as the disloca-
tion density increases with strain. Its simple
form allows determining the involved para-
meters easily from the evaluation of macro-
scopic behavior, which then can be subjected
to physical interpretation.
The physical nature of recovery processes is

still a controversial issue in literature. To illus-
trate the line of discussion some current models
will be represented in the following.
In the traditional Seeger model (Ref 21),

dynamic recovery is governed by massive cross
slip of large groups of screw dislocations,
which have been stored previously in front of
extended Lomer-Cottrell barriers and are reacti-
vated at higher stresses at the beginning of
stage III in single crystals.
In the concept, elaborated in detail by Kocks

and Mecking (Ref 8), it is assumed, however,
that, in accordance with Eq 8, dislocation accu-
mulation is already counteracted by recovery
processes from the beginning of deformation,
with continuously increasing frequency as
deformation proceeds. Hardening is due to clus-
tering of dislocations in local tangles, which are
spatially arranged in a loose cell wall structure
and, for example, could be envisaged as the
incidental dislocation boundaries, identi ed in
TEM studies by Hansen and coworkers (Ref
22), as a dominant microstructural feature in
deformed material A local tangle, created at a
certain level of the ßow stress, is stabilized by
various types of attractive junctions of involved
dislocation segments; it will become unstable,
however, at some higher stress level. Thus,
each tangle site can be characterized by a stress,
which breaks the junctions and forces

rearrangement or even collapsing at that tangle
site, corresponding with a loss of dislocations.
The value of the breaking strength varies from
tangle to tangle spanning a wide distribution.
Hence, as the ßow stress increases in the course
of straining, weak tangles are successively
eliminated from the structure until, eventually,
only one species survives. In this picture, both
hardening and recovery processes are jerky by
nature, since they are made up of discrete
events that involve rather large groups of
dislocations.
Argon takes an alternative approach. On the

basis of earlier work with Haasen, dislocation
storage is treated as a continuous process (Ref
23). The breaking of Lomer-Cottrell junctions
in cell walls is introduced as the controlling
process for dynamic recovery, where the dislo-
cation ßux gradually weakens the cell walls
by eliminating the strong Lomer-Cottrell junc-
tions, in step with a continuous re nement of
the cell size. Assuming an interconnection
between several quantities, such as cell size,
volume fraction of cell boundaries, and the par-
tition of the total dislocation content in cell and
boundary dislocations, the model arrives at a
relationship for the hardening coef cient in
stage III of quite the same analytical form as
follows from Eq. 8.
In a recent publication by Zaiser and Seeger

(Ref 24), the storage rate of dislocations has
been found to have the same form as Eq 8 if,
along the stress-strain curve, the loss of disloca-
tions is estimated by statistical treatment of the
annihilation probability of screw segments by
cross slip. This view is supported by a computer
study of discrete dislocation interactions by
Madec et al. (Ref 12), where cross slip has been
found to play an important role for stabilization
of dislocation clusters and also for dislocation
annihilation.
In spite of the many uncertainties involved in

modeling the complex dislocation interactions
developed during plastic ßow, Eq 8 seems to
form a quite robust physical base for the overall
description of dislocation accumulation. It con-
tains only one state variable, the total disloca-
tion density, in a simple and straightforward
form that allows for assigning phenomenologi-
cal expressions to modeling parameters and is
used in the following for the evaluation of
observed stress-strain behavior.

Quantitative Description of Strain
Hardening of fcc Polycrystals

Basic Relationships for
Work Hardening in Stage III

A word on nomenclature before beginning
the evaluation of deformation behavior of poly-
crystals: Just as in single crystals, also in poly-
crystals, the shear ßow stress, t, is the resolved
shear stress that causes long-range slip in a
crystallographic slip system at a corresponding
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shear rate. Material compatibility requires
every grain of a polycrystalline aggregate to
perform polyslip at a resolved shear stress, t,
in at least ve geometrically independent slip
systems. The strain rate _gi is taken as the sum
of the shear rates of all systems activated in
grain-number i. This sum varies from grain to
grain and is _gi ¼Mi _e, where Mi is the individ-
ual Taylor factor as dictated by the crystal ori-
entation, and _e is the strain rate. In the Taylor
model, the strain rate is assumed to be the same
everywhere in the aggregate in order to guaran-
tee material compatibility. Under the assump-
tion that the shear ßow stress is the same in
all active slip systems of all grains, the internal
work is t _g, with _g being the cumulative shear
rate, and the external work is s _e, with s being
the applied normal stress in a tension or com-
pression test. Equality of internal and external
work rate ðt _g ¼ s _eÞ demands:

_g ¼M _e and s ¼Mt and Y ¼M2y (Eq 9)

where M is the average Taylor factor, _e is the
strain rate (the relative elongation rate), s is
the corresponding normal stress, t is the shear
ßow stress, and y = d t/dg and Y = ds/de. It
is in this sense that s, _e, and Y are used in
the following discussion.
If in Eq 8 the dislocation density is replaced

by the ßow stress, s, according to Eq. 6 and
9, the evolution of the dislocation content can
be written in terms of the ßow stress:

dðs=mÞ
de

¼M2a
2b
�MRð _e; T Þ

2
ðs=mÞ (Eq 10)

This equation provides the basis of the follow-
ing discussion, whereby stress and work-hard-
ening rate are always normalized by the shear
modulus. In this way, temperature dependences
caused by dynamic recovery, expressed by the
function R, are separated from the intrinsic tem-
perature dependence of the shear modulus (to
which s and Y are always proportional). Equa-
tion 10 is often written in the abbreviated form:

Y ¼ Y0 1� s
sv

� �
(Eq 11a)

Here, Y0/m = M2 a/2b � 1=20 (with M � 3) and
sv=m ¼ 2Y0=MRð _e; T Þ. Integration of Eq 11
(a) gives an equation where the saturation level
of the ßow stress, sv, is approached exponen-
tially with strain:

s� s0

sv � s0

¼ 1� exp�Y0

sv

e (Eq 11b)

The previous relationship was proposed by
Voce in 1948 as an empirical description of
stress-strain curves (Ref 25). The integration
constant, s0, is the initial ßow stress at
zero strain, a measure of the initial dislocation
density in pure fcc material; intrinsic nondislo-
cation contributions are discussed later in
connection with practical applications. The dif-
ferential form was introduced in 1976 by U.F.

Kocks for the superposition of dislocation stor-
age and recovery processes (Ref 26). It has
found widespread attention in literature and is
also used in the present evaluation. The rst
question is about the extent to which this rela-
tionship describes measured stress-strain curves
with suf cient accuracy and about the values of
the parameters Y0 and sv at a given tempera-
ture and strain rate.

Scaling Relationships for
Flow Stress and Work Hardening

Figure 3(a) displays stress-strain curves
measured in compression between room tem-
perature and 400 �C at two different strain rates
between 10�4 and 1 s�1 (Ref 19, 20). In
Fig. 3(b) the corresponding curves for the nor-
malized strain-hardening coef cient are plotted:
Y/m is given as a function of the normalized
ßow stress s/m. The curves are not straight;
rather, they exhibit tails with an upward curva-
ture at the low- and the high-stress end. The
low-stress regimes are not particularly impor-
tant, since they correspond to only a very small
portion of the stress-strain curve, at the begin-
ning at approximately yielding up to strains less
than 2%, and can be ascribed to the effect of
grain boundaries on dislocation storage (Ref
27, 28). The tails at high stress also span a
rather low-stress range, but corresponding
strains are rather large.
The curves in Fig. 3(b) look like a single-

parameter set, for the most part; thus, much
could be gained by scaling them. This examina-
tion uses the (straightish) middle part of the
curves in Fig. 3(b) which are assumed to be
typical of stage III behavior. It turns out that it
is possible to scale the Y-axis by a single value,
Y0, independent of the strain rate, and depen-
dent on temperature only through the shear mod-
ulus, m. This choice simpli es the derivation of a
scaling factor for the stress axis. In principle, this
scaling stress could be chosen as the stress level
for any Y/m-value of this regime, and a conve-
nient value would be just in the middle, that is,

at Y0/2 (Ref 29). An alternative procedure,
which has repeatedly been employed in the liter-
ature, is to approximate eachY/m-s/m curve by a
tangent to the rather straight middle part, with a
xed value for the intercept on the ordinate (or

at the yield stress), at Y0/m. The intercept on
the s-axis is then used as the scaling stress. Inas-
much as this straight line if it held true for the
entire regime would correspond to the Voce
law (Eq 11b), this particular scaling stress would
be identi ed as sv. (Please note: The subscript
in sv is not to be confused with the roman
numeral for 5.)
The curves of Fig. 3(b) are replotted in

Fig. 4, but now in a scaled form as Y/m versus
s/sv. It is seen that all curves fall into a very
narrow band, where the width of the band is
practically identical with the experimental
uncertainties of an individual curve. Obviously,
the set of curves for all temperatures and strain
rates forms a single master curve for the depen-
dence of the hardening rate on the ßow stress.
To re-iterate, the Voce law does not t the

stress/strain curves over the entire regime; it
does give a reasonable t over a signi cant
range of Y/Y0 and, more importantly, provides
a convenient method for arriving at a scaling
stress.
Phenomenological approximations to this

function, which differ from the Voce law, have
been proposed. As an example, a particular one
that has worked well in some cases is (Ref 30):

Y
Y0

¼ 1� s
ksv

� �k

(Eq 12)

with the adjustable parameter k � 1.3.
In summary, there is no doubt that the Y-s

curves for different temperatures and strain
rates form a one-parameter set of curves. Thus,
the hardening behavior can be predicted from a
knowledge of only two parameters of the master
curve, where one is the characteristic strain-
hardening value Y0 and the other the scaling
stress, chosen here as sv. y0/m is a true constant,
while the scaling stress sv ¼ svð _e; T Þ, which is
also proportional to m(T), depends in addition on

Fig. 3 (a) Stress-strain curves of copper polycrystals for a wide range of temperatures and two strain rates: 1 and 10�4

s�1. Source: Ref 19, 20. (b) The slope Y = ds/de as a function of s for the curves in (a)
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strain rate and temperature through thermal acti-
vation. Details of the nature of the recovery
mechanisms can be deduced from the tempera-
ture and rate dependence of sv, which is the
focus of the next section.

Scaling of Deformation Rate and
Temperature

In the 1960s and 1970s, in many investiga-
tions on single crystals, detailed evaluations of
the effect of temperature and strain rate
on work hardening were carried out using the
so-called tIII analysis introduced by Haasen,
Seeger, and others (Ref 31 33). Here, tIII marks
the stress level at the beginning of stage III, and
the analysis focuses on the effect of thermal
activation on tIII.
Mecking and Lucke (Ref 6, 29, 34) have

shown that the formalism used in the tIII analy-
sis may be extended to the whole hardening
curve, since the relative rate and temperature
sensitivity of the stress for any xed value of
y/yII was found to be a constant for a given rate
and temperature, that is, not to vary along a

hardening curve. This rule was found to hold
not only for single crystals but for polycrystals
as well, and it can be written as:

d lns
d ln _e

����
Y=m;T ¼ 1

n
and � d lns

d lnT
jY=m;_e ¼

1

n�

(Eq 13)

since yII, introduced at the beginning, is equiv-
alent to Y0. The fact that the derivatives n and
n* do not vary with deformation, points to a
striking similarity with the so-called Cottrell-
Stokes law, Eq 5, although the n- and m-values
generally differ by approximately 1 order of
magnitude, with n � m.
In the conventional tIII analysis, the rate and

temperature dependence of tIII is evaluated on
the basis of an Arrhenius equation with a loga-
rithmically stress-dependent activation energy,
which, in terms of sv, can be written as:

DG ¼ A�lnðsv0=svÞ ¼ �kT lnð _e=_e0Þ (Eq 14)

whereA is assumed to be amaterial constant (Ref
35), which depends on the relative stacking fault

energy. If Eq 14 were true, experimental data
would fall on a straight line in a diagram of lnsv

versus DG ¼ �kT lnð _e0= _eÞ.
Figure 4(b) displays a set of data on copper

polycrystals in this way, with _e0 ¼ 1s�1, that
is, just with _e measured in units of s�1. There
are two things wrong with such a plot. First,
the value of _e0 in any physically based Arrhe-
nius equation is never 1 s�1; it is, in fact, not
very well known, except for a general order of
magnitude. A good way to choose it is such as
to unify the experimental T and _e dependence,
provided the order of magnitude comes out as
expected. The second shortcoming, already
inherent in Eq 14, is that all ßow stresses are
expected to be proportional to the shear modu-
lus, which itself depends on temperature in a
nontrivial way; the same effect leads to a pro-
portionality of DG to mb3 (Ref 21, 36, 37).
Finally, since it is already evident in Fig. 4(b)
that the logarithmic dependence of the activa-
tion energy on stress is not exact over the whole
stress range, in particular at low stresses, the
lines are not straight. A more general form is
employed in the following, with an unspeci ed
functional dependence of the activation energy
on stress:

DG

mb3
kT

mb3
ln

_e0
_e
¼ g

sv=m
sv0=m0

� �
(Eq 15)

If, as required by Eq 15, DG/mb3 is a sole
function of s/m, then a value _e0 must exist
that brings all the data of Fig. 4(b) on a unique
curve in a plot of s/m versus ðkT=mb3Þ lnð _e0= _eÞ.
The optimum value for _e0 that ful lls
this requirement within the lowest scatter is
_e0 ¼ 107 s�1, as determined by trial and error.
This can be seen from Fig. 5(a), where the data
of Fig. 4(b) are replotted in normalized
coordinates.
A systematic search for other algebraic

approximations to the data (for many materials)
has led to the conclusion that the phenomeno-
logical equation for the reduced activation
energy DG/mb3 g:

DG
mb3

� �1=2

g1=2 / 1� s=m
sv0=m0

� �1=2

(Eq 16)

where sv0 is the maximum Voce stress at zero
temperature and ts these data best, to the
extent that one aims at a straight line as a good
representation of these data. The relationship
that includes the proper normalizations:

sv=m
sv0=m0

� �1=2

¼ 1� 1

g0

kT

mb3
ln

_e0
_e

� �1=2

(Eq 17)

thus can be used as a more accurate (although
less convenient) analytical description than Eq
14 of the function svðT; _eÞ. However, neither
one is expected on the basis of any rst-princi-
ples theory; only the parameter combinations
embodied in the coordinates are. Since an accu-
rate and general form for these dependencies is
never likely to be found, the best method for

Fig. 4 (a) Y - s curves of Fig. 3(b) plotted in a normalized form as Y/m vs. s/sv. The dotted line is the Voce
approximation, with Y0 = m/20. (b) Logarithm of sv versus kT lnð _e=s�1Þ for five strain rates in decades from

1 down to 10�4 s�1

Fig. 5 (a) A plot of logðsv=mÞ vs. kT=mb3 lnð107 s�1= _eÞ, verifying the validity of Eq 15. (Compared to Fig. 4b,
additional data for high temperature are included). (b) Same as (a) but with coordinates according to Eq

16, square root of sv/m versus square root of g. Note: It is conceivable that the slight bump in the middle of the plots
is due to dynamic strain aging in this oxygen-free electronic copper. See the section “Class 2, Dislocation
Interaction” in this article.
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constitutive descriptions is to employ two mas-
ter curves for each material, namely one for the
dependence of the hardening coef cient on the
ßow stress and the other for the dependence
of the scaling stress on temperature and strain
rate.
The prime advantage of a well- tting equa-

tion such as Eq 17 is that the parameters in it
(which depend on material) can be determined
in a reproducible way, for example, by extrapo-
lating to the axes in Fig. 5(b). One must bear in
mind, however, that the extrapolated values
themselves, such as g0, depend on the particular
exponents chosen for the plot and really should
not be interpreted as having a physical meaning
beyond the fact that they describe the measured
range well. The authors would also warn
against searching for a best t by computer to
Eq 29, letting the three parameters ßoat
(or even ve, if the two exponents ½ were to
be let go, always assuming that measured
values are used for m(T), or a separate best t
to modulus data). The value of _e0 can be
measured to suf cient accuracy from overlap-
ping data on the T and _e dependence. The value
of g0 is subject to the constraint that it should
be the same for any particular material. Only
the value of sv0 is adjustable to a particular
set of test samples.

Material Scaling by
Stacking Fault Energy (SFE)

It has been found that appropriate scaling
uni es the stress-temperature dependence of
all investigated materials into a single master
curve. A scheme follows where Voce stresses
have been corrected for nondislocation contri-
butions, si, to the ßow stress. To this end, the
sv data have been determined from plots of y
versus s-si, where the si values were found

by an optimization procedure: Each Y-s curve
was shifted along the stress axis until the tan-
gent of the (straight) middle part intersected
the abscissa at y0/m, a common value for a
whole set of curves for one material. The tan-
gent then intersects the new stress axis at sv.
Generally, the corrections were quite small
within the size of the symbols of the graphs
for sv and thus, they are of no particular rele-
vance within the present context for the pure
materials but can be very important for materi-
als of technical purity and, to a much greater
extent, for alloys where si can be quite high,
as is discussed in later sections.
Figure 6(a) is a replot of Fig. 5(b) for copper,

where data for silver, nickel, and aluminum
polycrystals are added, obtained at different
temperatures for various strain rates (data for
silver from Ref 7, 38, 39). Using the same value
for _e0 as for copper makes the data gather on
separate curves, one for each material. It has
already been presupposed in Fig. 6(a) that _e0
is a universal constant for all the considered
materials, noting that the database for silver,
nickel, and aluminum is not suf ciently com-
plete to prove the accuracy of this assumption.
If, however, _e0 would be material dependent,
this would not inßuence the general result of
this investigation.
It is seen that, as well as for copper, the

curves for the other metals are straight over a
considerable range, and the intercepts with the
axes determine the values for g0 and sv0 in
Eq 17, which are characteristic for each mate-
rial. It appears that a correlation exists between
the two intercepts, so that this is actually a one-
parameter set of curves, as seen from Fig. 6(b).
They both have been interpreted in terms of the
normalized SFE (Ref 42), and the values
obtained here for g0 and sv0 are listed together
with the reduced stacking fault energy w/mb.

Range of SFE. The materials of the present
analysis cover a wide range of SFEs (Ref 45,
46), and thus, the results may be used to predict
the master curve for any other fcc material with
known stacking fault by determining the
corresponding values for sv0/m and of g0, with
the help of Fig. 6(b).
According to this evaluation, the SFE is the

material parameter that controls (besides shear
modulus and Burgers vector) the level of stress
to which a material can be work hardened at a
given temperature and strain rate. Thereby, the
differences between various materials can dif-
fer by up to 1 order of magnitude, as seen from
the ratio of the boundary values of the Voce
stresses at zero temperature, [sv0(0)/m0]/
[sv0(1)/m0] = 13. The w/mb values of many
pure fcc metals are close to or even larger than
that of aluminum (Ref 47), and so, the
corresponding master curves will gather in
the vicinity of the aluminum curve, with some
of them close to the lower bound in Fig. 6(a).
In many solid solutions, however, w/mb is
reduced considerably, and the master curves
will be shifted up into the vicinity of the silver
curve (see the section Single-Phase Alloys
in this article).
At the end of this analysis it seems it would

be appropriate to address the issue of reliability.
Uncertainties of the values of the SFE are cer-
tainly a crucial point for the predictive capacity
of the interdependencies of the parameters
given in Fig. 6(b), since SFE-values found in
literature diverge considerably from method to
method. Also, stress strain curves and thus
Voce stresses, reported by different groups,
often show differences even for chemically
identical material. These, most probably, are
caused by differences of microstructures
according to the speci cs of employed fabrica-
tion and preparation techniques.
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Fig. 6 (a) Same as Fig. 5(b) square root of sv/m vs. square root of g, where data for aluminum and nickel (Ref 19, 26, 40) and silver (Ref 7, 38, 39) have been added, and those for
copper have been supplemented (solid triangles) by data from torsion tests (Ref 41). Applied shear stress has been converted to normal stress with the help of the von Mises

relationship. (Here, as in preceding figures at intermediate g-values, the data exhibit a small hump that is probably due to strain aging caused by impurities.) The two border lines for
the values zero and infinity of the stacking fault energy (SFE) are obtained by the extrapolation method displayed in (b). (b) The intercepts with the axes in (a), sv0/m0 and g0 versus the
SFE w/mb. The empirical expressions sv0/m0 = 0.04 � 0.037/(1 + 0.003 mb/w) and g0 = 1.01 � 0.6/(1 + 0.016 mb/w), with the numerical values determined by a least-squares routine,
make an optimum fit of the experimental points (Ref 8). The extrapolated coordinates (sv0/m, g0), for zero SFE (0.04, 1.01) and for infinite SFE (0.003, 0.4), determine the two
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In particular, texture is an important micro-
structural feature in this context, since the real
physical quantity to be considered is the
resolved shear stress, tv, not the normal stress,
sv, which is inßuenced by the Taylor factor,
M. This is not known exactly, since the textures
have not been measured for all materials
considered in Fig. 5 and 6. So far, possible dif-
ferences of M have been ignored in the preced-
ing evaluation, implicitly assuming that
ßuctuations were small and did not vary sys-
tematically from one material to the other. In
view of the conventional thermomechanical
treatment of the investigated samples, it is
assumed that existing textures were rather
weak. As has been discussed (Ref 43), by
straining in different deformation modes, the
texture evolves in such a manner that the
corresponding Taylor factors differ by less than
20%. This is also evident in Fig. 6, where the
data for copper obtained in compression and
in torsion tests are virtually the same. There-
fore, it seems safe just to use the Taylor factor
M � 3 of a random orientation distribution for
converting sv into tv = sv/3.
Occasionally, however, larger differences

have been reported, such as in Ref 44, where
the Voce stresses obtained in tension were
approximately 50% higher than those for cop-
per in Fig. 5 and 6, but they extrapolate to the
same value of g0.
From these results, it would appear safer to

relegate sv0 to a quantity that needs to be deter-
mined in each case. The value of g0, on the
other hand, may well be a constant for each
material. This would seem reasonable in view
of the fact that it relates to a local activation
process; it is expected to depend on physical
properties such as the SFE but, unlike sv0/m,
not on microstructure, texture, and so on.

Other Lattice Structures

The bcc Metals

Like fcc, the bcc lattice offers an excessive
number of identical crystallographic slip sys-
tems. In bcc metals, slip planes and slip direc-
tions are interchanged from the fcc case: The
dominant slip mode is {110} h111i. Slip along
h111i directions in planes other than {110}
can also be activated, depending on temperature
and material. The consequence of these addi-
tional slip planes leads to a mode of slip called
pencil glide. The details of the slip geometry
are of great interest for the evolution of texture
and Taylor factors, but, most probably, they are
of minor importance for the present discussion.
It is to be expected that the principles of dislo-
cation storage and dynamic will follow, qualita-
tively at least, the same rules as deduced
previously from fcc behavior. To make this
point, a set of stress-strain curves of low-carbon
steel are analyzed, with the help of the Voce
equation, and the characteristic parameters are
compared with the fcc data. At rst, however,

some speci cs of bcc behavior must be
considered:

� At temperatures below (roughly) room tem-
perature, the ßow stress for most bcc metals
rises very steeply with decreasing tempera-
ture due to the growing inßuence of the
Peierls barriers; at low enough temperatures,
these eventually control the dislocation
mobility. Within the evaluated framework,
there would be two effects: (1) The Peierls
stress superimposes on the contribution of
the dislocation interaction to the ßow stress,
and (2) the dislocations are straighter, since
the edge parts move out rapidly, and there-
fore, the areal-glide mechanism that forms
the basis of the statistical dislocation-storage
processes will be less effective; it may possi-
ble to describe this simply by a lower value
of Y0 (Ref 48). On the other hand, Tang et
al. (Ref 49) have postulated, on the basis of
dislocation-dynamics simulations, that strain
hardening in bcc metals follows an entirely
different mechanism.

� Surprisingly low levels of interstitial impuri-
ties can strongly affect the strength of bcc
metals, since interstitial atoms usually exert
very strong interaction forces on disloca-
tions, generally an order of magnitude
higher than substitutional atoms. In addition,
interstitials typically become highly mobile
at a temperature slightly above room tem-
perature and thus easily segregate at disloca-
tions in almost any heat treatment. They
cause upper and lower yield points, since
dislocations must be unlocked from impurity
clouds at the beginning of straining.

� The dependence of the ßow stress on the
grain size is much stronger in bcc than in
fcc metals, where it is so small for techni-
cally pure material that it could be neglected
in the preceding evaluation.

In a compact way, the various aspects of
deformation behavior of bcc material are
reßected in the stress-strain curves for low-car-
bon steel presented in Fig. 7. The rather high
strength level must be ascribed partly to the
grain boundaries, but it is mainly due to the
interstitial content mainly carbon. Interstitial
carbon is also the cause for the occurrence of
upper and lower yield points, even though the
concentration is below 0.1% C. If the tempera-
ture is lowered beyond �75 �C, the behavior is
governed by the increasing inßuence of the
Peierls-Nabarro force, evident from the steep rise
of the ßow stress with decreasing temperature in
parallelwith a continuous ßattening of the harden-
ing curves (beyond the lower yield point). Finally,
at approximately �100 �C, the ductile-to-brittle
transition occurs as a consequence of the high
strength level achieved at this point.
Between �75 �C and room temperature (RT),

the yield stress is much less sensitive to temper-
ature than in the low-temperature regime, and,
once the Luders region has been passed, the
hardening curves exhibit a shape similar to those

for copper displayed in Fig. 3. From these parts,
the characteristic parameters of the Voce equa-
tion are determined and compared with the
results for fcc material. To this effect, the Voce
equation (Eq 11b) is used in a modi ed form
where the intrinsic, nondislocation contribution,
si, caused by grain boundaries, interstitials, and
so on, is subtracted from the ßow stress to obtain
the dislocation part s � si:

s� s0 � si ¼ ðss � s0 � siÞ
ð1� exp�e�Y0=½ss � si�Þ ðEq 18aÞ

Here, the intrinsic part of the ßow stress, si, is
assumed not to change with deformation beyond
the Luders strain; s0 is the contribution of the
initial dislocation density to the ßow stress
(assumed to be small compared to si and there-
fore neglected in the following); ss is the satura-
tion level of the stress at large strain, and, in this
terminology, the corresponding saturation value
of the dislocation density determines the Voce
stress, sv = ss� si. It can be interpreted here as
the Voce stress of pure iron under the assumption
that the interstitials do not affect the hardening
behavior, since, at these temperatures, they are
not suf ciently mobile for segregation at and
trapping of the network dislocations and thus
do not impede the recovery processes (see the
section Stage IV in this article).
To provide a direct comparison to the data of

Fig. 7, as well as provide a general illustration
of the approach, engineering quantities are
adopted. Using 1 + eeng = exp e and P/F0 = seng

= s exp � e (Eq 18a) reads:
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engineering strain) of a low-carbon steel at

various temperatures below room temperature at a
moderate strain rate. Source: Ref 50
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P

F0

¼f1þ eengg�1
n
si þ s0 þ ½ss � si � s0�

1� ð1þ eengÞ�Y0=½ss�si�
h io

ðEq 18bÞ

In this equation, the valuesofY0,si, andsv=ss�
si for an optimum t of the stress-strain curves of
Fig. 7 were found in the following way. Since the
yield points prevent reliable back extrapolation to
zero strain for determining both si and the ather-
mal-hardening coef cient Y0, the latter was cho-
sen asY0 = 0.05 m, that is, the same as for copper
according to Fig. 4(a). With this starting value,
si/sv pairs were determined for the different tem-
peratures between � 75 � C and RT by a least-
squares routine, and the results in MPa are 162/
336 for RT; 159/368 for 0 �C; 167/392 for �25
�C; 193/406 for� 50 �C; and 216/396 for�75 �C.
The curves computed with these values for

y0, si, and sv are inserted as dashed lines in
Fig. 7. They match the experimental curves per-
fectly and thus allow a reliable back extrapola-
tion across the Luders region to si at zero
strain. For a quantitative classi cation, the nor-
malized Voce stresses of the steel are plotted in
Fig. 8 in the eld of master curves of the vari-
ous fcc metals. They are located between the
aluminum and nickel curves, meaning that iron
behaves similar to a fcc material with high SFE.
The general conclusion is that the rules

developed in the preceding sections for fcc
material hold for bcc metals as well and that
the processes of dislocation storage and recov-
ery are physically quite similar in the two mate-
rial classes. The authors even believe that this is
true for any lattice structure that offers a suf -
cient number of slip systems of approximately
the same strength, provided slip is areal due to
an approximately equal slip distance for screw
and edge dislocations.

Hexagonal Metals

Hexagonal metals represent a special case.
Due to the low symmetry, the hexagonal lattice

does not provide a suf cient number of crystal-
lograhically identical slip systems to ful ll the
von Mises criterion for polycrystal deformation.
To generate a set of ve geometrically indepen-
dent slip systems, several different crystallo-
graphic slip modes with often quite different
strength must be activated, and twinning as an
additional deformation mechanism comes into
play in hexagonal metals much more frequently
than in cubic metals (Ref 51, 52). While the
strength of polycrystals is generally controlled
by the hard modes, the situation is opposite in
unconstrained deformation of single crystals.
There, predominantly soft modes are activated,
except for speci c orientations where the exter-
nally applied stress does not create a suf -
ciently high shear stress in soft systems. In
polycrystals, high interaction stresses build up
between soft and hard grains to enforce the
required co-deformation of soft and hard grains.
These intergranular interaction stresses are
strongly inßuenced by the crystallographic tex-
ture and depend on the externally imposed
straining mode. To illustrate, for a number of
magnesium polycrystals with different texture,
Fig. 9 displays stress-strain curves obtained in
different testing modes, namely, uniaxial ten-
sion and compression and also channel-die
compression. The curves differ widely; in par-
ticular, profuse twinning leads to anomalies in
the form of a signi cant reduction of the
work-hardening rate at low strains.
Although dislocation mechanisms in hexago-

nal metals are basically the same as in cubic
metals, the hardening behavior is quite differ-
ent. The individual slip modes can respond,
quantitatively as well as qualitatively, quite dif-
ferently to changes of external or internal para-
meters, and the corresponding hardening is not
so easy to analyze as for cubic material. Every
hexagonal metal has its individual characteris-
tics, and a general scheme such as the one
developed in the preceding sections for fcc
and bcc metals does not exist for hexagonal
metals.

Stage IV

The deviation from a linear variation of hard-
ening rate with ßow stress (Fig. 3b) and, as
noted previously, the tendency toward a less
negative slope at the tail of the curves corre-
sponds to a low rate of work hardening over a
relatively large range of strain. Stated another
way, a mechanical state with no work harden-
ing, and occurring at the scaling stress sv, is
never developed. The linear change in harden-
ing rate follows from the postulate of a
steady-state process, embodied in Eq 11(a).
Modi cations to Eq 11(a) have been proposed
to better describe the transition in hardening
rate, as given previously in Eq 12.
The deviation from linearity then suggests a

change in the underlying mechanism of work
hardening. It is common for a state of an approx-
imately constant rate of work hardening to be
developed (Fig. 10); such transition represents
a change from stage III to stage IV work harden-
ing. While the mechanisms underlying stage III
work hardening and the allied mathematical
description are fairly well established, models
for stage IV are a topic of current research inter-
est and debate. The authors objective then is to
highlight how a transition to linear hardening
may be effected in the context of the framework
for work hardening given previously, with an
eye toward practical analysis of data. After an
abbreviated review, a framework is presented
for the modeling of stage IV in the context of
the standard model given previously.
One approach to modeling is to impose a

transition from the linear change in work-hard-
ening rate (Eq 11a) to a constant hardening rate
for stage IV, YIV, as:

ds
de
¼ YIV (Eq 19)

The rate dependence in the stage IV hardening
rate may be introduced through a scaling of
the saturation stress:
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YIV ¼ asnð _e; T Þ (Eq 20)

where a is a constant between 0.05 and 0.1.
Rollett et al. (Ref 54) set forth the mechanism
of continuous accumulation of dislocation
debris as a physical basis for the a foremen-
tioned scaling. Goto et al. (Ref 55) combine
Eq 11(a) and 19 through:

ds
de
¼ Y0 1� tanh

ks
sn

� �� �
þYIV tanh

ks
sn

� �
(Eq 21)

The storage of dislocation density, such that
an estimation of cumulative Burgers vector
leads to a nonzero result, brings about the con-
cept of a net, excess, or polar dislocation den-
sity. Because the development of a net
Burgers vector is tied to nonuniform plastic
straining, or (inverse) elastic distortion (domi-
nated by lattice rotation), these dislocations
are often called geometrically-necessary dislo-
cations (GNDs). The development of such a
polar dislocation density has been considered
as a basis for the development of stage IV by
several authors. Argon and Haasen (Ref 56)
associate the lattice misorientation between
cells with GNDs and suggest evolution propor-
tional to the square root of the plastic strain.
Data for the spacing between geometrically-
necessary boundaries (GNBs) and the misorien-
tation angle across these GNBs in cold-rolled
nickel may be tied to stress-strain response by

linking the evolution of these features to the
strength (Ref 57). In an in situ study of [001]
copper single crystals using synchrotron radia-
tion, Pantleon (Ref 58) assumes that there is
an imbalance in the ßux of dislocations, giving
a polar density that may be associated with the
evolution of GNBs. Schaßer et al. (Ref 59)
measure long-range stresses in stages III and
IV. These authors infer a microstructural evolu-
tion wherein cell walls transition from dipoles
bounding thicker cell walls in stage III to a thin
monopole structure in stage IV, termed polar-
ized tilt walls (PTWs). Mobile dislocations
entering the monopolar cell walls tend to
advance lattice misorientation, and the PTW
structure provides for effective screening of
the large dislocation densities developed in
stage IV. The key conclusion to be drawn from
the above proposals is that stage IV involves
the progressive evolution of lattice misorienta-
tion, a geometric feature.
Estrin and Mecking (Ref 60) proposed a

modi cation to the work-hardening rate to
include a contribution to work hardening asso-
ciated with geometrical obstacles. A second
rate of storage is added to Eq 8:

dr
dg
¼ 1

bbglg
þ 1

bb
ffiffiffi
r
p � Rð _g; T Þr (Eq 22)

where bg plays a role analogous to b for obsta-
cles with geometrical spacing, lg. This geomet-
ric length scale is taken in proportion to the

grain size in Ref 60 and provides for an acceler-
ation of the hardening rate with reduction in
grain size. Alternative estimates of this geomet-
ric length scale may be posed. Considering
incompatibilities following rotation of the lat-
tice, it is possible to develop the density of
polar (geometric or excess) dislocations thread-
ing the slip plane (Ref 61). This in turn pro-
vides an internal variable necessary to model
evolution of the geometric features associated
with stage IV.
Stage IV Work Hardening Model. In the

present setting, it suf ces to adopt a linear evo-
lution of the inverse of the geometrical spacing,
1/lg, leading to the relationships:

dr
dg
¼ 1

bbglg
þ 1

bb
ffiffiffi
r
p �Rð _g; T Þr

d

dg
1

lg

� �
¼ c

(Eq 29)

The model for work hardening thus involves
two internal variables, lg and r, that obey evo-
lution Eq 29 and require initial values. The
approach of Estrin and Mecking (Ref 60) is
recovered by taking c = 0 and setting lg to the
grain size. A generalization of Eq 29 and the
association with evolution of various features
of microstructure is given in Ref 62.
Following in large part the development

leading to Eq 11(a):

ds
de
¼ Y0 1� s

sn
þ sl

s

� �
dsl

de
¼ c

(Eq 30)

The strength:

sl ¼M
b
bg

amrb
lg

(Eq 31)

with shear modulus also taken at the reference
temperature, mr, represents a second state vari-
able associated with the evolution of substruc-
ture with polar dislocation content. Examples
of the use of this model in modeling the devel-
opment of stage IV in copper are shown in
Fig. 10. Because of the presence of s in the
denominator of Eq 30, one must resort to numer-
ical methods for solution using this model.
As an alternative, one may consider the role

of polar dislocation content in recovery pro-
cesses (as opposed to the storage rate). The rate
of storage for travelling, mobile dislocations is
reduced as polar dislocations become progres-
sively arranged in cell walls or GNBs. Such a
mechanism was envisioned by Pantleon (Ref
58), where a difference in signed ßux led to a
reduction in annihilation rate relative to strictly
statistical interactions. Assuming a linear evo-
lution of this polar density with strain, the
recovery term of Eq 10 is modi ed as:

Y=m ¼M2a
2b
�MRð _e; T Þðs�YIVeÞ

2
(Eq 32)
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thereby decreasing the recovery rate in propor-
tion to strain through a parameter YIV.
De ning:

k ¼ 1þYIV

Y0

(Eq 33)

and taking kY0 / m = M2a /2b and sv=m ¼
2kY0=MRð _e; T Þ gives:

Y ¼ kY0 1� ½s�YIV �e�
ksv

� �
(Eq 34)

Note that the standard model is recovered by
taking YIV = 0. The evolution of various terms
in the previous expression is shown in Fig. 11.
This relationship for hardening rate may be
integrated, giving:

s ¼ s0 þYIVeþ ðsv � s0Þ½1� expð�Y0e=svÞ�
(Eq 35)

Equations 34 and 35 prove effective in the anal-
ysis of stress-strain data exhibiting a stage IV
response, as is shown in the next section.

Single-Phase Alloys

Solutes can affect ßow behavior in two phys-
ically quite different ways: either globally, by
changing bulk parameters, or locally, by acting
as point obstacles to dislocation motion.
Although these two contributions generally
superimpose on each other, in many cases one
of them dominates, so that the alloys fall
roughly into two classes, of which representa-
tives are introduced in Fig. 12 and 13.

Class 1, Crystal Properties

Alloying generally comes along with
changes of elastic constants, lattice parameter,
and SFE. While in most cases the shear modu-
lus and the Burgers vector are changed only
moderately, variations of the SFE can be quite
large. This effect is made use of in many tech-
nical alloys, such as copper alloys (particularly
a-brass and copper-aluminum bronze), nickel-
cobalt alloys, and austenitic steels (stainless,

in particular, in combination with strain-
induced martensitic transformation); they all
have very low SFEs. What matters in these sys-
tems is the indirect effect of the alloy additions;
they lead to an upward shift of the master
curves in Fig 6(a), producing an increase of
the work-hardening capacity and, in this way,
generally improve the strengthening as well as
the forming behavior, such as in deep drawing.
The classical example is the nickel-cobalt

system, which serves here to demonstrate the
usefulness and capacity of the foregoing analy-
sis for evaluating hardening behavior. Since
nickel and cobalt atoms have practically the
same size and the same electron structure,
cobalt substitutes in the nickel lattice are not
noticed as point obstacles by moving disloca-
tion and thus have little effect on the yield
stress. They drastically change the work hard-
ening, however, due to a lowering of the SFE
(down to zero at the transition from the fcc to
the hexagonal phase at approximately 75% Co).
Figure 12 shows stress-strain curves for

nickel and nickel-cobalt polycrystals from tor-
sion tests over a rather large strain range. All
three curves approach quite a linear stage IV
at large strain and thus qualify for determina-
tion of the various parameters in the modi ed
Voce equation (Eq 34) developed in the previ-
ous section. The actual values for the para-
meters were found in the following way. The
initial slope, Y0torsion/m, and the slope in stage
IV were directly taken from the curves in Fig.
12, and the obtained values are a single value
for all three curves Y0torsion/m = 0.012 and the
individual values for YIVtorsion/m, 0.001,
0.0006, and 0.0005 for Ni-60%Co, Ni-30%Co,
and nickel, respectively. With these starting
values, the following (t0torsion/m)/(tvtorsion/m)
pairs were found by a least-squares routine:
0.00014/0.00429 for Ni-60%Co; 0.00023/
0.00368 for Ni-30%Co; and 0.000189/0.00272

for nickel. These parameters, inserted in the
modi ed Voce equation (Eq 35), lead to the
dashed lines in Fig. 12; they match the experi-
mental curves closely.
An interesting question is how these results

compare quantitatively with the scheme devel-
oped for pure material in the section Quantita-
tive Description of Strain Hardening of fcc
Polycrystals in this article. For such compari-
son, applied shear stress and shear strain for tor-
sion must be converted to normal stress and
normal strain, which can be done with the help
of Taylor factors. The ratio of Taylor factors of
randomly textured polycrystals isMuniaxial/Mtorsion

= 3.06/1.8 = 1.7; correspondingly, s/ttorsion =
gtorsion/e = 1.7 andY/Ytorsion = 1.72 = 2.89.Y0tor-

sion = 0.012 is practically the same as found for
copper in torsion (Ref 41). The corresponding
value for uniaxial deformation,Y0/m = 2.89Y0tor-

sion = 0.035, is 30% less than Y0/m = 0.05 of uni-
axially deformed copper (Fig 4a). Possibly, this
points at an inßuence of the deformation mode
on athermal hardening but also could be a texture
effect.
The Voce stresses do not show such a ten-

dency; as seen from Fig. 8, they t well into
the eld of Voce stresses for pure fcc material.
It must be noted, however, that all data in Fig.
8 stem from tting the low-strain part of the
stress-strain curve to the original Voce form,
with YIV = 0. Considering only the strain
regime gtorsion < 1, that is, e < 0.6, in Fig. 12,
the values of sv/m for nickel, Ni-30%Co, and
Ni-60%Co are 0.0053, 0.0073, and 0.0089,
respectively. These are in the sequence of
inverse SFEs, with SFE/mb = 0.013 for nickel,
0.008 for Ni-30%Co, and 0.001 for Ni-60%Co
(Ref 29, 64).
The value sv/m = 0.0089 for Ni-60%Co

appears to be somewhat low in relationship to
the reported SFE. The reason for this deviation
from the developed scheme could not be
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cleared up so far. It may be due to uncertainties
in the determination of the SFE but could also
be caused by mechanical twinning; lowering
of the SFE increases the work-hardening capac-
ity and, at the same time, reduces the stress to
activate twinning as an additional slip mode.
Although the general course of stress-strain
curves may be affected by twinning only in a
limited strain interval (due to exhaustion of
twinning), the inßuence on the microstructure
is generally quite large, by way of grain seg-
mentation combined with an enhanced ten-
dency to inhomogeneous deformation such as
shear banding, which has a strong inßuence on
texture evolution (Ref 65, 66).
So, the nal conclusion is that, in any case,

the SFE is the ruling material parameter that
accounts for the quantitative differences of the
stress-strain behavior in Fig. 12, directly by
the effect on hardening parameters and indi-
rectly by the inßuence of twinning on texture
and microstructure.

Class 2, Dislocation Interaction

There are, however, many alloy systems where
the prime effect is by the local interaction of the
solutes as point obstacles with dislocations, rather
than by changes of SFE and corresponding modi-
cations of the dislocation core. Prominent exam-

ples for this class of materials are alloys of copper
and tin, which have been in service since ancient
times. A speci c case is discussed in more detail
as follows (Fig. 13).
If a solute atom is of quite different size and

of quite different chemical nature, as compared
with the host atoms, it carries a local stress
eld, which is called parelastic if it exists inde-

pendently (size effect) and dielastic if it is
induced by locally acting stresses (modulus
effect) due to local variations of the elastic con-
stants in the vicinity of a solute atom. Then, the
alloying atoms can exert strong interaction
forces on the dislocations, causing a consider-
able contribution to the glide resistance of
dislocations and resulting in a rather large
increase of the initial yield strength. This inßu-
ence can be accounted for by an additive term
in Eq 3 for the critical resolved shear stress:

t ¼ tiðc; _e; T Þ þ amb
ffiffiffi
r
p

(Eq 36)

where ti, the intrinsic contribution of the solute
atoms, depends on their concentration, c, and
also on temperature and strain rate due to ther-
mal activation. If this were the only change of
mechanical properties by solutes, then the
developed scheme for work hardening of the
pure materials could also be applied in a
straightforward fashion for these alloys, just
by replacing s and t in the developed equations
by s � si = M [t � ti], anticipated already
in the modi ed Voce equations (Eq 18a, b).
However, the situation is often more complex,
as illustrated in Fig. 13, where the behavior of
pure copper and a copper-tin alloy is compared
for a wide range of deformation temperatures.

The values for the yield stress and the ulti-
mate tensile stress (UTS) are presented; the
UTS, the stress at the beginning of necking, is
used here as a substitute for the Voce stress,
which was not available for the alloy. The
UTS and the Voce stress have quite similar
values and depend on temperature in quite the
same way. For example, if Eq 3 is applicable,
they are related by sUTS = sv/(1 + sv/Y0)
(Ref 8). The ratio sv/Y0 decreases in the cop-
per case from approximately 0.3 at zero tem-
perature toward negligibly small values at
elevated temperature, meaning that sv exceeds
sUTS by approximately 30% at very low tem-
perature but attains at medium temperatures
practically the same values as the UTS.
As seen in Fig. 13, the difference in the

sUTS-sy for the alloy is generally almost twice
as large as for the pure material, which means
that the tin addition not only increases the
yield stress but also the hardening rate (possi-
bly due to a reduction of the SFE). At medium
temperature, however, a hump appears in the
dependence of the UTS on temperature, and
the UTS versus T passes a maximum. This is
the regime of strain aging, where the solute
atoms develop suf cient mobility for segregat-
ing on the dislocations during deformation.
Then, the temperature dependence of the
UTS as well as the, not shown there, strain-
rate dependence become inverse, in the sense
that the ßow stress and the work-hardening
coef cient increase with temperature and
decreasing strain rate. Often, these phenomena
come along with plastic instabilities and ser-
rated ßow (Ref 67).
The main conclusion in the present context is

that merely a modi cation of Eq 3 for the ßow
stress, such as in Eq 19, will not be suf cient
for adequately describing the observed behav-
ior. A modi cation of Eq 8 is required as well,
where the solute concentration enters the recov-
ery term R in a complex way. Generally, the
corresponding inßuence of alloying on the
hardening is even stronger than on the yield
strength. It has been found that, in many alloys,
solute concentrations inßuence the entire stress-
strain curve in a multiplicative rather than an
additive way (Ref 68). Thereby, the combined
effect of the direct and indirect contributions
may play a speci c role. The speci c effect of
solutes in the temperature regime of strain
aging is not only due to their segregation on
the moving but, even to a higher extent, it is
due to segregation on the network dislocations,
where they have a stabilizing inßuence and can
slow down the rate of dynamic recovery
considerably.
At the end of this section, one aspect seems

worth mentioning that cannot be treated in
more detail within the scope of this article,
although it is important in many technical mate-
rials. Alloy additions usually cause an increas-
ing inßuence of the grain size on the yield
strength, possibly due to coarsening of slip
bands and also to the segregation of solutes on
grain boundaries.

Assessment

Modeling Base for
Parameter Identification

Work hardening is due to the continuous
increase of the dislocation content and can be
understood on the basis of an athermal term of
dislocation storage counteracted by a thermally
activated recovery term. They both depend on
only one state variable, the average dislocation
density, r, although by a different power. In
the ideal case, the storage term increases with
power ½, the recovery term with power of
unity, and superposition of the two terms leads
to a dependence of the work-hardening coef -
cient, Y, on the ßow stress, s. This dependence
can be condensed into a single master curve by
a simple scaling procedure, namely by normal-
ization of Y with the shear modulus, m, and s
by a characteristic stress level, sv. The depen-
dence of sv on temperature and strain rate can
also be condensed in another master curve, by
plotting normalized quantities, namely sv/m
versus g ¼ ðkT=mb3Þ lnð _e0= _eÞ. These two mas-
ter curves contain the complete information
about the hardening behavior of a fcc metal at
temperature and strain rate outside the diffusion
regime. Differences between various materials
are governed by their relative SFEs. Therefore,
the use of these normalizations in any physics-
based modeling exercise of plastic ßow of
metals is recommended.
Previously, a physically motivated frame-

work for parameter determination was set forth.
The plotting of data with appropriate scaling
allows for direct contrast with equations for
constitutive description that have a physical
basis and are supported by the analysis of a
variety of metals and alloys. The predictive
capability of the modeling framework in a par-
ticular application follows from consistency
with the entire database embodied in the master
curves. Both presence and absence of such con-
sistency were related in the previous develop-
ment. Voce stresses of the steel plotted in
Fig. 8 suggested that an analogy may be drawn
between iron and a fcc material with high SFE,
and forest interactions are the source of work
hardening; the anomalous value of sv/m for
Ni-60%Co suggests that another deformation
mechanism is likely at play in this alloy, not
considered in this development. Such insight
follows from consideration of how the para-
meters identi ed fall within the overarching
constitutive model framed in the master curves.
The application of the resulting equations by
direct tting of parameters through a regression
analysis is not, in general, recommended.
The utility of the one-parameter approach

extends to the identi cation of dynamic recrys-
tallization in austenite, through identi cation of
a critical strain by double differentiation of the
Y � s curve (Ref 69). Prior to the onset of
dynamic recrystallization, the analysis of
stress-strain data for several steels was shown
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to follow the hardening relationship Eq 22,
without the term for statistical storage (Ref
70). The one-parameter approach can be
extended to multiple-phase systems through
the introduction of an additional length scale.
Examples are the treatment of grain size (Ref
60) and precipitation strengthening (Ref 71).
The rule of mixtures may be exploited for the
co-deformation of interpenetrating phases
through the superposition of separate Voce
equations for the distinct phases. Generally
speaking, the approach is valid for modeling
plastic ßow at constant rate and temperature.
Sudden changes of rate and temperature lead
to transients that require the introduction of a
second state variable (Ref 8).

Outstanding Issues

Given the complexity inherent in the phe-
nomenon, the study of work hardening will
continue as an active area of research. The
study of length scales in plasticity is an active
area of present study (for a review, see Ref 72
and other references in the same issue). The
length scale inherent in the development of lat-
tice misorientation was used in the previous
presentation of stage IV. Predictive modeling
of stage IV (and also V and VI) hardening
requires attention to the identi cation of appro-
priate state variables.
The issue of transients has been mentioned

previously. The treatment of long-range inter-
nal stresses presents considerable challenge;
the state-of-the-art for so-called kinematic work
hardening lies far behind that of the description
of isotropic work hardening contained herein.
This is by virtue of the fact that concern only
be lent to the nearest strong obstacle. Anelastic
processes, wherein a (possibly recoverable)
microplastic strain is developed, pose addi-
tional complexity (Ref 73 75).
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Constitutive Models for
Superplastic Flow
Indrajit Charit, University of Idaho
Rajiv S. Mishra, Missouri University of Science and Technology

SUPERPLASTICITY, in a widely accepted
definition, is “the ability of a polycrystalline
material to exhibit, in a generally isotropic
manner, very high tensile elongations prior to
failure” (Ref 1). Note that this definition does
not involve any microstructural or mechanistic
description. As a rule of thumb, elongation in
excess of 200% is termed as superplasticity.
Over the years, a number of superplasticity
models have been proposed. A majority of
experimental evidences suggests that grain-
boundary sliding (GBS) is the dominant defor-
mation mechanism. Generally, superplasticity
is obtained at homologous temperatures of
above �0.4 because diffusional processes
become rapid enough to impart superplastic
property. Superplasticity as a field of study
has matured from a mere academic interest to
applications in commercial superplastic form-
ing (SPF) operations. Currently, SPF is consid-
ered an important near-net shape technique for
niche applications. For a detailed historical
account of the advent of superplasticity, readers
are encouraged to refer to the article references
and other sources in the literature (Ref 2–9).
Superplasticity observed in fine-grained

microstructures is called structural superplasti-
city; it is quite universal and has been observed
in a wide range of material classes. Superplasti-
city can be obtained by other ways too, such as
transformation superplasticity and thermal
cycling superplasticity. However, the latter
mechanisms are not as technologically impor-
tant and universal. Hence, this article is limited
to the discussion of constitutive equations
applicable to structural superplasticity. Hence-
forth, reference to the word superplasticity will
only mean structural superplasticity and not any
other types of superplasticity.
At present, SPF is used in a number of

manufacturing operations, most notably in air-
craft industries. Diffusion bonding/SPF is an
important technology that is used to make inte-
grally stiffened structures. This enhances design
flexibility and the ability to fabricate complex
structures in a single operation, which helps in
reducing the number of parts in an assembly.

The materials that are routinely used for SPF
are titanium and aluminum alloys. Generally,
the flow stresses associated with SPF are less
(<10 MPa). Various SPF techniques, such as
simple female forming, reverse bulging, snap-
back forming, and so on, have been summarized
by Pilling and Ridley (Ref 9). Superplasticity is
strongly microstructure dependent and requires
fine grain size (<15 mm) and high-angle grain
boundaries. Therefore, grain refining helps in
increasing the optimum strain rate during SPF
and reduces the superplastic temperature (Ref 6).
It has led to useful concepts of high-strain-rate
superplasticity (forming rates �10�2 s�1) and
low-temperature superplasticity.
As superplasticity continues to gain accep-

tance in industrial applications, the importance
of simulation and prediction of superplastic flow
during SPF has increased. Thus, constitutive
models have a special significance in the
description of superplastic flow. According to
the Webster’s dictionary, the meaning of consti-
tutive is “of or relating to constitution” of the
material. So, the constitutive models would pres-
ent relationships that relate macroscopic proper-
ties of the material representative of the inherent
behavior of the material. Often, these models
attempt to relate material state with the external
parameters (such as stress and temperature).
Physicists and materials scientists have worked
on phenomenological and physics-based equa-
tions. On the other hand, engineering mechanics
researchers have come up with continuum-based
constitutive equations. For more details on con-
stitutive equations, see the article “Constitutive
Equations” in Metalworking: Bulk Forming,
Volume 14A, ASM Handbook, 2005, page 563.
For simulating SPF processes, it is important to

have a set of reliable constitutive equations. From
the general rules of constitutive laws, the ideal
constitutive equations for superplasticity should
have the following characteristics (Ref 5):

� For useful constitutive equations, the defor-
mation state of the superplastic material
should be derivable from the stress state
and vice versa. For that, the constitutive

equations should have a closed form; that
is, the number of equations should be equal
to the number of unknowns.

� Where possible, the constitutive equations
should be written in tensor form to be of
interest to complicated and industrial SPF
equations.

� The equations should indicate what type of
experiments must be conducted in order to
evaluate the material constants, and those
should be feasible in practice.

� The constitutive equations should have
material constants that are stable against
minor variation in experimental conditions,
thus making the constitutive models more
stable and useful.

� The range of applicability of the constitutive
equations should be experimentally deter-
mined and supported theoretically.

Mechanical Description of
Superplasticity

The relationship between the strain rate and
stress is given by the following simple relation:

s ¼ K _em (Eq 1)

where s is the flow stress, _e is the strain rate,
and K is a material constant that also depends
on microstructure, temperature, defect structure
of the material, and so on. The term m is called
the strain-rate sensitivity of the material and is
defined by the following equation:

m ¼ d lns
d ln _e

(Eq 2)

That is, the strain-rate sensitivity of deforma-
tion is determined from the slope of the double
logarithmic plot of flow stress against strain
rate.
Although several test modes, such as torsion

tests, compression tests, load relaxation tests,
and so on, have been used to evaluate super-
plastic materials, uniaxial tensile tests are the
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main test mode for superplasticity. Constant
cross-head velocity and constant strain-rate ten-
sile tests are common. In uniaxial tensile tests,
strain-dependent axial force and elongation are
obtained at a constant temperature and micro-
structure. Instantaneous strain rates are obtained
by dividing the cross-head velocity by the instan-
taneous gage length of the tensile specimen. Flow
stress is obtained from the instantaneous axial
force data compensated against specimen cross-
sectional area using constant volume assumption.
Strain-rate sensitivity (m) determines the abil-

ity of a material to resist necking during tensile
straining. In general, the higher the strain-rate
sensitivity, the higher the resistance to necking
and the larger the tensile elongations. This con-
cept is clear from the analysis ofAvery and Stuart
(Ref 10). Based on the assumption that m is con-
stant over a limited range of strain rates asso-
ciated with a small diffuse neck, one can write
from Eq 1 (by expressing stress and strain rate
in terms of load and area):

_A ¼ � P

K

� �1=m

ðAÞðm�1Þ=m (Eq 3)

where _A is the change in the cross-sectional
area (A) of the specimen with time, P is the ten-
sile axial force, and the other terms have been
defined in Eq 1. Equation 3 implies that if the
m-value increases, the rate of cross-sectional
change becomes more and more independent
of the current cross section. When the m-value
approaches 1, there should be no effective
necking because of Newtonian viscous flow.
However, when the m-value hovers at approxi-
mately 0.5 or more, the elongations are large
(i.e., superplasticity).
The conditions for conventional superplastic

deformation can be summarized as following
(Ref 5):

� The average grain size (d) should be smaller
than some critical value, that is, <15 mm.
However, several other microstructural fac-
tors are important, such as grain shape, pres-
ence of second phases, and nature and
mobility of grain boundaries.

� The temperature during superplastic defor-
mation should be at least 0.4 to 0.5 Tm
(where Tm is the melting point in K).

� The strain rates at which superplasticity is
observed are within a certain range (10�5

to 10�1 s�1).
� Superplasticity is observed when the strain-

rate sensitivity value is more than 0.3 and thus
is only present in region II, as shown in Fig. 1.
On the other hand, regions I and III with
strain-rate sensitivity values less than 0.3 fail
to show any significant superplasticity.

Phenomenological
Constitutive Models

Phenomenological constitutive equations do
not have a micromechanistic basis to start with.

These equations, along with the material con-
stants, are developed by observing phenomena
via conducting several sets of macroexperi-
ments. These equations are generally applicable
in the range of experimental conditions under
which they are developed. Note that Fick’s laws
of diffusion are phenomenological in nature.
Even though these constitutive equations are
developed by purely phenomenological means,
most of them embody a general mathematical
form that can alternatively be derived from a
physical origin as well. Here, only a few of the
phenomenological constitutive equations for
superplasticity are noted because the phenome-
nological equations are abundant in superplasti-
city literature. There are relations ranging from
the standard power-law types, various poly-
nomial models, mechanical models (such as
generalized Maxwell and Bingham body pro-
blems; mechanical threshold models such as
Zehr and Backofen, Ref 11; etc.), Smirnov’s
model based on elasto-viscoplastic analysis
(Ref 12), and anelasticity-based equations. How-
ever, for a complete treatment of phenomenolog-
ical constitutive equations for superplastic
deformation, readers may consider referring to
an excellent text by Padmanabhan et al. (Ref 5).
Bird-Mukherjee-Dorn Equation. This phe-

nomenological equation proved to be
an extremely important constitutive relation
for describing superplastic deformation and for
performing relevant analyses. This was first
developed by Bird, Mukherjee, and Dorn
(Ref 13) and hence the name. This was an
extension of a general form of equation devel-
oped earlier by Mukherjee et al. for describing
high-temperature deformation behavior (creep)
in crystalline materials (Ref 14). Superplasticity
is closely related to creep (both are thermally
activated processes). This equation presents a
general correlation between strain rate, stress,
temperature, and grain size and is given by
the following general form:

_e ¼ ADoGb

kT

s
G

� �n b

d

� �p

exp � Q

RT

� �
(Eq 4)

where _e is strain rate, s is stress, Do is the
frequency factor for diffusivity, Q is the appro-
priate activation energy for diffusion, R is the
universal gas constant, k is Boltzmann’s con-
stant, T is temperature (in K),G is shear modulus,
b is Burgers vector, d is grain size, n is the stress
dependence of strain rate (or stress exponent),
p is the inverse grain-size exponent, and A is a
microstructural- and mechanism-dependent con-
stant. The constant A can involve microstructural
factors other than grain size, such as stacking-
fault energy, dislocation density, grain-boundary
character distribution, and so on, but their exact
description still remains poorly understood. It is
important to recognize that n is just the reciprocal
ofm. Higherm-values mean greater resistance to
external neck formation and hence larger ductil-
ity (i.e., superplasticity). Generally, an m-value
of �0.5 (or n = 2) and a p-value of 2 or 3 imply
the operation of GBS.

Other Phenomenological Equations. Diul-
gerov et al. (Ref 15) developed the following
equation while working on the superplastic
behavior of zinc-manganese alloys:

s ¼ K _emey
Tm � T

TTm

� �q

(Eq 5)

where Tm is the melting point, as shown before;
_e is the associated strain; and y is the strain-
hardening exponent. The values of K, m, and
y could be found out from regression analysis
of the data. However, in that particular study,
much scatter in the parameter was observed.
Later, a similar analysis was applied to a lead-
tin eutectic alloy and a Bi-Pb-Sn-Cd alloy
(Ref 16). However, there was still considerable
scatter in the parameters evaluated.
Ghosh and Hamilton (Ref 17) proposed a

polynomial model:

s ¼ so þBe (Eq 6)

where logso¼aoþa1 log _eþa2 log
2 _eþa3 log

3 _e
þa4 log4 _e.
The polynomial models developed through

linear regression methods tend to provide stable
and unambiguous results. However, the range
of applicability of these models is limited and
has not been investigated well.
Smirnov (Ref 12) proposed a model that

considers superplastic materials as elasto-
viscoplastic medium. The constitutive equation
is written as:

s ¼ ss
so þKn _emn

ss þKn _emn
; _e 6¼ 0 (Eq 7a)

where ss, so, Kn, and mn are material constants.
Equation 7(a) can also be expressed in the fol-
lowing way:

lim
_e!0

s ¼ so (Eq 7b)

lim
_e!1

s ¼ ss (Eq 7c)

Fig. 1 Schematic illustration of strain-rate dependence
on flow stress in a typical superplastic material.

m, strain-rate sensitivity factor
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_e ¼ 0 for s � so and _e ¼ ssðs� soÞ
Knðss � sÞ
 �1=mn

(Eq 7d)

Smirnov (Ref 12) has given the following
method to calculate the material constants.
First, the point of inflection on the sigmoidal
curve (as shown in Fig. 1) is found, and the
maximum slope (mmax) is calculated. The value
of Kn is determined from the relation
Kn ¼ sopt= _emmax . Next, the values of so and
ss are found using Eq 7(b) and (c) by extrapo-
lating. Finally, the value of mn is calculated
from the following equation:

mn ¼ mmax

ffiffiffiffiffiffi
ss
p þ ffiffiffiffiffiffi

so
pffiffiffiffiffiffi

ss
p � ffiffiffiffiffiffi

so
p

� �
(Eq 7e)

It has been shown that the model proposed by
Smirnov can accurately describe the universal
superplasticity curve. Further modifications to
this equation have been made to take into
account the transient region of loading and the
influence of grain size. This model can be
generalized to describe cases of nonuniform
stress-strain rate and is used in Russia in practi-
cal calculations. However, the drawback of this
model is the need for determination of a large
number of unknown empirical parameters.

Physically Based Constitutive
Equations

Physical constitutive equations of superplas-
ticity have been developed on the basis of the
physics of the process. These equations include
microstructural parameters and have a strong
micromechanistic basis. Two contiguous grains
in a polycrystalline material cannot slide indef-
initely because they impinge on other grains.
Various processes, such as strain accommoda-
tion, grain rotation, grain-boundary migration,
grain-switching events, and so on, take place
to relax the stress concentrations generated
and thus continue GBS. The common school
of thought assumes that the process that accom-
modates GBS is the rate-controlling mechanism
for superplasticity. Here, some classical physi-
cal constitutive equations are discussed. The
accommodation mechanisms could be divided
into two major groups: diffusional accommoda-
tion and accommodation by dislocations.

Diffusional Accommodation Models

During the later part of 1960s, there were
attempts to explain region II in Fig. 1 (the
superplastic regime) using diffusional creep
models (Ref 18, 19). Both Nabarro-Herring
(Ref 20, 21) and Coble creep (Ref 22) were also
considered. The features of diffusional creep
models, such as high strain-rate sensitivity
(=1) and strong grain-size dependence of strain
rates, are attractive. However, it was realized
that diffusional creep must be accommodated

by some sort of GBS (Lifshitz type) to retain
cohesiveness between grains. Raj and Ashby
(Ref 23) also argued that the process can be
described either as diffusional creep accommo-
dation by GBS or vice versa. However, the fol-
lowing are serious drawbacks of diffusional
creep in explaining superplasticity (Ref 4):

� Very little grain elongation is expected
(much less than the total specimen elonga-
tion that is the hallmark of superplasticity).

� Strain rates expected of diffusional creep
models are less than what is observed in
superplastic deformation.

� Diffusional creep models do not involve
grain rotations that are topologically
observed in superplasticity.

Ashby and Verrall (Ref 24) proposed a model
that explains superplasticity as a transition region
between a diffusion-accommodated flow at low
strain rates and a diffusion-controlled dislocation
climb at higher strain rates. At low strain rates,
where diffusion-accommodated flow accounts
for most of the total strain rate, the specimen elon-
gation is obtained by grain rearrangement through
GBS (and grain switching). To retain compatibil-
ity across the grain boundaries, the grains must
have transient yet complex shape changes that
are achieved via diffusional transport. The final
configuration retains the equiaxed grain shape.
Due to the transient increase in grain-boundary
surface area during the grain-rearrangement pro-
cess, a threshold stress arises at very low strain
rates. This model is depicted in Fig. 2. However,
at higher strain rates, where dislocation creep
accounts for most of the total strain rate, specimen
elongation is accompanied by the change of
shapes of individual grains. At intermediate strain
rates, both processes (diffusion-accommodated
flow and dislocation creep) would contribute.
Because these two mechanisms are independent
processes, the total strain rate is given by the sum
of the strain rates contributed by each process:

_etotal ¼ _ediff þ _edislo (Eq 8a)

_ediff ¼ 100 �

kTd2
s� 0:72�

d

� �
DL 1þ 3:3d

d

DGB

DL

� �
(Eq 8b)

_edislo ¼ ADL Gb

kT

s
G

� �n
(Eq 8c)

whereG is thegrain-boundary freeenergy,O is the
atomic volume, d is the grain-boundary width
(high diffusivity path), and DL and DGB are the
volumeand grain-boundary diffusion coefficients,
respectively. This equationwas thought to provide
accurate description within a factor of 2.
When combined, the model predicts strain-

rate sensitivity (m) as a strong function of strain
rate with a maximum approaching unity. The
grain-size dependence may vary from 0 to 3,
depending on the strain rate and temperature.
The activation energy predicted by this model
will be intermediate between the activation
energies of lattice diffusion and grain-boundary
diffusion.
Even though the Ashby-Verrall model has

attractive features and explains topological
characteristics well, there are a few shortcom-
ings in this model:

� Differences between the predicted and
experimentally observed strain rates are
quite large.

� Although the model predicts grain-size
exponent (p) values of 0 to 3, experimental
results reveal that p lies between 2 and 3.

� The prediction of the model that activation
energy increases with temperature has no
sound experimental support.

Work by Mohamed and Langdon (Ref 25),
Smith et al. (Ref 26), and Spingarn and Nix
(Ref 27) has shown that the Ashby-Verrall
model has significant drawbacks besides the
aforementioned ones.

Dislocation Pileup Accommodation

There are a number of constitutive equations
proposed by various researchers over a long
span of time on dislocation-accommodation-
based concepts. Dislocation-accommodation
models can again be classified into three types,
depending on the precise nature of the role of
dislocations in the accommodation process
(pileups within grains, pileups in the grain

Fig. 2 Grain switching in Ashby-Verrall model. Source: Ref 24
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boundaries, and individual dislocation
accommodation).
Pileups within Grains. Ball and Hutchison

(Ref 28) studied superplasticity in a fine-grained
Zn-22.9wt%Al alloy and proposed a physical
constitutive model. The physical basis of this
model is illustrated in Fig. 3. The model assumes
that the easy relative movement of groups of
grains is resisted by a few unfavorably oriented
grains. Dislocations are generated at such grains
and pile up at the opposite grain boundaries until
the back stress obstructs further GBS. The stress
concentration at the head of the pileup is relieved
via accelerated diffusion, and dislocations escape
via a climb process, going into and along the grain
boundaries and subsequently becoming annihi-
lated. This escape of dislocations from the pileup
allows for more GBS in the obstructed groups of
grains. This model suggested that each group of
grains consists of approximately four grains. The
model developed can be expressed by the follow-
ing constitutive equation:

_e ¼ 200
DGBGb

kT

s
G

� �2 b

d

� �2

(Eq 9)

Mukherjee (Ref 29) proposed a modification
of the Ball-Hutchison model. In this model, it
was assumed that grains slide individually
instead of sliding as groups. Dislocations are
generated at the ledges and other discontinuities
at the grain boundaries; they traverse through
the grain and pile up at the grain boundaries.
Similar to the Ball-Hutchison model (Ref 28),

the rate of sliding is governed by the climb rate
of the dislocations at the lead of the pileup and
subsequent annihilation. The model leads to an
equation that is essentially similar to the Ball-
Hutchison model (Eq 9) except for the value
of the dimensionless constant (A), which is
approximately 2 in Mukherjee’s model as cal-
culated from theoretical considerations,
whereas the A-value of 200 in Ball-Hutchison’s
model was derived from fitting of the experi-
mental data. However, the lack of dislocation
pileups in transmission electron microscopy
investigation of superplastically deformed
alloys raised questions about the validity of
the models. However, these models are still
highly regarded by the superplasticity commu-
nity. Also, additional questions were raised
about the presence of multiple dislocation
sources in a grain; that is, the dislocation emis-
sion rate may be more important than the dislo-
cation annihilation rate. In such a case, the form
of the equation would change.
Fukuyo et al. (Ref 30) have proposed a model

that is similar to the Ball-Hutchison model of
GBS accommodated by slip. The slip-accommo-
dation process involves two sequential steps of
glide and climb. When the climb is the rate-
controlling step, the strain-rate sensitivity value
is 0.5. On the other hand, when the glide is the
rate-controlling step, the strain-rate sensitivity
is equal to 1. Because the glide and climb pro-
cesses are sequential, the slowest of the two pro-
cesses is rate-controlling. So, this model predicts
that at lower strain rates, the GBS process is
accommodated by climb, whereas it is accom-
modated by glide at higher strain rates.
Langdon (Ref 31) proposed a unified model

for Rachinger GBS (Ref 32), that is, GBS with
grain rearrangement but no individual grain
elongation, both in creep and superplastic con-
ditions where the rate of sliding is controlled
by the rate of accommodation through intragra-
nular slip. The basic model is pictorially shown
in Fig. 4. Ball and Hutchison identified in the
concluding section of their seminal paper,
“. . .the grain size is stable and smaller than
the dislocation cell structure that would nor-
mally form under the conditions (stress and
temperature) of deformation.” Some of the pre-
mises of the Ball-Hutchison model were used in

Langdon’s model. There are two distinct cases
in Langdon’s model of Rachinger sliding.
For d (grain size) < l (dislocation self-trapping
distance), the relevant constitutive equation is:

_egbsðd<lÞ ¼
Agbsðd<lÞDGBGb

kT

s
G

� �2 b

d

� �2

(Eq 10a)

in which Agbs(d<l) is a dimensionless constant
with a theoretical value of �10. When d > l,
the constitutive equation is:

_egbsðd<lÞ ¼
Agbsðd>lÞDLGb

kT

s
G

� �3 b

d

� �1

(Eq 10b)

where Agbs(d>l) is a dimensionless constant
with a value of 1000, which was determined
by fitting relevant experimental data.
Pileups in the Grain Boundaries/

Interfaces. In a different study, Mukherjee
(Ref 33) proposed a modification to his earlier
model. Here, GBS is considered rate-limited
by the motion of dislocations inside the grain
boundary by a combined glide-climb process,
but dislocation motion across the grains is not
involved here. The compatibility between the
grains is maintained by diffusion-controlled
climb of lattice dislocations along the grain
boundaries, and thus, repeated accommodation
is achieved. The rate equation is similar to that
presented in Eq 9 but differs only in the value
of the constant A (=100).
Gifkins (Ref 34) refined the earlier version of

his model in a more quantitative way and
developed a mathematical description of his
model, known as the core-mantle model. Here,
the mechanism is described in terms of the
motion of grain-boundary dislocations (Fig. 5).
In this model, grain-boundary dislocations pile
up at the triple junctions. The resulting stress
concentration is relieved by the dissociation of
lead grain-boundary dislocations into the other
two adjoining boundaries of the triple junction
or into lattice dislocations that accommodate
sliding. These newly formed dislocations
will climb into the two grain boundaries and
annihilate or may form new grain-boundary dis-
locations. However, all these unit steps occur
near the vicinity of the grain-boundary or man-
tle. Gifkins predicted that the width of theFig. 3 Schematic illustration of the Ball-Hutchison

mechanism of superplasticity. Source: Ref 28

Fig. 4 Schematic illustration of grain-boundary sliding in two types of microstructural conditions: (a) for d > l and (b)
for d < l. Source: Ref 31

Fig. 5 Core-mantle theory with accommodation by
dislocation motion in and near grain

boundaries. Source: Ref 34
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mantle will be �0.07 times the grain diameter.
Thus, in a typical superplastic material, the
grain-boundary width would be only a few tens
of nanometers wide. The core of the grain
remains almost free of dislocations. This model
leads to the grain rotation and grain rearrange-
ment that are geometrical necessities for super-
plastic deformation. The constitutive equation
appropriate for this model is:

_e ¼ 64
DGBGb

kT

s
G

� �2 b

d

� �2

(Eq 11)

Gifkins (Ref 34) validated the model with
experimental observations in tin-lead eutectic,
Ni-Cr-Fe, Cu-40wt%Zn, and other alloys. Fur-
ther work on the core-mantle concept was done
by Mayo and Nix (Ref 35) and much later by
Ghosh (Ref 36). However, it is currently not
known whether these newer models can be
applicable to a wider range of experimental
conditions or only to a limited range.
Accommodation by Individual Dislocation

Motion. Hayden et al. (Ref 37) developed a
model where GBS is rate-controlled by intra-
granular slip (dislocation creep). Dislocations
are generated at grain-boundary ledges and tri-
ple junctions, move inside the grain via glide
and climb processes, and finally climb individu-
ally into the opposite grain boundaries (without
forming pileups) before being annihilated. The
model assumes that at a critical temperature
(Tc), there will be a transition in the diffusion
mechanism from pipe (at T < Tc) to lattice dif-
fusion (at T > Tc). Moreover, they suggested
that the rate of sliding is related to the rate of
intragranular dislocation creep by a geometric
constant that is independent of material and
temperature, and the ratio of the two rates
would vary inversely with grain size. In their
model, it was considered that vacancy creep
(Coble creep), GBS, and dislocation creep
mechanisms are independent, and the total
strain rate should be given by the sum of all
the strain rates contributed by the mechanisms.
They gave a set of complex equations that can
be further simplified. For the superplastic
regime, the model leads to the following form
of equations:

_e / DPGb

kT

s
G

� �2 b

d

� �3

for T < Tc (Eq 12a)

where DP is the dislocation pipe diffusivity,
and:

_e / DLGb

kT

s
G

� �2 b

d

� �2

for T > Tc (Eq 12b)

For T> Tc, the proportionality constant (so-called
A-constant) is given by:

e�ð1� nÞ
10

K1

where n is the Poisson’s ratio, and K1 is an
empirical constant of �0.015 cm that is not

expected to change much among various super-
plastic materials.
Arieli and Mukherjee (Ref 38) proposed that

individual lattice dislocations climb into and
along the interfaces in a narrow region near
the interfaces. During the climb process, dislo-
cations multiply via the Bardeen-Herring (Ref
39) mechanism. Due to the nearness of inter-
faces, this climb process is controlled by
grain-boundary diffusion. The model predicts
the rate equation as:

_e ¼ 4po
hZ2 tan y

2

� 	
 !

DGBGb

kT

s
G

� �2 b

d

� �2

(Eq 13)

The significance of this model is that the con-
stant term is not considered a geometric con-
stant; rather, it would vary with interface
structure (through h and y, where h is the pro-
portionality constant between the sliding dis-
tance and Burgers vector, and y is the
mismatch angle between adjacent grains) and
the structure of the narrow zone near the grain
boundary or interface (through o and Z, which
are substructure-related terms).
Other SuperplasticityModels.Perevezentsev

et al. (Ref 40) came up with an interesting
physics-based constitutive model. They ana-
lyzed the mechanism of GBS at grain triple
points and discontinuities as being possible by
a cooperative action of local grain-boundary
migration, mass transport via diffusion, and
emission of lattice dislocation into the grain
interior. The kinetics of GBS is influenced by
these processes. They derived the following
constitutive relationship for superplasticity:

_e ¼ 100
DGBGb

kT

s
G

� �2 b

d

� �2

(Eq 14)

Their model provided good matching with the
experimental data obtained from superplastic
alloys, such as Sn-1%Bi, Zn-22%Al, and so on.
Another interesting mechanism for super-

plasticity could be the solute-drag dislocation-
glide mechanism, similar to class I solid-

solution behavior in creep. In this mechanism,
glide is the rate-controlling process of the
glide-climb dislocation creep. Solute atoms tend
to form solute atmospheres around the disloca-
tions in certain temperature/strain-rate regimes,
thus imposing a dragging force on the gliding
dislocations. This model predicts a strain-rate
sensitivity exponent value of 0.33 (n = 3). Here,
the rate of superplastic deformation does not
depend on grain size (i.e., p = 0). The constitu-
tive equation (Ref 41) can be written as:

_e ¼ A0Dchem

s
G

� �3
(Eq 15)

where Dchem is the chemical diffusivity of
solute atoms in the solvent matrix, and A0 is
an approximate constant that depends on the
solute-solvent atoms misfit-size parameter and
solute concentration. If the formalism of the
equation is kept the same as the Bird-Mukher-
jee-Dorn equation, one may obtain a constant
of approximately 6. Although the strain-rate
sensitivity value is <0.5, it is still high enough
(�0.33) to exhibit large elongations. That is
why many coarse-grained, class I solid-solution
alloys (such as aluminum-magnesium alloys)
exhibit high ductility (>200%) at elevated
temperatures.

Applicability of Superplastic
Constitutive Equations

Figure 6(a) shows normalized stress and
strain-rate data from a superplastic nanocrystal-
line 1420 alloy (Ref 42). The constitutive equa-
tions proposed by Ball and Hutchison (Ref 28,
Eq 9) and Mukherjee (Ref 29) are also plotted.
The constitutive equation given by Mishra et al.
(Ref 43) is included because it represents
microcrystalline alloys quite well. For the
high-pressure torsioned nanocrystalline sam-
ples, the experimental data suggest that the
kinetics of deformation is much slower than
the rates predicted by constitutive equations
used for microcrystalline materials. This is

Fig. 6 (a) Normalized stress versus normalized strain-rate plot for SePD (high-pressure torsion, as-processed grain
size 83 nm) 1420 aluminum alloy. Source: Ref 42. Other constitutive equations have been plotted along

with experimental data of the ECAE 1420 alloy for comparison. (b) Variation of normalized flow stress with grain size
and diffusivity-compensated strain rate for superplasticity data across the nanocrystalline-to-microcrystalline state.
Source: Ref 44
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due to the difficulty of dislocation generation
and thus lack of the accommodation mecha-
nism of GBS. Such discrepancy is not limited
to aluminum alloys. Figure 6(b) shows a nor-
malized plot for Ti-6Al-4V alloy. Again, the
nanocrystalline and ultrafine-grained data do
not match with the microcrystalline data. These
observations imply that the constitutive equa-
tions discussed in prior sections should be used
with caution when applied to the microstruc-
tural state that is significantly different from
the length scale used in original theoretical
formulations.
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Electronic Structure Methods Based on
Density Functional Theory
Christopher Woodward, Air Force Research Laboratory

ELECTRONIC STRUCTURE METHODS
based on density functional theory (DFT) have
emerged over the last two decades as a power-
ful tool for assessing the mechanical thermody-
namic, and defect properties of metal alloys.
These first-principles methods are very appeal-
ing because they are based on the culmination
of our understanding of quantum mechanics
and the electron-ion many-body problem.
While the starting point for such calculations
requires only the most basic knowledge of
chemistry, physics, and crystalline and defect
structures, the calculations can quickly become
very computationally challenging, with increas-
ing system size and complexity. Practical
application of electronic structure methods
invariably includes chemical, spatial, or tempo-
ral approximations that can curtail a faithful
representation of the actual materials problem.
However, over the last decade, there have also
been significant advances in methods for calcula-
tion-free energies (entropy) (Ref 1), activated
states (i.e., kinetics) (Ref 2), flexible boundary
conditions (Ref 3), lattice dynamics (Ref 4), and
reaction-rate theory (Ref 5). Taken with the rapid
improvements in computer processor speeds and
the maturation of “easy-to-use” DFT methods,
there has been an explosive growth in the use of
DFT methods in materials science.
This article is a guide to understanding the

origins of these methods and their strengths
and limitations. It provides the basic procedures
for calculating essential structural properties in
metal alloys. Before delving into the details
for DFT, it is important to place the method in
the context of the larger community of scien-
tists interested in the nature of the electronic
state in materials.

History

Modern electronic structure emerged from
method development in the chemistry and physics
communities and falls roughly into two groups:
Hartree Fock and its extensions (HF+E) and
density functional theory. Historically, HF+E

was been considered to be more precise and has
been preferred by physical chemists, because
systematic improvements to the original approxi-
mation are well defined. For several reasons, HF
+E is not well suited for metallic systems, as dis-
cussed in detail in the next section. Corrections
to HF are extremely computationally intensive,
scaling with the fourth to sixth power of the
number of electrons. Density functional theory
has been widely used in metallic systems since
its inception in 1962. With improvements in effi-
ciency (speed) and refinements in the underlying
approximations, DFT is increasingly being used
in quantum chemistry applications. Recently,
researchers have begun to blur the line between
these two approaches byconstructing novel poten-
tials that blend fundamental aspects of the two the-
ories (Ref 6). The resulting approximations show
great promise for calculations over a broad range
of problems ranging from atoms and molecules
to chemically complex metal-oxide interfaces.
For scientists and engineers considering using

electronic structure (ES) methods, navigating
the sea of DFT acronyms can be challenging
(Table 1). In general, the acronyms refer to
the numerical scheme, or basis, used to repre-
sent the electrons. More recently, as methods
have matured, codes have been named after the
groups that developed or support the method.
All electronic structure methods must deal with
the large changes in the electron distribution
observed in atoms, molecules, and solids. Some
of the electrons are strongly bound to the
nuclear sites (core states) and are very similar
to that found in isolated atoms. Other electrons
are more weakly bound (valence states), produc-
ing interatomic and molecular bonding, and are
responsible for most of the electronic, optical,
thermodynamic, and chemical properties. Elec-
tronic structure methods deal with this disparity
in a variety of ways, depending on what class of
materials problem is under consideration. For
example, with isolated atoms and molecules, it
is natural to work in real space with methods
based on a linear combination of atomic orbitals
(LCAO), represented numerically or as a sum
of analytic functions (e.g., Gaussians). For

crystalline systems, it is more natural to use
periodic boundary conditions, and electrons
are represented using a linear combination, or
basis, of plane waves. Over time, several meth-
ods were developed to avoid the large number
of plane waves needed to represent the rapidly
varying electron core densities. One approach,
employed in augmented plane wave (APW)
and muffin tin orbital (MTO) methods, is to
use a set of local functions centered around
each atom and to match that solution on a
sphere to a plane wave basis everywhere else.
Another technique, the pseudopotential method,
maps the strongly bound electron states into a
potential that is then used to calculate the
valence electrons. These pseudopotential plane
wave (PPW) methods are relatively easy to
use, and the simplicity of the basis has allowed
significant progress in computational efficiency

Table 1 Selected acronyms appearing in
this article

Acronym Meaning

APW Augmented plane wave
CALPHAD CALculation of PHAse Diagram methods
CP Car and Parrinello methods
DFT Density functional theory
E(r) Functional (of electron density function r)
ES Electronic structure
FLAPW Full-potential linearized augmented plane wave
FP-LMTO Full-potential linearized muffin tin orbital
GGA Generalized gradient approximation
HF Hartree-Fock
HF+E Hartree-Fock and its extensions
KS Kohn and Sham
LAPW Linearized augmented plane wave
LCAO Linear combination of atomic orbitals
LDA Local density approximation
LSDA Local spin density approximation
MES Murnaghan’s equation of state
MTO Muffin tin orbital
OPW Orthogonalized plane wave
PAW Projector augmented wave
PPW Pseudopotential plane wave
PW91 Perdew and Wang 1991 (Ref 7, 8)
POSCAR Input file for Vienna ab initio simulation

package
SGGA Spin-generalized gradient approximation
USPP Ultrasoft pseudopotential
VASP Vienna ab initio simulation package
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(i.e., parallel processing) and analytic solutions
for properties such as atomic forces and stress.
Historically, mixed-basis methods (APW,

MTO) have been considered as the benchmark
for accuracy in most applications. However, the
mixed basis makes these methods more chal-
lenging to use and adds significant complications
to deriving basic quantities such as atomic forces
or stresses. With advances in pseudopotential
theory since the mid-1980s, PPW methods rou-
tinely reproduce the results of mixed-basis meth-
ods. Also, because of the added benefits of larger
simulation sizes and automated atomic and cell
optimization, it can be argued that PPWmethods
are producing more accurate results in a wider
range of applications.
Mixed-basis methods are still the preferred

technique for systems where the pseudopoten-
tial approximation breaks down. This happens
when changes in valence electrons change the
structure of the core electrons. For example, in
the actinides, where the f-electrons are coupled
to the core states, APW and MTO methods are
preferred (Ref 9). Also, simulations of photo
absorption and emission are probably best mod-
eled using techniques where the core states are
optimized along with the valence states. The
quality and availability of pseudopotentials in
some software packages can be quite limited.
Researchers new to the field should carefully
assess the available options before investing
time or resources in any particular method.
Scale. One additional criterion to consider is

the scale of the problem that needs to be solved.
Inevitably, this dictates the method and the
required computational platform. Both LCAO
and PPW methods scale well on current parallel
supercomputers and are typically applied to
molecular and crystalline problems, respectively.
Density functional theory is being applied

throughout the scientific community to a
staggering range of problems. With current mul-
tiprocessor supercomputers, PPW methods can
simulate system sizes up to approximately 1000
atoms (Ref 10). This varies with the system sym-
metry and the choice of atomic species, with the
transition metals being the most challenging.
Researchers are also running ab initio molecular
dynamics simulations for cells ranging from 100
to 500 atoms for simulation times up to tens of
picoseconds. The future of DFT will be driven
by improvements to the underlying approxima-
tions, the introduction of new hybrid potentials,
and advances in supplementary methods that
use DFT results. Research into new novel basis
functions (e.g., wavelets) or the introduction of
new computer hardware (e.g., field-programma-
ble gate arrays) could revolutionize the field.
Finally, while still in its infancy, there is a sig-
nificant effort underway to directly calculate
the electronic state by quantum Monte Carlo
methods. If properly coupled to next-generation
supercomputers, this eventually could overtake
all other developments (Ref 11).
The rest of this article is divided into three

independent sections. The first reviews the gen-
eral underlying theory of electronic structure

methods, DFT specifically, and the taxonomy
of DFT methods that have emerged over the last
30 years. The second section reviews the
approximations and computational details of
the most popular method used in metal systems,
the PPW methods. The last section reviews a
subset of the applications of DFT methods found
in metal alloy systems. This includes calcula-
tions of a variety of structural, thermodynamic,
and defect properties, with particular emphasis
on structural metal alloys and their derivatives.

Fundamentals of Density Functional
Theory

One would like to model a chunk of matter
using only what is known about coulomb inter-
actions between electrons and ions and the
underlying principles of quantum mechanics.
The approach taken over the last 50 years has
been to systematically apply approximations,
making the many-body problem more manage-
able while retaining the essential physics. Part
of this evolving approach is to reduce the sys-
tems of equations to that subset which captures
the problem of interest. We are not interested in
solving systems with Avogadro’s number of
particles; not only would solving such a prob-
lem be unfeasible, analyzing the results of such
a calculation would be a Herculean task. There-
fore, for practical reasons both conceptual and
computational, it is considered best practice to
minimize the scale (spatial and temporal) of
the electronic structure calculation. There are
many good reviews of DFT methods. For a gen-
eral overview of the fundamentals, see Ref 12.
The general theory of PPW methods and many
practical issues on applying these methods are
found in Ref 13; many practical details of PPW
and APW methods are reviewed in Ref 14.

Classical to Quantum Mechanics. Begin-
ning from classical mechanics, the many-body
Hamiltonian of an ensemble of interacting
atoms takes the form:

HTotal ¼
XM
I

P 2
I

2MI
þ 1

2

XM
I

XM
I 6¼J

ZIZJe
2

jRI �RJ j þ
Xm
i

p2j
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þ 1

2

Xm
i

Xm
j6¼i

e2

jri � rjj �
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I

Xm
i

ZIe
2

jri �RI j
(Eq 1)

where MI, PI, ZI, and RI are the mass, momen-
tum, charge, and position of the M possible ions,
and me, pe, and ri are the mass, momentum, and
position of the m possible electrons. The Hamil-
tonian is then separated into two parts: a purely
ionic part (the first two terms on the right side
of Eq 1) and an ion-electron part:

HTotal ¼ HIonðRIÞ þHe�IonðRI; riÞ (Eq 2)

From this point, a materials scientist can
choose to represent He-Ion by an effective poten-
tial that leads to the field of atomistic modeling

or choose to invoke quantum mechanics and
solve the many-body Schrödinger equation that
leads to the field of ESmethods. The latter is gen-
erally considered a more faithful representation
of themany-body problem, because the electrons
are treated explicitly. Standard practice now is to
apply the Born-Oppenheimer approximation.
Given that the electron cloud responds much fas-
ter to an applied electric or magnetic field than
the ions (me/MI � 1), we can decouple the
nuclear and electronic motion and solve for the
electron degrees of freedom with the ionic posi-
tions held fixed. Using separation of variables,
the Schrödinger equation corresponding to Eq 1
can be divided into two parts:

HCðfRI; rigÞ ¼ ðHe þHIonÞCðfRI; rigÞ
¼ ECðfRI; rigÞ (Eq 3)

using CðfRI; rigÞ ¼ CeðfRI; rigÞCIonðfRIgÞ
produces two equations:

ðTe þ Ve�e þ Ve�IÞCeðfRI; rigÞ ¼ EeCeðfRI; rigÞ
and ðTI þ VI�I þ EeÞCIonðfRIgÞ ¼ EICIonðfRIgÞ

where T and V refer to the kinetic and coulomb
potential terms for the electrons and ions, and
the eigenvalues (Ee coming from the separation
of variables) are incorporated as an effective
potential for the ionic problem. The many-body
Schrödinger equation for the m electrons is:

HeCeðfRI; rigÞ ¼
Xm
i¼1

��h2

2m
r2

i � Ze2
XM
I

1

jri � RIje

 

þ 1

2

Xm
i 6¼j

e2

jri � rjj

!
	eðfRI; rigÞ

¼ Ee	eðfRI; rigÞ

Unfortunately, this equation cannot be solved
directly. Two approaches are taken to solve this
system of equations: the first, Hartree-Fock and
its extensions (HF+E), solve for the electron
wave-functions; and the second, DFT, solves for
the charge density. (Drs. W. Kohn and J.A. Pople
split the Nobel Prize in Chemistry in 1998 for
aspects of these contributions.) The Hartree-Fock
approach is attractive because the derivation
allows for well-defined systematic (although
costly) improvements to the initial approximation
for the third term in Eq 2. These are sometimes
called post-Hartree Fock methods.
Limitations for Metallic Systems. The

HF+E methods are used extensively in nonme-
tallic systems; however, they are poorly suited
for metal systems for several reasons. First, sig-
nificant corrections to the initial HF approxima-
tion are required to properly represent metal
systems. Second, in free-electron metals, HF
produces an intrinsic instability in the electron
velocity (a logarithmic divergence in de/dk),
where e(k) is the energy dependence of the
electron as a function of wave vector (k) at
the Fermi surface (Ref 15).
Density functional theory is based on two

insights provided byHohenberg, Kohn, and Sham
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in the early 1960’s (Ref 16, 17). First, Hohenberg
and Kohn proved that for an interacting electron
gas in an external potential the ground state is
given exactly as a functional of the electronic den-
sity: E = E(r(r)). Here r(r) is the electron density
and for our many body problem the external
potential is the coulomb potential produced by
the atomic nuclei. Also, a functional is defined
as a function of a function—in this case E is a
function of the electron density.While the Hohen-
berg-Kohn theorem shows that E(r) is a unique
functional, it does not provide a prescription on
how to form the functional, so the usefulness of
the theorem is dependent on finding sufficiently
accurate approximations (Ref 16).
To this end, Kohn and Sham suggested

writing E as:

E½r� ¼ Ts½r� þ Eei½r� þEII ½r� þ EH½r� þExc½r�
(Eq 4)

The functionals on the right represent the kinetic
energy of a system of noninteracting electrons
(Ts), the electron-ion interactions (Eei), the Hartree
potential of electron-electron interactions (EH),
the ion-ion interactions (EII), and the exchange
correlation functional (Exc), respectively
(Ref 17). The functionals are now integrals over
space; that is, the last two terms explicitly are:

EH½r� ¼ e2

2

ð ð
dr dr0

rðrÞrðr0Þ
jr� r0j (Eq 5)

Exc½r� ¼
ð
dr rðrÞexcðrðrÞÞ (Eq 6)

In the last term, Kohn and Sham identified
exc(r(r)) as the exchange and correlation
energy/electron of a uniform electron gas of
density r. This is the local density approxima-
tion (LDA), which assumes that given a suffi-
ciently slowly varying density, a function
(exc), can be defined that represents the effec-
tive potential of an electron surrounded by its
own “mutual exclusion zone” consistent with
the requirements of quantum mechanics.
Using the fact that the functional E[r] is an

energy minimum with respect to variations in
r (the Hohenberg-Kohn theorem), they then
derived single-particle Schrodinger-like equa-
tions that are sometimes referred to as the
Kohn-Sham (KS) equations:

� �h2

2m
r2 � Ze2

XN
I¼1

1

jr�RI j þ e2
ð

rðr0Þ
jr� r0j dr

0
(

þ mxcðrðrÞÞ
)
fiðrÞ ¼ eifiðrÞ ðEq 7Þ

where:

rðrÞ ¼
Xm
i¼1
jfiðrÞj2

with m equal to the number of occupied states
(the number of electrons in the system), and

mxc (r) = d(rexc(r))/dr, is identified as the
exchange-correlation contribution to the chemical
potential of a uniformgas of densityr. The system
of equations is solved self-consistently by assum-
ing a r(r), constructing the last two terms in the
KS equations, and then solving for r(r) using
fi(r). The total energy is given by:

E½rðrÞ� ¼
Xm
i¼1

ei � 1

2

ð ð
rðrÞrðr0Þ
jr� r0j drdr0

þ
ð
rðrÞ½excðrðrÞÞ � �xcðrðrÞÞ�dr

(Eq 8)

The KS equation maps the interacting many-
electron system to a set of noninteracting elec-
trons moving in an effective potential of all
the other electrons. The utility of the KS equa-
tions rests in the ability to find reasonable
approximations for the functional Exc[r]. Fortu-
nately, this function has been studied in detail
for the case of a uniform electron gas (Ref
18), derived using Monte Carlo techniques
(Ref 19), and parameterized for electronic
structure calculations (Ref 20).
The local density approximation has been sur-

prisingly successful in predicting a variety of
properties in metals. Lattice parameters are usu-
ally accurate to within �1% and cohesive ener-
gies and elastic constants to within �10%. The
method is well suited for studying solids and per-
fect and defected crystals and is easily extended
to include spin dependence, the local spin density
approximation (LSDA), which has been widely
applied to ferromagnetic and antiferromagnetic
systems (Ref 21). The LDA is also the starting
point for a variety of improvements based on
the local change in the electron density produced
by the electron (the exchange-correlation hole).
These generalized gradient approximations
(GGA) have systematically improved the accu-
racy of DFT for problems in molecular systems
and broadened the application base significantly
(these are reviewed in the next section). How-
ever, currently the method is still not well suited
for systems with large van derWaals interactions
or systems sampling infinitesimally small elec-
tron densities, such as structures bounded by a
vacuum.
Where DFT methods seem to diverge is in

the spatial representation of the one-electron
wave functions. The wide variety of methods
reflects the fact that an accurate representation
of the charge density has traditionally required
specialized basis functions. The fundamental
problem is that as the atomic number increases,
additional atomic wave functions are required
by the Pauli exclusion principle to be orthogo-
nal to existing lower-lying wave functions.
To accomplish this, as the principle quantum
number increases, the wave functions take on
a rapidly varying radial form near the atomic
center. Therefore, for a set of basis functions
to accurately describe the electrons, it must be
able to both represent the rapidly varying func-
tion near atomic centers and the relatively
smooth functional form outside that region.

Several strategies have been used to solve
this problem. Techniques such as the aug-
mented plane wave, muffin tin orbital, and Kor-
ringa-Kohn-Rostoker methods use an efficient
and compact basis to describe the wave func-
tions near the atomic centers (Ref 22–27). An
additional basis (typically plane waves) is used
to describe the wave functions outside this
region, and various schemes are used to ensure
a proper match of the wave functions at the
boundary between these two regions. These
methods give a very accurate representation of
the core region, while allowing some flexibility
in the basis outside this region. Refinements to
these techniques, such as the full-potential line-
arized augmented plane wave (FLAPW) (Ref
28, 29) and full-potential linearized muffin tin
orbital (FP-LMTO) (Ref 23, 30), are currently
considered to be the most accurate DFT meth-
ods, although the implementations are limited
to relatively small cell sizes.
The seminal work on orthogonal plane-wave

methods led to the development of an alterna-
tive technique where the low-lying (core) states
are effectively removed from the calculation
(Ref 31). In this case, an effective electron-ion
potential, or pseudopotential, is derived from
an atomic electronic structure calculation. Pseu-
dopotentials incorporate the tightly bound wave
functions and ionic charge so that the potential
produces the same electronic interactions as
the original atomic calculation. In this way,
the core electrons, which do not normally influ-
ence materials properties, can be removed from
the simulation. By construction, the pseudopo-
tentials produce the same interaction with the
valence electrons as the original all-electron
calculation (as measured through the electron-
scattering properties) (Ref 32). Recent pseudo-
potential schemes have relaxed this philosophy
during the construction of the potential, only
to reimpose the requirement when constructing
the KS orbitals in the system of interest
(Ref 33, Ref 34–35). Pseudopotentials also
incorporate the effective potential produced by
the Pauli exclusion principle, such that the
valence wave functions are smooth functions
in all space. Therefore, it is natural to combine
a plane-wave basis with the pseudopotential
representation in what is now called pseudopo-
tential plane-wave (PPW) methods.
While the plane-wave basis is not as compact

as that used in the linearized augmented plane-
wave methods, PPW methods have been easier
to implement because of the simplicity of
the plane-wave basis. It is relatively straightfor-
ward to calculate atomic forces (through the
Hellmann-Feynman theorem), the stress tensor,
and phonon properties (Ref 36–38). However,
until the mid-1980s, application of PPW meth-
ods was somewhat limited because of the size
of the required plane-wave basis set. In 1985,
Car and Parrinello showed how to simulta-
neously optimize both the electronic and ionic
degrees of freedom by taking advantage of fast
Fourier transforms and the plane-wave basis
(Ref 39). Iterative diagonalization methods that
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have grown out of these insights have shown that
by proper preconditioning of the KS wave func-
tions during the optimization procedure, it is
possible to directly minimize the KS energy
functional (Ref 40). This innovation stabilizes
the constrained optimization of Eq 1 and has
made it possible to run very large simulations
relatively efficiently (Ref 13).
The schematic in Fig. 1 shows the methods

developed by the chemistry and physics commu-
nities to solve the materials many-body problem.
In general, the DFT methods are the method of
choice for calculations on metallic systems.

Pertinent Approximations and
Computational Details for
Calculations in Metal Alloys

To calculate the electronic structure of an
alloy, the researcher needs more than just an
underlying theory and a working description
(basis) of the electrons. First, the methods need
efficient and accurate techniques for integrating
the quantities described in the last section over
the volumes (and k-space) of interest. Second,
the approximations and basis must be well
matched to the problem of interest. Finally,
explicit knowledge of the crystal structure,
location, and species of every atom on the sim-
ulation volume is required. Fortunately, for

most of the alloys of engineering interest, this
information is available in tabulations of the
International Tables for Crystallography in
the form of space groups, describing the sym-
metry of the lattice, and Wyckoff positions,
describing the atomic sites (position and chem-
istry) (Ref 41).
Integration of Cell Quantities. One advan-

tage to working on metallic systems is that the
underlying crystalline structure is almost invari-
ably periodic. This allows the researcher to
employ simulation cells with periodic boundary
conditions (supercells) to represent the material
of interest. Periodic boundary conditions also
make it possible to represent almost all quanti-
ties of interest in terms of real and Fourier
space (k-space) components. This is particu-
larly useful when summing up terms numeri-
cally in the KS equations or Eq 8 over the
Brillouin zone (energy states for the free elec-
trons in a metal, as described by the use of the
band, or zone, theory of electron structure).
The most straightforward way to integrate

quantities over the supercell is to divide the
Brillouin zone using a tetrahedron grid of
points (k-points). However, in the early 1970s,
numerical schemes were developed to predict
the smallest set of k-points, “special k-point”,
that would yield the most accurate cell integra-
tions (Ref 42, 43). In most modern application
codes, the selection of k-points is sufficiently

automated that the investigator needs only to
input the required density of such points. How-
ever, one characteristic of a metal is that
valence states, or bands, are partially occupied,
and this can produce numerical instabilities. To
avoid this and to improve the efficiency of the
cell integration, researchers introduced a
numerical smearing of the highest-lying bands,
specifically those that are near the Fermi sur-
face. The “broadening” methods fall into two
classes: those employing ad hoc functional
forms such as Gaussians and finite-temperature
schemes based on the Fermi-Dirac or Gausslike
functions that mimic thermal broadening
(Ref 44–46). Both methods are effective, and
the latter technique has the advantage of an
associated, if ad hoc, temperature.
Computational time for metal simulations

scales with the number of k-points. However,
as the simulation sizes get larger and reciprocal
space gets smaller, the number of required
k-points is reduced. For large simulations, say
greater than 100 atoms, often only a single k-
point is needed. Also, if only the gamma point
(k = (0,0,0)) is required, then calculations can
gain another factor of 2 in efficiency, because
of the symmetry imposed on the complex parts
of the wave functions.
While there are rules of thumb for the use of

special k-points and broadening methods, it
pays to carefully test the convergence of such

Fig. 1 Schematic of the methods developed by the chemistry and physics communities to solve the materials many-body problem. In general, the DFT methods are the method of
choice for calculations on metallic systems.
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methods using, for example, the cell energy or
other quantity of interest. In general, the density
of k-points should be approximately that of the
size in dispersion in the bands near the Fermi
surface (Ref 14).
Understanding and Choosing a Pseudopo-

tential. Early in the development of electronic
structure methods, researchers realized that the
electrons contained in full atomic shells (s, p,
and d) do not have a strong influence on chem-
ical and mechanical properties. These effects
are controlled mostly by the interaction of
valence electrons, which have the largest prin-
ciple quantum number and thus the most rap-
idly varying radial function in the region
around the atom nucleus. Pseudopotentials
replace the core-valence electron interactions,
the second term of Eq 4 and 7, with an effective
potential, producing a realistic pseudovalence
wave function that has a smooth and slowly
varying radial form. Typically, pseudopoten-
tials are derived from an atomic reference cal-
culation and then used in a crystalline or other
environment, so transferability is a serious con-
cern when developing such a scheme. Early
local pseudopotentials, and more recent imple-
mentations of the same, are severely limited
and can only reliably be used in simple free-
electron metals where the core electrons have
very weak interactions with the valence states
(Ref 47, 48).
Modern pseudopotential theory is based on a

“norm-conservation” approach that enforces a
strict criterion for mapping real- to pseudo-
wave functions and includes nonlocal angular
momentum-dependent (l) interactions that
accurately model the valence-core electron
interactions (Ref 32). Transferability is main-
tained by imposing identical logarithmic deri-
vatives, and thus scattering phase shifts,
outside a certain (core) radius about each
atomic site. More recent advances in pseudopo-
tential theory, such as Vanderbilt’s ultrasoft
pseudopotentials, make use of additional func-
tions about the atomic core, which allow for
smoother pseudo-wave functions and more effi-
cient PPW calculations (Ref 33). This and later
refinements of pseudopotential theory parallel
the original strategies used in orthogonalized
plane wave (OPW) methods developed by Her-
ring, Callaway, and others from 1940 through
the 50’s (Ref 49, 50). The most recent advances
in pseudopotential theory, the projector aug-
mented wave (PAW) method (Ref 34, 35),
retains all the information of the core states
and is thus analogous to the most accurate all-
electron methods (e.g., OPW, APW and
MTO). Implementing the PAW methods in
PPW codes required additional development,
and using the potentials incurs additional
computational overhead.
Using modern numerical methods, current

commercial PPW implementations of the PAW
method are as efficient as the original Car and
Parrinello methods and as accurate as many
full-potential methods. They have the added
benefit of ease of calculation of atomic forces,

stress tensor, and convergence of basis. A wide
variety of ultrasoft and PAW pseudopotentials
are available in the user community as well as
source code for developing such potentials.
More importantly, there are readily available,
well-documented suites of pseudopotentials that
have been tested by a broad user base.
Exchange-Correlation Potentials, Local

Density Approximation, and the Generalized
Gradient Approximation. Density functional
theory is one of the most successful electronic
structure methods precisely because of the sim-
plicity of the underlying exchange-correlation
functional. Practical application of the Hohen-
berg-Kohn theorem through the KS equations
requires both an assessment of the exchange
correlation functional and a numerically effi-
cient scheme for interpolating the energy for a
range of charge densities. Since the original for-
mulation of the KS equations, the nature of the
exchange correlation potential has been studied
in some detail. The LDA is the foundation of all
these approximations. Within the LDA, only
knowledge of the exchange correlation energy
of the homogeneous electron gas is required.
This is approximated as the sum of exchange
and correlation potentials, the first given by a
basic analytical form and the second calculated
using Monte Carlo methods (Ref 19). These
data were then fit to functional forms to
improve computational efficiency and parame-
terized for electronic structure calculations
(Ref 20).
The LDA has been found to be surprisingly

accurate in a wide variety of systems. The initial
formulation was expected only to be valid for
volumes with slowly varying electron densities,
a condition that is not well satisfied in many
crystals. It is generally believed that the LDA
approximation underestimates the exchange
energy (by �10%) and overestimates the corre-
lations energy (2%) and that these errors par-
tially cancel each other out (Ref 51). However,
LDA is particularly unsatisfactory for low-elec-
tron densities, such as near a surface, and that
has made the approximation problematic for cal-
culations of atoms and molecules. Still, LDA
produces reasonably accurate bond lengths and
geometries for some molecules.
The efficacy of the KS equations and the need

for highly accurate simulations has resulted in
systemic improvements to the LDA. The most
successful approaches, based on Generalized
Gradient Approximation (GGA), include infor-
mation on the effects of inhomogeneities in the
electron gas on the exchange correlation poten-
tial. The gradient corrections are constructed to
satisfy intrinsic sum rules and are designed to
maintain the accuracy of LDA while correcting
the errors introduced by large gradients. Using
FP-LMTO, Ozolins and Korling calculated the
changes in lattice constants and bulk modulus
produced by using the GGA proposed by Perdew
and Zhang (sometimes referred to as PW91)
(Ref 7, 8). They found a systematic improve-
ment in equilibrium volumes and bulk modulus
for 3d, 4d, and 5d transition metals, with the

mean error decreasing on average by 50% for
both quantities across the series (Ref 52). Other
researchers also found that early GGA methods
and PW91 correctly produce the correct body-
centered cubic ground state for crystalline iron
where the LSDA erroneously predicts a face-
centered cubic (fcc) ground state (Ref 53, 54).
Recently, other GGA methods have been

validated that produce better energetics and bet-
ter represented low-density regions. Hybrid
schemes based on a weighted mixing of HF
exchange and DFT correlation have gained
favor in the quantum chemistry community
(Ref 55, 56). Also, another class of GGA func-
tional has been self-consistently matched to
high- and low-electron densities, making it effi-
cient and well suited for metallic systems with
internal or external surfaces (Ref 57).

Practical Application of DFT in
Metals and Alloys

As illustrated in Fig. 1, DFT methods come
in a variety of forms; they also vary widely in
their level of maturity and efficacy. Until
recently, most of the mixed-basis methods
(FP-LMTO and FLAPW) were closely held
academic codes; now, there are several free-
ware and commercial options (Table 2). While
highly accurate, these methods have a more
complex set of adjustable basis parameters than
PPW methods. There are a variety of PPW
methods, some available as freeware and some
commercially, and some have well-developed
pseudopotential libraries. New users should
verify that a given code base has the necessary
features for running their application before
investing resources into a method. All of the
methods shown in Table 2 should produce
accurate results for the simple applications out-
lined in this section.
From Crystal Structure to Input File—

Examples of VASP Input Files. Setting up the
simulation cell for electronic structure calcula-
tions requires the lattice vectors, the atomic
positions, and the chemical species at each site.
The input file required for the PPW method
Vienna ab initio simulation package (VASP)
is used to illustrate this process (Ref 59, 60).
Typically, the researcher starts with a phase
and then refers to tables and textbooks to find
the required quantities. For example, in nickel-
base superalloys, Ni3Al is an important precipi-
tate that significantly strengthens the nickel
matrix phase. Using the tabulated data on alloy
phases in W.B. Pearson’s A Handbook of
Lattice Spacings and Structures of Metals
(Ref 61, 62), the structure type is listed as hav-
ing a structure name (a representative material)
AuCu3, the Strukturbericht designation L12, a
lattice parameter of 3.567 Å, with a space group
of Pm3m. The Pearson classification for L12,
AuCu3 is given as cP4 in the tables leading up
to the “Table of Classification of Structures of
Metals and Alloys.” A shortened version of
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the entry under cP4 is given in Table 3. After the
first line describing the structure designations,
the atomic basis and the Wyckoff positions are
listed in terms of the atom type, the number of
atoms at each symmetry distinct point, and the
internal coordinate. All the required information
is now determined. The International Tables for
X-Ray Crystallography has more information for
this cubic space group (number 221) and lists
much more complicated crystal structures with
this space group (Ref 41, 63).
The VASP input file for the lattice vectors

and atomic basis is called POSCAR, and a
screen shot of the POSCAR file for Ni3Al is

shown in Fig. 2. In POSCAR, the title line is
followed by the lattice constant from Pearson
and the three lattice vectors for a cubic lattice
in Cartesian coordinates. This is followed by
the number of each chemical species, in this
case, three nickel atoms and one aluminum
atom, and a keyword describing the format of
the atomic basis. (Note that the order of the
chemical species is important and must be con-
sistent with the ordering of the pseudopotential
input file.) The atomic basis can be entered in
either Cartesian (Keyword: CARTESIAN) or
in terms of the three lattice vectors (Keyword:
DIRECT). For the “Direct” mode, the atomic

positions correspond to R
!¼ x1a1

!þx2a2!þ
x3a3
!, where ai

! are the lattice vectors scaled
by the lattice parameter, and xi are the values
entered into POSCAR. Input using the CARTE-
SIAN keyword is scaled only by the lattice
constant, R

!¼ x1 îþ x2ĵþ x3k̂, where i, j,
and k are unit vectors [100], [010], and [001],
respectively.
Another, more complex example of an

atomic basis is the d-MoNi phase, which is also
important in the nickel-base superalloys. In
Pearson, this topologically close-packed phase
is listed as orthorhombic with lattice constants
a = 9.108, b = 9.108, and c = 8.852 Å, contain-
ing 56 atoms with the space group P212121.
Table 4 gives the representative atomic posi-
tions listed as 14 roman numbers with
corresponding coordinates. The Wyckoff posi-
tions, listed in the international tables for
P212121, are shown in Table 5. The atomic
coordinates are generated by using the last col-
umn of Table 5 with each of the 14 atomic
parameters, producing the expected 56 atoms.
Note, however, the atomic species for each

site is still unknown. Going back to the original
reference for this crystallographic assessment,
we can find the chemical assignments for most
but not all the atomic sites (Ref 64). At finite
temperatures, all alloys show deviations from
perfect ordering; however, the composition of
the studied d-MoNi phase was Mo49.2-Ni, and
x-ray analysis could not unambiguously deter-
mine the chemistry on at least one of the sites.
The electronic structure calculations can pro-
ceed by assuming a Mo50-Ni composition and
the chemistry at the sites designated by XI as
being occupied by nickel atoms. However, this
is just one possibility, and in principle, a free-
energy model would include sampling the for-
mation energy of other atomic arrangements at
this composition.
Using Tables 4 and 5, the initial cell was

constructed as shown in the screen shot of the
POSCAR file in Fig. 3. The figure also shows
a screen shot of the final cell configuration.
Using VASP, the lattice vectors and atomic
positions were optimized within a spin-polar-
ized (ferromagnetic) ultrasoft pseudopotential
approximation. Note the slight change in the
length of the orthorhombic lattice vectors and
the change in atomic positions. At the start of
the calculation, the pressure was �16 kB, and
the largest force/atom was �0.5 eV/10�10 m.
After optimization, the pressure was less than
0.5 kB, the atomic forces were less than
2�10�3 eV/10�10 m, and the total energy change
from the initial configuration was �0.5 eV.
This and several other configurations were

used to develop a simple free-energy model of
the nickel-molybdenum system by approximating
the configuration entropy (Ref 65).
Lattice Parameters. While current PPW

codes can optimize supercell geometries by
minimizing in the diagonal components of the
stress tensor, it is still useful to know how to
calculate the lattice parameters using equations
of state. Perhaps the most cited equation of

Table 2 Partial list of currently available density functional theory programs

Method Acronym/name Fee Point of contact

PPW ABINIT No http://www.abinit.org/
Prof. X. Gonze, Université catholique de Louvain, Physico-Chemistry and
Physics of Materials, Louvain-la-Neuve, Belgium

CASTEP Yes Accelrys, Inc., San Diego, CA, 92121
http://accelrys.com/products/materials-studio

Quantum Expresso No P. Giannozzi, Universit‘a di Udine and Democritos National Simulation
Center, Italy http://www.quantum-espresso.org

VASP: Vienna Ab initio
Simulation Package

Yes Prof. J. Hafner, Institute of Materialphysik Wien University Austria, http://
cms.mpi.univie.ac.at/vasp/

LCAO DMOL3 Yes Accelrys, Inc., San Diego, CA, 92121
http://accelrys.com/products/materials-studio

SIESTA Yes Prof. J.A. Torres, Universidad Autonoma de Madrid, Spain
http://www.icmab.es/siesta or http://www.nanotec.es/

FP-LMTO LmtART No http://www.fkf.mpg.de/andersen/
S.Y. Savrasov (Ref 57).

RSPt : Relativistic Spin
Polarised (test)

No http://www.rspt.net/index.php

FP-LAPW WIEN2K Yes http://www.wien2k.at/index.html
Prof. Karlheinz Schwarz, Inst. f. Materials Chemistry, TU Vienna

FLAIR Prof. M. Wienert, Univ. Wisconsin Milwaukee,
weinert@uwm.edu

QMD-FLAPW Yes Prof. A.J. Freeman, Northwestern Univ.
Quantum Materials Design, Inc.
http://flapw.com/news.html

Some are available for a license fee and others are available at no cost. Many of the methods have associated user groups, and some have graphical
user interfaces. Materials science trade organizations are beginning to track the status of software (see, for example, http://iweb.tms.org/forum) and
may provide useful updates to this table.

Table 3 Crystallographic information and atomic basis for L12, Ni3Al

Classification symbol Structure name Strukturbericht type Space group

cP4 AuCu3 L12 Pm3m

Origin at center (m3m)
Equivalent positions:
Au: 1 a m3m 0,0,0
Cu: 3 c 4/mmm. 0,½,½; ½,0,½; ½,½,0

Fig. 2 Screen shot of the input file describing crystal system and atomic basis for g0-Ni3Al
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state used for this purpose was developed by F.
D. Murnaghan in 1944 (Ref 66). Assuming that
the bulk modulus (K) is a linear function of the
pressure:

K ¼ �V dP

dV
¼ Cð1þ kP Þ (Eq 9)

such that the bulk modulus (K) and its derivative
at zero pressure are identified, respectively, as:

KðV0Þ ¼ � V
dP

dV

� �
p¼0

¼ C and
dK

dV

� �
p¼0
¼ � d

dP
V
dP

dV

� �
p¼0
¼ Ck

Integrating Eq 1 from zero pressure yields:

P ðV Þ ¼ C

Ck

V0

V

� �Ck

�1
 !

Using P ¼ � dE
dV , we can identify K ¼ V d2E

dV 2

and finally:

V ðd"2EðV ÞÞ=½dV �"2 ¼ Cð1þ kP Þ
¼ Cð1
þ kC=CkððV#0=V Þ"Ck� 1Þ

¼ CðV#0=V Þ"Ck
(Eq 10)

Integrating two times and identifying C ¼ K0

and Ck ¼ K00 yields Murnaghan’s equation of
state (MES):

EðV Þ ¼ EðV0Þ þ VK0

K00ðK00 � 1Þ
V0

V

� �K0
0

þK00 � 1

" #

� V0K0

K00 � 1

(Eq 11)

This somewhat complicated form can then be
used to fit the energy as a function of volume
calculated from electronic structure methods.
For example, Fig. 4 shows the energy versus
volume for fcc nickel using PAW pseudopoten-
tials, and Table 6 gives the constants that pro-
duced the fitted curves.
In general, DFT will predict low-temperature

lattice constants to within a percent. The LDA
will typically underestimate lattice parameters,
while the later, improved, gradient-corrected
approximations do not follow this trend (Ref
68). The MES also produces an estimate of
the bulk modulus and its derivative with respect
to volume. There are reasonable alternatives to

Table 4 Crystallographic information and atomic parameters for d-MoNi

Phase System Strukturbericht type Space group Estimated %Mo

d-MoNi Orthorhombic None P212121 Atoms Atomic parameters

IV 0.4519 0.1153 0.5322 0
VI 0.4424 0.3662 0.5972 0
VIII 0.3882 0.0523 0.2748 0
IX 0.1337 0.0707 0.2157 0
X 0.3768 0.4358 0.8567 0
XII 0.0680 0.1442 0.9529 0
I 0.1763 0.4832 0.6425 80
XIII 0.0338 0.3398 0.1807 80
II 0.2289 0.2865 0.4098 91
V 0.2648 0.1993 0.7486 91
XI 0.3136 0.2464 0.0740 58
VII 0.0029 0.1969 0.6767 100
XIV 0.1885 0.0157 0.4960 100
III 0.1031 0.4192 0.9133 100

Source: Ref 61; %Mo estimate, Ref 64

Table 5 Wyckoff positions for space group
P212121

Multiplicity

Wyckoff

letter

Site

symmetry Coordinates

4 a 1 (x,y,z),(�x+½,�y,z+½),
(�x,y+½,� z+½),
(x+½,�y+½,�z)

Fig. 3 Screen shot of initial and final cell configurations for d-Mo50-Ni
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MES, such as the Birch form (Ref 69) that is
favored in some applications (Ref 57, 70).
Recent improvements to the gradient correc-

tions that are designed to alleviate problems in
low-charge density regions (i.e., internal voids,
surfaces, and surface interactions) have pro-
duced mean errors in lattice parameters of
approximately 0.1% over a wide range of mate-
rials (Ref 57, 70).
Elastic Constants. One of the primary uses

of DFT in crystalline metals has been to predict
lattice parameters and elastic constants. Initi-
ally, the calculations were used to assess the
validity of the LDA and the computational
methods. However, as the LDA became more
established and the exchange-correlation func-
tionals became more refined, it became routine
for groups to predict the Cij of simple metals.
In the early 1990s, DFT was used extensively
to predict the elastic constants of a variety of
high-temperature intermetallics. Mehl and cow-
orkers at the Naval Research Laboratory were
one of the first groups to apply these methods.
They developed a robust strategy for assessing
Cij for cubic and tetragonal crystal structures
(Ref 70).

The general approach is to express the free
energy of the system as a function of the strain
tensor acting on a small simulation cell volume:

dF ¼ �SdT þ PdV þ dW

where dW is the infinitesimal work done by
elastically distorting the crystal. Specifically,

dW ¼ sijdeij ¼ Cijklekldeij;

where we have used the definition of the elastic
constants relating the applied stress to the
resulting strain: sij ¼ Cijklekl. Assuming
reversible and isothermal loading at zero pres-
sure, dF ¼ dW ¼ Cijklekldeij, and we can
write: d2F=deijdekl ¼ Cijkl. Changing nota-
tions from the fourth-rank tensor to the reduced
second-rank tensor (Ref 71), we express the
energy of the system around equilibrium using
a Taylor series expansion in the strain:

EðeÞ ¼ E0 � P ðV0ÞdV þ V0

2

X6
i¼1

X6
j¼1

Cijeiej þOðe2Þ

(Eq 12)

where V and P(V) are the volume and pressure
of the undistorted lattice, and dV is the change
in volume produced by the strain ei. It is natural
to apply strains to the simulation cell by trans-
forming the primitive lattice vectors of the cell
using the strain tensor, e:

a01
a02
a03

2
64

3
75 ¼ a1

a2

a3

2
64

3
75ð1þ eÞ

with e ¼
e1 e6=2 e5=2
e6=2 e2 e4=2
e5=2 e4=2 e3

2
64

3
75

considering only nonrotating strains. Now, for
the specific case of cubic crystals where:

Cij ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

2
6666664

3
7777775

then the double summation in the equation for
the energy as a function of strain becomes:

X6
i¼1

X6
j¼1

Cijeiej ¼ ðe21 þ e22 þ e23ÞC11

þ 2ðe1e2 þ e1e3 þ e2e3ÞC12

þ ðe24 þ e25 þ e26ÞC44

The effects of some applied strain are now
explicitly coupled by elastic constants to changes
in energy for a simulation cell with unit vectors
a0i. For example, take the case of a hydrostatic
stress of e1 ¼ e2 ¼ e2 ¼ d. This yields:

EðeÞ ¼ E0 þ V0

2
d2ð3C11 þ 6C12Þ

Identifying the bulk modulus:

K ¼ C11 þ 2C12

3

we find EðeÞ ¼ E0 þ 9
2
V0Kd2. Applying this

form to the data in Fig. 4 for the spin-polarized
case yields a bulk modulus of 2.01 Mbar, in
good agreement with MES.
To find the three independent elastic con-

stants, two other equations are required, and
the normal convention is to apply two other,
volume-conserving strains. For cubic systems,
usually C11 � C12 is found by applying
e1 ¼ �e2 ¼ d, with e3 being set by the constant
volume constraint for a cubic cell:

e3 ¼ d2

1� d2

Similarly, C44 is found by setting e6 ¼ d
2
and

e2 ¼ d2

4�d2. This yields two other equations for
the energy as a function of strain:

EðdÞ ¼ E0 þ V0d
2ðC11 � C12Þ þ Oðd4Þ

EðdÞ ¼ E0 þ V0

2
d2C44 þOðd4Þ

The response of a unit cubic cell of nickel to
such strains is shown in Fig. 5. When the fits
to the two curves are combined with the MES
results, the elastic constants can be resolved as
shown for fcc nickel and L12 Ni3Al in Tables 7
and 8. The tabulated results are for spin-aver-
aged and spin-polarized (ferromagnetic) systems
using LDA and GGA approximations. Tables 7
and 8 show the results from a PPW calculation
(VASP) using ultrasoft and projected aug-
mented-wave pseudopotentials, respectively.
Note that the LDA and LSDA underestimate the
lattice parameter and overestimate the elastic con-
stants, and theGGA results (PW91) show uniform
improvement in lattice parameters and elastic
constants. Spin-averaged and spin-polarized (fer-
romagnetic) calculations in the LDA and a GGA
(PW91) were used to predict the lattice parameter
(angstrom), elastic constants (Mbar), and misfit
parameter: d ¼ 2 aNi3Alð �aNiÞ= aNi3Al þ aNið Þ.
As expected, the LDA and LSDA underestimated
the lattice parameters for nickel and Ni3Al. The
GGA and spin-generalized gradient approxima-
tion (SGGA) produced significantly more precise
lattice parameters and elastic constants, with the
SGGA calculations giving the most accurate

Fig. 4 Murnaghan’s equation of state (MES): Energy as
a function of volume for face-centered cubic

nickel, calculated using VASP

Table 6 Results of Murnaghan’s equation
of state (MES) fit to Vienna ab initio
simulation package (VASP) total energies for
face-centeral cubic nickel

Ni-SA Ni.-SP Experimental(a)

EðV0Þ, eV �21.67 �21.867 . . .
K0, Mbar 1.9681 1.9420 1.876

K00; eV =
º
A6 4.7944 4.7628 . . .

V0;
º
A3 43.429 43.684 . . .

a0;
º
A 3.5150 3.5218 3.5238

SA, spin averaged; SP, spin polarized. (a) Source: Ref 61, 62, 67

Fig. 5 Calculation of Cij from volume-conserving strains
applied to face-centered cubic nickel calculated

using the Vienna ab initio simulation package (VASP)
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misfit parameter. Finally, although PAW is
assumed to be a better representation of the core
states, the ultrasoft pseudopotentials (USPPs) pro-
duce a more accurate misfit parameter.
Entropic Contributions to the Free Energy.

In the last 10 years, significant progress has been
made in calculating the entropic contributions to
the free energy of bulk phases and defects. This
includes configurational, vibrational, and elec-
tronic entropic terms. Examples of applications,
including references reviewing the techniques,
are given here. Electronic entropy has been
shown to be important in calculating defect ener-
gies, such as vacancies in body-centered cubic
metals (Ref 72, 73). Contribution of thermal
vibrations to the free energy as a function of vol-
ume (harmonic and anharmonic terms) has been
used to estimate the thermal expansion of a vari-
ety of metals (Ref 9, 74). Configurational
entropy for dilute solute concentrations is treated
using the Bragg-Williams approximations in
conjunction with either lattice gas models or
low-temperature expansion (Ref 75, 76). For
solid solutions at high concentrations, cluster
expansion methods (Ref 77, 78) are used to
approximate the free energy on an Ising model
lattice. Recent progress in methods development

has automated parts of the construction and use
of these techniques (Ref 1, 79). Van de Walle
and coworkers have also attempted to include
all three entropic contributions in modeling
phase stability and to inform CALculation of
PHAse Diagram (CALPHAD) methods (Ref
80). These developments have significantly
improved the efficiency and accuracy of the
cluster expansion approach, particularly in its
application to phase diagrams.
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Simulation of Microstructural
Evolution in Steels
P.M. Pauskar, The Timken Company
R. Shivpuri, The Ohio State University

STEEL is certainly one of themost widely used
materials. It has a broad range of uses, primarily as
raw material in the manufacture of automobiles,
machinery, appliances, and also in the construc-
tion of buildings, bridges, roads, and railways. In
its basic form, steel is a combination of iron and
carbon. Many steels also contain other alloying
elements in various combinations and quantities.
During high-temperature thermomechanical pro-
cessing, steel ordinarily consists of single-phase
austenite face-centered cubic. The condition of
the austenite (grain size, degree of recrystalliza-
tion, etc.) affects the phase transformations that
occur during cooling following thermomechani-
cal processing. During service at ambient
temperature, steel ordinarily consists of two
phases: ferrite and cementite. Different morpho-
logical arrangements of these phases are termed
microconstituents (pearlite, bainite, tempered
martensite, allotriomorphic ferrite, etc.). The
aggregate arrangement of microconstituents in
the steel represents the steel microstructure. The
microstructure in steel depends greatly upon the
steel chemistry and its thermomechanical history.
A wide range of mechanical properties can be
obtained by engineering the steel chemistry and
microstructure. This ability to engineer desired
mechanical properties in steel by modifying
chemical composition and altering microstructure
via heat treatment or thermomechanical proces-
sing makes steel an extremely versatile material.
Hot working involves deforming steel under

conditions above its recrystallization tempera-
ture. Common hot working processes include
hot rolling, hot forging, and hot extrusion. Com-
puter simulation of microstructural evolution
during hot rolling of steels has been a major
topic of research and development in academia
and industry for over two decades. A good por-
tion of this article is therefore focused on simu-
lation of microstructural evolution during hot
rolling. However, it is important to recognize
that the principles of simulation discussed in this
article are also applicable to other hot working
and heat treatment processes. The primary intent
of this article is to provide a basic description of

the methodology and procedures commonly
employed to develop microstructural evolution
models and using them to simulate microstruc-
tural evolution in steels. Readers are encouraged
to refer to the article “Models of Recrystalliza-
tion” in this Volume for additional information.

Microstructural Evolution during
Hot Working

Microstructural evolution during hot working
depends primarily on the processing conditions,
such as the hot working temperature, amount of
deformation (strain), deformation rate (strain
rate), and cooling rate. Figure 1 illustrates a
typical heating, deformation, and cooling
sequence in a hot rolling process. In rolling
mills, billets, blooms, or slabs of steel are
reheated to a high temperature, typically

approximately 1200 �C, before being hot rolled
into flat products such as strips and plates or
long products such as bars, rails, and structural
shapes. Reheating of the steel is followed by
successive reductions in rough and finish roll-
ing mills. Rolling is generally finished at
specific temperatures, followed in many cases
by controlled cooling. In some cases, such as
hot strip rolling, accelerated water cooling is
used to attain the desired microstructure and
properties in the product. By means of these
controlled processing steps during hot working,
a broad range of microstructure and mechanical
properties can be achieved in steel alloys
(Ref 1). Microstructural changes occurring at
different stages in the rolling process are
described as follows.
Microstructural Changes during Reheating.

A billet or a slab is initially heated to a specific
temperature and soaked for a period of time

Fig. 1 Typical thermomechanical schedule and associated microstructural changes during hot rolling
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before rolling. This is referred to as reheating.
The heating temperature and soaking time are
dependent upon steel chemistry. For microal-
loyed or alloyed steels, in particular, the reheat-
ing temperature is so chosen as to dissolve the
right amount of carbide or nitride precipitates.
In general terms, the reasons for reheating are:

� To homogenize and soften the steel for
rolling

� To ensure that the rolling process is com-
pleted with steel generally in the austenitic
state

� To ensure that carbides or nitrides, where
applicable, are in solution before hot rolling

During the initial stages of reheating, grain
growth of ferrite takes place, followed by the
ferrite-to-austenite ða� gÞ transformation.
Finally, grain growth of austenite occurs. The
size of austenite grains prior to hot rolling is con-
sidered one of the important variables that affect
recovery and recrystallization phenomena that
occur during hot working.
Microstructural Changes during Hot

Rolling. After reheating, the material under-
goes deformation in the rolls. Deformation
leads to an increase in dislocation density, caus-
ing the material to work harden. The stored
energy due to accumulated dislocations is gen-
erally lowered by three processes: recovery,
recrystallization, and grain growth. Recovery
is a process by which annihilation and rear-
rangement of the dislocations occurs. Recrystal-
lization, on the other hand, is a process in
which new dislocation-free grains are formed
in place of old deformed grains, resulting in a
new structure with lower dislocation density.
Grain growth is the process in which grains
coarsen and lower the grain-boundary area per
unit volume. Recrystallization that occurs while
the metal is being deformed is called dynamic
recrystallization, whereas recrystallization that
occurs after deformation is completed is classi-
fied as either static or metadynamic recrystalli-
zation. Recrystallization, in general, results in
finer grains compared to those existing before.
Microstructural Changes in the Interstand

Region. The dislocation structures introduced
during a rolling pass influence the microstruc-
tural changes in the time interval before the
next deformation pass. Static microstructural
changes typically consist of static recovery,
static recrystallization, and subsequent grain
growth. Under certain conditions, dynamic
recrystallization that nucleates during deforma-
tion undergoes completion in the interstand
region. This is referred to as metadynamic
recrystallization. The extent of these micro-
structural changes in the interstand region
depends on their kinetics in relation to the time
interval available before the next pass. Com-
plete recrystallization is usually followed by
grain growth, if the existing conditions favor it.
Phase Transformation after Rolling. Hot

rolling is mostly carried out with steel in the
austenite phase. After hot rolling, depending

on the steel chemistry and cooling conditions,
austenite decomposes into a variety of transfor-
mation products, such as ferrite, pearlite, bainite,
or martensite. The resulting mix of transforma-
tion products determines the mechanical proper-
ties of the rolled part.
All of these microstructural changes taking

place in the material affect the properties of
the final product. These also affect the forming
process, because the flow stress and deforma-
tion behavior of the material are affected by
changes in the microstructure. For accurate
mathematical modeling of the hot rolling pro-
cess, it is therefore important to take into
account the physical and metallurgical changes
taking place in the material during both forming
and postforming cooling periods.
Hot rolling of steels has been the primary

focus of many studies with regards to computer
modeling of microstructural evolution in steels.
Pioneering work in this area conducted by Sell-
ars and Whiteman (Ref 2) in the 1970s has been
advanced by significant contributions on this
subject by numerous researchers from all over
the world (Ref 3–11). Early work emphasized
modeling of austenite grain structure evolution
during multipass hot rolling—particularly mod-
eling of recrystallization and grain growth.
Numerous studies have been published on the
subject of recrystallization and grain growth in
carbon-manganese and high-strength low-alloy
HSLA steels. Most of the early studies did not
attempt to model postrolling austenite decom-
position, primarily due to the complexities
involved in modeling phase transformations.
In recent years, there has been a growing
emphasis on modeling of austenite decomposi-
tion. Recent advances in finite-element model-
ing of metal deformation processes, coupled
with advances in materials characterization,
have resulted in the development of integrated
models for computer simulation of metal flow
and microstructural evolution in a number of
metalworking processes. Such integrated mod-
els have been used successfully for simulation
of metal flow and microstructural evolution in
hot working processes (Ref 4, 7, 9–11).

Development of Models for
Austenite Evolution and
Decomposition

To be able to simulate microstructural evolu-
tion in a hot deformation process, it is first nec-
essary to develop the following models:

� Models for grain growth kinetics
� Models for recrystallization kinetics
� Models for recrystallized grain size
� Models for austenite decomposition

While attempts have been made by research-
ers to develop physically based models for
recrystallization and grain growth (Ref 12–15),
most of the models being used today (2009)

are considered as semiempirical or phenomeno-
logical models. These models are obtained by fit-
ting experimental data to an equation whose
general form is derived from theoretical analy-
sis. Models developed in the early work con-
ducted by Sellars and Whiteman (Ref 2) on
carbon-manganese steels are considered phe-
nomenological in nature. However, the general
forms of these models are also applicable to most
other steels, with minor changes. To develop
such semiempirical or phenomenological mod-
els for microstructural evolution, experimental
techniques, such as hot compression tests and
hot torsion tests, have been extensively used by
materials scientists worldwide. The following
sections describe the general methodology used
in developing these models.

Austenite Grain Growth

During hot rolling, austenite grain size
affects the final transformed microstructure
and hence the resulting mechanical properties.
Austenite grain size during thermomechanical
processing also affects recrystallization kinetics
and flow stress. Therefore, modeling grain
growth at various stages in the process (e.g.,
grain growth during reheating, grain growth
after recrystallization) is considered important.
To develop models for grain growth, experi-
ments are commonly performed with austeniti-
zation temperature and hold time at that
temperature as the control variables. Figure 2
illustrates the experimental procedure. The
experiment consists of heating the specimen at
a relatively fast rate (e.g., 30 �C/s) to a selected
reheat temperature (T,�C) and holding the spec-
imen at that temperature for a given amount of
time (t, s). The rapid heating rate is generally
used to limit the grain coarsening to the temper-
ature of interest and to avoid vanadium carboni-
tride, V(CN), and aluminum nitride, AlN,
reprecipitation (Ref 16). A variety of techni-
ques can be used to metallographically measure
the prior-austenite grain size after each test.
A common approach with hypoeutectic steels
it to treat the sample so as to form ferrite at
the prior-austenite grain boundaries. Here, after

Fig. 2 Experimental procedure for grain-growth
studies. T, reheat temperature
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the grain-coarsening thermal cycle, the speci-
men is cooled rapidly to approximately 600
�C. The specimen is held at this temperature
for a few seconds to allow formation of proeu-
tectoid ferrite at the prior-austenite grain
boundaries. The specimen is then quenched to
room temperature. Prior-austenite grain size is
then measured in these samples. This method
of measuring grain size on a large number of
specimens is time-consuming and expensive.
New techniques using laser ultrasonics
(Ref 17) have been shown to be very effective
in real-time measurement of austenite grain size
during hot deformation of steels.
Austenite grain growth is generally modeled

using the empirical power law:

dm ¼ dm0 þ kt exp
�Q
RT

� �
(Eq 1)

Here, d is the grain size (in microns) at time t
(seconds), d0 is the initial grain size (in microns),
Q is the apparent activation energy (J/mol), T is
the absolute temperature (K), t is time in sec-
onds, m and k are material constants, and R is
the universal gas constant (8.31 J/mol.K).
This model clearly illustrates that the higher
the temperature and longer the hold time, the
larger the grain size will be. The constants in
the grain-growth equation, namely m, Q, and k,
are obtained by means of regression analysis.
A few published grain-growth models are listed
in Table 1. Note that the best-fit exponent m is
usually found to be higher than the theoretically
expected value of 2 (parabolic growth law).
Higher values of m are attributed to various fac-
tors, such as pinning forces due to precipitates
and solute drag forces on grain boundaries. Pub-
lished studies (Ref 2, 19, 20, and others) show
values of m ranging from 2 to 13 for a variety
of steels. Figure 3 shows the experimental mea-
surements and the best-fit curve representing

the grain-growth equation for two different
steels (Ref 16).
While these models show good correlation

between measurements and predictions, it is
important to note that this form of equation
does not explicitly model the pinning effect
and drag forces and other phenomena that
affect grain growth. In that sense, it is not a true
mechanism-based model. The value of activa-
tion energy can be misleading in such regres-
sion-based models. A higher value of the
exponent m generally results in a higher value
of Q. Therefore, in materials such as microal-
loyed steels that exhibit the pinning effect due
to precipitates, m and consequently the Q-value
obtained by means of regression analysis are
generally higher than theoretical estimates.
Applying Grain-Growth Model to Non-

isothermal Conditions. Grain-growth models
discussed previously are developed under iso-
thermal conditions, whereas the temperature
changes constantly in a hot working process
such as rolling or forging. Semiatin et al. (Ref
21) have developed closed-form equations for
applying the isothermal grain-growth model
under constant heating-rate conditions. During
cooling, however, the temperature does not usu-
ally change at a constant rate. One analytical
approach proposed by Ashby and Easterling

(Ref 22) is based on the idea of integrating
the grain-growth equation. In this approach, it
is assumed that grain growth is driven by
the reduction in grain-boundary energy and
requires no nucleation. Grain growth is there-
fore calculated by the following:

dmt ¼ dm0 þ k

ðt
0

exp
�Q

RT ðtÞ
� �

� dt (Eq 2)

where dt is the average grain size at time t, and
T(t) is the absolute temperature expressed as a
function of time. Defining temperature as a sim-
ple function of time is not always possible.
Therefore, in a simplified approach, the temper-
ature history is approximated by dividing it
into several small isothermal time steps (Ref 9,
23, 24). During each time step, the temperature
is assumed to be constant, as illustrated in
Fig. 4. Therefore, the grain growth is calculated
by:

dt
m ¼ d0

m þ k
X
i

dti� exp �QRTi

� �
(Eq 3)

Table 1 A few published grain-growth
models
Basic equation: dm ¼ dm0 þ kt exp �QRT


 �
Steel type(a) m k Q Reference

Low C-Mn 2 4.27 � 1012 66,600 18
C-Mn and
C-Mn-V

7 1.45 � 1027 400,000 4

Ti-HSLA 10 2.60 � 1028 437,000 4
Nb-HSLA 4.5 4.05 � 1023 435,000 4
V-HSLA 5 1.26 � 1032 655,800 9
0.2C Cr-Mo (4120) 4 3.00 � 1030 675,000 16

(a) HSLA, high-strength low-alloy

Fig. 3 Measurements from isothermal grain-growth tests (discrete points) and predictions from the grain-growth model for (a) 4120 steel and (b) 1538V steel. Source: Ref 16

Fig. 4 Approximating the continuous time-temperature
curve with discrete isothermal steps
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Figure 5 compares the predicted and measured
austenite grain size in vanadium-microalloyed
steel specimens heated from 1100 to 1250 �C at
two different heating rates (5 �C/s and 30 �C/s).
In this case, grain-size predictions were made
using the time discretization approximation dis-
cussed previously. Austenite grain-size measure-
ments were made at 1100, 1200, and 1250 �C.
The model predictions match well with the
measurements.
In addition to the simplified analytical

approaches discussed previously, newer meso-
scale modeling techniques, such as the cellular
automata method, Monte Carlo simulation, and
phase-field approach, are also being used by
researchers to model grain growth under noni-
sothermal conditions. Mishra and DebRoy
(Ref 25) present a comprehensive overview of
the merits and limitations of these techniques
for simulating grain growth under nonisothermal
conditions

Recrystallization

Recrystallization is the primary mechanism
by which austenite grains become refined dur-
ing hot working. As discussed previously,
recrystallization that starts and finishes after
deformation is complete is called static recrys-
tallization, while recrystallization that occurs
during deformation is called dynamic recrystal-
lization. A third type of recrystallization that
starts during deformation (formation of recrys-
tallization nuclei) and undergoes completion
after deformation is referred to as metadynamic
recrystallization. The type of recrystallization
that occurs during a hot rolling process depends
on the deformation conditions, particularly
temperature, accumulated strain, strain rates,
and interpass times.
A commonly used measure to differentiate

static recrystallization from dynamic or

metadynamic recrystallization is the strain
corresponding to the peak of the flow-stress
curve. There is a fair amount of published liter-
ature on how flow stress changes under hot
deformation conditions (Ref 16, 26, 27). A typ-
ical flow-stress curve for steel at an elevated
temperature and a constant strain-rate condition
is illustrated in Fig. 6. In the initial part of the
curve, the increase in dislocation density, along
with the pileup of dislocations at the grain
boundaries, causes the stress to rise with strain.
In other words, the material strain hardens. The
strain-hardening rate, ds/de, decreases with
increasing strain due to dynamic recovery,
which results in annihilation of dislocations in
the deformed grains. Under certain conditions
(high temperatures and low strain rates), the
stress-strain curve displays a clear peak at the
peak strain (ep), after which the flow stress
decreases due to dynamic recrystallization and
eventually stabilizes to a value ðsdrex

ss Þ between
the yield stress and the peak stress. The other
steady-state stress, s
ss shown in Fig. 6, is the
estimated steady-state stress if recovery were
the only softening mechanism present in the
material. The critical strain (ec) for the onset
of dynamic recrystallization is understood to
be somewhat lower than the peak strain (ep)
(Ref 28) and depends on temperature, strain
rate, and the grain size. While it is difficult to
accurately pinpoint the strain for the start of
dynamic recrystallization, researchers have
found that the following relationship between
critical strain and peak strain works very well
for many steels:

ec ¼ Aep (Eq 4)

where A is a material-specific constant and gen-
erally has a value between 0.5 and 0.9. Studies
have shown that an A-value of 0.83 works as a
good estimate for many steels.
The peak strain is generally modeled as an

equation of the following form (Ref 28–30):

ep ¼ Adm0 _e exp
Q

RT

� �� �n

(Eq 5)

where d0 is the as-heated austenite grain size,
T is the absolute temperature, _e is the strain
rate, and A, Q, m, and n are material-specific
constants. A few published models for peak
strain and critical strain for various steels are
listed in Table 2.
Modeling recrystallization involves develop-

ing models for static, dynamic, and metady-
namic recrystallization kinetics as functions of
the processing conditions and the existing
microstructure. Several models for recrystalli-
zation kinetics have been developed based
on the well-known Johnson-Mehl-Avrami-
Kolmogorov (JMAK) equation:

X ¼ 1� exp �0:693 t

t0:5

� �n� �
(Eq 6)

where X is the fraction recrystallized at time
t, t0.5 is the time for 50% recrystallization, and
n is the time exponent and is assumed to be
a material-specific constant. Note that the

Fig. 5 Measurements vs. predictions in nonisothermal grain-growth tests for heating rates of (a) 30� C/s and (b) 5� C/s. Source: Ref 9

Fig. 6 Typical flow-stress curve under hot working
conditions
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aforementioned general equation can be applied
to static as well as metadynamic recrystalliza-
tion processes. While static and metadynamic
recrystallization are modeled as functions of
time, dynamic recrystallization is commonly
described using strain as an independent vari-
able instead of time. The general equation
describing dynamically recrystallized volume
fraction is:

XDRX ¼ 1� exp C
e� ec
ep

� �n� �
(Eq 7)

where XDRX is the fraction dynamically recrys-
tallized at strain e, ec is the critical strain for
the onset of dynamic recrystallization, ep is the
strain corresponding to the peak of the flow
stress-strain curve, n is an exponent and is
assumed to be a material-specific constant, and
C is a material-specific constant. Similar other
equations for dynamic recrystallization have
also been used by other researchers (Ref 34).
Due to the complexity of modeling dynamic
recrystallization, many instead prefer to model
dynamic recrystallization as metadynamic
recrystallization.

Modeling Recrystallization Kinetics

Recrystallization kinetics (static and metady-
namic) are characterized by the time for 50%
recrystallization and are a function of the strain,
strain rate, temperature, and grain size, as dis-
cussed previously. To determine the time for
50% recrystallization, single-hit deformation
tests under hot working conditions followed by
quenching to lock the microstructure can be per-
formed. However, these single-hit tests must be
followed by extensive metallography and mea-
surements to determine the recrystallized frac-
tion in each test specimen. On the other hand,
indirect measurements, such as a double-hit
deformation test, can give instantaneous esti-
mates of the fraction recrystallized based
on measurements on the stress-strain curve.
Figure 7 shows a typical stress-strain curve
during a double-hit compression test. s1 and
s2 are the yield stresses for the first and second
hits. The fraction softening, Fs, occurring in the
interval between the two hits is given by:

Fs ¼ sm � s2

sm � s1

(Eq 8)

wheresm is the stress at the end of the first hit, as
shown in Fig. 7. It is generally assumed that an
initial 20% softening occurs due to static recov-
ery. The fraction recrystallized is therefore
estimated by:

Fx ¼ Fs � 0:2

0:8
(Eq 9)

Some researchers believe that examination of
the microstructure is a more accurate way of
measuring the fraction recrystallized and that
the softening due to static recovery can vary
between 15 and 30% (Ref 35–36). Therefore,

the assumption of 20% initial softening due
to recovery may not yield accurate results.
However, the efficiency and ease afforded by
double-hit tests make it attractive, particularly
when a large number of experiments must be
conducted. In any case, both techniques are
known to yield reasonably good models and
are used extensively.
A typical test procedure for the double-hit

compression test is shown in Fig. 8. Using the
grain-growth model, the reheat temperature and
the corresponding hold time necessary to obtain
a desired grain size is determined. The specimen
is then heated to this temperature and held there
until the desired grain size is obtained. The spec-
imen is then cooled to the test temperature (T).
After homogenizing at the test temperature, the
specimen is axially compressed a predetermined
amount and held at the test temperature for a cer-
tain period of time (t) before being compressed
again. While planning these experiments for
static recrystallization, care must be taken to
ensure that the strain attained in the first hit is
lower than the critical strain, ec to ensure that
dynamic recrystallization is not initiated during
the first hit of this test. Conversely, when

studying metadynamic recrystallization, care is
taken to assure that the applied strain of the first
hit exceeds the critical strain for the onset of
dynamic recrystallization (Eq. 4). The stress-
strain data during these tests are recorded using
a high-speed data acquisition system. The frac-
tion recrystallized in each test is computed using
the stress-strain data via Eq. 8 and 9.

Table 2 Models for peak strain and critical strain

Steel(a) Peak strain Critical strain Reference

V-HSLA ep ¼ 1:20� 10�3d00:27 _e0:18 exp 50;400
RT

� 	
ec = 0.83ep 9

Cr-Mo steel (4120) ep ¼ 3:5� 10�3d00:15 _e0:17 exp 46;326
RT

� 	
ec = 0.83ep 16

V-HSLA ep ¼ 6:05� 10�4d00:32 _e0:17 exp 55;530
RT

� 	
ec = 0.83ep 16

A36, DQSK ep ¼ 1:32� 10�2d00:174 _e0:165 exp 24;360
RT

� 	
ec = 0.83ep 31

Medium C-Mn ep ¼ 6:97� 10�4d00:3 _e exp 300;000
RT

� 	� 	0:17
ec = 0.81ep 24

316 stainless steel . . . ec ¼ 1:97� _e exp 413;000
RT

� 	� 	0:057
32

Low-carbon steel ep ¼ 4:83� 10�3d00:09 _e exp 274;362
RT

� 	� 	0:15
ec = 0.85ep 33

High-carbon steel ep ¼ 1:84� 10�3d00:24 Zð Þ0:15 where Z ¼ _e exp Qdef

RT

� �
ec = 0.85ep 33

Medium-carbon ep ¼ 2:73� 10�3d00:20 Zð Þ0:15 where Z ¼ _e exp Qdef

RT

� �
ec = 0.85ep 33

(a) V-HSLA, Vanadium micro alloyed high strength low alloy; DQSK, drawing quality special killed

Fig. 7 Typical stress-strain curve in a double-hit compression test

Fig. 8 Depiction of a double-hit compression test

Simulation of Microstructural Evolution in Steels / 495

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158542


Figure 9 shows three stress-strain curves
recorded during one such study (Ref 9). These
tests were conducted at 1100 �C at a strain rate
of 1.0/s, with a compression strain of 0.35 in
the first hit and a strain of 0.20 in the second
hit. The only difference among these tests was
the interhit time. From these tests it is clear that
longer interhit time leads to more recrystalliza-
tion and consequently results in lowering of the
yield stress during the second hit.
Model for Static Recrystallization. After

collecting data from the previously described
double-hit compression tests, regression analysis
is used to fit the model. First, the value of time
exponent n is determined from a least-squares
analysis on the fraction recrystallized measure-
ments. Figure 10 shows a plot of ln(ln(1/(1 �
X))) versus ln(t) for different static recrystalliza-
tion test conditions used in one study (Ref 9).
The slope of the lines is the value of n. Under
static recrystallization conditions, typical values
of n for low-alloy and microalloyed steels range

from 0.7 to 1.50, as reported by Medina and
Mancilla (Ref 37). Beynon and Sellars (Ref 38)
have reported an n-value of 1 to 2 for carbon-
manganese steels. Matja et al. (Ref 39) have also
reported that n-values for microalloyed steels
are generally between 1.0 and 2.0.
After determining the time exponent, n, the

Avrami-type equation is used to determine the
time for 50% recrystallization (t0.5) for the tests
conducted. An equation for t0.5 as a function of
as-heated grain size, strain, strain rate, and tem-
perature is then developed using a regression
analysis:

t0:5 ¼ A2el _emdn0 exp
Q

RT

� �
(Eq 10)

where e is the strain, _e is the strain rate (per sec-
ond), d0 is the as-heated grain size (microns),
T is the absolute temperature (K), and A2, Q,
l, m, and n are material-specific constants.
A few select published static recrystallization

models for various steels are listed in Table 3.
Fraction recrystallization of 4120 (UNS
G41200) steel and 1538V (V-HSLA) steel
under various test conditions is plotted on
charts shown in Fig. 11 and compared with
model predictions (Ref 16).
Model for Metadynamic Recrystallization.

To develop models for metadynamic recrystalli-
zation, double-hit compression tests can be used,
similar to those used for modeling static recrys-
tallization. Care must be taken to ensure that
the strain imparted in the first hit is higher than
the critical strain for the start of dynamic recrys-
tallization. This ensures that dynamic recrystalli-
zation is initiated before the first hit ends and that
the softening observed during the period
between the two hits is primarily due to metady-
namic recrystallization. Table 4 lists a few pub-
lishedmodels for metadynamic recrystallization.
Comparing the exponents of various terms in

Tables 3 and 4, it can be seen that the effect of
grain size and strain is significantly less in
metadynamic recrystallization as compared to
that in static recrystallization. It has generally
been noted in published empirical studies that
static and metadynamic recrystallization follow

two different kinetic laws. Static recrystalliza-
tion depends more on strain and only slightly
on strain rate, whereas metadynamic recrystalli-
zation depends more on strain rate and only
slightly on strain (Ref 43).
Recrystallized Grain Size. The size of the

recrystallized grains is dependent on the strain,
initial grain size prior to deformation, strain rate,
and temperature. Experiments are performed
with strain, strain rate, grain size, and tempera-
ture as the control variables. Figure 12 depicts
the experimental procedure used to develop a
model for recrystallized grain size under static
and metadynamic recrystallization conditions.
To develop models for recrystallized grain size,
the specimens are first heated to obtain the
desired grain size, after which they are cooled
to the test temperature (Tt) and deformed to a
certain strain at a constant strain rate. After
deformation, the specimens are held at Tt to
allow complete recrystallization to take place.
For practical purposes, 95% recrystallization is
considered complete recrystallization. The time
for complete recrystallization (95% recrystalli-
zation) is determined from the recrystallization
kinetics models discussed earlier. The speci-
mens are then cooled rapidly to 600 �C and held
there for a short time to allow proeutectoid fer-
rite to form along the prior-austenite grain
boundaries before being quenched to room tem-
perature. The microstructures in the specimens
are later examined to measure the grain size.
Several models of recrystallized grain size

(drex) for static and metadynamic recrystalliza-
tion for various steels are listed in Tables 3
and 4. From these models, it is evident that
the higher the temperature of deformation and
the lower the strain rate, the larger are the recry-
stallized grains formed during high-temperature
deformation.
Dealing with Partial Recrystallization

Conditions. Rolling is a multiple-stage defor-
mation process. Other than dynamic recrystalli-
zation, the primary mode of grain refinement is
the static and metadynamic recrystallization
that occurs during the period between two suc-
cessive deformations. Often during the rolling
process, the time in the interstand is not suffi-
cient for complete recrystallization to occur.
Under such circumstances, only partial recrys-
tallization occurs, resulting in a mixed micro-
structure, one portion of which consists of
fine, strain-free recrystallized grains, while the
other portion consists of deformed grains that
are usually relatively coarser and elongated
compared to the newly recrystallized grains.
In other words, some amount of strain is
retained in the structure when it enters the next
deformation pass, while, at the same time, the
structure is nonuniform. This presents a critical
question about how to handle the two fractions.
To illustrate the effect of partial recrystalliza-

tion, a physical simulation experiment using
isothermal three-hit compression tests has
been used. In the three-hit compression tests,
the first interhit time (t1) is deliberately kept short
to cause partial recrystallization. The second hit

Fig. 9 Stress-strain curves in double-hit compression
tests conducted at 1100 �C at a strain rate of

1.0/s with an as-heated grain size of 135 10�6 m

Fig. 10 Determining time exponent, n, in the Avrami-
type equation (Eq 10) from the slope of lines.

Source: Ref 9
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is followed by a third hit, with an interhit time
(t2) between the two, as shown in Fig. 13. The
amount of recrystallization during the second
interhit period is measured using the same proce-
dure as used in the double-hit compression tests.
Figures 13(b) and (c) show examples of flow
stress-strain data recorded from two such three-
hit tests conducted. The deformation in each hit
was equivalent to an increment in strain of 0.15.
The noise in the data is because of the low strain
rate used in these particular tests.
In Fig. 13(b), the low temperature and the

low strain in the first hit led to very little soften-
ing in the 10 s between the first hit and the sec-
ond hit. Consequently, the retained strain at the
beginning of the second was large and is addi-
tive to the strain in the second hit. The net
result was that the accumulated strain in the
specimen was greater, which led to much faster
recrystallization after the second hit. This is
reflected in the significant softening that is seen
in the stress-strain curve for the third hit. Note

that the second interhit time is only 3 s, while
the first interhit time was 10 s.
In Fig. 13(c), the significantly larger duration

of the interstand (30 s) led to a larger fraction of
recrystallization to occur in the first interstand.
As a result, the retained strain at the beginning
of the second hit was very small. After, the sec-
ond hit, the net accumulated strain was much
smaller than that in Fig. 13(a). Consequently,
the recrystallization kinetics after the second
hit were significantly slower. This is reflected
in very little softening that is seen in the stress-
strain curve for the third hit. It may be noted that
the second interhit time in this case is the same
as that in the earlier case, that is, 3 s.
Partial recrystallization may be easily

encountered in a hot strip mill or hot bar rolling
mill. For example, a hot strip mill or a hot bar
rolling mill may use a reversing mill for rough-
ing passes and a continuous rolling mill for
finishing passes. In the reverse mill, the temper-
ature is generally high, and the interpass times

are long. This generally allows for full recrys-
tallization to occur between the passes. Also,
due to high temperature and relatively large
strains and low strain rates, there is a possibility
for dynamic recrystallization to occur during
deformation. On the other hand, in the continu-
ous finishing mill where the temperatures are
lower and the interpass times are shorter, partial
or no recrystallization may occur at one finish-
ing mill stand. However, accumulated strain
from pass to pass could eventually lead to
dynamic recrystallization or metadynamic
recrystallization in a later pass.
A number of approaches have been proposed

to handle partial recrystallization. One of the
most commonly used approaches is to treat
the microstructure as an aggregate. In this
approach, the retained strain and the effective
grain sizes are determined using the rule of
mixtures, as follows:

eret ¼ e� 1�Xð Þ (Eq 11)

deff ¼ X�drex 3 þ 1�Xð Þ�d30� 	1=3
(Eq 12)

where X is the fraction recrystallized, eret is the
retained strain, deff is the effective grain size, d0
is the initial as-heated grain size, and drex is the
recrystallized grain size. This approach has
been adopted in many studies (Ref 3, 30, etc.).
It is easy to implement but may give rise to
inconsistency in the modeling of recrystalliza-
tion kinetics. This is because the grain size
and strain that are used for calculating recrys-
tallization kinetics in the subsequent pass are
not representative of either of the fractions
(recrystallized and unrecrystallized fractions)
of the material. It is an average of fractions that
are expected to behave differently in terms of
recrystallization kinetics. However, the error is

Table 3 Published models for static recrystallization kinetics and recrystallized grain size

Steel(a) Fraction recrystallized Time for 50% recrystallization Recrystallized grain size Reference

C-Mn X ¼ 1� exp �0:693 t
t0:5

� �k� �
t0:5 ¼ 2:5� 10�19e�4d20 exp

300;000
RT

� 	
dSRX ¼ 0:743�e�1:0d0:670

38

Low C-Mn X ¼ 1� exp �0:693 t
t0:5

� �h i
t0:5 ¼ 2:3� 10�15e�2:5d20 exp

230;000
RT

� 	
dSRX ¼ 343�e�0:5d0:40 exp �45;000RT

� 	
23, 40

Medium C-Mn X ¼ 1� exp �0:693 t
t0:5

� �h i
t0:5 ¼ 1:14� 10�13e�3:8 _e�0:41 exp 252;000

RT

� 	
dSRX ¼ 0:5�e�0:67d0:670 24

316 stainless X ¼ 1� exp �0:693 t
t0:5

� �0:31� �
t0:5 ¼ 3:72� 10�8e�2:2 _e�0:66 exp 137;000

RT

� 	
dSRX ¼ 0:57�d0ðt0Þ0:042 32

V-HSLA
(1538V)

X ¼ 1� exp �0:693 t
t0:5

� �1:46� �
t0:5 ¼ 1:6� 10�4e�1:17 _e�0:28d00:26 exp 84;362

RT

� 	
dSRX ¼ 2:14�e�0:76d0:810 exp �21;000RT

� 	
16

Cr-Mo steel
(4120)

X ¼ 1� exp �0:693 t
t0:5

� �h i
t0:5 ¼ 1:0� 10�11e�2:36 _e�0:24d00:20 exp 241;000

RT

� 	
dSRX ¼ 1:3�e�1:4d0:460 exp �7;200RT

� 	
16

High C-Mn X ¼ 1� exp �0:693 t
t0:5

� �1:3� �
t0:5 ¼ 4:2� 10�16e�2 _e�0:34d02 exp 270;000

RT

� 	
dSRX ¼ 0:3�e�0:9d0:670 41

A36 X ¼ 1� exp �0:693 t
t0:5

� �2� �
t0:5 ¼ 8:31� 10�15e�1:5 _e�0:33d01:5 exp 263;000

RT

� 	
. . . 31

DQSK X ¼ 1� exp �0:693 t
t0:5

� �2� �
t0:5 ¼ 5:22� 10�13e�0:67 _e�0:33d0 exp 248;000

RT

� 	
. . . 31

Ti-Nb-HSLA X ¼ 1� exp �0:693 t
t0:5

� �0:6� �
t0:5 ¼ 1:18� 10�11e�1:31 _e�1:07d0:3530 exp 240;000

RT

� 	
for T < 1423 K

t0:5 ¼ 3:81� 10�4e�1:31 _e�1:07d0:3530 exp 35;400
RT

� 	
for T > 1423 K

dSRX ¼ 8:49�e�0:872d0:330 exp �10;600RT

� 	
42

(a) V-HSLA, Vanadium microalloyed high strength low alloy; DQSK, drawing quality special killed

Fig. 11 Recrystallization behavior and model results for (a) 4120 and (b) 1538V steel. Source: Ref 16
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small if the fraction recrystallized is either close
to zero or close to 1.0. The latter is usually the
case in hot rolling with reversing mills. A vari-
ation of the rule of mixtures was used by Jin et
al. (Ref 6) following Hodgson and Gibbs
(Ref 4), who reported that the following model
predicted the softening kinetics more accurately
than the rule of mixtures for low-carbon steels:

eret ¼ 0:5�e� 1�Xð Þ (Eq 13)

Another approach is to treat the recrystallized
and unrecrystallized fractions independently
(Ref 44). This allows close representation of
the true behavior of the material. However, the
number of fractions to be handled increases very
rapidly. If three are m-number of passes, the
total number of fractions can be as high as 2m.
Typically in hot rolling, 10 to 15 passes are
fairly common. This approach therefore calls
for a tremendous amount of computer memory
and time and is generally not widely used.
Yanagimoto et al. (Ref 45) proposed a variation
of Karhausen’s model. In this approach, the
number of fractions increases linearly versus
exponentially in Karhausen’s model and there-
fore requires considerably less memory. How-
ever, as with the rule of mixtures, considerable

approximation is involved, and the true behavior
of the system may not be represented.

Recrystallization Kinetics under Changing
Temperature Conditions. Recrystallization
models, similar to grain-growth models, are gen-
erally developed under isothermal conditions.
Temperature changes continuously during hot
rolling. A common approach to handle continu-
ously changing temperature conditions is based
on Scheil’s additivity rule (Ref 46). For the
Scheil additivity rule to be applicable, the reac-
tion must be isokinetic. In other words, all para-
meters in the equation must have the same
temperature dependence. This is generally true
in the case of recrystallization. In this technique,
the temperature history curve in the interstand
region is divided into several small time steps.
The temperature is assumed to be constant in
each of these steps. In other words, the cooling
curve is approximated by a large number of iso-
thermal steps. Figure 14 illustrates how this tech-
nique works. The figure shows two sigmoidal
curves representing recrystallization kinetics for
two successive iteration steps, i and i+1, during
which the temperatures are assumed to be con-
stant at Ti and Ti+1, respectively. The two curves
have different start and finish times for recrystal-
lization because of the change in temperature. At
the end of time step i, the recrystallized fraction
is Xi. For the next time step i + 1, the fraction
transformed, Xi+I, must be computed. The proce-
dure for computing Xi+1 is described as follows:

1. First, a fictitious time, ti+1, fict, is computed
as the time needed at the new temperature,
Ti+1, for transformation of the fraction, Xi,
that was completely transformed at the end
of the previous iteration.

2. Then, the new time step is added to ti+1, fict,
and at this new time, ti+1, fict + Dt, the new
fraction transformed, Xi+1, is determined.

This incremental computation procedure is car-
ried out through all the time steps in the interstand
region to determine the recrystallized fractions
and the corresponding recrystallized grain sizes.

Recrystallization Kinetics under Changing
Strain-Rate Conditions. From the models dis-
cussed in the previous sections, it is evident
that strain rate has a significant effect on
recrystallization kinetics. Increasing the strain
rate increases the rate of recrystallization. The
driving force for recrystallization is the strain
energy stored in the material. The higher strain
rate gives rise to higher dislocation density,
higher stored energy, and consequently, faster
recrystallization. Like temperature, strain rate
changes continuously in a rolling process from
the entry into the rolls to the exit of the roll
bite. The recrystallization kinetics models are
generally developed under constant strain-rate
conditions. To use these models for modeling
microstructural evolution in a rolling process,
a procedure must be adopted to determine recry-
stallization kinetics under changing strain-rate
conditions. Despite a great amount of research
on recrystallization kinetics, the effect of
strain-rate variations on recrystallization kinet-
ics remains unclear (Ref 47). Many studies
have used the average strain rate during defor-
mation to model recrystallization kinetics. In a
recent study, Poliak and Jonas (Ref 47) report
that variation in strain rate along the roll bite
significantly influences the critical strain for
dynamic recrystallization. They also conclude
that approximating the variable strain rate in
the roll bite with a mean strain rate of the
pass gives reasonable estimates for calculating
critical strain, using models developed under
constant strain-rate conditions.

Modeling Austenite Decomposition

As the hot-worked steel is cooled, austenite
decomposes to form transformation products,
such as ferrite, pearlite, bainite, and martensite.
Modeling of phase transformation is considered
very important with regards to prediction of
microstructure and mechanical properties in the
hot-worked product. Numerous studies have been
published on this subject (Ref 12–14, 48–53).

Table 4 Published models for metadynamic recrystallization kinetics and recrystallized grain size

Steel(a) Fraction recrystallized Time for 50% recrystallization Recrystallized grain size Reference

Low C-Mn X ¼ 1� exp �0:693 t
t0:5

� �1:5� �
t0:5 ¼ 1:1 _e exp 300;000

RT

� 	� 	�0:8
exp 230;000

RT

� 	
dMDX ¼ 2:6� 104� _e exp 300;000

RT

� 	
 ��0:23
23, 39

Medium C-Mn X ¼ 1� exp �0:693 t
t0:5

� �1:5� �
t0:5 ¼ 0:44� _e�0:8 dMDX ¼ 6:8� 104� _e exp 300;000

RT

� 	
 ��0:27
24

316 stainless X ¼ 1� exp �0:693 t
t0:5

� �0:237� �
t0:5 ¼ 2:14� 10�9d0 _e�0:85 exp 155;000

RT

� 	
dMDX ¼ 1:57d0:990 � _e exp 460;000

RT

� 	
 ��0:0327
32

V-HSLA X ¼ 1� exp �0:693 t
t0:5

� �1:28� �
t0:5 ¼ 5:78� 10�8e�1:17d0:260 _e�0:28� exp 154;614

RT

� 	
dMDX ¼ 1:22� 104� _e exp 330;000

RT

� 	
 ��0:193
16

Cr-Mo steel (4120) X ¼ 1� exp �0:693 t
t0:5

� �h i
t0:5 ¼ 3:0� 10�5 _e exp 320;000

RT

� 	� 	�0:5
exp 270;000

RT

� 	
dMDX ¼ 2900� _e exp 330;000

RT

� 	
 ��0:16
16

High C-Mn X ¼ 1� exp �0:693 t
t0:5

� �1:2� �
t0:5 ¼ 1:5� 10�6 _e�0:61 exp 146;000

RT

� 	
dMDX ¼ 2:55� 104� _e exp 300;000

RT

� 	
 ��0:22
41

Low carbon (A36) X ¼ 1� exp �0:693 t
t0:5

� �h i
t0:5 ¼ 2:13� 10�6 _e�0:67� exp 133;000

RT

� 	
. . . 31

DQSK X ¼ 1� exp �0:693 t
t0:5

� �h i
t0:5 ¼ 1:54� 10�6 _e�0:67� exp 127;000

RT

� 	
. . . 31

(a) V-HSLA, Vanadium microalloyed high strength low alloy; DQSK, drawing quality special killed

Fig. 12 Test procedure for modeling recrystallized
grain size
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While simulation of austenite evolution during
hot rolling has been the subject of research for
the past three decades, only recently has simula-
tion of phase transformations become the focus
of research (Ref 53).
In the case of hypoeutectoid steels, the forma-

tion of proeutectoid ferrite, pearlite, and bainite
occurs by means of diffusional transformation.
Diffusion is a time- and temperature-dependent
phenomenon. Diffusional transformation pro-
ceeds by a nucleation and growth mechanism
and can be described by the JMAK equation
similar to the one used to describe recrystalliza-
tion kinetics. The JMAK equation estimates the
amount of transformed product, X(t), at time, t,
at a constant temperature:

X tð Þ ¼ 1� exp �b tð Þk
h i

(Eq 14)

where b and k are parameters derived from the
consideration of nucleation and growth rates.

b and k are functions of the transformation
product, steel chemistry, temperature, and ini-
tial austenite microstructure, and their values
or functions are generally obtained by means
of empirical studies. For ferrite, the value of
exponent k is generally found to be approxi-
mately 1, while for pearlite and bainite, the
exponent is computed from isothermal transfor-
mation (IT) data. Tamura et al. (Ref 51) have
generalized and proposed that k = 1 for ferrite,
k = 2 for pearlite, and k = 4 for bainite. These
generalized values for ferrite and pearlite
appear to be consistent with those reported in
other published studies on this subject. How-
ever, for bainite, values of k from 2 to 7 have
been reported (Ref 53).
While ferrite, pearlite, and bainite form by

means of time-dependent diffusional transfor-
mations, the progress of martensitic transforma-
tion is independent of time and depends only on
the temperature. The transformation of martens-
ite is described by a semiempirical relation pro-
posed by Koistinen and Marburger (Ref 50).
Using precise x-ray techniques to estimate the
amount of martensite formed during transforma-
tion, they have proposed the following equation
for the fraction of martensite formed, X(T), at a
given temperature, T:

X Tð Þ ¼ 1� exp �1:10� 10�2 Ms � Tð Þ
 �
(Eq 15)

where Ms denotes the martensite start tempera-
ture. The fraction of martensite therefore
depends only on the undercooling below the
martensite start temperature. Similar relation-
ships have been developed by other researchers
(Ref 34) to model transformation to martensite.
The kinetics of diffusional phase transforma-

tions can be described by the IT diagram (also
known as the time-temperature-transformation,
or TTT, diagram). Dilatometry is one of the
techniques most commonly used to determine
the start and end of phase transformations in

steels. To construct a TTT diagram, a sample
of steel is first austenitized at a certain temper-
ature, then cooled rapidly to a predetermined
lower temperature and held at that temperature
until transformation is completed. Progress of
transformation is monitored via dilation strain
measurements in the sample. Dilational strain
under isothermal conditions is primarily due to
volumetric changes associated with phase trans-
formations. From the analysis of the dilatome-
try data and examination of the resulting
microstructure in the specimen, it is possible
to identify the starting point and completion of
phase transformations under different proces-
sing conditions. Generally, a large number of
such dilatometry experiments at different tem-
peratures are required to build a complete
TTT diagram. Figure 15 shows a typical IT
diagram for AISI 4130 steel (UNS G41300).
Reference 54 is a good source for IT diagrams
of many different steel grades.
For computer simulation of phase transfor-

mation, some form of digital representation of
the various curves in the IT diagram is required.
Researchers have used various techniques for
digitizing the IT diagram. Some of the com-
monly used techniques are spline interpolation,
function interpolation, and actual measurement
(Ref 55). In the spline interpolation method,
the curves in the IT diagram are represented
by splines (curves defined mathematically by
points called knots). On the other hand, the
function interpolation method uses a time-tem-
perature function to represent the IT curves.
The actual measurement method is considered
the easiest to digitize and is also considered to
be the most accurate. It consists of tabulating
the transformation start time (5%) and time
for complete transformation (95%) for the vari-
ous phases at different temperatures and using
interpolation for intermediate values.
The JMAK equation used for describing trans-

formation kinetics of diffusional transforma-
tions, such as recrystallization models, is valid
only under isothermal conditions. However,
transformation during cooling of the hot-rolled
steel product is a nonisothermal process. To
adapt the isothermal transformation JMAKmod-
els under nonisothermal conditions, a time dis-
cretization approach, based on Scheil’s addivity
principle is generally used. In this approach,
the cooling curve is divided into several isother-
mal time steps. The calculations for fraction
transformed are very similar to the calculations
described earlier to model recrystallization
under nonisothermal conditions.
At any instant during transformation, there

can be up to five different phases and microcon-
stituents present in the material, namely austen-
ite, ferrite, pearlite, bainite, and martensite. For
modeling austenite decomposition kinetics,
two approaches have been proposed by
researchers. The simultaneous transformation
model (Ref 49) and the sequential transforma-
tion model. For simulation purposes, the
sequential transformation model has been more
commonly used, primarily because of its

Fig. 13 Three-hit compression test. (a) Test procedure
for an isothermal three-hit test. Examples of

stress-strain data. (b) First interhit time 10 s and second
interhit time 3 s. (c) First interhit time 30 s and second
interhit time 3 s

Fig. 14 Adapting JMAK equation to nonisothermal
conditions. (a) Iteration step i. (b) Iteration

step i + 1
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simplicity. The primary assumption in this
approach is that only one transformation reac-
tion occurs at any instant during the transforma-
tion process. The sequence of transformation is
ferrite, then pearlite, then bainite, and finally
martensite, with distinct transition conditions
separating these reactions.

Effect of Microstructure Evolution
on Flow Stress

Flow stress of steels is known to be a func-
tion of strain, strain rate, temperature, chemis-
try, and microstructure. Modeling flow stress
as a function of microstructure is a complex
problem, because the microstructure constantly
changes during a multiple-pass hot working
process. As a result, traditionally flow stress
has been modeled as a function of strain, strain
rate, and temperature while ignoring the effect
of microstructural evolution. Accurate modeling
of flow stress involves taking into consideration
different phenomena, such as work hardening,
dynamic recovery, and dynamic recrystal-
lization. Significant progress was made by
Laasraoui and Jonas (Ref 26) in developing a
microstructure-based flow stress model.
Pauskar et al. (Ref 27) have extended this model
to include the effect of austenite grain size.
A typical stress-strain curve was illustrated

and described earlier in Fig. 6. In the initial part
of the curve, the increase in dislocation density
and pileup of dislocations at the grain bound-
aries causes the stress to rise with strain. The
strain-hardening rate, ds/de, decreases with
increasing strain due to dynamic recovery,
which results in annihilation of dislocations in
the deformed grains. Under high temperatures
and low strain-rate conditions, the stress-strain
curve exhibits a clear peak at the peak strain
(ep), after which, the flow stress decreases due
to dynamic recrystallization. Dynamic recrys-
tallization occurs only after a critical strain is
exceeded. Following Laasraoui and Jonas’s
approach, the stress-strain curve can be divided
into two regions:

� The region before the critical strain, where
dynamic recovery is the predominant soften-
ing mechanism (e � ec)

� The region after the critical strain, where
dynamic recovery and dynamic recrystalli-
zation act together (e > ec)

Under conditions that display a clear peak due
to dynamic recrystallization, the stress-strain
curve before ec is extrapolated to a hypothetical
saturation stress (sss*), as illustrated in Fig. 6.
This represents the saturation stress if recovery
were the only softening mechanism during
deformation. The difference between the satu-
ration stress and the steady-state stress
ðs
ss � sdrex

ss Þ is a measure of the additional
softening taking place due to dynamic recrys-
tallization. The fractional softening due to
dynamic recrystallization, Xd, is represented by:

Xd ¼ sdrec � s
s
ss � sdrex

ss

¼ 1� exp �0:693 e� ec
e0:5 � ec

� �n� �
(Eq 16)

where n is a constant, e0.5 is the strain corres-
ponding to 50% dynamic recrystallization,
s is the flow stress corresponding to strain e,
and sdrec is the extrapolated hypothetical flow
stress corresponding to strain e if recovery were
the only softening mechanism.
Flow stress versus strain data acquired at dif-

ferent temperature, strain rate, and austenite
grain-size conditions can be analyzed using sta-
tistical methods to develop flow-stress models.
Flow-stress models developed for a vanadium
microalloy steel (V-HSLA) and AISI 4140
(UNS G41200) steel are summarized in Table 5.
Figures 16(a) and (b) compare stress-strain
curves predicted by the model with the experi-
mentally measured flow-stress data. It is seen
that the predictions are fairly good over the
range of conditions considered in this study.
The model is able to accurately model the
effect of strain hardening, dynamic recovery,
as well as dynamic recrystallization.
Application to a Multiple-Stage Deforma-

tion Process. In many processes, deformation
progresses in multiple deformation stages.
In hot rolling, for example, after deformation
in a roll bite, there is a small time gap anywhere
from a fraction of a second to a few seconds
before the material undergoes deformation
again in the next roll bite. During the period

between successive roll passes, metallurgical
changes such as static recovery, static recrystal-
lization, and grain growth change the flow char-
acteristics of the material. A good flow-stress
model not only predicts the flow stress accu-
rately in a single-hit deformation process but
also in a multiple-hit deformation process.
While modeling a multiple-deformation pro-

cess, one of the important issues that must be
addressed is the handling of partial recrystalliza-
tion. In a reversing bar mill, the time available
between two successive roll passes may be suffi-
cient for complete recrystallization to occur. On
the other hand, the interstand time in a continuous
rolling mill may not be long enough for complete
recrystallization. Researchers have proposed
different approaches for handling partial recrys-
tallization. One of the approaches uses the law
of averages for the effective grain size and the
retained strain (Eq 11 and 12). Researchers have
used the average grain size and retained strain
to determine recrystallization kinetics with rea-
sonable success. However, this method yields
relatively poor results when applied to flow-
stress modeling (Ref 9). Another approach to
handling partial recrystallization was suggested
by Karhausen and Kopp (Ref 11, 44). It consists
of treating the recrystallized and unrecrystallized
fractions separately, unlike averaging as des-
cribed previously. While this technique is known
to be accurate and convenient for modeling a few
stages of deformation, difficulties arise when
modeling a large number of deformation passes

Fig. 15 Isothermal transformation (IT) diagram for AISI 4130 steel austenitized at 843 �C (1550 �F) and austenite
grain size 9–10 ASTM. Source: Ref 54
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due to rapidly increasing numbers of substruc-
tures. Therefore, a further modification is pro-
posed to counter the difficulty in applying this
method to multistage deformation. This approxi-
mation using the rule of mixtures is illustrated in
Fig. 17. Consider the second hit, during which
two substructures (1 and 2) exist in the material.
After deformation, the grain sizes and the accu-
mulated strains, in the two substructures are
averaged to obtain the effective grain size and
the average accumulated strain which are then
associated with substructure 3. The static recrys-
tallization model is then applied to substructure
3 to determine the fraction and size of the
evolving substructure (substructure 4). Conse-
quently, substructures 3 and 4 are carried forward
to the third deformation step. This procedure is
repeated over the entire deformation sequence.
At any stage of deformation except the first,
there are only two substructures that must be
used in computing the flow stress, thereby
making it computationally very efficient. This
technique relies on the fact that grain size has a
lesser effect on the flow stress at greater strains.
Consequently, this technique has been found
to work well for incremental strains larger than
0.1 under the conditions of temperature, strain
rates, and grain sizes considered in this study.
This method also makes use of the notion that
the average grain size and average strain can pro-
vide reasonable predictions for recrystallization
kinetics.
This technique has been tested by comparing

predictions and measurements in five-hit com-
pression tests conducted on a Gleeble thermo-
mechanical testing machine. The compression
test consisted of heating the test specimen
to obtain a desired initial grain size. This was
followed by cooling to the test temperature
before being compressed to a strain of 1.0 in
five equal strain increments. A short hold time
was provided between two successive hits.
Figures 18(a) and (b) illustrate two such cases
studied with differing interhit times. The pre-
dicted flow-stress values agreed very well with
the measurements, thereby validating not only
the flow-stress model but also the austenite
evolution models. Overall, the flow-stress
model has been found to yield fairly accurate
results under a variety of test conditions,
including changing strain-rate deformation con-
ditions. Additional details regarding this model
can be found in Ref 9.

Physical Simulation in the
Laboratory Environment

Physical simulation techniques attempt to
replicate real-world processes on the laboratory
scale in such a way that the resultant data
can be used to explain, optimize, or solve
real-world problems. Uniaxial hot compression
tests and hot torsion tests are among the most
common techniques used to simulate and study
thermomechanical processes. These techniques
make it possible to simulate off-line various

processing schedules for a particular material
and to predict with reasonable accuracy the
microstructure and mechanical properties that
will result in the production environment. Such
simulation techniques have been widely used
(e.g., Ref 34, 56) to study and optimize rolling
mill schedules.
The following is an example of a physical

simulation experiment conducted on the
Gleeble 3500 thermo-mechanical test system
to validate an austenite evolution model.
A five-stage hot uniaxial compression test is
depicted in Fig. 18. In this test, a vanadium-
microalloyed steel specimen was initially
heated to a high temperature, T0, to obtain an
initial grain size of 200 mm (Ref 9). The speci-
men was then cooled to temperature T1 and
compressed to a strain of e1 at a certain strain
rate. It was then cooled to a temperature T2 at
a predetermined cooling rate before being hit
again. The specimen was thus successively
compressed and cooled, as illustrated in
Fig. 19. The grain sizes in this processing
sequence were measured at different stages.
The conditions under which one such physical
simulation experiment was conducted are:

Temperature, �C

T1 1200
T2 1175
T3 1150
T4 1125
T5 1100

Incremental strain each hit 0.2

Strain rate each hit, s�1 3

Cooling rate between hits, �C/s 1.67

The conditions of temperature, strains in each
pass, and interhit times were chosen to reflect
conditions encountered in a bar rolling process
(Ref 9). Figure 20 compares the austenite grain
size predicted using the microstructural evolu-
tion models with measurements at different
stages. It is clearly seen that with each deforma-
tion step, the grains progressively become finer
due to the ensuing recrystallization. It is also
seen that the predicted austenite grain sizes
match the measured austenite grain sizes quite
well. The simplicity and ease of conducting
such laboratory simulations allow one to conve-
niently investigate the effect of changing some
of the process parameters (e.g., temperature or
cooling rate) and ultimately identify the set of
conditions that will yield the desired micro-
structure and properties in the rolled product.
Such physical tests are also commonly used to
validate microstructural evolution models,
namely models for recrystallization, grain
growth, and phase transformation.

Simulation Using Finite-Element
Analysis

To model microstructural evolution in a hot
working process, one must know the thermome-
chanical history of the material. Finite-element
modeling (FEM) of the process provides a con-
venient and reasonably accurate way of obtain-
ing the thermomechanical history of various
points in the workpiece at different instants in
time. The finite-element method has been
widely recognized as an effective tool for the
analysis of metalforming processes. The finite-

Table 5 Microstructure-dependent flow-stress models

Critical strain: ec = 0.83* ep
For e < ec:
s ¼ sdrec ¼ s
2ss þ s2

0 � s
2ss
� 	

e��e

 �0:5

For e > ec:
s ¼ sdrec � s
ss � sdrex

ss


 �� 1� exp �0:693 e�ec
e0:5�ec

� �n� �h i

Vanadium-microalloyed steel (V-HSLA) (Ref 27) AISI 4120 steel (Ref 16)

n = 1.46 n = 1.42
ep ¼ 1:20�10�3� d0:2630 � _e0:216� exp 230;474�0:216

RT

� 	
ep ¼ 3:50�10�3� d0:150 � _e0:17� exp 46;326

RT

� 	
s0 ¼ 3:25 � _e0:073d�0:090 exp 314;223�0:073

RT

� 	
s0 ¼ 2:96� _e0:11d�0:110 exp 36;300

RT

� 	
� ¼ 39:25 � _e�0:076d�0:080 exp �228;215�0:076RT

� 	
� ¼ 129 � _e�0:09d�0:200 exp �24;346RT

� 	
s
ss ¼ 90:9 d0

75

� 	�0:107
sinh�1 3:31� 10�3 _e� exp 354;819

RT

� 	
 �0:192h i
s
ss ¼ 100 d0

125

� 	�0:07
sinh�1 3:01� 10�3 _e� exp 396;800

RT

� 	
 �0:175h i
sdrex
ss ¼ 90:91 � sinh�1 1:97� 10�3� _e� exp 290;000

RT

� 	
 �0:247h i
sdrex
ss ¼ 90:91� sinh�1 1:18� 10�3� _e� exp 238;000

RT

� 	
 �0:238h i
e0:5 ¼ 1:43� 10�3� d0:2390 _e� exp 256;305

RT

� 	
 �0:21
e0:5 ¼ 9:95� 10�3 � d0:10 _e� exp 278;772

RT

� 	
 �0:145
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element method has the advantage over other
analytical methods, such as slip line, upper
bound, and so on, in its ability to generate
detailed and accurate information. The main
advantage of FEM is that it can simulate a wide
range of metalforming problems with little
restriction on workpiece geometry and bound-
ary conditions. This makes it a very useful tool
for analyzing metalforming processes.
Two basic formulations are primarily

adopted in the nonlinear FEM to deal with the
large displacements, rotations, and strains that
are typical in bulk forming processes such as
hot rolling and forging. These are the Lagrang-
ian formulation and the Eulerian formulation
(Ref 57, 58). In the Lagrangian formulation,
the mesh is fixed to the material that is being
deformed, and therefore, the mesh follows
the movement of the material throughout the
process. Finite-element simulation with the
Lagrangian formulation follows the deforma-
tion path of the workpiece incrementally from
the beginning to the end by dividing the process
time into a number of incremental small time
steps. In the Eulerian formulation, the mesh is
fixed in space, and the material flows across
the elements of the mesh. The Eulerian formu-
lation has been used effectively in the simula-
tion of processes such as rolling and extrusion
that can be considered as kinematically steady

processes. In such processes, kinematically
steady statemeans that the shape and temperature
of the workpiece at any planar section in the
process (for example, exit section of a roll bite)
remain reasonably steady or constant with time.
Many FEMs for multipass shape rolling adopt a
steady-state approach (Eulerian approach),
mainly because of its simplicity. In the steady-
state approach, stream lines and flow-stress
distributions are iteratively updated until the
analysis converges to the solution. In addition to
the simulation being simplified, other benefits
of the steady-state approach include shorter
computation time and significantly smaller
memory and file size requirements.
Early research studies on three-dimensional

(3-D) FEMs for simulation of shape rolling
were published in the late 1980s (Ref 59–64).
Kiuchi and Yanagimoto (Ref 62) introduced a
different approach to modeling the rolling.
Their method, called the complex-element
method, is a combination of the rigid-plastic
FEM and the slab method. A variation of this
approach was adopted by Kim et al. (Ref 65).
Recent advancements in computer technology
and FEM have led to the development of more
sophisticated 3-D FEMs for rolling, along with
thermomechanical coupling, and consequently
led to finite-element-based simulation of micro-
structural evolution. There exists a great deal of
published literature on the topic of FEM of hot
rolling and other metalforming processes
(Ref 57–65). Readers are encouraged to refer

to published literature for details about FEM
of metalforming processes.
Simulation of the hot rolling process is a tran-

sient analysis that includes, at the very least,
deformation and heat-transfer computations of
the workpiece in the roll bite, heat-transfer
computations of the workpiece in the interstand
region, and postrolling cooling on the runout
table. Rolling, as mentioned earlier, is generally
considered a steady-state process. Therefore, a
Eulerian-formulation-based steady-state appro-
ach is often used for simulating hot rolling.
A Eulerian-formulation-based 3-D FEM pro-
gram, ROLPAS (Ref 9), is discussed next.

ROLPAS: A 3-D FEM for Hot Rolling

ROLPAS is a Eulerian-formulation-based
3-D FEM program (Ref 9) for simulating hot
rolling. In this FEM, the roll pass is broken
down into control volumes, as illustrated in
Fig. 21. A solution is obtained for each of the
control volumes in a sequential manner, starting
with deformation in the first roll bite and pro-
gressively modeling subsequent interstand
regions and roll bites. Both deformation and
heat transfer are modeled in the roll bites,
whereas only heat transfer is modeled in the
interstand regions.
Deformation Analysis. In this approach, the

deformation analysis in the first roll bite begins
with a mesh that is an initial guess. For a given

Fig. 16 Flow-stress model: measurements vs.
predictions for V-HSLA steel. (a) Effect of

temperature _e = 0.1/s, d0=75 mm. (b) Effect of strain rate
(temperature = 1100 �C, d0 = 250 mm)

Fig. 17 Representation of substructures in the approximate method, using the rule of mixtures

Fig. 18 Five-hit hot compression test: flow-stress measurements vs. model predictions for V-HSLA steel. (a) Test
conditions: temperature, 1100 �C; strain rate, 1.0/s; initial austenite grain size, 200 mm; interhit time, 1.0 s.

(b) Test conditions: temperature, 1100 �C; strain rate, 1.0/s; initial austenite grain size; 200 mm; interhit time, 0.2 s
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workpiece cross-sectional geometry (two-
dimensional, or the 2-D shape representing
the cross section of the incoming slab), the
ROLPAS program generates the 3-D finite-
element control-volume mesh in the roll gap
using eight-node hexahedral isoparametric ele-
ments (Fig. 22). After the initial control-volume
mesh is established, traction- and velocity-
boundary conditions are assigned to the nodes.
The program then solves a set of simultaneous
nonlinear equations based on rigid-plastic
material behavior. To find the kinematically
steady-state geometry, ROLPAS updates the
geometry of the workpiece after every iteration
in the solution process based on the velocity
field obtained. Iterations are continued until a
convergence of the solution occurs. In short,
the stream lines (representing the flow of mate-
rial) and the corresponding flow-stress distribu-
tions are iteratively solved and updated until
convergence is obtained. Convergence is said
to be attained when the numerical difference
between the solutions of two successive itera-
tions is smaller than a specified tolerance.
Heat-Transfer Analysis. The workpiece

undergoes temperature changes continuously
during the hot rolling process. The heat loss at
the workpiece surface is due to convection,
radiation, and conduction. On the other hand,
heat is generated in the workpiece due to plastic
deformation and friction at the roll-workpiece
interface. In steady-state hot rolling, the longi-
tudinal temperature gradients in the workpiece
are small compared to transverse thermal gradi-
ents. Therefore, following the approach of Kim
et al. (Ref 65), the heat flow along the rolling
direction is neglected to simplify heat-transfer
computations. This assumption makes it possi-
ble to model heat-transfer using 2-D FEM
instead of 3-D FEM formulation. In ROLPAS,
the temperature distribution and heat-transfer
rates are determined at each cross section in
the control volumes using a 2-D finite-element
heat-transfer analysis (Fig. 23). The instanta-
neous time at each of the sections in the inter-
stand region is estimated using the distance
between the sections and the longitudinal
velocity of metal flow obtained from deforma-
tion analysis (i.e., exit velocity from the
previous roll bite).

Integrated Finite-Element System
for Simulation of Microstructural
Evolution

Earlier sections of this article described the
development of the microstructural evolution
models and FEM for hot rolling. In this section,
an example of integration of FEMs and micro-
structural evolution models for simulation of
metal flow and microstructural evolution in a
hot rolling process is presented. Figure 24
shows the overall computational structure used
in this integrated system. The main computa-
tional unit of the integrated system is the 3-D
finite-element program ROLPAS, discussed

previously. ROLPAS computes the thermome-
chanical history at each node in the control
volumes, which is used to model microstruc-
tural evolution during hot rolling. A micro-
structural evolution module, MICON, uses the
thermomechanical history computed by the
FEM in conjunction with recrystallization and
grain-growth models to simulate the evolution
of austenite during hot rolling. The flow chart
shown in Fig. 25 describes the computation
logic for simulating microstructural evolution.
For the first pass, the program calculates the
initial austenite grain size based on the reheat-
ing temperature and soak time. The FEM com-
putes the thermomechanical history (strain,
strain rate, and temperature at different instants
in time) at every node in the control volume for
the first pass and also for the first interstand.
After deformation and heat-transfer computa-
tions for each roll bite, the microstructural evo-
lution module in conjunction with the heat-
transfer analysis module computes the recrys-
tallized fraction and the austenite grain size at
each node in the interstand region. If the frac-
tion recrystallized is found to be greater than
95%, complete recrystallization is assumed.
Otherwise, the partial recrystallization condi-
tion is carried over to the next pass. In the event
of complete recrystallization, grain growth after
recrystallization is modeled. Partial recrystalli-
zation is handled using the rule of mixtures.
The last unit in the integrated system is a mod-
ule called AUSTRANS, for modeling phase
transformation. It uses the temperature history
after rolling (computed by the FEM), austenite
grain size, fraction recrystallized, retained
strain, and so on in the last interstand (com-
puted by MICON) and relevant isothermal
transformation data to model the transformation
of austenite to ferrite, pearlite, bainite, and mar-
tensite. This module also uses available struc-
ture-property relationships to estimate the
mechanical properties of the rolled product. At
any instant t during transformation, there can
be up to five different phases present in the
material, namely austenite, ferrite, pearlite, bai-
nite, and martensite. Initially, all nodes are
assumed to be in the austenitic state. Also, at
any instant t, the sum of all volume fractions
must equal 1:

X5
i¼1

Vi;t ¼ 1 for t > 0 (Eq 17)

where Vi,t is the volume fraction of a phase i at
time t. The interstand region is discretized into
several small time steps. For each time step,
the temperature is assumed to be constant.
The volume fractions of the ferrite, pearlite,
and bainite at each time step are determined
using the JMAK equation and the sequential
transformation approach. In the case of marten-
sitic transformation, the Koistinen-Marburger
model is used. This computational procedure
is repeated over each time step for every node
until austenite is completely transformed or
until it reaches the room temperature.
Finite-Element Simulation of Microstruc-

tural Evolution during Shape Rolling. An
example of an eight-pass hot rolling schedule
to convert a 250 mm. square billet to a
100 mm round bar is presented. The simula-
tions were conducted for AISI 1050 steel with
an initial reheat temperature of 1200 �C and
specified interstand and postrolling cooling
conditions. Figure 26 shows the shapes at each
of the roll bites predicted by the FEM. The
FEM ROLPAS in combination with MICON
simulate the evolution of austenite by modeling
recrystallization and grain-growth phenomena.
The results from this analysis are used as input
for AUSTRANS, which simulates austenite
decomposition. Contours showing the distribu-
tion of volume fractions of austenite, pearlite,
bainite, and martensite are illustrated in Fig.
27. The center of the rolled bar sees higher tem-
peratures and lower cooling rates, resulting in a
high percentage of pearlite. Near the surface,
where the temperatures and cooling rates are
intermediate, a significant quantity of bainite
is formed, while martensite forms at the surface
that experiences the highest cooling rates.
One advantage of such a system is that it

allows the user to conduct a quick sensitivity
analysis to see the effect of varying certain
process conditions on the final properties.
Figure 28 illustrates the variation in mechanical
properties along the radial direction predicted

Fig. 19 Thermomechanical history in a physical
simulation experiment

Fig. 20 Physical simulation experiment: comparison
between measured and predicted austenite

grain size. (Source: Ref 9)
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by the simulation for three different reheat
temperatures. For the purpose of comparison,
similar data can be generated easily by chang-
ing other parameters, such as the roll pass
sequence, interstand cooling, and postrolling
cooling conditions.
Improved Metal Flow Prediction due to

Microstructure Evolution Modeling. Accurate
prediction of material spread is important while
designing roll pass sequences for bar and shape
rolling. Accuracy of material spread prediction
in FEMs is strongly dependent on the accuracy
of flow-stress models. The integrated approach
makes it possible to model microstructural
evolution and metal flow simultaneously and
thereby leads to better accuracy in the predic-
tion of metal flow and forming loads.
Figure 29 shows a three-pass rough rolling

schedule being used to convert a 6.625 in.
square billet to a 5 in. diameter round billet in
a rolling mill. This process has been chosen to
illustrate the effect of microstructure modeling
on metal flow using the integrated approach
described earlier. Figure 30(a) shows the
finite-element analysis (FEA)-predicted shape
at the exit of the rolls in the second pass with-
out microstructure modeling, while Fig. 30(b)
shows the FEA-predicted shape with micro-
structure modeling. Note that a microstructure-
dependent flow-stress model was used in the
FEA with microstructure modeling. For com-
parison, a sketch of the actual shape seen at
the end of the second pass is shown in Fig. 30
(c). From these results, it is evident that the
FEM without microstructure modeling greatly
underpredicts the material spread. It also fails
to predict the bulge profile on the sides. On
the other hand, predictions of material spread
with microstructure modeling are more accu-
rate, and the shape predicted matches the actual
shape more closely. It is generally recognized
that softening due to recovery and recrystalliza-
tion during hot rolling has a major effect on the
flow stress and metal flow behavior. It is there-
fore important to account for these metallurgi-
cal changes while modeling a hot working
process. In addition to improvements in metal
flow predictions, the integrated approach to
modeling metal flow and microstructural

evolution also leads to better predictions of
forming loads (Ref 66, 67).
Finite-Element Simulation of Microstruc-

tural Evolution during Induction Hardening.
The examples presented thus far discuss simu-
lation of microstructural evolution in hot
rolling. However, the modeling principles are
applicable to other hot working and heat treat-
ment processes. In the following example, sim-
ulation of microstructural evolution during
induction hardening is discussed.
The induction hardening process is an

advanced and efficient method for hardening
localized regions in medium- and high-carbon
steel parts. One of the primary advantages of
the induction hardening process is its ability to
harden parts with repeatable results in a very
short cycle time. The induction hardening pro-
cess consists of rapidly heating the part to an
austenitic temperature, followed by rapid spray
cooling. Simulation of the induction hardening
process is generally considered difficult, due
to the coupling effects of electromagnetic, ther-
mal, mechanical, and metallurgical field vari-
ables that must be considered. Simulation of
the induction hardening process involves mod-
eling of electromagnetic, thermal, mechanical,
and metallurgical phenomena, as illustrated in
Fig. 31. The governing equations can be
divided into three models: electromagnetic,
thermomechanical, and metallurgical. The sim-
ulation is carried out over a number of small
time-step increments. For each small time step,
the electromagnetic, thermomechanical, and
metallurgical models are solved sequentially.
First, the electromagnetic model determines
ohmic power (or heating power) in each object
of the FEM. Next, the thermomechanical
model, coupled with the metallurgical model,
calculates nodal temperatures, displacements,
stresses, and phase transformations.
The aforementioned approach has been used

for simulating induction hardening of outer
races on a double cone (Ref 68). A double cone
is a component in a particular tapered roller-
bearing assembly. During induction hardening
of this component, first one race is induction
hardened, then the part is flipped around to
harden the other race. Each race is induction
hardened using a setup consisting of a copper

coil, flux concentrator, and stainless steel
holder. The flux concentrator is used to concen-
trate the magnetic flux over the region in the
workpiece that needs to be heated. The work-
piece (double cone) is made of AISI 1080 steel
(UNS G10800). In this example, the workpiece
is modeled as a mixture of different phases dur-
ing the simulation. Each phase has its own elec-
trical, magnetic, thermal, and mechanical
properties. The properties of the material at
any given time during the simulation are esti-
mated using the rule of mixtures. At the start
of the simulation, the microstructure in the
workpiece is assumed to be 100% pearlite. As
the workpiece is heated, transformation to aus-
tenite first occurs in the heated areas. Upon
rapid cooling, much of this austenite transforms
to martensite.
The 2-D axisymmetric finite-element mesh

of the double cone, coil, flux concentrator,
holder, and air is shown in Fig. 32. Each side
of the outer race is heated at a 105 kHz fre-
quency using 150 kW power for 3.8 s. After
heating, each race is cooled using a water spray
system after a short 1 s dwell time. Figure 33
shows the profile of the induction-hardened
layer as predicted by the FEM. The predicted
hardened profile matches the measured profile
very well. This simulation model has been used
successfully to develop the coil design and also
to develop induction heating process para-
meters in order to obtain the desired hardened
layer profile underneath the raceways.

Summary and Concluding Remarks

Advances in FEM techniques for metal-
forming processes, coupled with advances in
microstructure modeling, have led to the devel-
opment of integrated models for simulation
of microstructural evolution in steels. Such
simulation tools have been shown to be very
effective in the analysis and optimization of
various hot working and heat treatment pro-
cesses. Today (2009), many leading steel com-
panies now use such tools routinely for
process development and optimization.
The semiempirical and empirical models for

microstructural evolution discussed in this

Fig. 22 Initial guess of the control volume and converged solution from the finite-
element analysisFig. 21 Control-volume approach for finite-element modeling of hot rolling
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article are considered as macroscale models in
which the microstructure is described using
internal state variables such as average grain
size, fraction recrystallized, and fraction trans-
formed. New modeling methods are being
developed that allow modeling of microstruc-
tural evolution on the mesoscale. In this meth-
odology, simulation is conducted on the length
scale of the microstrutural features (e.g.,
grains). Using the mesoscale approach, micro-
structures and their distributions can be pre-
dicted rather than mean values, which have
traditionally been used to characterize micro-
structures. Mesoscale techniques are broadly
classified into the following types: Monte Carlo
simulations, cellular automata, and phase-field
models (Ref 53) (see the corresponding articles
“Monte Carlo Models for Grain Growth and
Recrystallization,” “Cellular-Automata Models

for Recrys tallization,” and “Phase-Field Micro-
structure Modeling” in this Volume). While
significant differences exist among these tech-
niques, each is considered to be an attractive
tool for simulation of microstructural evolution
at the mesoscale level. However, much research
and advancement is needed to make these novel
modeling techniques suitable for everyday use
in the industry.
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Simulation of Microstructure and
Texture Evolution in Aluminum Sheet
Olaf Engler, Kai Karhausen, and Jürgen Hirsch, Hydro Aluminium Deutschland GmbH, R&D Center, Bonn, Germany

Introduction

Many metallic sheets exhibit significant plas-
tic anisotropy that can be attributed to the pres-
ence of crystallographic texture. For instance,
the in-plane anisotropy in textured sheet can
cause major problems in subsequent forming
operations. A prominent example is the occur-
rence of earing in the production of beverage
cans of Al-Mn-Mg alloys (Ref 1–3). It is gener-
ally known that the formation of a suitable tex-
ture with minimum earing at final gage is
critically dependent on the texture in the hot
strip and the amount of subsequent cold rolling.
The evolution of microstructure and texture
during hot rolling is largely controlled by the
recrystallization processes involved, which, in
turn, depend on deformation temperature, strain
rate, and the amount of recovery and, poten-
tially, recrystallization between the individual
hot rolling passes. In industrial production of
aluminum sheet materials, models relating to
the evolution of microstructure, texture, and
the resulting properties have gained increasing
interest, because the material producers are
obliged to deliver material within strictly
defined property-limit specifications (Ref 4).
Because of the strong dependency of the evolu-
tion of microstructure and resulting properties
on the time/temperature history during thermo-
mechanical processing, it is important to take
all process steps into account, which requires
a coupling of thermomechanical models with
appropriate microstructure simulation tools
accounting for deformation and recrystallization
(Ref 5–9).
This article explores the potential of through-

process simulations of the development of
microstructure, texture, and resulting properties
during the thermomechanical processing of Al-
Mn-Mg alloys, starting from the as-cast ingot to
final-gage sheet. The next section provides a
brief introduction in the thermomechanical pro-
duction of aluminum sheet and, in particular,
highlights the main effects governing the evolu-
tion of microstructure and texture. The simula-
tion tools used to model the evolution of

microchemistry, microstructure, and texture
upon deformation and recrystallization of alumi-
num alloys are described. The analytical soften-
ing model AlSoft is combined with the rolling
texture model GIA to simulate texture evolution
during deformation and with a model designated
ClaNG to treat the evolution in microchemistry,
that is, the variation in solute level and precipita-
tion, during thermomechanical processing.
The resulting anisotropic properties — here,
earing — are simulated with a polycrystal-
plasticity model. The possibility of a coupled
microstructure and texture simulation is then
illustrated by way of the industrial production
of Al-Mn-MgAA 3104 (UNSA93104) can body
stock and the final-gage earing properties.

Evolution of Microstructure and
Texture during the
Thermomechanical Processing of
Al-Mn-Mg Sheet

The most common aluminum alloy for the
body of beverage cans is AA 3104, which pro-
vides an optimal combination of strength and
formability. The alloy contains approximately
1 wt% of both manganese and magnesium.
Continuous efforts to increase strength for fur-
ther materials savings by down-gaging led to
the addition of small amounts of copper up to
approximately 0.2%. For the can lids (ends),
the higher-strength alloy AA 5182 (UNS
A95182) with approximately 5% Mg is used.
Figure 1 illustrates the conventional fabrication

route for aluminum can stock. It consists of
casting of large ingots, a two-step homogeniza-
tion, breakdown hot rolling to 20 to 40 mm
transfer slab gage, tandem hot rolling to
approximately 2.5 to 5 mm hot strip, and final
cold rolling, resulting in the finish-gage sheet
with a thickness below 0.3 mm in the fully
hardened temper (H19).
Production starts with a direct chill (DC) cast-

ing operation. Because the overall efficiency
of the process is, to a large degree, determined
by batch size, it is usually aimed for the largest
ingots that can be processed in the hot mill (up
to 30 tons). The resulting ingots with dimensions
of up to 600 mm in thickness, 2 m in width, and
up to 9 m in length are characterized by a coarse
dendrite cell structure and a close-to-random tex-
ture. The microstructure contains coarse (10 to 50
mm) and inhomogeneously distributed constituent
particles of various Al-Mn- and Al-Mn-Fe-Si
phases. The sheet ingots are sawn at the ends
and scalped to remove surface blemishes and
chemistry variations caused by surface and sub-
surface segregation and inverse segregation that
occur during solidification.
In preparation for hot rolling, ingots are pre-

heated to a temperature up to 600 �C. Depend-
ing on the temperatures achieved, internal
stresses are relieved and elements in supersatu-
rated solid solution (e.g., manganese, iron, sili-
con, chromium, etc.) are precipitated. Soluble
phases in the material are dissolved, and micro-
segregation is reduced by diffusion processes,
while constituent phases are spheroidized and
partially redissolved. From homogenization
temperature, the slab is usually cooled down

Fig. 1 Typical processing steps involved in the thermomechanical production of aluminum can stock. DC, direct chill
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at controlled rates to the hot rolling temperature
of approximately 500 �C. This may lead to fur-
ther precipitation along with growth of existing
particles, including some constitutional changes
(from b-Al6(Mn,Fe) to a-Al15(Mn,Fe)3Si2).
The microstructure state of the slab before hot
rolling in terms of both solutes and precipitates
significantly influences the evolution of the
subsequent microstructure by affecting recrys-
tallization mechanisms and kinetics and thereby
also final-gage properties of aluminum sheets.
Therefore, homogenization and the resulting
microstructure are critically important.
The hot ingots are then transferred to the roll-

ing line, which is commonly comprised of one
or two single-stand reversible breakdown
(roughing) mills followed by a multistand fin-
ishing mill. Rolling conditions (temperature,
velocity, and reductions per pass) must be
adjusted in a way that high reductions can be
achieved and recrystallization and precipitation
will occur under controlled conditions. During
hot rolling, the coarse as-cast structure is trans-
formed into a highly fragmented structure. The
hard, coarse constituent phases are crushed and
distributed more evenly, while decreasing tem-
peratures during rolling together with plastic
deformation may lead to further precipitation
of phases from the supersaturated aluminum
matrix. The alternating cycles of deformation
and recrystallization during hot rolling have a
strong impact on the overall microstructure
and texture evolution. Because of the high
deformations and temperatures of approximately
500 �C involved in breakdown rolling, the
material readily recrystallizes between rolling
passes, which usually results in a fairly mild
cube recrystallization texture (001)[100].
In the following tandem mill, hot strip is pro-

duced unidirectionally through typically three
or four connected rolling stands. The finished
hot-rolled strip of approximately 2.5 to 5 mm
thickness is edge trimmed and wound into coils.
Because of the high strains and strain rates with
short interstand times, modern high-speed tan-
dem mills can be run in a process window that
diminishes recrystallization between two

consecutive tandem passes — the so-called
interstand (or interpass) recrystallization —
yet, in turn, ensures recrystallization during
cooling of the coiled hot strip (which is referred
to as self-annealing).
Figures 2 and 3 show microstructure and tex-

ture results of three hot strips of alloy AA 3104
that were produced with different coiling tem-
peratures, Tcoil (Ref 3). The textures are repre-
sented in the form of the j2 = 0� sections
through the three-dimensional orientation space
{j1, F, j2}. (For measurement, analysis, and
representation of texture data, see Ref 10). It
is seen that for this hot rolling configuration,
coiling temperatures in excess of 300 �C are
required to achieve self-annealing and a fully
recrystallized hot strip with a pronounced cube
recrystallization texture (Fig. 2c, 3c), which is
suitable for production of can stock (see
subsequent text). At lower coiling temperatures,
the textures comprise significant fractions of
rolling texture components (Fig. 3a, b), which
indicates that these temperatures are not suffi-
cient to enable complete recrystallization upon
self-annealing (Fig. 2a, b). The texture of AA
5182 hot strip is shown in Fig. 4. Here, recrys-
tallization is complete, but the recrystallization
texture sharpness is appreciably lower than that
typically found in AA 3104 can body stock.
After hot rolling is complete, the coiled hot

strip is allowed to cool down to ambient tem-
perature before it is cold rolled to final gage
(Fig. 1). During cold rolling, the grain structure
is flattened, and the material strain hardens by
formation of a typical dislocation and/or sub-
grain substructure. For aluminum beverage
cans, highly cold-rolled states (H19) are used
to meet strength requirements (>275 MPa).
Thus, the sheets always comprise a strong
b-fiber rolling texture, which is accompanied
by the formation of ears at the four positions
þ�45

� from the rolling direction (RD). These
45� ears are offset by the cube texture that is
retained from the recrystallized hot strip with
pronounced 0�/90� earing (Fig. 3c; see insets
in Fig. 10). Due to the slow rotation rate of
the cube orientation, the resultant 0�/90� ears

are able to balance the newly forming 45� ears
up to rather high rolling reductions, typically
ranging between 80 and 90%. Figure 5(a)
shows the texture of final-gage can stock, which

Fig. 2 Microstructure of AA 3104 (UNS A93104) hot strip as a function of coiling temperature, Tcoil. The cross
section is longitudinal, with rolling direction (RD) and normal direction (ND.) (a) Tcoil = 260 �C. (b) Tcoil =

280 �C. (c) Tcoil = 315 �C

Fig. 3 Hot strip textures of AA 3104 as a function of
coiling temperature, Tcoil (orientation distribution

function j2 = 0� sections, intensity levels 1 - 2 - 4 -
7 - 10 - 15). (a) Tcoil = 260 �C. (b) Tcoil = 280 �C.
(c) Tcoil = 315 �C
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consists of a mixture of a retained cube texture
and the newly formed rolling texture compo-
nents. The resulting earing cup reveals a char-
acteristic six-ear profile h (a) with ears under
angles (a) of 0�, 45�, 135�, 180�, 225�, and
315� to the RD (see inset in Fig. 5b). However,
because of the orthotropic symmetry of sheet
rolling, earing profiles are principally symmet-
ric with respect to RD and transverse direction
(TD). Accordingly, Fig. 5(b) shows the symme-
trized cup height profile of a typical six-ear pro-
file in the range 0�/RD to 90�/TD. Such
material with six ears is generally deemed satis-
factory for the deep drawing and ironing of
beverage cans.
If the cube texture is too weak, by contrast,

the rolling texture components with the resul-
tant 45� ears may become too strong. An exam-
ple is included in Fig. 5(b), showing excessive
45� earing (dashed line). Vice versa, under cer-
tain conditions the 0�/180� ears may be higher
than the remaining 45� and 90� ears (dotted line
in Fig. 5b) (Ref 11). Such specimens are partic-
ularly deleterious for beverage can production,
since the two main ears under 0�/180� cannot
withstand the hold-down pressure supporting
the blank during can forming without some cir-
cumferential flow and pinching. The resulting
pinched ears tend to jam the body maker during
subsequent redrawing and ironing, leading to
machine downtime and hence reducing
productivity.

Simulation Tools

Optimization Strategies in Sheet Proces-
sing and Material Quality. Early efforts in
sheet process development were of a purely
empirical nature. The production methods of flat
sheets by rolling were experimentally developed
in the plants and— after testing of, at best, a few
keymaterial properties— the resulting sheet was
then used as is. This method requires numerous
plant trials under varying conditions, selecting

the best combination of process parameters.
Thus, any knowledge about processing and
material properties was developed empirically.
Obviously, this traditional way of process opti-

mization has a number of major shortcomings:

� Plant trials are expensive and time-consuming.
They reduce production capacities, with sig-
nificant impact on high-volume-production
facilities.

� The results tend to be less than adequate due
to the limited amount of trials. The amount
of data often does not allow a statistically
relevant evaluation and sound conclusions.

� Some decisive parameters in the process are
not easily accessible by direct measurement.

� The results are limited to the specific equip-
ment used and the specific alloys tested. It is

difficult to extrapolate to new equipment or
different alloy compositions.

Thus, a more intelligent way of process
optimization is required, based on the sound
knowledge and quantitative description of ther-
momechanical process parameters and metallur-
gical effects involved. With their integration
into full simulation programs, such models are
capable of also addressing complex interactions
(Ref 12–17). For this purpose, it is necessary to
systematically analyze and understand all
important material parameters under the differ-
ent thermomechanical conditions that affect
the microstructure and ultimately control the
resulting material properties. These effects need
to be quantified, which can be done either empir-
ically or—wherever possible— new algorithms

Fig. 4 Hot strip texture of AA 5182 (UNS A95182)
can end stock (orientation distribution

function j2 = 0� section, intensity levels 1 - 2 - 4 - 7 -
10 - 15)

Fig. 5 Cold-rolled AA 3104-H19. (a) Texture. (b) Various earing profiles. h is the cup height (symmetrized).
RD, rolling direction; TD, transverse direction
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based on physical principles are introduced and
translated into suitable material models applied
in practice.
Such models can be integrated into industrial

process models — even including potential on-
line applications — that determine the local pro-
cess conditions in a material. Thus, fully coupled
through-process models can be used to simulate
the corresponding process chain on a computer
in all possible or even imaginary variations, with
the material properties as a result. Once estab-
lished and verified, only a limited number of val-
idation plant trials need to be performed in order
to assess the effectiveness of practices and equip-
ment. Such an intelligent control for modern hot
and cold rolling lines enhances performance and
flexibility, since it allows a large variety of alloys
to be processed individually and almost simulta-
neously according to their specific behavior
under varying process conditions, even in com-
plex interdependent production schedules.
Thermomechanical Simulation of Flow

Stress, Static Recovery, and Static Recrystal-
lization during Rolling. Thermomechanical
simulation of rolling processes for the auto-
mated control of rolling passes is a common
feature in modern, high-speed hot and cold roll-
ing operations. An essential feature is the cor-
rect description of material flow stresses that
determine the stress-strain state of the material
in the roll gap. This, in turn, affects all decisive
process parameters, such as roll force, torque,
adiabatic heating, friction, and so on; for exam-
ple, strip temperature is a result of the entire
thermomechanical processing history. Thus,
correct information on material strength under
various forming situations is essential, and
errors tend to accumulate during the process
simulation of several consecutive passes. Since
the value of flow stress essentially represents an
integral value over a number of intrinsic mate-
rial properties, it is a key parameter connecting
plastomechanical, thermal, and material mod-
els, requiring full coupling.
Flow stress is classically determined in basic

material tests, such as uniaxial compression. As
an example, Fig. 6 shows a set of measured
flow stress curves for hot compression testing
of AA 3104 at different temperatures and strain
rates. This testing method has proven to be ade-
quate since it allows homogeneous deformation
if lubrication fully reduces friction between the
workpiece and tools. Under such conditions of
constant and homogeneous strain rates and tem-
peratures, a constitutive model can be derived
by relating flow stress to nominal compression
conditions. The homogeneous temperature rise
in the sample due to adiabatic heating can be
corrected by iterative procedures (Ref 13). Met-
allurgical analysis of the deformed samples
reveals homogeneous microstructures, and thus,
recrystallization kinetics can be quantified and
empirical constitutive models can be adjusted
accurately.
In the absence of dynamic recrystallization,

the flow stress of aluminum alloys reaches a
steady-state value at elevated temperatures due

to concurrent work hardening and dynamic
recovery. However, at combinations of high
strain rates and low temperatures, flow stress
does not saturate within the strain range of
upsetting. For this reason, a generalized Voce
equation, as proposed by Tomé et al. (Ref 18),
is most suitable for aluminum alloys:

s ¼ s0ðZÞ þ ðs1ðZÞ þ�1ðZÞ� eÞ�
1� exp

��0ðZÞ� e
s1ðZÞ

� �� �
with

Z ¼ _e � exp Q

R �TD

� �
ðEq 1Þ

where Z is the Zener-Hollomon parameter;
s0 and (s0+s1) symbolize the flow stress at
the onset of straining and at the onset of con-
stant ds/de, respectively; Y0 and Y1 are the
corresponding strain-hardening coefficients; Q
is the activation energy; R is the universal gas
constant; and TD is temperature. Equation 1 can
be used over the whole range of industrial hot
and cold forming conditions defined by different
values of the Zener-Hollomon parameter Z. The
generalized Voce law allows describing a satura-
tion of flow stress at hot forming conditions as
well as a steady work hardening with strain,
especially at lower temperatures, as it occurs
for magnesium-containing alloys. Also, a depen-
dence of the Voce parameters on alloy composi-
tion can be formulated, which allows
interpolating such data for different alloys.
For many materials, close-to-full sliding con-

ditions can be achieved in uniaxial compression

(Ref 19) by applying suitable lubrication on
so-called Rastegaev specimens (cylindrical
specimen with a defined groove milled into the
face of the cylinder). However, this is not always
the case for aluminum alloys at temperatures
above 300 �C. Figure 7(a) shows the microstruc-
ture of a Rastegaev sample of AA3104 after
inhomogeneous deformation due to severe
surface friction. Strong gradients in static recrys-
tallization are clearly visible, indicating an inho-
mogeneous state of stored energy immediately
after deformation.
Sticking of the surface of aluminum alloy

samples to the tool cannot always be prevented.
However, when friction is known, such inhomo-
geneous tests can be of some advantage. With-
out any lubrication, complete sticking prevails
that can be simulated accordingly (Fig. 7b).
The quality of the prediction can be assessed
from the barreling of the compressed specimen
and also from the pattern of recrystallization
(Fig. 7a); both agree well with the strain distri-
bution determined by finite-element (FEM)
simulation of the compression deformation
under sticking conditions.
To derive suitable constitutive equations from

inhomogeneous compression tests, the develop-
ment of the local strain distribution during com-
pression is analyzed. This requires a recursive
method to provide the data, which again uses
the constitutive equation as input. Such inverse
computational methods have been successfully
applied to this problem (Ref 14). A multidimen-
sional optimization of FEM calculations is

Fig. 6 Variation of flow stress during hot compression testing of AA 3104
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performed in which the parameters of the
generalized Voce equation (Eq 1) are adjusted
by combinatory algorithms in an iterative proce-
dure until the FEM code provides accurate force-
displacement curves. Since the specimens are
axially symmetric and sticking friction prevails,
the evolving sample geometry is forced into a
predescribed barrel shape. Therefore, the solu-
tion space with respect to an optimal constitutive
equation is restricted, and reasonable conver-
gence of the solving routine is achieved.
After hot deformation and/or during a

subsequent annealing treatment, the material
undergoes recovery due to annihilation of dislo-
cations; thus, strength (s) decreases with time
(t). Figure 8(a) shows the effect of recovery on
the relative yield strength (R*) during annealing
of a cold-rolled sheet of alloy AA 5182. In a log-
arithmic plot, a linear behavior can be observed,
and recovery can be modeled on an empirical
level by the following normalized form:

R
 ¼ sðt; T Þ
s0

¼ 1� a � lnð1þ b � tÞ with

t ¼
ð
t

dt � exp �QRV

RT

� �
ðEq 2Þ

where R is the universal gas constant, T is tem-
perature, QRV is the activation energy for recov-
ery, and a and b are alloy-dependent parameters.
For simulation of recrystallization in terms of

progress of recrystallized volume X with time t,
a standard Avrami-type expression may be used:

XðtÞ ¼ 1� exp �0:693 � t

t0:5

� �n� �
with

t0:5 ¼ a �Zb � exp QRX

RT

� �
ðEq 3Þ

where n, a, and b are alloy-dependent para-
meters and QRX is the apparent activation
energy for recrystallization. As an example,
Fig. 8(b) shows the softening behavior of
cold-rolled AA 5182 at three different annealing
temperatures. Evidently, Eq 3 gives a reason-
able description of the progress of recrystalliza-
tion and the resultant decrease in yield strength.
(See the section “Simulation of Recovery and
Recrystallization” that follows.)
Figure 9 shows an example of the integration

of materials models into a full process-simula-
tion environment. The temperature profile in a
hot rolling line, consisting of a breakdown and
three-stand tandem mill, has been simulated
(Fig. 9a) using the coupled models RoseRoll,
StrucSim, 4IVM, RoseTem, and RoseStat
(Ref 17). The results of such integrated simula-
tion models can be used for a quantitative
description of the dislocation densities (Fig. 9b)
and recrystallization kinetics and the resulting
microstructure evolution as a function of pro-
cess conditions, such as rolling temperature
and velocity (Ref 12–17). Figure 10 illustrates
the impact of interstand recrystallization on the
texture of the hot strip for the high-magnesium
alloy AA 5182. Here, the variations of cube

Fig. 8 Progress of (a) recovery and (b) recrystallization in AA 5182 for different annealing temperatures. Softening
behavior by recrystallization is observed as a change in the 0.2% proof strength (Rp0.2).

Fig. 7 (a) Microstructure of a cylindrical sample (¼ section) inhomogeneously hot compressed at 1 s�1 at 350 �C,
average strain of 0.8, partially recrystallized (after 10 s). (b) Corresponding finite-element method

simulation. Local strain variation: blue = 0 (upper left); red = 1.54 (predominantly lower right)
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texture intensity f(g)cube and resulting ani-
sotropy (in terms of the percentage of 0�/90�
earing, Z) in the hot strip are plotted versus
the (computed) recrystallized volume fraction
X(t) at the entry of the second stand (Ref 12).
Despite the constant exit temperatures yielding
fully recrystallized microstructures with similar
grain sizes, systematic variations in texture
occur that evidently have a strong impact on
the earing behavior. In fast-recrystallizing
high-magnesium alloys, a relatively low cube
intensity usually develops (Fig. 4). For slow-
recrystallizing alloys, tandem lines usually pro-
duce a distinct cube recrystallization texture
together with a small grain size (Fig. 2c, 3c).
Microchemistry Simulation. Through-pro-

cess microstructure simulation requires informa-
tion about the state of the material with regard to
its local chemistry — that is, variation in solute
level and precipitation — which is subsumed
under the term microchemistry. Today, a broad
thermodynamic database is available to compute
phase diagrams based on the well-known CAL-
PHAD approach (Calculation of Phase Dia-
grams). For aluminum alloys, many of the

required data have been determined in the Euro-
pean research program COST 507 (Ref 20). One
of the most sophisticated databases available —
including the 16 most important alloy elements
of wrought aluminum alloys (boron, calcium,
chromium, copper, iron, lanthanum, magnesium,
manganese, nickel, scandium, silicon, strontium,
titanium, vanadium, zinc, zirconium) and capable
of handling quaternary phases such as a-Al15(Fe,
Mn)3Si — is distributed commercially by Ther-
moTech Ltd. of the United Kingdom (Ref 21).
In this article the evolution in microchemis-

try during thermomechanical processing is cal-
culated with a newly developed precipitation
model termed ClaNG, which is based on the
classical Becker-Döring theory for nucleation
and growth of precipitates (Ref 22). A numeri-
cal implementation of this theory has the
advantage that full size distributions can be
tackled. The main improvement of the ClaNG
model over former approaches is the introduc-
tion of multicomponent thermodynamics into a
kinetics model through the programming library
ChemApp, provided by GTT-Technologies of
Germany. Chemical driving forces and

equilibrium compositions of phases are derived
by calls of ChemApp using a subset of
the ThermoTech aluminum database. The only
parameters that are known only imprecisely
are the interfacial energies. Hence, interfacial
energies of the relevant phases were determined
by inverse modeling of a set of simple model
alloys with systematic variation of the composi-
tion (AlMn, AlMnFe, AlMnFeSi, . . .). Finally,
the equations for single nuclei are combined
through the continuity equation, and therefore,
entire size distributions of multicomponent
and multiphase systems can be modeled.
To determine the microchemistry evolution

along a given process chain, the resulting
time/temperature profile is input into the model,
for example, the time/temperature history of
homogenization and hot rolling plus subsequent
coil cooling and, if necessary, further interme-
diate or final annealing. If deformation pro-
cesses are involved (e.g., upon hot or cold
rolling), the dislocation density is derived from
appropriate evolution equations, as described in
Ref 17. Dislocations can both act as nucleation
sites for particles enhancing the precipitation
process and speed up the diffusion by pipe dif-
fusion along the dislocation cores. A more
detailed description of the ClaNG model,
including the part describing the transformation
of nonstochiometric phases with regard to their
composition, can be found in Refs 23 to 25.
Simulation of Rolling Textures. In the liter-

ature, there are numerous attempts to model the
texture evolution accompanying rolling with
the help of Taylor-type deformation models
(Ref 26, 27). In such approaches, the individual
crystallites are assumed to deform by slip on a
number of crystallographic slip systems so as
to accommodate the prescribed macroscopic
strain rate Dij. With a view to a coupled
through-process modeling, the strain states in
the various sheet layers can be deduced from
plastomechanical simulations that incorporate
the effects of temperature and strain gradients
on hot rolling results. Alternatively, for tandem
hot rolling and especially for cold rolling of
thin strip, the deformation is usually approxi-
mated by a plane-strain state, where D11 =
�D33, and all other strain-rate components are
assumed to be zero. However, although the
Taylor-type approaches are capable of simulat-
ing the main features of typical rolling textures,
they all fail in reproducing the real texture evo-
lution in any detail. The main reason for this
poor texture simulation is ascribed to the fact
that the classical one-point models do not take
grain-to-grain interaction into consideration.
Thus, two grains with the same orientation will
behave absolutely identically, whereas, in real-
ity, the two grains will deform differently, lead-
ing to different reorientations and thereby
weaker rolling textures. More advanced multi-
grain or N-point formulations, such as the
LAMEL model (Ref 28) or the grain interaction
(GIA) model (Ref 29), indeed yield more realis-
tic rolling textures, in particular with a signifi-
cantly reduced rate of texture evolution. (For a

Fig. 9 Simulation of (a) temperature and (b) dislocation density in a breakdown and three-stand tandem mill hot
rolling line, using integrated simulation models RoseRoll, StrucSim, 4IVM, RoseTem, and RoseStat (for

details see Ref 17)
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quantitative assessment of various texture mod-
els, see Ref 30).
Throughout this article, the latter approach for

simulating rolling textures is used. The GIA
model considers the deformation of an aggregate
of eight brick-shaped grains embedded in a
homogeneous surrounding. While the deforma-
tion of the whole aggregate is fully prescribed,
a compatible relaxation of the deformation of
the individual grains within the aggregate is pos-
sible. The resulting misfits are accommodated by
a simplified arrangement of geometrically neces-
sary dislocations (GND). The amount of relaxa-
tion of the shears, the slip rates, and, ultimately,
the grain reorientation is derived from a minimi-
zation of the total plastic work due to slip of the
eight grains plus the energy introduced by the
GNDs. In combination with two recent refine-
ments — random perturbations of the overall
plane-strain state and consideration of material
parameters (work hardening and grain size) —
the GIA model has proven to be able to simulate
the rolling textures of aluminum alloys with high
accuracy (Ref 31).
Simulation of Recovery and Recrystalliza-

tion. To calculate the softening behavior
between the various passes of multipass hot
rolling and during coil cooling, the analytical
softening model AlSoft is used (Ref 32–35).
This model is based on a two-parameter descrip-
tion of the microstructure of the as-deformed or
recovered state, where the microstructure is
composed of subgrains with average size d
and dislocations in the subgrain interior with
density ri. After hot deformation, there is a sim-
ple phenomenological relationship of subgrain
size, d, with deformation temperature, TD, and
strain rate, _e (Ref 32):

1

d
¼ RTD

A

In

Zd2

B


� �
with the Zener-Hollomon parameter

Z ¼ _e � exp Q

RTD

� � (Eq 4)

where R is the universal gas constant, A* and
B* are alloy-dependent constants, and Q is the
activation energy. Subgrain size d and disloca-
tion density ri are linked through the principle
of similitude,

ffiffiffiffiffi
ri
p ¼ C=d, where C is a constant

of the order of 2.
Recovery kinetics is assumed to be controlled

by solute drag, where the rate-controlling
mechanism is given by the thermal activation
of the alloy elements in solid solution. During
recovery, the increase in subgrain size (d) and
decrease in dislocation density (r) as a function
of time (t) and temperature (T) is described by
the following differential equations:

rt ¼� vDbArBrr
3=2
i � exp �URV

RT

� �
� 2

� sinh Armb4
ffiffiffiffiffi
r1
p

kT

� �
with Ar ¼ orc

�2=3
ss

(Eq 5)

_d ¼ �vDbAdBd � exp �URV

RT

� �
� 2 � sinh Admb4

dkT

� �
with Ad ¼ odc

�2=3
ss

(Eq 6)

where nD is the Debye frequency, k is the Boltz-
mann constant, oi are constants of the order of
unity, and Bi are alloy-specific constants that
must be fitted to the actual experiments. The total
concentration of solutes, css, is derived from

summation of the solute concentration of the
individual alloy elements, weighted by their
activation energy for diffusion (Ref 35). URV is
an activation energy, which, in the case of solute
drag, equals that for diffusion of the solutes.
Here, the value of the slowest element in the
alloy, that is, manganese, was adopted, so that
URV = 200 kJ/mol. The recrystallization model
is an extension of the classical Johnson-Mehl-
Avrami-Kolmogorov approach, treating recrys-
tallization as a nucleation and growth process:

_X ¼ ð1�XðtÞÞ �NðtÞ � 4p � rðtÞ2 �GðtÞ (Eq 7)

where r(t) is the size and G(t) is the growth rate
of the recrystallization nuclei. N(t) is the den-
sity of nuclei per unit volume, which critically
depends on both the processing parameters
(strain, strain rate, deformation temperature)
and the microstructure of the material analyzed.
The derivation of the density of recrystalliza-
tion nuclei, N(t), as well as simulation of the
resulting recrystallization textures, has already
been discussed in detail (Ref 36, 37).
The size of the nuclei, r(t), is linked to their

growth rate, G(t), through:

_r ¼ GðtÞ (Eq 8)

where the latter can be expressed through the
well-know relation:

GðtÞ ¼ mðtÞ � ðPDðtÞ � pzÞ (Eq 9)

Here, m(t) is the mobility, which depends on
temperature with the following Arrhenius
relation:

mðtÞ ¼ m0

cSSkT
� exp �URX

RT

� �
(Eq 10)

where URX is the activation energy for migra-
tion of high-angle grain boundaries, pz is the
back-driving force due to finely dispersed parti-
cles (Zener drag), and pD is the driving force
for recrystallization due to dislocations and
subgrains (see the aforementioned):

PDðtÞ ¼ a2gSB
dðtÞ þ

1

2
mb2 � riðtÞ (Eq 11)

where m and b denote the shear modulus and
Burgers vector of aluminum, respectively;
a2 is a constant of the order of 3; and gSB
denotes the specific energy of subgrain bound-
aries. Note that the required microchemistry
data — including the particle density entering
into the Zener drag, pZ (Eq 9), as well as the
concentration of solids, css (Eq. 5, 6, 10) —
are providedby themicrochemistrymodelClaNG.
In addition to providing the microstructural
changes during recovery and recrystallization
in terms of changes in dislocation density and sub-
grain size, the model provides the flow stress, s,
recrystallized volume fraction, X(t), grain size,
DRX, and texture changes upon recrystallization.

Fig. 10 Intensity of the cube texture, f(g)cube, and resultant 0�/90�earing percentage, Z, of AA 5182 hot strip as a
function of the amount of interstand recrystallization after the first hot rolling pass
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It is seen that the recrystallization model is
governed by four differential equations (Eq.
5–8), which are solved for a given cycle of time
(t) and temperature (T) by numerical routines
with an adaptive-step size control. For simula-
tion of isothermal annealing between two con-
secutive hot rolling passes, T is set to the
rolling temperature, while t increases up to the
total annealing time. For simulation of self-
annealing, T decreases from the coiling temper-
ature (Tcoil) of the hot strip down to ambient
temperature according to T(t) = Tcoil � _T � t,
where _T represents the cooling rate.
Polycrystal-Plasticity Modeling of Earing

Profiles. Simulation of texture-induced anisot-
ropy, such as earing during cup deep drawing,
is performed with a polycrystal-plasticity model
(Ref 11, 38) that is based on the visco-plastic
self-consistent (VPSC) scheme advanced by
Lebensohn and Tomé (Ref 39). To derive the
boundary conditions for the VPSC computa-
tions, the evolution of stresses and strains
operating during cup deep drawing were stud-
ied by FEM (Ref 38). These FEM simulations
have shown that plastic flow and therefore the
formation of ears and troughs is concentrated
in the flange of the blank under the blankholder.
In the flange, a plane-stress state prevails in that
the material is exposed to a tensile stress in the
radial direction (sr) and a compressive stress in
the tangential direction (st). The stress in the
through-thickness direction (sz) as well as the
off-diagonal shear stresses (srt) are almost zero.
This stress state generates a positive radial
strain rate (Dr) and a negative tangential strain
rate (Dt) while the through-thickness strain rate
(Dz) is not necessarily zero. Thus, making use
of a feature of the VPSC model that permits
enforcing mixed displacement/stress-boundary
conditions on the polycrystalline aggregate,
the following load case is imposed:

Dij ¼

 0 0

0 �1 0

0 0 


0
B@

1
CA � _e;

sij ¼
sr 
 


 
 


 
 sz ¼ 0

0
B@

1
CA ðEq 12Þ

The asterisks (*) indicate that the corresponding
values are not prescribed; _e is a scalar measure
of the strain rate (s�1). It is seen that the stress
components sr and sz are prescribed rather
than the corresponding strain-rate components
Dr and Dz. All simulations in this study were
performed with a nonzero radial stress of sr =
�0.25 �st (Ref 40). Because the stress values
are not yet known in the first time step, this is
accomplished iteratively within a few VPSC
steps until stable values for st and thereby sr

are achieved.
Equation 12 is expressed in the frame defined

by radial direction (r), tangential direction (t),
and through-thickness direction (z). This frame
is related to the standard rolling frame {RD,
TD, ND}through a rotation by angle a about

the normal direction z = ND. Thus, to derive
the earing tendency under a given angle a, the
strain in radial direction is determined for the
texture in this particular position of the blank.
For this purpose, the strain and stress tensors,
or alternatively, the sheet texture, must be
rotated by △a in steps of typically 5� about z.
The earing profile along the rim of a deep-drawn
cup is then given by the radial strain or, more
precisely, by the normalized strain-rate ratio
q = Dr / Dt as a function of a.
The absolute height of a deep-drawn cup is

controlled by the radii of initial blanks (rB)
and punch (rP) and, to a lesser extent, by sheet
thickness (t0) and the radius of the punch profile
(rP). As detailed in Ref 41, the exact cup height
profile, h(a), can be computed from the strain-
rate ratio (q) as a function of the in-plane angle
(a) from:

hðaÞ ¼ t0 þ ð1� p=4Þð2rpp þ t0Þ
þ rqþ1B � ðrP þ t0Þqþ1
ðq þ 1ÞðrP þ t0=2Þq (Eq 13)

Coupled Through-Process
Simulation of Microstructure and
Texture Evolution in AA 3104

Simulation of Recrystallization during Hot
Rolling of AA 3104 Hot Strip. In this section,
the recrystallization behavior of alloy AA 3104
during the interstand times in between two con-
secutive hot rolling passes is tracked with the
help of the combined microstructure models
described earlier. The changes in microchemis-
try along the thermomechanical process chain
— representing an essential input for the soften-
ing module AlSoft — were computed with the
microchemistry model ClaNG. Figure 11 shows
the time/temperature cycle during a typical
two-step homogenization practice of can body
stock plus subsequent hot rolling and coil cool-
ing. The ingot is heated to 600 �C, held for a
few hours, cooled to 500 �C, discharged after a
further 2 h, and then hot rolled. The entire hot
rolling (i.e., breakdown plus tandem rolling)
takes place in a few minutes, such that on the
time scale of Fig. 11, hot rolling is represented
by an almost vertical decrease in temperature to
the exit temperature (in this example, 320 �C).
Finally, the coiled hot strip slowly cools down
to ambient temperature. Furthermore, Fig. 11(a)
provides information on the solute level (css) of
the five most important alloying elements of
alloy AA 3104, that is, magnesium, manganese,
copper, silicon, and iron. This information is
required for the recovery and growth kinetics
equations of the softening model (Eq. 5, 6, 10).
Figure 11(b) shows the evolution of precipitated
phases, that is, size (radius) and volume fraction
of b-Al6(Mn,Fe) (dotted lines) and a-Al15(Mn,
Fe)3Si2 (solid lines) dispersoids, which retard
recrystallization through exerting a back-driving
force (Zener drag, pZ, see Eq 9).
It is seen that during heating of the supersat-

urated as-cast ingot, beginning at a temperature

of approximately 350 �C up to the homogeniza-
tion temperature of 600 �C, b-Al6(Mn,Fe) dis-
persoids with sizes below 0.1 mm form. During
the soaking period, the b-particles coarsen, while
their volume fraction decreases slightly, pointing
at coarsening and partial redissolution of these
phases. The homogenized ingot is then cooled
down to the hot rolling temperature of approxi-
mately 500 �C. This is accompanied by further
precipitation along with growth of existing
b-particles, plus some constitutional changes
toward a-Al15(Mn,Fe)3Si2 particles (Ref 23).
Thus, as already alluded to earlier, the micro-
chemistry of AA 3104 in terms of solutes and
dispersoid phases can be fine-tuned by suitable
heat treatment conditions so as to control recrys-
tallization of the hot strip and thereby achieve
optimal final-gage properties.
The texture evolution during deformation is

simulated with the GIA model. Hot rolling at
elevated temperature is taken into account by
allowing the activation of additional nonoctahe-
dral slip systems of type {011}<011>
(Ref 42), as discussed in more detail elsewhere
(Ref 43) (t{111}/t{110} = 1/1.15). The kinetics
of recovery and recrystallization, as well as the
resulting textural changes, are modeled with the
softening tool AlSoft.
For the analysis of interstand recrystalliza-

tion, the temperature is assumed to stay con-
stant between two consecutive rolling passes
(isothermal annealing). As described previ-
ously, the driving force is derived from the
deformation conditions through the Zener-
Hollomon parameter, Z (Eq 4). Tandem hot
rolling commences at approximately 450 �C
with a strain rate of the order of 10 s�1, which
corresponds to a Zener-Hollomon parameter
Z � 1012 s�1. During subsequent passes, the
deformation temperature drops, while the strain
rate increases significantly. This leads to an
increase of the Zener-Hollomon parameter to
values of up to Z � 1016 s�1 at the fourth pass.
Figure 12 shows the progress of recrystalliza-

tion after the various tandem passes in terms of
the recrystallized volume fraction (X) as a func-
tion of time (t). After the first pass, the temper-
ature is quite high, such that recrystallization
would occur in approximately 25 s. However,
considering the high rolling velocities in indus-
trial tandem hot rolling, the times that the mate-
rial actually spends between the various rolling
stands are very short, at the most a few seconds.
Thus, the interstand time of 5 to 10 s between
first and second rolling pass only allows for
partial recrystallization, with volume fractions
X ranging from �5 to 40% (shaded in Fig. 12).
After the following rolling passes, the tempera-
tures are lower (i.e., higher Z), such that recrys-
tallization kinetics are slowed, although the
driving force increases slightly (Eq 11). Further-
more, the interstand times decrease appreciably
because of the increase in rolling velocity.
Hence, after the later rolling passes, interstand
recrystallization is much less likely to occur than
after the first pass. This result is in accord with
earlier thermomechanical simulations that have
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shown that in modern high-speed tandem mills,
AA 3104 can stock does not usually recrystallize.
Evidently, prediction of the exact amount of

interstand recrystallization is critically depen-
dent on the exact details of the softening model.
Hence, in the present investigation, the impact
of interstand recrystallization on the texture of
the recrystallized hot strip is examined in a
parametric study. For that purpose, the rolling

texture evolution is simulated in four idealized
50% passes (e = 0.7) up to a total strain of
�93% (e = 2.8). The aforementioned softening
simulations have shown that in high-speed tan-
dem rolling of AA 3104, only incomplete
recrystallization may occur (Fig. 12). Therefore,
in the parametric study, partial recrystallization
— with recrystallized volume fractions X rang-
ing from 0 to 50% — is included after the first

rolling pass. After hot rolling is complete, the
hot strip is assumed to recrystallize completely
(this point is qualified in a later section).
In a first trial, hot rolling is assumed to take

place without recrystallization between the var-
ious rolling passes. Thus, the rolling texture
evolution was simulated up to a total strain of
�93% (e = 2.8) prior to complete recrystalliza-
tion. Starting from the weak cube recrystalliza-
tion texture of the transfer slab (Fig. 13a), hot
rolling without interstand recrystallization gives
rise to the formation of a well-defined rolling
texture (Fig. 13b). During subsequent recrystal-
lization, a pronounced cube texture with a max-
imum intensity of �24 develops (Fig. 13c),
which is notably sharper than the experimental
hot band texture commonly observed after
self-annealing (e.g., Fig. 3c). It may be noted
in this context that the cube texture of the par-
tially recrystallized hot strip obtained at a lower
coiling temperature (Fig. 3b) is actually sharper
than that of the fully recrystallized hot strip
shown in Fig. 3(c). Since the lower coiling
temperature is controlled by a lower rolling
temperature, it is likely that this material has
experienced less or no interstand recrystalliza-
tion. Thus, the increase in texture sharpness of
the partially recrystallized hot strip may well be
linked to the lower level of interstand recrystal-
lization in this material.
Figure 14(a) shows the simulation results

obtained under the assumption of 20% inter-
stand recrystallization after the first tandem
rolling pass. The first pass is accompanied by
formation of a weak rolling texture, yet the
strain (50%) is too low to give rise to a pro-
nounced texture. Correspondingly, there is still
a significant amount of cube orientation left
after rolling. During (partial) recrystallization,
the cube texture sharpens further, which is
attributed to its favorable nucleation conditions
at this stage. During subsequent rolling passes,

Fig. 12 Simulation of the progress of recrystallization
in AA 3104 after the various passes of a four-

stand tandem mill

Fig. 11 Results of the ClaNG microchemistry simulation of the evolution of (a) concentration of solutes (css) and
(b) volume (V) and size (r) of precipitating dispersoids during the thermomechanical processing of AA

3104 hot strip
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no further recrystallization is assumed to occur.
Nonetheless, driving forces and texture sharp-
ness accumulated upon the later rolling passes

are weaker because of the softening and partial
recrystallization after pass 1. Hence, the texture
sharpness of the recrystallized hot strip dis-
played in Fig. 14(a) is weaker than that
simulated without interstand recrystallization
(Fig. 13c). Note that this texture is in very good
agreement with the experimental hot band tex-
ture obtained after self-annealing (Fig. 3c).
As an extreme case, complete interstand

recrystallization (X = 100%) is assumed to
occur after each rolling pass. Here, the alternat-
ing cycles of deformation and recrystallization
counteract the accumulation of large driving
forces and the formation of a well-defined roll-
ing texture. Hence, in comparison to the hot
band texture simulated under the assumption
of no or limited interstand recrystallization,
the resulting hot strip recrystallization texture
(Fig. 14b) is notably weaker. Note that this tex-
ture compares quite well with the hot strip tex-
ture observed in the high-magnesium alloy AA

5182 (Fig. 4), where significant interstand
recrystallization is likely to occur.
Simulation of Recrystallization and Tex-

ture during Self-Annealing of AA 3104 Hot
Strip. So far, it has been assumed that complete
recrystallization takes place during self-anneal-
ing, which, obviously, is too simple an assump-
tion. The results shown in Fig. 2 and 3 imply
that coiling temperatures below 300 �C are too
low to enable full recrystallization of AA
3104. Figure 15 shows simulation results for
the progress of recrystallization for the three
hot strip exit temperatures of 260, 280, and
315 �C. A typical time/temperature history dur-
ing coil cooling is given in Fig. 9(a). Obviously,
the resulting recrystallization kinetics data agree
qualitatively well with the aforementioned find-
ings that coiling temperatures in excess of
300 �C are required to enable full recrystalliza-
tion during self-annealing of the coiled hot strip
(Fig. 2, 3).
The texture of an incompletely recrystallized

hot strip can be simulated by superimposing the
rolling texture orientations with the newly form-
ing recrystallization texture components, with a
ratio according to the recrystallized fraction X.
Following the aforementioned recrystallization
kinetics simulations (Fig. 15), at hot strip exit
temperatures of 260 and 280 �C, recrystalliza-
tion should proceed by approximately 10 and
70%, respectively; Fig. 16 displays the
simulated textures obtained for these two cases.
Both textures comprise mixed rolling and
recrystallization textures, which are qualita-
tively similar to the experimental hot strip tex-
tures obtained with the corresponding coiling
exit temperatures (Fig. 3a, b). However, the
ratio of rolling and recrystallization texture
components, including the exact texture intensi-
ties, is not matched that well. This again points
at the high sensitivity of through-process simu-
lations on the precise prediction of recrystalli-
zation and especially recrystallization kinetics.

Fig. 13 Simulation of the texture during hot rolling
and subsequent self-annealing without

interpass recrystallization (orientation distribution
function j2 = 0� sections, intensity levels 1 - 2 - 4 - 7 -
10 - 15). (a) As-received plate (transfer gage). (b) Four
passes, no interstand recrystallization. (c) Four passes,
no interstand recrystallization

Fig. 14 Simulation of the texture during hot rolling
and subsequent self-annealing with (a) 20%

interpass recrystallization after the first pass and (b)
complete interpass recrystallization after every pass
(orientation distribution function j2 = 0� sections,
intensity levels 1 - 2 - 4 - 7 - 10 - 15)

Fig. 15 Simulation of the progress of recrystallization
during coil cooling (self-annealing) of AA

3104 hot strip produced with different exit temperatures
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Simulation of Texture and Resulting Ear-
ing Profiles during Cold Rolling of AA 3104
Strip. As mentioned previously, upon cold roll-
ing of a hot strip with a cube recrystallization tex-
ture, there will be a transition from 0�/90� toward
45� earing. This behavior is traced by simulating
the texture evolution accompanying cold rolling
with the GIA model; the simulated rolling tex-
tures are then used as an input for the subsequent
polycrystal-plasticity earing simulations. Three
test cases are selected on the basis of showing
distinctively different hot strip textures:

� Fully recrystallized hot strip obtained without
interstand recrystallization with a too-sharp
cube recrystallization texture (Fig. 13c)

� Fully recrystallized hot strip with 20% inter-
stand recrystallization with a regular-strength
cube recrystallization texture (Fig. 14a)

� Incompletely (70%) recrystallized hot strip
without interstand recrystallization with a
mixed rolling/recrystallization texture
(Fig. 16b).

The simulated hot strip textures are discretized
into sets of approximately 1000 individual orien-
tations. Then rolling is simulated with the GIA
model for strains (e) of 0.7, 1.4, 1.9, and 2.5,
corresponding to thickness reductions of 50, 75,
85, and 92%, respectively. Figure 17 shows an
example of the simulated rolling textures for
85% rolling of the hot strip with regular-strength
cube texture (Fig. 14a). Comparison with the
experimental texture given in Fig. 5(a) validates
the quality of rolling-texture simulations achiev-
able with the refined GIA model (Ref 31).
To simulate earing, the modeled rolling tex-

tures are entered into the polycrystal-plasticity
earing model. The evolution of the earing pro-
files modeled for the hot strip with limited
interstand recrystallization (20%) very much
resembles the behavior of standard can body
stock (Ref 3, 11, 15, 38), where, with increasing
level of cold rolling, 45� ears form at the
expense of the original 0�/90� ears (Fig. 18b).
At cold rolling reductions in excess of 75%
(e � 1.4), balanced earing profiles with six ears
form, which are well suited for the production
of beverage cans (compare with Fig. 5).
For the hot strip with no interstand recrystalli-

zation (0%), the overall evolution of earing is sim-
ilar to that obtained for the regular-strength hot
strip, yet the transition toward 45� earing is
delayed toward higher strains (Fig. 18a). In

consequence, at lower strains (up to strains, e, of
almost 2, or 85%), excessive 0/180� earsmay pre-
vail (Ref 11). At very high strains, earing is less
pronounced, such that higher strains may be toler-
able without ending up with too-high 45� earing.
In total, the range with balanced earing is nar-
rower than in the regular-strength material.
The non-fully recrystallized hot strip (labeled

70%) shows the opposite behavior. Here, the
mixed texture, consisting of cube recrystallization
texture plus the remaining rolling texture orienta-
tions, results in eightfold earing, with distinct 45�
ears already in the hot strip. Upon cold rolling,
the 45� ears intensify, leading to pronounced four-
fold 45� earing already after moderate strains (e�
1.4; Fig. 18c). Accordingly, the rangewith suitable
earingprofiles is shifted toward smaller reductions,
where the material strength is usually not
sufficient.

Summary and Conclusions

The development of a comprehensive through-
process model of microstructure and texture evo-
lution during the thermomechanical processing
of aluminum sheet products necessitates coupling
of models for simulating the evolution of micro-
structure, microchemistry, and crystallographic
texture during the various process steps involved.

Fig. 16 Texture of partially recrystallized hot strip
simulated under the assumption of different

amounts of partial recrystallization, X(t), during self-
annealing (orientation distribution function j2 =
0� sections, intensity levels 1 - 2 - 4 - 7 - 10 - 15). (a) X
(t) = 10%. (b) X(t) = 70%

Fig. 18 Evolution of earing profiles as a function of cold rolling strain simulated for three AA 3104 hot strips with
various initial (hot strip) textures (see text for details). (a) No interstand recrystallization (0%)/fully

recrystallized hot strip. (b) Partial interstand recrystallization (20% after first pass)/fully recrystallized hot strip. (c) No
interstand recrystallization/partially recrystallized hot strip (70%)

Fig. 17 Simulated cold rolling texture (e = 1.9) of hot strip with regular-strength cube texture (Fig. 14a). Compare
with experimental texture of Fig. 5(a).
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This article has focused on linking softeningmod-
els to simulate recovery and recrystallization to
deformation and microchemistry models. As an
example, the texture evolution during the produc-
tion of AA 3104 is simulated, starting from the as-
cast ingot to final-gage cold strip. The resulting
textures were then input into a polycrystal-plastic-
ity model to simulate the earing behavior of the
rolled strip as a function of comprehensive
consideration of the upstream thermomechanical
processing steps.
It appears that the coupled model approaches

are capable of reproducing the most important
effects regarding texture and related properties.
In particular, the impact of interstand recrystal-
lization during tandem hot rolling as well as
recrystallization during self-annealing on the
texture of the coiled hot strip and, in conse-
quence, on texture and earing properties at final
gage are well captured. This illustrates the
potential of simulations of texture and resulting
texture-related properties by coupling models
for rolling and recrystallization texture evolu-
tion. However, it must be noted that many
aspects of the present through-process simula-
tion are still rather crude. The individual mod-
els are not fully integrated, which requires
somewhat tedious, manual transfer of the data
between the various models. Furthermore, sim-
ulation of recovery and recrystallization kinet-
ics largely depends on the exact choice of the
various parameters of the softening model, such
that the predicted values of the recrystallized
volume fraction X(t) may be subject to quite
large errors. Despite this uncertainty, the afore
mentioned examples point at the prospect of
performing parametric studies or, more gener-
ally speaking, case or sensitivity studies of cer-
tain aspects of the process chain so as to
scrutinize the impact of the decisive steps of
the thermomechanical processing on the final
product properties.
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Modeling of Microstructure Evolution
during the Thermomechanical
Processing of Titanium Alloys
S.L. Semiatin, Air Force Research Laboratory
D.U. Furrer, Rolls-Royce Corporation

TITANIUM AND TITANIUM ALLOYS are
widely used for a variety of aerospace, chemi-
cal, marine, and other specialty applications
because of their high strength, low density,
good ductility, fatigue and corrosion resistance,
as well as other properties. Depending on the
application, a specific property (or combination
of properties) can be obtained through micro-
structural modification.
Microstructure evolution and control in tita-

nium alloys is heavily dependent on the allo-
tropic transformation from a hexagonal close-
packed crystal structure (denoted as alpha
phase) found at low temperatures to a body-
centered cubic crystal structure (denoted as beta
phase) at high temperatures. For pure titanium,
this transformation occurs at 882 �C. In many
titanium alloys, the beta phase is partially stabi-
lized at lower temperatures, and the equilibrium
volume fractions of alpha and beta vary with
temperature. The temperature at which a spe-
cific alloy becomes entirely beta (i.e., alpha +
beta ! beta) is called the beta transus. The
conditions used for hot working and heating/
heat treatment are often selected relative to
the beta-transus temperature.
There are a number of important classes of

titanium alloys whose designations reflect the
relative volume fraction of beta retained at
room temperature. These include beta and
near-beta alloys and near-alpha and alpha/beta
alloys (Ref 1, 2). Beta and near-beta alloys have
moderate-to-large amounts of beta-stabilizing
elements such as vanadium, molybdenum,
tungsten, niobium, chromium, and iron. The
beta transi of near-beta alloys are typically in
the range of 700 to 850 �C (Ref 1). Near-alpha
and alpha/beta alloys have large amounts of
alpha-stabilizing elements such as aluminum;
the beta transi of near-alpha and alpha/beta
alloys are usually of the order of 950 to
1050 �C (Ref 2).

Processing of Titanium Alloys

The commercial processing of titanium
alloys is most often based on an ingot-metal-
lurgy approach in which large ingots are melted
and refined using vacuum arc or cold hearth
techniques, converted to mill products such as
billet, plate, and sheet via a series of thermome-
chanical processing (TMP) steps, and fabricated
into finished components via closed-die
forging, superplastic forming, and so on
(Ref 3, 4). The TMP of ingots of alpha/beta
and near-alpha titanium alloys comprises a
large amount of hot work in the beta-phase
field, a small increment of hot work in the
alpha+beta field, recrystallization heat treat-
ment in the beta field, and secondary alpha
+beta hot working (Ref 5). The initial steps of
the process (beta and initial alpha+beta working
and beta recrystallization) are employed to
transform the ingot structure of relatively large
columnar beta grains into a structure of finer
(�0.5 to 1 mm) recrystallized equiaxed beta
grains. Secondary alpha+beta hot working and
post-hot-working alpha+beta annealing are then
used to spheroidize the colony-alpha micro-
structure developed during cooldown of par-
tially converted billet products following the
beta recrystallization heat treatment. The TMP
of ingots and billets of near-beta titanium alloys
usually comprises hot working and recrystalli-
zation heat treatment in the beta-phase field.
Regardless of alloy class, the manufacture of

finished components also typically includes a
final heat treatment. These heat treatments are
conducted in the alpha+beta or beta-phase field
and may be used to control the volume fraction
and morphology of the equiaxed alpha phase
(alpha/beta alloys), to develop a fully trans-
formed, colony-alpha microstructure (alpha/
beta alloys), or to control the volume fraction
of acicular alpha (near-beta alloys).

The modeling of microstructure evolution
during the TMP of titanium alloys has seen sig-
nificant advances during the last decade. Some
of the principal efforts in this area have focused
on the following:

� Recrystallization and grain growth phenom-
ena for titanium alloys consisting of single-
phase alpha or single-phase beta titanium

� Dynamic and static spheroidization of
colony alpha in alpha/beta titanium alloys
during TMP in the alpha+beta phase field

� Static and dynamic coarsening of equiaxed
alpha or colony alpha in alpha/beta alloys
during TMP in the alpha+beta phase field

� Evolution of primary, equiaxed alpha and
secondary (lamellar) alpha in alpha/beta tita-
nium alloys during cooling following heat
treatment in the alpha+beta phase field

� Precipitation of acicular/lamellar alpha in
alpha/beta and near-beta alloys following
beta solution treatment

The following discussion focuses on the
modeling of microstructure evolution during
TMP in the two-phase (alpha+beta) field for
alpha/beta and beta titanium alloys. A compan-
ion article in this Volume, “Modeling and
Simulation of Texture Evolution during the
Thermomechanical Processing of Titanium
Alloys,” treats recrystallization and grain-
growth phenomena in the single-phase alpha
or beta fields, inasmuch as such processes are
strongly influenced by the dependence of nucle-
ation and growth events on the local orientation
of individual grains as well as the misorienta-
tion across grain boundaries. As such, micro-
structure and texture evolution are coupled
and must be treated simultaneously during
modeling. The evolution of deformation and
transformation texture in alpha/beta titanium
alloys during TMP in the alpha+beta field is
also described in this latter article. The effect
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of microstructure and local texture on cavita-
tion in alpha/beta titanium alloys during alpha
+beta hot working is discussed in the article
“Modeling and Simulation of Cavitation during
Hot Working” in this Volume. Symbols used in
this article are listed in Table 1.

Dynamic and Static Spheroidization

The breakdown of the colony-alpha micro-
structure during alpha+beta TMP plays a
pivotal role in obtaining a uniform, fine,
equiaxed-alpha microstructure in forging bar
stock and billet, plate for hog-out, and other
alpha/beta titanium mill products (Fig. 1). In
the literature, the mechanism of this microstruc-
ture change has been ascribed to various

recrystallization-like and spheroidization phe-
nomena. Most of the research in this area has
focused on the workhorse alloy of the aero-
space titanium industry, Ti-6Al-4V.
A number of early observations (Ref 6, 7)

suggested that recrystallized alpha grains are
formed within the alpha lamellae during hot
working or post-hot-working annealing. Surface
tension requirements do not permit 90� angles
to exist between alpha/alpha boundaries (devel-
oped during recrystallization) and alpha-beta
interfaces, however. Thus, a driving force is
provided for the penetration of beta phase along
the alpha/alpha boundaries and subsequent
pinch-off/segmentation of alpha lamellae.
The research of Weiss et al. (Ref 8–10)

expanded upon the work by Margolin and Cohen
(Ref 6, 7) but did not invoke recrystallized alpha
grains as the source of alpha-plate pinch-off.
Rather, the main driving force was hypothesized
to be the formation of intense shear bands within
the alpha lamellae or the development of high-
angle boundaries within alpha lamellae, spaced
at periodic intervals along their length, due to
dynamic/static recovery (Fig. 2). If the strain is
large enough, shear bands may lead to fracture

and complete segmentation of an alpha lamella.
In the absence of fracture, the alpha/alpha inter-
faces formed by shear bands or internal high-
angle boundaries can give rise to surface-ten-
sion-driven penetration of the alpha plates by
beta phase, as postulated by Margolin and
Cohen. The rate of penetration by the beta phase
depends on diffusion kinetics and the ratio of the
interfacial energies of alpha/alpha boundaries
and the alpha/beta interface.
Recent work by Salishchev, Furuhara,

Stefansson, and their colleagues (Ref 12–15)
has shed further light on some of the early
observations. For example, Salishchev et al.
(Ref 12, 13) and Furuhara et al. (Ref 14) used
electron backscatter diffraction (EBSD) imag-
ing techniques to show that extended dynamic
recovery during hot working (so-called continu-
ous dynamic recrystallization) can give rise to
subboundaries within the alpha plates. The mis-
orientation across these boundaries increases
with increasing hot deformation; at large
strains, high-angle boundaries and a structure
resembling recrystallized equiaxed-alpha grains

Fig. 1 Microstructures developed in Ti-6Al-4V during
primary processing. (a) Optical and (inset)

scanning electron microscopy (SEM) backscattered
electron (BSE) micrographs of the colony-alpha
microstructure. (b) SEM BSE micrograph of the fine,
equiaxed-alpha microstructure. In SEM micrographs
taken via BSE imaging, the dark phase is alpha, and the
lighter phase is beta (or very fine transformed beta).

Table 1 List of symbols

a slip vector along close-packed direction in
hexagonal close-packed (hcp) crystal structure

b length of Burgers vector
C composition (atomic fraction)
CF composition factor (Eq 8)
c lattice parameter for hcp crystal structure
D diffusivity
da thickness of alpha platelet
d grain/particle size
fa volume fraction of alpha
G growth rate during phase transformation
Gs shear modulus
J mass flux
K strength coefficient
k rate constant in Johnson-Mehl-Avrami-Kolmogorov

(JMAK) equation (Eq 23)
kB Boltzmann’s constant
kLSW Lifshitz, Slyosov, and Wagner (LSW)

coarsening-rate constant
kMLSW LSW coarsening-rate constant modified for

volume-fraction effects
Lb length of lamellar branch
N nucleation rate during phase transformation
m strain-rate sensitivity of the flow stress
mg slope of alpha-beta interface groove
n strain-hardening exponent
na JMAK (Avrami) exponent
p grain-size exponent of the strain rate
Q activation energy
R radius of curvature, particle radius
ra radius of globular alpha particle
r activity coefficient
Rg gas constant
T absolute temperature
t time
VM molar volume
W boundary-groove interface shape, W(x, t)
w diameter of alpha platelet
X fraction transformed
Xs fraction spheroidized
x, y, z Cartesian coordinates
a alpha phase
b beta phase
G shear strain
_� shear strain rate
g surface energy (grain boundary, interface phase, etc.)
d groove angle
e; _e normal/principal strain, strain rate
f volume fraction
l particle-growth parameter (Eq 17 and 18)
s normal/principal stress
O atomic volume
Os supersaturation (Eq 19b)
t shear stress
tvd time for diffusional spheroidization via termination

migration

Fig. 2 Mechanisms of the spheroidization of alpha
lamellae. (a) Spheroidization driven by the

formation of subboundaries or shear bands within alpha
lamellae. Source: Ref 9. (b, c) Observation of shear bands
developed during hot deformation. Source: Ref 8, 11
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are formed. High temperatures and low strain
rates (�10�3 s�1) favor such continuous recrys-
tallization behavior. Furthermore, it has been
found that the size of the resulting alpha parti-
cles is of the same order of magnitude as the
original platelet thickness, thus suggesting that
beta phase may indeed penetrate along the
high-angle boundaries developed in the alpha
phase and result in complete segmentation of
the original lamellae.
Stefansson and Semiatin (Ref 15) investigated

static spheroidization behavior following hot
working. During relatively short times, spheroi-
dization of alpha platelets was found to be con-
trolled by the pinch-off mechanism suggested
by Margolin, Weiss, and their colleagues. At
longer times, spheroidization was controlled by
mass transport from the ends to the center of
residual alpha platelets, thereby resulting in
alpha particles whose diameter was substantially
greater than the initial alpha platelet thickness.
Dynamic and static spheroidization observa-

tions for Ti-6Al-4V have provided the basis
for mechanism-based models based on flow
localization/shear banding/shear fracture, the
pinch-off of alpha plates by beta, and spheroidi-
zation controlled by termination migration.
Each of these is discussed as follows.
Flow Localization Analysis. Observations

by Weiss et al. (Ref 8) and Stefansson and
Semiatin (Ref 11) have revealed that the spher-
oidization of colony alpha can occur by the
localization of strain into intense shear bands
within alpha lamellae (Fig. 2b, c) that eventu-
ally leads to fracture and segmentation. The
local shearing also produces relative local rota-
tions of adjacent elements of a given alpha
platelet, thereby providing a means of rando-
mizing the orientation of equiaxed alpha parti-
cles and preventing microtexture, that is,
groups of alpha particles derived from a given
prior colony of alpha plates, each of which
has a similar orientation.
The development of shear bands appears to be

driven by the difficulty of accommodating defor-
mation uniformly within hexagonal close-packed
(hcp) titanium due to its limited number of slip
systems and the fact that the deformation resis-
tance varies greatly among the possible slip sys-
tems. In particular, the critical resolved shear
stress is relatively low for basal <a> and prism
<a> systems but considerably higher for the
pyramidal<c+a> systems that must be activated
to accommodate compression or extension along
the c-axis of hcp crystal structures at hot working
temperatures (Ref 16). Furthermore, the presence
of beta phase between adjacent lamellae intro-
duces a further anisotropy in slip behavior, inas-
much as only one of the three <a> directions in
the alpha phase is co-linear with a <111> slip
direction in the beta phase (Ref 10). Hence, one
of alpha-phase <a> slip directions tends to be
considerably softer than the other two at both
hot and cold working temperatures (Ref 17, 18).
A simple analysis can be used to estimate the

effect of nonuniformity in thickness along an
alpha plate on the shear localization rate.

Although each alpha plate is surrounded by a
layer of considerably softer beta, useful qualita-
tive insight can be obtained by focusing solely
on the deformation of alpha. The simplest case
comprises simple shear along one slip system in
a single alpha lamella. It is assumed that strain
localization arises from regions in which the
alpha plate is locally thinner than the rest. By
denoting the thickness of the nominally uniform
and thinner (defect) regions as tu and td, respec-
tively, equilibrium considerations (Ref 19)
yield the following expression for a material
whose constitutive behavior (t ¼ tð�; _�Þ, in
which t denotes shear stress as a function of
shear strain, G, and shear strain rate, _�) is char-
acterized by a power-law strain-hardening and
strain-rate hardening:

K�n
u
_�m
u tu ¼ K�n

d
_�m
d td (Eq 1)

Here, K denotes the strength coefficient, n and
m are the strain-hardening exponent and
strain-rate sensitivity, and the subscripts “u”
and “d” refer to the uniform and defect regions,
respectively. Rewriting _� as dG/dt, rearrange-
ment of Eq 1 provides an expression relating
the increments of shear strain in the uniform
and defect regions, that is, dGu and dGd,
respectively:

d�d ¼ d�uðtu�n
u=td�

n
d Þ1=m (Eq 2)

Equation 2 can be solved numerically to
relate Gu and Gd as a function of n and m and
the magnitude of the thickness defect. Such
solutions reveal that large-thickness nonunifor-
mity (small values of td/tu), low values of m,
and low (or negative) values of n increase the
kinetics of flow localization. An example calcu-
lation assuming typical values for the thickness
inhomogeneity and material coefficients (i.e., a
10% thickness defect (td/tu = 0.90), m = 0.15,
and n = 0) is shown in Fig. 3. The results indi-
cate a rapid, but not catastrophic, rate of flow
localization; that is, dGd/dGu is relatively large
but not infinite. This type of trend suggests that

localization is likely terminated once Gd

reaches a critical fracture strain.
Calculations such as that described in the previ-

ous paragraph may be useful for interpreting
dynamic spheroidization behavior at high strain
rates (of the order of 0.1 s�1 or greater), in which
flow softening (negative n) is enhanced by both
microstructural influences (Ref 16) and deforma-
tion heating. In these cases, spheroidization kinet-
ics have been found to depend very weakly on
temperature for a given preform microstructure
(Ref 20, 21). This behavior may be rationalized
qualitatively on the basis of the compensatory
effects of increases in both the thickness inhomo-
geneity (associated with decreasing average
platelet thickness) and the strain-rate sensitivity
with increasing temperature on localization kinet-
ics. Further research documenting the kinetics
of the localization process, including the effect
of local colony orientation and the orientation
of neighboring colonies on spheroidization
(Ref 22), is warranted. Detailed EBSD analysis
of the activated slip systems that are associated
with shear localization would also be beneficial.
In this regard, it appears likely that systemswhose
slip planes form a large angle with each other
(e.g., prism and basal planes) must both undergo
localization in order to segment alpha lamellae
into individual equiaxed particles.
Platelet Pinch-Off via Boundary Grooving.

The penetration of beta phase along the bound-
aries formed within alpha platelets (or vice
versa) can be analyzed using the classic approach
for grain-boundary grooving developed originally
by Mullins (Ref 23, 24). In the original work,
groovingwas assumed to be controlled by volume
diffusion, surface diffusion, or evaporation/con-
densation (as for a boundary meeting a free sur-
face). The analysis is similar for all three cases.
Thus, attention is focused here on the situation
of most interest: the volume-diffusion-controlled
grooving/penetration of alpha platelets by beta.
Grooving is initiated by atomic-scale pro-

cesses near the region of intersection of the
alpha-alpha and alpha-beta boundaries. For the
semi-infinite, two-dimensional case shown in
Fig. 4, these processes establish a groove angle,
d, that satisfies the equilibrium equation for the
surface tensions associated with the two differ-
ent interfaces (Ref 25):

2gab sin d ¼ gaa (Eq 3)

Fig. 3 Predictions of a flow localization calculation for
shear banding/shear fracture. The arrows

indicate the strain in the nominally uniform region at
which a hypothetical fracture strain is reached in the
defect region.

Fig. 4 Schematic illustration of the geometry during
boundary grooving. Source: Ref 23, 24
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in which gab and gaa denote the surface energy
of the alpha-beta interface and the alpha-alpha
boundary within the alpha lamella. The devel-
opment of the initial groove generates sharp
edges of high energy adjacent to it. These aspe-
rities flatten rapidly, leading to the diffusional
development of a broad convex shape for the
alpha-beta interface. The continued transport
of mass from the curved alpha-beta interface
to distant regions of lower curvature upsets
the equilibrium associated with the groove
angle, d, and thereby drives the groove deeper.
For a platelet of finite thickness, the mass trans-
port continues until the groove has completely
segmented the plate.
The Mullins grooving analysis (Ref 23, 24)

determines the solute concentration field that
satisfies the steady-state diffusion (Laplace’s)
equation subject to appropriate boundary and
initial conditions. For the case in which the
platelet and matrix phases are both terminal
solid solutions, the latter relations comprise
the classical Gibbs-Thomson equation, the
equilibrium equation (Eq 3 reformatted in terms
of the groove slope), and the initial condition
(an initially flat interface). Hence, the complete
set of equations is as follows:

r2Cbðx; y; tÞ ¼ 0 (Eq 4a)

CbðRÞ
CbðR ¼ 1Þ ¼ 1þ gab�

kBT Rðx; tÞ (Eq 4b)

dWð0; tÞ
dx

¼ mg ¼ tan � (Eq 4c)

Wðx; t ¼ 0Þ ¼ 0 (Eq 4d)

In these expressions, Cb(R) and Cb(R = 1)
denote the concentration of the rate-limiting
solute in the matrix adjacent to a curved surface
of radius R and a flat surface, respectively; O is
the atomic volume; kB is the Boltzmann’s con-
stant; T is the absolute temperature; W(x, t) is
the interface shape as a function of the x-coor-
dinate and time, t (Fig. 4); and mg is the slope
of the groove at x = 0.
The boundary-grooving analysis of Mullins

reveals that the interface profile W(x, t) retains
a fixed shape in normalized coordinates and
that the groove deepens as the cube root of
time. The normalization constant is (At)1/3, in
which A is defined as:

A ¼ Cbgab�
2Db

kBT
¼ CbgabVMDb

RgT
(Eq 5)

Here, Db is the diffusivity of the solute through
the matrix (beta) phase, VM is the molar volume
of the matrix, and Rg is the gas constant. The
concentration Cb is defined in terms of atoms
per unit volume or as an atomic fraction in the
first and second expressions, respectively,
for A. The time for the groove to move a dis-
tance d (relative to the plane y = 0, Fig. 4) is
then given by (Ref 24):

d ¼ 0:86 mgðAtÞ1=3 (Eq 6)

For an alpha platelet of thickness da, the time
to complete the boundary-grooving process is
that corresponding to d = da/2, inasmuch as
beta-phase penetration would proceed inward
from both alpha-beta interfaces. The time for
pinch-off (tp) is therefore:

tp ¼ 0:2d3a
A m3

g

(Eq 7)

Strictly speaking, the expressions for A
(Eq 5) and hence tp (Eq 7) are valid only when
both the matrix phase and the second phase are
terminal solid solutions. For Ti-6Al-4V, neither
the alpha nor the beta phase is a terminal solid
solution. In this case, two corrections are
needed; one is required for the Gibbs-Thomson
equation (Eq 4b) and the other to account for
the actual amount of solute that must be trans-
ported to deepen the groove. The two correc-
tions are (1) {(1 � Cb) /[(Ca � Cb)(1 + @
ln r/@ ln Cb)]}, in which the second paren-
thetical term in the denominator is a thermody-
namic factor (r � activity coefficient of the
solute in the beta phase), and (2) (Ca � Cb)
(Ref 26). In both terms, Ca denotes the concen-
tration of the rate-limiting solute in the alpha
phase. The term Cb in Eq 4(b) and 5 is thus
replaced by the quotient of these two terms
(Ref 26):

Composition factor; CF ¼ Cbð1� CbÞ
ðCa � CbÞ2½1þ @ ln r=@ lnCb�

(Eq 8)

Corrections such as that given in Eq 8 are par-
ticularly important for alloys such as Ti-6Al-
4V in which there is only a small composition
difference, Cb � Ca.
The applicability of the Mullins analysis for

the pinch-off of alpha platelets can be
assessed using the static heat treatment obser-
vations of Stefansson and Semiatin (Ref 15).
In this work, it was found that boundary
splitting was completed in �14 h at 900 �C
and �1 h at 955 �C. At both temperatures,
the slope mg (tan d) was measured as �0.35.
Input data at the lower and higher tempera-
tures comprise the values of the composition
factor (30.6, 61.3) (Ref 27), diffusivity of the
rate-limiting solute (vanadium) (0.025, 0.05
mm2/s) (Ref 28), and the alpha-platelet thick-
nesses (�1, 2 mm) (Ref 15). The molar vol-
ume (10, 440 mm3) and alpha-beta surface
energy (0.4 J/m2) are taken to be the same at
both temperatures (Ref 27). Applying Eq 7,
the predicted time (1 h) is in excellent agree-
ment with the observation for 955 �C, but
the prediction for 900 �C (32 h) is approxi-
mately twice that observed. The difference
between measured and predicted times for
heat treatment at 900 �C may be partially
due to dislocation substructure in the beta
matrix retained from prior hot working and a

concomitant enhancement in kinetics due to
pipe diffusion.
Pipe diffusion may also play a role in the

kinetics of the pinch-off of alpha platelets
during deformation. In such cases, the required
substructure within the alpha lamellae is devel-
oped at low-to-moderate strains, and grooving
takes place at larger strains. If concurrent hot
working enhances the diffusivity of solutes
through the beta matrix by a factor of the order
of 50, the times required for splitting alpha
lamellae would be of the order of 1 min at
955 �C or 20min at 900 �C. Thus, the breakdown
of the colony-alpha microstructure during defor-
mation at low strain rates (�10�2 s�1) may
indeed involve an element of boundary grooving.
Static Spheroidization via Termination

Migration. The complete breakdown of the
colony-alpha microstructure via shear localiza-
tion and/or boundary grooving usually requires
strains much in excess of those that can be
imposed in conventional production practices.
Moreover, the dislocation substructure that
drives boundary grooving during static heat
treatment tends to be eliminated in relatively
short times. At the completion of the pinch-off
process, sections of alpha lamellae having a
pancakelike shape remain. Subsequent (longer-
time) completion of spheroidization occurs via
termination migration, that is, the transfer of
solute from the periphery to the flat (plan) sur-
faces of each (assumed noninteracting) alpha
lamella, resulting in equiaxed alpha particles
whose diameters are substantially greater than
the original platelet thickness (Ref 15).
The time to complete static spheroidization

via termination migration can be estimated
using an approach originally developed by
Courtney and Malzahn Kampe (Ref 29) and
later extended by Semiatin et al. (Ref 30) for
the specific geometry involved here. The analy-
sis comprises a relatively simple application of
the one-dimensional form of Fick’s law to sol-
ute diffusion at the beginning and intermediate
points of the process:

Flux; J ¼ �Db
dCb

dx
(Eq 9)

in which Cb and Db are taken to be the concen-
tration and diffusivity of the rate-limiting
solute.
As for the boundary-grooving analysis, sol-

ute concentration gradients are described with
the aid of the Gibbs-Thompson relation, using
the two principal radii of curvature of the alpha
platelet. For example, in the beginning of the
diffusional process, during which the plan sur-
faces of remnant lamellae are still relatively
flat, the concentration difference between the
edges and plan surfaces is the following:

½CbðR ¼ 1Þ�ðgab�=kBT Þ
2

da
þ 1

w
2
þ da

4

 !
(Eq 10)

Here, da and w are the platelet thickness and
diameter, respectively, and the other symbols
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are as defined for Eq 4(b). Geometrical consid-
erations provide estimates of the diffusion dis-
tance (and hence concentration gradient) and
the area through which the solute flux passes.
The final result for the spheroidization time,

tvd, incorporating the composition-factor

correction (Eq 8) as shown previously is the
following:

tvd
t0
¼

x3 � 0:328x7=3 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:763x�4=3

q� �2
" #

4
2ð1þ xÞ

3ð0:5� 0:572x�1=3Þ þ
0:5x1=3 þ 0:665x2=3

3ð0:143 þ 0:934x�1=3Þ

" #

(Eq 11a)

in which:

x � ðw=daÞ þ 0:5 (Eq 11b)

t0 � d3aRgT=DbCFgabVM (Eq 11c)

The dependence tvd/t0 on x is shown in Fig. 5(a).
The validity of Eq 11 to quantify the spheroi-

dization behavior and persistence of remnant
lamellae was established by Semiatin et al.
(Ref 30) using observations for Ti-6Al-4V heat
treated at 955 �C (Fig. 5b, c). At this tempera-
ture, the shapes of the lamellae that existed
after the completion of boundary grooving
(time � 1 h) approximated the idealized pan-
cake geometry assumed in the diffusion model.
For Ti-6Al-4V, the diffusion of vanadium
through the beta matrix is rate-limiting in com-
parison to the diffusion of aluminum.
Model predictions of tvd/t0 and hence tvd for

spheroidization of the remnant lamellae are given
in Table 2. The predicted values for the spheroi-
dization time for the pancake-shape geometry
ranged from approximately 5 to 15 h for 5 of the
7 platelets; the other two lamellae were predicted
to require times of the order of 30 h. These values
of spheroidization time compare well with the
measured time of 12 to 14 hours to achieve
approximately 90 vol% of spheroidized micro-
structure, as defined by alpha particles with an
aspect ratio of less than 2:1 (Ref 15, 30). Thus,
it is not surprising that a small volume fraction
of modest-aspect-ratio, partially spheroidized
lamellae would remain after 14 h (Fig. 5c).
Phenomenological Models. Because of the

complexity of the various mechanisms that
control the dynamic and static spheroidization
of the colony-alpha microstructure, several
attempts have been made to fit phenomenologi-
cal models to measured data for the regime
of processing parameters most common in

production practice (Ref 31–34). For example,
the data of Stefansson et al. (Ref 31) for the
overall kinetics of static spheroidization follow-
ing deformation at 900 or 955 �C and a strain
rate of 0.1 s�1 (Fig. 6) have served as the basis
for a phenomenological fit for the fraction spher-
oidized, Xs, as a function of temperature, T, and
prestrain, e (Ref 32–34):

Xs ¼ ðaeþ fÞ log tþ beþ cT þ d (Eq 12)

in which a, b, c, d, and f are constants. Recent
additional measurements by Brooks et al.
(Ref 34) have shown that static spheroidization
kinetics are also dependent on the strain rate
during the predeformation.

Static and Dynamic Coarsening

The term coarsening refers to the increase in
the average size of a dispersion of second-phase
particles, lamellae, and so on during TMP. Also
known as Ostwald ripening, coarsening in
alpha/beta titanium alloys generally refers to
the increase in the average size of equiaxed-
alpha particles in the beta matrix or the increase
in the average thickness of the lamellae within
a colony-alpha microstructure. Such phenom-
ena may occur during static preheating/heat
treatment or during deformation in the alpha+
beta phase field. Several models have been
developed and applied to quantify the static
and dynamic coarsening of equiaxed alpha and
the static coarsening of colony alpha in alpha/
beta titanium alloys.
Static Coarsening of Equiaxed Alpha.

Static coarsening of a distribution of equiaxed
particles in a matrix phase comprises the
shrinkage (and elimination) of the smaller parti-
cles and the growth of the larger particles. The
process is driven by the reduction of the total
surface energy of the system. The rate of coars-
ening is frequently limited by diffusion of
solutes through the matrix or by a reaction at
matrix-particle interfaces.
Most approaches for describing coarsening

are based on the classic work of Lifshitz,
Slyosov, and Wagner (LSW) (Ref 26, 35, 36).
This early work assumed an infinitesimal

Fig. 5 Static spheroidization via termination
migration. (a) Plot of tvd/t

0 as a function of
x. (b, c) SEM backscattered micrographs of the
microstructure developed in Ti-6Al-4V samples
deformed at 955 �C to an effective strain of 1.1 and
water quenched after holding at temperature for (b) 1 h
or (c) 14 h. Source: Ref 30. The letters adjacent to the
unspheroidized alpha platelets in (b) correspond to the
data in Table 2. (Alpha, darker phase; beta, lighter phase)

Table 2 Geometry of remnant alpha
lamellae and model predictions of
globularization time at 955 �C

Lamella

identification

Lamella

diameter (w),
mm

Lamella

thickness (da),
mm h

tvd/
t0

tvd,
h

A 16.4 2.7 6.5 1.39 6.1
B 17.7 3.2 6.1 1.13 7.8
C 18.2 3.6 5.5 0.84 8.6
D 21.8 3.6 6.5 1.39 14.4
E 24.1 2.3 11.1 6.16 15.6
F 27.3 3.6 8.0 2.52 26.1
G 33.2 2.3 15.1 13.6 34.4

Source: Ref 30 Fig. 6 Statically spheroidized fraction of colony-alpha
microstructure as a function of time during heat

treatment at 955 �C following predeformation to various
strains at 955 �C. Source: Ref 31

526 / Modeling of Microstructures

LIVE GRAPH
Click here to view

LIVE GRAPH
Click here to view

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى

/knovel2/view_hotlink.jsp?hotlink_id=440158588
/knovel2/view_hotlink.jsp?hotlink_id=440158589


volume fraction of particles and matrix/particle
compositions that are both terminal solid
solutions. For coarsening controlled by bulk
diffusion of a solute through a matrix denoted
as beta, the classical LSW theory predicts the
following for the variation of the average radius
of the particles (�ra) as a function of time, t:

�r3a � �r3ao ¼
8DbgabCbVM

9RgT

� �
ðt� toÞ ¼ kLSWðt� toÞ

(Eq 13a)

in which Db denotes the diffusivity in the beta
matrix of the rate-limiting solute, gab is the
energy associated with particle-matrix (alpha-
beta) interfaces (in J/m2), Cb is the equilibrium
concentration in the beta matrix of the rate-lim-
iting solute (expressed as an atomic fraction),
VM is the molar volume of the particles, Rg is
the gas constant, T is the absolute temperature,
and the subscript “o” signifies quantities at an
initial (reference) time. When coarsening is
limited by a matrix-particle interface reaction,
the coarsening exponent (exponent of �ra in
Eq 13a) takes a value of 2 instead of 3.
The bracketed term in Eq 13(a) is known as
the LSW rate constant, kLSW:

kLSW �
8DbgabCbVM

9RgT
(Eq 13b)

The form of the rate constant, kMLSW, for a
finite volume fraction of particles in a system
comprising two concentrated alloy phases is
the following (Ref 37, 38):

kMLSW ¼
8fðfÞDbgabCbð1� CbÞVM

9RT ðCa � CbÞ2½1þ @ ln r=@ lnCb�
(Eq 14)

in which f(f) describes the functional depen-
dence of the rate constant on volume fraction
f, Ca is the equilibrium concentration in the
alpha particle of the rate-limiting solute (exp-
ressed as an atomic fraction), and r is the activity
coefficient of the rate-limiting solute in the beta
matrix. A number of analyses have been con-
ducted to estimate f(f) and hence the interaction
of the solute sources/sinks comprising a field of
second-phase particles and its effect on overall
coarsening behavior (Ref 39). As summarized
by Doherty (Ref 38), the terms in Eq 14 that
are related to the volume-fraction function,
f(f), and the phase concentrations can readily
increase the magnitude of predictions of the rate
constant by 1 or 2 orders of magnitude.
The applicability of Eq 13 and 14 to describe

the static coarsening of Ti-6Al-4V with an
equiaxed-alpha microstructure was established
by Semiatin, Sargent, and their coworkers for
heat treatment temperatures between 775 and
955 �C (Ref 27, 40); typical microstructure
observations are shown in Fig. 7. The coarsen-
ing exponent was found to be 3 (Fig. 8a),
indicating that coarsening was indeed diffusion
controlled. The ratio of the measured rate con-
stant and the calculated value of kMLSW/f(f)

for each temperature (and hence corresponding
volume fraction) was determined to estimate
f(f). A comparison of the values of f(f) so
determined to various model predictions
(Fig. 8b) indicated that the Voorhees and Glicks-
man model (Ref 39) was most appropriate for
quantifying the effect of volume fraction on
coarsening kinetics for Ti-6Al-4V.
Dynamic Coarsening of Equiaxed Alpha.

Coarsening of equiaxed alpha in alpha/beta tita-
nium alloys may also occur during hot deforma-
tion (Fig. 9). A number of investigations (Ref
40–42) have shown that the kinetics of coarsening

in such situations are enhanced by approximately
an order of magnitude relative to those for static
coarsening. The effect is most noticeable at strain
rates that characterize superplastic (or near-super-
plastic) flow, that is, �10�4 to 10�3 s�1. Under
these conditions, the time of deformation is typi-
cally of the order of 10 to 100 min.
As for static behavior, dynamic coarsening

kinetics have been found to be bulk-diffusion
controlled with a coarsening exponent equal
to 3 (Ref 42). With respect to the coarsening
constant, kMLSW, an examination of Eq 14 sug-
gests that the principal factor that would be

Fig. 7 SEM backscattered micrographs taken at the same magnification, illustrating static coarsening of Ti-6Al-4V
(with an equiaxed-alpha microstructure) that was heat treated at 900 �C and water quenched after times of

(a) 1, (b) 4, (c) 16, (d) 48, or (e) 144 h. Source: Ref 27. (Alpha, darker phase; beta, lighter phase)

Modeling of Microstructure Evolution during the Thermomechanical Processing of Titanium Alloys / 527

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



affected by concurrent deformation is the diffu-
sivity Db.
Defects such as dislocations and a nonequi-

librium concentration of vacancies generated
during deformation can contribute significantly
to diffusion. Insight into the effect of such pipe
diffusion on kinetics can be obtained from work
on microalloyed steels (Ref 43). For these
materials, precipitation kinetics were found to
increase by approximately 2 orders of magni-
tude during concurrent deformation at conven-
tional strain rates (�0.1 to 1 s�1); at these
strain rates, the micromechanism of plastic
flow is principally dislocation glide/climb.
(Precipitation rates were found to increase by
1 order of magnitude during static heat treat-
ment following a prestrain of 0.05.) By contrast,
superplastic flow occurs in a regime in which
deformation is accomplished largely by grain-
boundary sliding and secondarily by disloca-
tion-glide processes. Thus, the enhancement of
diffusion during superplastic flow would be
expected to be less than that during higher-
strain-rate conventional forming. Hence, the
observed increase in coarsening kinetics during
superplastic flow by 1, rather than 2, orders of
magnitude appears to be reasonable (Ref 40, 42).
Dynamic coarsening in alpha/beta titanium

alloys can have a significant effect on stress-
strain behavior at superplastic strain rates
(Ref 40–42). Deformation occurs primarily by
sliding at the alpha-beta interfaces, and the
accommodation of resulting stress concentra-
tions developed at triple points, grain edges,
and so on becomes more difficult as the alpha-
particle size increases. Hence, dynamic

coarsening typically gives rise to flow harden-
ing in stress-strain curves (Fig. 10a).
An evolving microstructure should be taken

into account when formulating constitutive
models to describe plastic flow. One of the
most widely used constitutive approaches to
relate flow stress, s, and strain rate, _e is the sin-
gle-state-variable model of Bird, Mukherjee,
and Dorn (Ref 44), typically applied for sin-
gle-phase alloys:

_e ¼ ABMDD Gsb

kBT

� �
s
Gs

� �1=m
b

d

� �p

(Eq 15)

In Eq 15, ABDM is a constant, D is a diffusivity,
kB is Boltzmann’s constant, T is absolute
temperature, Gs is the shear modulus, b is the
length of the Burgers vector, m is the rate sensi-
tivity (1/m is the stress exponent of the strain
rate), d is the grain size, and p is the grain-size
exponent of the strain rate. For superplastic
flow characterized by grain-boundary sliding
accommodated by glide/climb of dislocations,
m � 0.5 and p � 2. For grain-boundary sliding
accommodated by diffusional flow, m � 1 and
p � 2 or 3, depending on whether bulk (lattice)
or boundary diffusion predominates.
It has been shown that superplastic flow in

two-phase alpha/beta titanium alloys can also
be modeled using Eq 15, provided the instanta-
neous alpha-particle size (accounting for
dynamic coarsening) is used for d, and the
values of Gs and b pertain to the softer beta
phase (Ref 40). In this respect, the alpha parti-
cles act like the core and the beta matrix like
the mantle in the classical Gifkins model of
superplastic flow (Ref 45). To determine the
appropriate diffusivity to be used in Eq 15,
Sargent et al. (Ref 40) inverted Eq 15 and plot-
ted log ABMDD as a function of 1/T using the
measured values of stress, alpha-particle size,
m, and p corresponding to the imposed strain
rates in the superplastic regime (Fig. 10b).
The resulting plot was linear, yielding an
activation energy Q = 160 kJ/mol. This value
of Q is comparable to that for the diffusion of
vanadium (in annealed beta titanium), the sol-
ute which controls static (and dynamic) coars-
ening (Fig. 10b). The comparison of the lines

for ABMDD versus 1/T for superplastic flow and
DV

b suggests that ABMD is of the order of 10
when DBMD is taken to be equivalent to the dif-
fusivity of vanadium in annealed beta titanium.
By analogy with the relation between the rates
of dynamic and static coarsening, ABDM thus
quantifies the enhancement of diffusion due to
concurrent superplastic deformation.
Static Coarsening of Lamellar Alpha. The

static coarsening/thickening of alpha lamellae
in colony- or Widmanstätten- (basketweave-)
alpha microstructures represents an important
consideration with regard to the control of the
final alpha-particle size in mill products of
alpha/beta titanium alloys. This is because the
sizes of alpha particles are generally no smaller
than the thickness of the alpha lamellae from
which they originate. Furthermore, the ease of
dynamic and/or static spheroidization is greatly
dependent on the thickness of the lamellae,
regardless of whether the mechanism is bound-
ary grooving or shear localization. Hence, an
understanding of the kinetics of the coarsening
of lamellar microstructures during static heat
treatment is important.
Thickening of alpha lamellae during static

heating occurs by mass transport, which results
in a reduction in overall surface area and thus
surface energy. The transport may occur between
a lamella and so-called “branches” that are
attached to it as well as between adjacent lamel-
lae due to a classical coarsening-type process
(Fig. 11). The former mechanism, that is, branch
elimination, is analogous to the phenomenon of
fault migration treated previously in the litera-
ture (Ref 46, 47) and is relatively easy to quan-
tify, inasmuch as the entity that dissolves
(a branch or lamellar fault) forms a well-defined
geometric relation with the lamella or lamellae
onto which its mass is transferred (Fig. 11a, b).
By contrast, classical coarsening of an aggregate
of lamellae (Fig. 11c) is a much more difficult
problem because of the irregular plan-view
shapes of typical alpha platelets, the complex
spatial arrangement of the platelets within a col-
ony relative to each other, and the irregular shape
of the colonies themselves (Ref 48). Due to these
complexities, a method to model the latter coars-
ening phenomenon has not yet been developed.

Fig. 8 Static coarsening behavior of Ti-6Al-4V with an
equiaxed-alpha microstructure. Source: Ref 27.

(a) Coarsening kinetics in terms of average alpha-particle
size as a function of time. (b) Comparison of the ratio of
the measured coarsening rate at different temperatures
(and hence volume fractions, f) and the calculated
value of kMLSW/f(f) to various model predictions (Ref 39)
to determine f(f).

Fig. 9 SEM backscattered micrographs taken at the same magnification, illustrating dynamic coarsening of Ti-6Al-4V
samples with an equiaxed-alpha microstructure deformed at 900 �C, 10�4 s�1 to true strains of (a) 0, (b) 0.5,

and (c) 1.4, followed by water quenching. Source: Ref 42. The compression axis is vertical for each micrograph. (Alpha,
darker phase; beta, lighter phase)
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An approximate Fick’s law treatment of the
coarsening of colony alpha in alpha/beta tita-
nium alloys via branch elimination has been
performed recently (Ref 49). The analysis is
similar to that for static spheroidization via ter-
mination migration, summarized earlier in this
article. In brief, the concentration gradient and
associated flux are determined using (1) the
Gibbs-Thompson equation, assuming that the
branch has a radius of curvature equal to one-
half its thickness, and the lamella onto which
its mass is transferred is flat (Fig. 11a, b); and
(2) a composition factor (Eq 8) to correct for
the fact that the alpha and beta phases are not
terminal solid solutions. The branch recession
rate is given by the following expression:

dLb

dt
¼ �DbCFVMgab

RgT TbðYb þ Tb=2Þ (Eq 16)

In this equation, the geometric factors are
defined in Fig. 11(b); and Db, CF, VM, gab, Rg,
and T denote the diffusivity of the rate-limiting
solute, the composition factor (Eq 8), the molar
volume of the alpha phase, the alpha-beta inter-
face energy, the gas constant, and the absolute
temperature, respectively.
Predictions of the branch recession rate from

Eq 16 show reasonably good agreement with
observations after correcting for the stereologi-
cal (section-plane) effect (Ref 49). In particular,
for a heat treatment at 955 �C, the recession
rate was predicted to be 7.5 mm/h for branches
1.66 mm thick lying 1.86 mm from the lamella
to which they are attached. The measured
recession rate was �10 mm/h.

Final Heat Treatment

Heat treatment is used to control final micro-
structure and properties and to relieve residual
stresses for both alpha/beta and beta titanium
alloys (Ref 50, 51). For alpha/beta alloys, these
treatments include (1) solution treatment at rel-
atively high temperatures in the alpha+beta
field, followed by water quenching or air cool-
ing, (2) so-called recrystallization treatment at
slightly lower temperatures, followed by slow
cooling, (3) mill annealing at a temperature of
the order of 700 �C, and (4) beta annealing fol-
lowed by water quenching, forced convection,
and so on. Each of these treatments may be fol-
lowed with a final aging/stabilization heat treat-
ment. The principal final heat treatment for beta
and near-beta alloys consists of aging of mate-
rial previously beta annealed and water
quenched.
In this section, two broad categories of heat

treatment models are discussed dealing with
(1) microstructure evolution during cooling

following alpha+beta solution treatment of
alpha/beta titanium alloys with an equiaxed-
alpha microstructure and (2) decomposition of
beta following beta annealing of alpha/beta
alloys or during the aging of beta titanium
alloys.
Alpha+Beta Heat Treatment of Alpha/

Beta Alloys. Final alpha+beta heat treatment
of alpha/beta titanium alloys with an
equiaxed-alpha microstructure is used to con-
trol the volume fraction and size of the primary
alpha and the nature of the transformed matrix
phase. To this end, components are typically
solution treated high in the alpha+beta phase
field and cooled via water quenching or forced
convection. Because of section size variations,
the cooling rate and hence microstructure vary
within the component, thereby leading to non-
uniform properties. Predictive models can be
very useful to quantify these variations.
Diffusion Analysis. A diffusion analysis can

be applied to estimate the growth of primary
alpha particles and the onset of the

Fig. 10 Effect of dynamic coarsening on plastic flow
of Ti-6Al-4V with an equiaxed-alpha

microstructure. Source: Ref 40. (a) Selected flow curves.
(b) Constitutive analysis to determine the appropriate
activation energy and diffusivity to describe superplastic
flow

Fig. 11 Static coarsening of a colony-alpha microstructure in Ti-6Al-4V. (a) SEM backscattered micrograph
illustrating lamellar branching observed at 955 �C. (b) Idealized geometry used to describe the

microstructure. See Eq 16. Source: Ref 49. (c) SEM backscattered micrographs of samples heat treated at 955 �C for
times of 0.25 or 48 h, followed by water quenching (WQ)
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decomposition of residual beta during continu-
ous cooling following alpha+beta solution treat-
ment (Ref 52–54). The approach is based on the
“exact” one-dimensional solution for the
growth of an isolated spherical precipitate as a
function of time, t, and diffusivity, D (Ref 55,
56) and consideration of the effect of soft
impingement on the supersaturation controlling
the rate of growth.
The diffusion solution is the following:

RðtÞ ¼ 2�ðDtÞ1=2 (Eq 17)

To treat continuous cooling, the differential
form of Eq 17 is used:

dR=dt ¼ 2�2D=R (Eq 18)

In Eq 17 and 18, the parameter l is given by the
relation:

f�2 expð�2Þg�½ðexpð��2ÞÞ � ð��1=2erfcð�ÞÞ�
¼ �s=2

(Eq 19a)

in which Os denotes the supersaturation:

�s ¼ ðCM � CIÞ=ðCP � CIÞ (Eq 19b)

Here, CM, CI, and CP represent the composi-
tions of the matrix far from the matrix-particle
interface, the matrix at the matrix-particle inter-
face, and the particle at the matrix-particle
interface, respectively. For a diffusion-con-
trolled reaction, CI and CP correspond to the
equilibrium matrix and particle compositions,
respectively.
Equation 19(a) is not readily inverted to

obtain l as a function of Os. However, l = l
(Os) may be obtained from a simple FORTRAN
program or using commercial software such as
the Solver tool of Microsoft Excel (Fig. 12).
It should be mentioned that the approximate

constant-radius diffusion solution (Ref 38, 57)
yields a relation analogous to Eq 18 but with
a prefactor of Os instead of 2l2. Figure 12
shows that 2l2/Os is greater than unity even
for relatively small values of the supersatura-
tion Os. Thus, the constant-radius solution
underestimates the growth rate except for
values of O, approaching zero. Even for Os <
0.1 (the range of applicability often quoted in
the literature), substantial errors in the predic-
tion of particle size are inevitable when using
the constant-radius solution.
To simulate actual situations involving a col-

lection of alpha particles, the interaction of the
diffusion fields (i.e., the soft impingement
effect) must be taken into account. In such
cases, the far-field matrix composition CM is
usually adjusted using an approximation
derived from a mass balance (Ref 57):

CM ¼ ðCo � faCaÞ=ð1� faÞ (Eq 20)

in which Co and fa denote the overall alloy
composition and the volume fraction of the

precipitate/particle phase (i.e., primary alpha).
Because the composition of the alpha phase in
alloys such as Ti-6Al-4V often shows relatively
little variation with temperature, the particle
compositions Ca and CP are equivalent and
constant.
Numerical Solution. The solution of Eq 18

subject to the soft impingement criterion
(Eq 20) can readily be accomplished using a
spreadsheet method. The required input data
include the initial alpha-particle radius, solution
temperature/volume fraction of alpha phase,
phase compositions, diffusivity as a function
of temperature, and cooling rate (Ref 54). The
beta approach curve (showing the volume frac-
tion of beta as a function of temperature) and
phase compositions for Ti-6Al-4V are given in
Fig. 13. The diffusivity of aluminum and vana-
dium in beta titanium with a composition simi-
lar to that of beta in Ti-6Al-4V is as follows
(Ref 28):

Aluminum : DAl
b ðmm2=sÞ
¼ 199; 200 expð�18; 040=T ðKÞÞ

(Eq 21a)

Vanadium : DV
b ðmm2=sÞ
¼ 77; 000 expð�17; 460=T ðKÞÞ

(Eq 21b)

The instantaneous alpha-particle radius, R, can
be converted to volume fraction, fa, using the
following expression:

fa ¼ faoðR=RoÞ3 (Eq 22)

Here, fao and Ro denote the initial volume frac-
tion and particle radius, respectively. The solu-
tion procedure then comprises the following
steps:

1. Specify initial temperature/volume fraction
of alpha, initial alpha-particle radius, diffus-
ing element and its overall content (Co),
cooling rate, and time/temperature
decrement.

2. Impose a temperature/time decrement.
3. Calculate the supersaturation, Os (Eq 19b),

using measured equilibrium phase composi-
tions for alpha and beta (e.g., Fig. 13) and

the matrix composition (CM) determined
from Eq 20).

4. Calculate l (Eq 19a) and the rate of change
of the alpha-particle radius (Eq 18).

5. Impose a temperature/time decrement.
6. Calculate the new alpha-particle radius and

the volume fraction of alpha (Eq 22).
7. Repeat steps 3 to 6 until the desired final

temperature is reached.

The output of the spreadsheet calculations
includes the alpha-particle radius and supersat-
uration as a function of temperature.
The usefulness of the model for diffusional

growth of equiaxed alpha following solution
treatment high in the alpha+beta phase field
has been verified using Ti-6Al-4V (Ref 52).
Experiments and corresponding model calcula-
tions were conducted for several different peak
temperatures (and hence initial volume frac-
tions of alpha) and cooling rates. The model
calculations were done assuming two different
initial alpha-particle radii that bounded those
measured (4 mm, 5 mm) and diffusion controlled
by the supersaturation of aluminum or vana-
dium. Sample microstructural observations and
model results for a peak (solution) temperature
of 955 �C and a cooling rate of 42 �C/min are
shown in Fig. 14. Model predictions of the vol-
ume fraction of alpha as a function of tempera-
ture during cooldown tended to lie above the
measurements. This behavior can be explained
on the basis of the decomposition of the beta
matrix during cooling, a factor which would
reduce the supersaturation that drives the
growth of primary alpha. A parameter known
as the secondary alpha factor (which is a

Fig. 12 Dependence of the growth parameter l2 and
the ratio 2l2/Os on the supersaturation, Os.

Source: Ref 52

Fig. 13 Phase equilibria data for Ti-6Al-4V with a
regular interstitial level. (a) Beta-approach

curve. (b) Phase compositions. Source: Ref 52
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function of cooling rate, diffusivity, and super-
saturation) was therefore derived to predict the
onset of beta transformation and the tempera-
ture below which diffusional growth of primary
alpha would be retarded or cease (Ref 52).
Model Enhancements. A number of enhance-

ments have been made to the diffusion model
described in the previous section. These
include the ability to treat the growth of pri-
mary alpha with (a) a prespecified size distri-
bution (Ref 53) or (b) a mixture of equiaxed
and lamellar-platelet morphologies (such as
would be present in material that is not fully
spheroidized) (Ref 54). The former work has
shown that the average alpha-particle size for
an arbitrary initial size distribution varies with
temperature in a manner identical to that pre-
dicted for an initial distribution of mono-size
particles, that is, the case summarized previ-
ously. The other effort revealed that lamellar
alpha particles grow substantially slower than
equiaxed particles.
The phase-field (PF) method has also been

applied to obtain detailed information on the
temporal and spatial evolution of alpha-particle
size and shape during final alpha/beta heat
treatment of titanium alloys with an equiaxed-
alpha microstructure (Ref 58, 59). The PF
approach uses the numerical solution of (1)
the generalized (Cahn-Hilliard) diffusion equa-
tion (Ref 60) in terms of chemical-potential
gradients and chemical mobility (rather than

concentration gradients and diffusivities) and
(2) the time-dependent Ginzburg-Landau equa-
tion that describes structural changes that
accompany phase transformations. Because of
the use of chemical potentials in the analysis,
an important factor in this approach is the esti-
mation of the Gibbs free energy as a function of
concentration, order parameter (i.e., phase), and
their gradients; methods to calculate the Gibbs
free energy for PF simulations are described
in the article “Phase-Field Microstructure
Modeling” in this Volume. An example of the
application of the PF method for the growth
of primary alpha particles in a hypothetical tita-
nium alloy that was solution treated, rapidly
cooled to a lower temperature, and soaked is
shown in Fig. 15 (Ref 59). The results show
noticeable differences in growth behavior for
the cases of randomly versus uniformly spaced
particles.
Beta Annealing and Beta Decomposition.

The decomposition of single-phase beta serves
as the basis for two types of common heat treat-
ments: the beta annealing of alpha/beta titanium
alloys and the aging of beta-annealed beta and
near-beta alloys.
Alpha/Beta Titanium Alloys. The microstruc-

ture formed in alpha/beta titanium alloys that
are beta annealed is heavily dependent on the
cooling rate. High rates give rise to a martensi-
tic-type transformation, moderate rates to a bas-
ketweave/Widmanstätten microstructure, and

slow rates to colony-alpha structure. The for-
mation of Widmanstätten on colony alpha in
alloys such as Ti-6Al-4V involves nucleation
and growth of the alpha phase and has been
modeled using both phenomenological and
phase-field models.
Phenomenological models, which generally

provide only temporal averages, have most
often relied on the application of the Johnson-
Mehl-Avrami-Kolmogorov (JMAK) approach
(Ref 61, 62) and modifications of it. For exam-
ple, a JMAK approach can be used to describe
phase decomposition following beta annealing
of alpha/beta alloys such as Ti-6Al-4V and Ti-
6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242Si) under both
isothermal and continuous cooling conditions
(Ref 63, 64). In the simpler isothermal instance,
the standard phenomenological JMAK relation
is used to fit measurements:

X ¼ 1� exp �k tnað Þ (Eq 23)

in which X denotes the fraction transformed, the
rate constant k is a function of temperature, t is
time, and na denotes the JMAK (Avrami) expo-
nent. Plots of log(ln[1/(1 � X)]) versus log t are
made to determine the Avrami exponent. In Ref
63, it was found that the values of na for both
Ti-6Al-4V and Ti6242Si were between 1.15
and 1.6. The lower values (na � 1) pertained
to isothermal transformation at temperatures
from �900 to 950 �C, at which alpha nucleated
heterogeneously at and grew from the beta
grain boundaries; such values are in agreement
with classical predictions in the literature for
continuous nucleation at grain boundaries (Ref
65). The higher na values were found for tem-
peratures below 900 �C, at which alpha nucle-
ated heterogeneously at the grain boundaries
as well as homogeneously within the beta
grains.
The interpretation of decomposition kinetics

under continuous-cooling conditions can be
somewhat more complex using the JMAK for-
malism. The challenge associated with such
cases is best described by rewriting Eq 23 in

Fig. 14 Alpha/beta heat treatment results for Ti-6Al-4V. (a,b,c) SEM backscattered micrographs of samples solution
treated at 955 �C, cooled at 42 �C/min, and water quenched at the temperatures (Tq) indicated. (d)

Comparison of corresponding measurements of the volume fraction of primary alpha (data points) and diffusion-
model predictions (lines). Source: Ref 52

Fig. 15 Phase-field model predictions of the growth of
primary alpha particles in a hypothetical

titanium alloy that was solution treated, rapidly cooled
to a lower temperature, and soaked isothermally.
Simulations were done for an initial alpha-particle
distribution that was random or uniform. Source: Ref 59
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terms of the explicit nucleation and growth
rates, N and G, respectively:

X ¼ 1� exp �CaN Gqtnað Þ (Eq 24)

in which Ca and q are constants. The tempera-
ture dependence of N and G are both described
by Arrhenius-type relations, that is, N, G �
exp(�Q/RgT), in which Q is an activation
energy, Rg is the gas constant, and T is absolute
temperature. The activation energy for growth
is relatively constant. However, Q for nucle-
ation decreases with decreasing temperature
(Ref 65), thus leading to a nucleation rate that
rapidly increases with decreasing temperature
and a complex function for the overall rate
constant.
To simplify the modeling of beta decomposi-

tion under continuous-cooling conditions,
therefore, an alternate approach based on iso-
thermal JMAK data can be applied (Ref 64).
Specifically, the fractions transformed under
nominally isothermal conditions are summed
for a series of closely spaced temperature
decrements (Ref 66). The calculation scheme
makes use of a series of fictitious times, each
of which corresponds to that which would per-
tain if the entire fraction that had transformed
at prior higher temperatures had occurred at
the current temperature. Using this basic
approach, Malinov et al. (Ref 64) developed a
computer code to simulate continuous-cooling
transformation behavior of Ti-6Al-4V follow-
ing beta annealing. It was assumed that na was
constant (= 1.13); the code used an error-mini-
mization routine to derive k = k(T) in the JMAK
relation (Fig. 16a). With this information, the
computer simulation yielded predictions of
transformed fractions as a function of cooling
rate and temperature in excellent agreement
with the measurements (Fig. 16b).
Beta and Near-Beta Titanium Alloys. The

precipitation of alpha from solution-treated beta
and near-beta titanium alloys during isothermal
or continuous-cooling heat treatments has
been analyzed in detail by Da Costa Teixeira,
Appolaire, and their coworkers (Ref 67–69).
In work similar to that of Malinov et al. (Ref 63)
for alpha/beta titanium alloys, a numerical
method based on the incremental application of
the JMAK relation was applied to quantify the
cooling-transformation behavior of the beta-rich
alloy Ti-17 (Ref 67). The model treated the pre-
cipitation of grain-boundary alpha, Widmanstät-
ten alpha that grew from the grain-boundary
alpha, and Widmanstätten alpha that nucleated
homogeneously with the beta grains.
More detailed mesoscale models that describe

the temporal and some aspects of the spatial evo-
lution of microstructure have also been devel-
oped for (1) isothermal transformation of an
annealed equiaxed beta-grain microstructure
(Ref 67) and (2) isothermal and cooling transfor-
mation of alloys with residual substructure from
prior-beta hot working (Ref 67).
The mesoscale model for isothermal trans-

formation (Ref 68) focuses on four discrete

phenomena: the nucleation of alpha at the beta
grain boundaries (agb), the growth of this agb,
the appearance of Widmanstätten-alpha side-
plates (awgb) along the agb and the growth of
the awgb. Classical nucleation theory and Fick’s
law are used to quantify the rate of nucleation
and the planar growth of agb, respectively.
The appearance of awgb sideplates is described
empirically based on a critical thickness of the
agb, and their growth is modeled using a diffu-
sion approach analogous to that for agb.
Detailed transformation behavior is analyzed

by implementing the various rate equations into
a mesoscale simulation comprising 1000 tetra-
kaidecahedral (14-faced) grains. To introduce
a statistical aspect into the simulations, the beta
grain-boundary energy (and hence the wetting
angle of agb, nuclei) are varied from one grain
boundary to another. Transition from one stage
of the transformation to another at a specific
grain boundary is based on several rules: (1)
agb is allowed to grow once a grain boundary
is covered 90% by nuclei, and (2) awgb side-
plates are allowed to grow once the agb layer
reaches the critical thickness. The growth of a

given colony of awgb sideplates proceeds until
the total transformed volume is equal to the size
of the grain in which it is located, or its length
is equal to the grain size minus the length of
any colony growing from an opposite grain
boundary. Predictions of the fraction trans-
formed as a function of time and the average
number of colonies per beta grain show reason-
ably good agreement with measurements for the
Beta-Cez alloy (Fig. 17).
The mesoscale model and associated simula-

tions for transformation of beta titanium alloys
with residual substructure (subgrains) (Ref 69)
are similar. The principal enhancements include:
(1) modification of the geometric representation
to include subgrain boundaries of various misor-
ientations within the beta grains, (2) nucleation
of agb at both subgrain and grain boundaries at
a rate dependent on boundary misorientation,
and (3) the appearance of awgb at a thickness of
agb which depends on boundary misorientation.
Simulation results revealed that it must be
assumed that awgb plates are able to cross sub-
grain boundaries in order to approach the equi-
librium volume fraction of alpha during long-
time isothermal aging. With this assumption,
good predictions of the dependence of transfor-
mation kinetics on subgrain size, number of
colonies per grain, and so on are obtained for
alloys such as Beta-Cez (Fig. 18).
The phase-field technique has also been

applied to investigate the decomposition of
metastable beta to form colony- and basket-
weave-alpha microstructures (Ref 59, 70). In
this work, alpha sideplates were assumed to
nucleate along grain-boundary alpha layers (by
the classic Mullins-Sekerka interface-instability
mechanism) (Ref 71) and then grow into a
supersaturated beta matrix. To this end, random
fluctuations were introduced into the initial
interface between the grain-boundary alpha
and beta phase. Model results showed that the
morphology of the alpha plates (breadth-to-
thickness ratio) was sensitive to the assumed
anisotropy in interfacial energy and the elastic
strain energy associated with semicoherency
of the alpha and beta phases. By introducing
homogeneous nucleation (within beta grains),

Fig. 16 Application of the Johnson-Mehl-Avrami-
Kolmogorov relation to predict cooling-

transformation behavior of Ti-6Al-4V following beta
annealing. (a) Fitted dependence of the rate constant k
on temperature. (b) Comparison of predicted and
measured transformed fractions as a function of cooling
rate and temperature. Source: Ref 64

Fig. 17 Comparison of measured (solid lines, data
points) and predicted (broken lines)

isothermal transformation kinetics for the titanium alloy
Beta-Cez. Source: Ref 68
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the evolution of microstructures containing
both alpha sideplatelets and Widmanstätten
(basketweave) alpha within beta grains was
simulated.

Summary and Future Outlook

Models to describe the evolution of micro-
structure during the thermomechanical proces-
sing of titanium alloys have been described.
The mechanisms of spheroidization, coarsen-
ing, particle growth, and phase decomposition
in titanium alloys frequently follow classical
nucleation and diffusional-growth behaviors
and thus are relatively easy to quantify. In this
regard, accurate thermodynamic (phase equili-
bria) and kinetic data are key to the validation
and application of the models for industrially
significant alloys. Avenues for future develop-
ments in this area are varied and include the
following:

� Models for continuous dynamic recrystalli-
zation for both alpha titanium and beta tita-
nium, with applications to the dynamic
spheroidization of lamellar-colony micro-
structures as well as for fully wrought,
equiaxed microstructures

� Internal-state variable models that describe
concurrent plastic flow and the evolution of
both microstructure and texture

� Development of general models for thermo-
dynamic, kinetic, and boundary properties
needed for simulation of microstructure
evolution

� Coupled models of microstructure evolution
and the formation/healing of defects such
as cavities
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Modeling and Simulation of Texture
Evolution during the Thermomechanical
Processing of Titanium Alloys
S.L. Semiatin, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
M.G. Glavicic, Rolls-Royce Corporation, Indianapolis, IN, USA
S.V. Shevchenko and O.M. Ivasishin, Kurdyumov Institute for Metal Physics, Kyiv, Ukraine
Y.B. Chun and S.K. Hwang, Inha University, Incheon, Korea

THE DEVELOPMENT of crystallographic
texture, the preferred orientation of grains in a
polycrystalline aggregate, during thermome-
chanical processing can play an important role
with regard to the secondary forming response
(e.g., deep drawing of sheet) and service per-
formance (e.g., strength, elastic modulus, ductil-
ity, fracture toughness) of metallic materials.
Crystallographic texture, or simply texture for
succinctness, may arise as a result of large-strain
deformation, dynamic/static recrystallization,
grain growth, or phase transformation (Ref 1).
A second form of anisotropy, mechanical textur-
ing or mechanical fibering, refers to the align-
ment of microstructure, inclusions, and so forth
during deformation processes and may also
affect mechanical properties such as ductility
and fracture toughness. This latter form of tex-
ture is not discussed in the present article.
Because of its technological importance, a

number of modeling and simulation techniques
have been formulated to describe the evolution
of crystallographic texture (Ref 2, 3). A major-
ity of these techniques have been developed
for predicting textures in face-centered cubic
(fcc) and body-centered cubic (bcc) metals.
Considerably less work has been done in the
area of hexagonal close-packed (hcp) materials,
let alone two-phase alloys, one of whose phases
is hcp, such as is the case for a number of
industrially important titanium alloys.
Unalloyed titanium and titanium alloys com-

prise a class of material for which texture can be
unusually strong and therefore is very important
with regard to mechanical properties (Ref 4, 5).
The tendency to form strong textures results prin-
cipally from the low symmetry of the hcp crystal
structure that characterizes many titanium alloys
at low temperatures, the limited number of slip
and twinning systems that can be activated to
accommodate imposed deformation of hcp

crystals, and the allotropic transformation of tita-
nium from the bcc beta phase (at high tempera-
tures) to the hcp alpha phase (at low
temperatures). The first two of these factors play
an important role with regard to the formation of
deformation texture in both alpha and alpha/beta
titanium alloys. The nature of prior deformation
and the allotropic transformation affect transfor-
mation-texture development in both alpha/beta
and near-beta titanium alloys.
In the broad sense, crystallographic texture is

but one, albeit an important one, of themany attri-
butes that are needed to fully characterize themet-
allurgical state of a material. Thus, the modeling
and simulation of texture evolution for titanium
alloys is often tightly coupled to microstructure
evolution. This article focuses on a number of pro-
blems for titanium alloys in which such coupling
is critical in the development of quantitative mod-
els. For some phenomena, such as spheroidization
or coarsening, it is not as important to model
microstructure and texture evolution simulta-
neously. Such situations are summarized in the
article “Modeling of Microstructure Evolution
during the Thermomechanical Processing of
Titanium Alloys” in this Volume.
A number of general considerations related

to the characterization, modeling, and simula-
tion of texture are treated in other articles in this
Volume: “Crystallographic Texture,” “Crystal-
Plasticity Fundamentals,” “Self-Consistent Tex-
ture Modeling,” and “Crystal-Plasticity FEM.”
Hence, this article focuses solely on aspects
pertaining to titanium and titanium alloys. To
this end, the key aspects of phase equilibria,
the description of crystallographic orientations,
and slip/twinning behavior of importance for
titanium alloys are summarized first. Subsequent
sections of this article describe the modeling
and simulation of recrystallization and grain
growth of single-phase beta and single-phase

alpha titanium and deformation- and transfor-
mation- texture evolution in two-phase (alpha/
beta) titanium alloys.

Fundamental Considerations
for Titanium

The description of phase equilibria, crystal-
lography, and deformation behavior of titanium
and titanium alloys is of great importance with
regard to understanding and modeling texture
evolution. Each of these topics is briefly dis-
cussed in this section.

Phase Equilibria/Phase Transformations

Microstructure and texture evolution and
control in titanium alloys is heavily dependent
on the allotropic transformation from the hcp
crystal structure (denoted as alpha phase) found
at low temperatures to a bcc crystal structure
(denoted as beta phase) at high temperatures
(Ref 6). For pure titanium, this occurs at 882 �C
(1620 �F). In many titanium alloys, the beta
phase is partially stabilized at lower tempera-
tures, and the equilibrium volume fractions of
alpha and beta vary with temperature. The tem-
perature at which a specific alloy becomes
entirely beta (i.e., alpha + beta! beta) is called
the beta transus. The conditions used for hot
working and heating/heat treatment are often
selected relative to the beta-transus temperature.
There are a number of important classes of

titanium alloys whose designations reflect the
relative volume fraction of beta retained at
room temperature. These include beta and
near-beta alloys and near-alpha and alpha/beta
alloys (Ref 7, 8). Beta and near-beta alloys have
moderate-to-large amounts of beta-stabilizing
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elements such as vanadium, molybdenum,
tungsten, niobium, chromium, and iron. The
beta transi of near-beta alloys are typically in
the range of 700 to 850 �C (1300 to 1560 �F)
(Ref 7). Near-alpha and alpha/beta alloys have
large amounts of alpha-stabilizing elements
such as aluminum; the beta transi of near-alpha
and alpha/beta alloys are usually of the order of
950 to 1050 �C (1740 to 1920 �F) (Ref 8).
The cooling of alpha/beta alloys from a tem-

perature above the beta transus or the aging of
beta-annealed and water-quenched near-beta
alloys results in the decomposition of metasta-
ble beta. The alpha that is formed has a lath
or platelet morphology. The orientation of the
alpha is related to that of the parent beta by a
classical Burgers relation (Ref 9). The single
close-packed plane in the hcp alpha phase
(i.e., the basal plane) is parallel to one of the
six close-packed planes in the bcc beta phase.
In addition, one of the three close-packed (“a”)
directions in the basal plane of the alpha is par-
allel to one of the two close-packed directions
lying within the specific close-packed plane in the
beta (Fig. 1). Thus, decomposition of a beta grain
may give rise to one or more of 12 (= 6 � 2)
possible alpha-phase variants, each with its own
orientation within the beta grain. It is rare that a
specific beta grain would contain a large number

of the 12 possible alpha variants. Often, a subset
of these may be found due to a variant-selection
process. Various factors may affect variant selec-
tion. These include stress (which may be applied
macroscopically or develop as a result of temper-
ature gradients, for example) (Ref 10) and, if
the beta has been hot worked, residual disloca-
tion substructure on the activated slip systems.
Possible variant-selection rules are discussed
in the following section on the modeling of
transformation texture in alpha/beta titanium
alloys.

Crystallography and Description of
Orientation

Descriptions of crystallography and the
orientations of bcc beta and hcp alpha are criti-
cal to the modeling and simulation of texture
evolution in titanium alloys.
Crystallography is rather simple for the bcc

phase whose unit cell comprises atoms at each
corner and an atom at the center of a cube
(Fig. 1b). Using standard Miller indices for
cubic crystals, the three principal directions
are parallel to the cube edges, that is, [100],
[010], and [001]. Similarly, the planes compris-
ing cube faces are denoted (100), (010), and

(001). Each of the six close-packed planes con-
tains four corner atoms and the central atom
and are denoted as {110}-type planes, for
example, (110) and ð�110Þ. The four close-
packed directions are the cube diagonals and
are of the type <111>, for example, the ½1�11�
and ½�111� directions lying in the (110) plane.
The crystallography of the hcp unit cell

shows less symmetry than the bcc unit cell
(Fig. 1a). The four Miller indices for hcp crys-
tals denote relative lengths/inverse intercepts
along the three close-packed directions and the
normal to the close-packed plane. The close-
packed (basal) plane is thus (0001) and its nor-
mal is [0001], known also as the c-axis. The
three close-packed directions lying in the basal
plane are denoted a1, a2, and a3, or ½2�1�10�,
½�12�10�, and ½�1�120�, respectively. Because these
three directions lie in the same plane at 120�
angles to each other, the third index of the
Miller indices for hcp crystals is always equal
to minus the sum of the first two indices. Other
planes of importance comprise the prism planes
(f10�10gtype) and various pyramidal planes, the
most important of which are the f10�11g planes,
which contain the directions consisting of the
vector sum c + a, that is, the < 11�23 >
directions.
The description of texture relies on quantify-

ing the orientation of bcc and hcp crystal axes
relative to an orthogonal set of material (sam-
ple) reference directions, X, Y, Z (or rolling
direction, or RD; transverse direction, or TD;
and normal direction, or ND, for sheet or plate
materials). For the bcc phase, the crystal axes
are taken to be the [100], [010], and [001]
directions. Several different choices are possi-
ble for the orthogonal set for hcp crystals. The
most common consists of the½2�1�10�, ½01�10�,
and [0001] directions.
The 3 � 3 rotation (orientation) matrix g,

consisting of the cosines of the angles between
the crystal axes and the material reference
directions, is used to quantify the orientation
of a crystal relative to the material reference
directions. The ij th member of this matrix is
the cosine of the angle between the i th crystal
axis and the j th sample reference direction
(Fig. 2a) (Ref 1, 11):

g ¼
cosa1 cosb1 cos g1
cosa2 cosb2 cos g2
cosa3 cosb3 cos g3

0
@

1
A

¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

0
@

1
A (Eq 1)

The description of orientation via the nine-
parameter rotation matrix is actually an over-
specification, inasmuch as the sample reference
directions can be brought into coincidence with
the crystal axes (or vice versa) by three inde-
pendent rotations. The three rotation angles
are known as Euler angles. Although a number
of conventions have been used to specify Euler
angles, the most common is that due to Bunge
(Ref 1, 11, 12). The three Bunge Euler angles

Fig. 1 Close-packed planes/directions and crystallography of (a) hexagonal close-packed alpha titanium and
(b) body-centered cubic beta titanium. The close-packed layer of atoms lying between the upper and lower

close-packed layers has been removed from (a) for clarity. (c) Burgers orientation relation between the beta and one
of the 12 possible alpha variants
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are denoted j1, F, and j2 and comprise the
following successive rotations (Fig. 2b):

� Rotation of j1 about Z/ND, transforming the
Y/TD direction into Y0/TD0 and the X/RD
direction into X0/RD0

� Rotation of F about X0/RD0, transforming
the Y0/TD0 direction into Y00/TD00 and the Z/
ND direction into Z00/ND00

� Rotation of j2 about Z
00/ND00

The elements of the rotation matrix (Eq 1)
are related to the Euler angles by the following
set of relations (Ref 11):

g11 ¼ cosj1 cosj2 � sinj1 sinj2 cos�

g12 ¼ sinj1 cosj2 þ cosj1 sinj2 cos�

g13 ¼ sinj2 sin�

g21 ¼ � cosj1 sinj2 � sinj1 cosj2 cos�

g22 ¼ � sinj1 sinj2 þ cosj1 cosj2 cos�

g23 ¼ cosj2 sin�

g31 ¼ sinj1 sin�

g32 ¼ � cosj1 sin�

g33 ¼ cos� ðEq 2Þ

The orientation relation between the refer-
ence axes and an arbitrarily oriented crystal or
the misorientation between two adjacent crys-
tals can also be represented as a single rotation
about a specific axis. For the case of the

misorientation between two adjacent crystals 1
and 2, for example, a misorientation matrix
Q12 is calculated first:

Q12 ¼ gT
1
g2 (Eq 3)

in which gT
1 denotes the transpose of the rotation

matrix for grain 1, and g2is the rotation matrix
for grain 2. The misorientation angle y is then
given by the following expression (Ref 11):

cos y ¼ ðg11 þ g22 þ g33 � 1Þ=2 (Eq 4)

The components r of the axis of rotation (rela-
tive to the axes of one of the crystals) are the
following (Ref 11):

r1 ¼ g23 � g32

r2 ¼ g31 � g13

r3 ¼ g12 � g21 ðEq 5Þ

In Eq 4 and 5, the quantities gij are the elements
of the misorientation matrix Q12.
The overall texture of polycrystalline aggre-

gates is represented by pole figures or orientation
distribution functions (ODFs). A pole figure is a
two-dimensional stereographic projection of
the probability of finding a specified crystallo-
graphic direction (pole) at various orientations
relative to the sample reference directions.
Typical pole figures for beta titanium are
100, 110, and 111. For alpha titanium, 0001,
10�10,11�20, and 10�11 pole figures are used to
quantify texture. Similarly, an ODF summarizes
the probability of finding crystals with given
Euler angles relative to the sample reference
directions.

Slip/Twinning Systems

Alpha Phase. Deformation textures in unal-
loyed titanium and two-phase titanium alloys
tend to be strong because of the low symmetry
of hcp crystals and the limited number of
modes of deformation due to crystallographic
slip or twinning.

The most common slip systems for hcp tita-
nium consist of basal <a> (slip on the basal
plane along an <a> direction), prism <a>
(slip on a prism plane along an <a> direction),
and pyramidal <c + a> (slip on pyramidal
planes along a <c + a> direction) (Fig. 3).
In the case of an arbitrary imposed deformation,
five independent slip systems must be activated
within each grain of a polycrystalline aggre-
gate. Because there are only two independent
basal <a> systems and two independent prism
<a> systems, pyramidal <c + a> slip (or
mechanical twinning) must also be activated.
Compressive or tensile deformation along the
c-axis of an hcp crystal is enabled by <c + a>
slip or by twinning.
Deformation of hcp titanium by <c + a> slip

involves stresses usually much higher than
those required for basal <a> or prism <a>
slip. Hence, twinning may provide alternate,
softer modes to accommodate deformation
along the c-axis, particularly under ambient or
cold-working temperatures. The key twinning
systems (denoting the twinning plane by the
first index and the twinning direction by the
second) include f11�22g < �1�123 >, which pro-
vides a compressive strain along the c-axis,
and f10�12g < �1011 > and f11�21g < �1�126 >,
each of which gives a tensile strain along the
c-axis (Ref 13, 14).
The analysis of deformation texture often

involves the application of the strain (or stress)
tensor transformation law from a set of refer-
ence axes to the hcp crystal axes. To determine
the appropriate direction cosines (Eq 1), it is
often simplest to apply the dot product formula.
In this case, the use of an orthogonal set of ref-
erence axes for hexagonal crystals is preferable.
As mentioned previously, a typical choice of
axes comprises the ½2�1�10�, ½01�10�, and [0001]
directions; that is, ½2�1�10� is represented as
[100], ½01�10� as [010], and [0001] as [001].
With this choice, the Miller indices for various
slip systems in an equivalent orthogonal system
can be calculated (Table 1).
Beta Phase. The bcc metals such as beta tita-

nium are known to deform by slip along <111>

Fig. 2 Orientation relation between the orthogonal
sample reference directions (X,Y,Z or rolling

direction, or RD; transverse direction, or TD; and
normal direction, or ND, for a sheet material) and the
orthogonal crystal reference directions [100], [010], and
[001] for a cubic crystal. (a) Geometry in terms of angles
between the two systems of axes (for clarity, only the
angles a

1
, b

1
, and g

1
are shown). (b) Euler angles using

the Bunge convention. Source: Adapted from Ref 11

Fig. 3 Common slip systems for hexagonal close-packed (alpha) titanium crystals. (a) Basal <a>. (b) Prism <a>.
(c) Pyramidal <c + a>
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slip directions. However, the slip plane(s) are not
well defined. Some have modeled deformation-
texture evolution for bcc metals, such as beta tita-
nium assuming pencil glide, that is, slip on any
plane containing a <111> direction (Ref 16,
17). Others have assumed a slightly more restric-
tive approach, assuming slip only on {110},
{112}, and {123} planes (Ref 18, 19). In yet other
work, it has been suggested that the active slip
planes, particularly at intermediate temperatures,
are of the {112} type (Ref 20).

Texture Evolution during
Recrystallization and Grain Growth

Modeling of recrystallization and grain
growth of single-phase beta or single-phase
alpha titanium has a number of important
industrial applications. These include the
recrystallization and grain growth of alpha/beta
and beta titanium alloys during heat treatment
in the single-phase beta field (i.e., above the
beta-transus temperature) and the recrystalliza-
tion and grain growth of alpha titanium during
heat treatment in the alpha phase field. Grain
growth of alloys with no prior hot work during
beta annealing is perhaps the simplest problem
in texture evolution for titanium alloys and is
discussed first. Subsequently, the simulation of
coupled recrystallization and grain growth of
materials that have been prior hot or cold
worked is addressed.

Beta Grain Growth

Beta annealing is often used for alpha/beta
titanium alloys to develop a transformed-beta
microstructure for fracture-critical aerospace
applications. Beta annealing is also applied as
a solution treatment for beta and near-beta
alloys prior to aging in the alpha/beta phase field.

In both cases, the control of the beta grain size
can be very important.
A number of measurements of beta-grain-

growth kinetics for alloys such as Ti-6Al-4V
and Ti-5Mo-5V-5Al-1Fe-1Cr (VT22) have
shown substantial deviations from the parabolic
behavior that characterizes classical normal
grain growth (that is, dn � t, in which d denotes
the grain size, t is time, and n is the grain-
growth exponent) (Ref 21–25). Specifically,
periods of rapid and slow growth have been
observed during both isothermal heat treat-
ments and processes involving continuous heat-
ing (Fig. 4). Furthermore, grain-growth kinetics
have been found to vary quite noticeably in dif-
ferent lots of a given alloy such as Ti-6Al-4V
with identical composition and initial micro-
structure but different initial textures. These
observations can therefore be ascribed to initial
texture and the evolution of texture during grain
growth. Such texture-controlled grain growth is
a result of the anisotropy in energy and mobility
of beta grain boundaries.
Texture-controlled grain growth during beta

annealing of titanium alloys has been simulated
using both the Monte Carlo (Potts) and phase-
field modeling approaches. In the work of
Ivasishin et al. (Ref 24, 25), for example, the
Monte Carlo (MC) method was used. A detailed
description of the MC technique is contained in
the article “Monte Carlo Models for Grain
Growth and Recrystallization” in this Volume.
The MC formulation of Ivasishin et al. was
similar to that in prior efforts with regard to:

� Calculation of energy before and after an
elementary orientation “flip” (except that
the trial orientation was taken to be that of
a randomly chosen neighboring site and not
the entire model lattice)

� Quantitative description of the probability
for atoms at/near the grain boundaries to
change their orientations

However, a number of improvements were
incorporated to obtain quantitative information
on the coupling of grain growth and texture
evolution. These improvements included:

� Application of a three-dimensional (3-D),
rather than a two-dimensional (2-D), analysis

� Use of a large number of possible orienta-
tions defined by their respective Euler angles

� Ability to input measured or hypothetical
textures using pole figures or ODFs

� Extensive postprocessor software enhance-
ments to quantify intermediate and final
grain-size and grain-boundary misorienta-
tion distributions, textures/volume fractions
of texture components, and so on

To simplify the calculations for large 3-D
modeling domains, the separate effects of
grain-boundary energy and mobility were com-
bined into a single effective mobility parameter.
To obtain insight into the specific interaction

of texture and grain growth, Ivasishin et al.
(Ref 24, 25) applied the 3-D code to a number
of special cases, including grain growth in (1)
an initially textured or untextured material
with a misorientation-dependent or independent
grain-boundary mobility and (2) a material with
an initial two-component texture and misorien-
tation-dependent grain-boundary mobility.
Sample MC results for the material with two
initial texture components (denoted “A” and
“B”) are shown in Fig. 5 to 7. The MC-
simulated kinetics revealed periods of fast and
slow grain growth (Fig. 5a), similar to experi-
mental observations (Fig. 4). As seen in (100)
pole figures (Fig. 5b), there were also pro-
nounced variations in texture as grain growth
occurred. (Only the (100) poles and not the
(010) and (001) poles are shown for the sake of
clarity.) The texture changes were characterized
by periodic interchanges of the volume fractions
of the two components. Time is measured in
Monte Carlo steps (MCS). A comparison of
Fig. 5(a) and (b) indicates that the periods of
rapid grain growth were associated with the
times (�15 and �1200 MCS).at which the vol-
ume fractions of the two texture components
were approximately equal, and there was thus a
large fraction of high-angle boundaries.

Table 1 Miller index equivalents for hexagonal close-packed (hcp) slip systems in an
orthogonal coordinate system

Slip system hcp indices Equivalent indices in cubic coordinates

Basal hai ð0001Þ ½2110� (001) [1 0 0]
Basal hai (0001) ½1210� (001) ½�1=2 p3=2 0�
Basal hai (0001) ½1120� (001) ½�1=2 �p3=2 0�
Prism hai ð1010Þ ½1210� ðp3=2 1=2 0Þ½�1=2 p3=2 0�
Prism hai ð1100Þ ½1120� ðp3=2 � 1=2 0Þ½�1=2 �p3=2 0�
Prism hai ð0110Þ ½2110� (0 1 0) [1 0 0]
Pyramidal hai ð1011Þ ½1210� ð1 1=

p
3 1=rÞ½�1=2p3=2 0�

Pyramidal hai ð1011Þ ½1210� ð�1 � 1=
p
3 1=rÞ½�1=2 p3=2 0�

Pyramidal hai ð0111Þ ½2110� ð0 2=
p
3 1=rÞ½1 0 0�

Pyramidal hai ð0111Þ ½2110� ð0� 2=
p
3 1=rÞ½1 0 0�

Pyramidal hai ð1101Þ ½1120� ð1 � 1=
p
3 1=rÞ½�1=2�p3=2 0�

Pyramidal hai ð1101Þ ½1120� ð�1 1=
p
3 1=rÞ½�1=2�p3=2 0�

Pyramidal hc + ai ð1011Þ ½a1 � c�; ½�a3 � c� ð1 1=
p
3 1=rÞ½1 0� r�; ½1=2 p3=2� r�

Pyramidal hc + ai ð1011Þ ½�a1 � c�; ½a3 � c� ð�1 � 1=
p
3 1=rÞ½�1 0� r�; ½�1=2�p3=2� r�

Pyramidal hc + ai ð0111Þ ½a2 � c�; ½�a3 � c� ð0 2=
p
3 1=rÞ½�1=2 p3=2� r�; ½1=2 p3=2� r�

Pyramidal hc + ai ð0111Þ ½�a2 � c�; ½a3 � c� ð0 � 2=
p
3 1=rÞ½1=2�p3=2� r�; ½�1=2�p3=2� r�

Pyramidal hc + ai ð1101Þ ½a1 � c�; ½�a2 � c� ð1 � 1=
p
3 1=rÞ½1 0� r�; ½1=2�p3=2� r�

Pyramidal hc + ai ð1101Þ ½�a1 � c�; ½a2 � c� ð�1 1=
p
3 1=rÞ½�1 0� r�; ½�1=2p3=2� r�

r � c/a = 1.59. Source: Ref 15

Fig. 4 Observations of beta grain growth in Ti-6Al-4V
sheet with a strong initial texture showing

periods of rapid and slow growth. Source: Ref 22
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The MC-simulated texture evolution for the
two-component case can be explained as fol-
lows. Because of their lower volume fraction,
the “A” grains initially had a much higher proba-
bility of having “B” grain neighbors and thus had
high-mobility “A-B” boundaries. Hence, small
“A” grains were rapidly consumed by large “B”
grains, but large “A” grains were able to grow
rapidly. Because the “B” grains were in contact
preferentially with other “B” grains, they had
mainly low-mobility “B-B” boundaries; there-
fore, most of the “B” grains participated only
slightly in the initial stages of grain growth. This
led to a very different grain-size distribution for
the modeling domain as a whole (Fig. 6a) com-
pared to that for those grains with the “A” texture
component (Fig. 6b). After the “A” grains had
consumed a majority of the volume, the growth
rate of the “A” grains decreased, because there

was now a high probability that each “A” grain
was surrounded by other “A” grains. Because
“B” had become the minority component, the
growth rate of “B” grains exceeded that of the
“A” grains. Over long times, such phenomena
produced cyclic changes in the relative volume
fractions of the “A” and “B” texture components.
The MC predictions of the periodic evolution

of a two-component texture (Ref 25) mirror
deterministic numerical calculations, such as
those of Lücke and his coworkers (Ref 26, 27)
(Fig. 7). These earlier calculations were based
on the classical expression for the velocity, v,
of a grain boundary between grains n and m:

nnm ¼ 2MnmgnmðR�1n �R�1m Þ (Eq 6)

in which Mnm gnm, Rn, and Rm denote the grain-
boundary mobility, grain-boundary surface

energy, and radii of the adjacent grains, respec-
tively. For the case of a two-component texture
(Ref 26), the calculations comprise (1) the

Fig. 5 Monte Carlo model simulation of texture-controlled grain growth for a material with two texture components.
(a) Comparison of predicted grain-growth kinetics (solid line) and normal grain-growth kinetics (broken line).

MU, model lattice units; MCS, Monte Carlo steps. (b) Simulated (100) pole figures after various times. The iso-intensity
lines correspond to 1, 2, 5, 10, and >30 times random. The 010 and 001 poles are not shown for clarity. TD, transverse
direction; RD, rolling direction. Source: Ref 25

Fig. 6 Monte Carlo model predictions of the grain-size
distributions after 15 Monte Carlo steps for the

simulation of texture-controlled grain growth in a
material with two texture components. (a) For the entire
material. (b) For the grains belonging to texture
component “A.” MU, model lattice units. Source: Ref 25

Fig. 7 Predictions of the volume fraction (%) of the
texture components and the grain size as a

function of annealing time for a two-component initial
texture. (a) A Monte Carlo method (Ref 25) is used.
MCS, Monte Carlo steps. (b) An analytical approach
(Ref 27). The labels for components “A” and “B” in (b)
have been switched from those in Ref 27 to coincide
with the nomenclature in Ref 25.
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discretization of the grain-size distributions for
each of the two texture components into bins
and (2) the application of a relation of the
form of Eq 6 for the grains in each bin of each
texture component. The value of Mg used in
these expressions is an average of those for
“AA” and “AB” interfaces (for “A” grains) or
for “BB” and “AB” interfaces (for “B” grains)
weighted by the volume fractions of “A” and
“B” grains.
A comparison of MC predictions of texture-

controlled grain growth to experimental obser-
vations has shown only qualitative agreement
(Ref 24) to date. The differences can be attrib-
uted largely to the dearth of quantitative data
on grain-boundary energy and mobility as a
function of misorientation for titanium alloys.
Furthermore, it has been shown using 3-D MC
simulations that periods of rapid and slow grain
growth may also be due to the anisotropy of
boundary properties associated with tilt-twist
character/boundary inclination (Ref 28–30).
In similar work, Ma and his coworkers

(Ref 31, 32) simulated texture-controlled grain
growth during beta annealing of Ti-6Al-4V
using the phase-field method. The effect of
grain-boundary energy/mobility and specific
type of initial texture on grain-growth kinetics
and the evolution of the different texture com-
ponents were evaluated.

Recrystallization of Beta Titanium

The recrystallization of beta titanium plays a
key role in breaking down coarse ingot struc-
tures to obtain semifinished billet products of
essentially all conventional titanium alloys as
well as in refining the beta grain size during
the thermomechanical processing of plate and
sheet product of beta and near-beta titanium
alloys. Modeling efforts in this area have begun
only recently and have focused primarily on
static recrystallization of beta titanium alloys.
Obtaining a uniform (statically) recrystal-

lized microstructure in beta-rich titanium alloys
can be very difficult. The challenge arises from
the nonuniformity in stored energy within
grains (from prior hot deformation in the beta
phase field) as well as from grain to grain.
Static recrystallization kinetics are thus differ-
ent in different areas, giving rise to simulta-
neous propagation of the recrystallization front
in some areas and grain growth in other, previ-
ously recrystallized areas. Two approaches
have been proposed to address problems of this
sort. One involves the development of phenom-
enological processing maps that delineate com-
binations of forging and heat treatment
parameters that produce uniform recrystalliza-
tion (Ref 33). A second approach, which is just
emerging, comprises the application of model-
ing techniques such as the Monte Carlo (MC)
and cellular automata (CA) techniques (Ref
34–36). The CA method (Ref 35, 36) has been
applied to treat dynamic recrystallization. The
specific method involves tracking the

generation/storage and annihilation of disloca-
tions, nucleation events, and migration of a
recrystallization front. However, the details of
the relationship between the orientations of the
deformed matrix and nuclei and the mobility
of different types of boundaries have yet to be
incorporated, thus limiting the application of
CA techniques for quantitative texture predic-
tions. These drawbacks have been remedied
using the MC technique, at least for static
recrystallization problems, and thus, attention
below is focused on this method.
Formulation of Monte Carlo Simulations.

An MC routine (Ref 34) has been formulated
and applied to provide insight into static recrys-
tallization and grain growth in beta titanium
alloys. The calculation procedure in already
recrystallized regions is similar to that for stan-
dard MC simulations of grain growth, in that
the probability, P, for reorientation during an
elementary flip trial at site i is taken to be the
following:

P ¼ UðyÞWðyÞ expð��EL=kbTsÞ for�EL > 0

(Eq 7a)

and

P ¼ UðyÞWðyÞ for �EL � 0 (Eq 7b)

In Eq 7(a) and (b), U and W denote the relative
(normalized) grain-boundary mobility (M/Mmax)
and energy (g/gmax) as a function of the scalar
misorientation angle y between the initial and
trial orientations; DEL is the change in system
energy before and after the flip trial; and kb is
Boltzmann’s constant. In the absence of stored
energy due to cold or hot working, the system
energy EL is the total grain-boundary energy
and is typically given by the following relation
for 3-D MC simulations:

EL ¼ 1

2

XN
i¼1

X26
j¼1

W yð Þ 1� d qi; qj
� 	
 �! 

(Eq 7c)

Here, the first summation is taken over the total
number, N, of lattice sites in the simulation; the
second summation is taken over the 26 first,
second, and third nearest neighbors (for a sim-
ple cubic lattice) whose orientations/states are
taken to be those specifically possible for the
trial flip; qi and qj denote the orientations of
sites i and j; and d(qi, qj) denotes the Kronecker
delta function (d = 1 for qi = q j and d = 0 for
qi 6¼ qj). In Eq 7(a), Ts represents the simulation
temperature, and kbTs is an energy that defines
the thermal fluctuations/noise present in MC
simulations. When the probability P (Eq 7a
and b) is greater than that obtained from a
random-number generator that produces values
between 0 and 1, the flip is retained; that is,
boundary migration occurs. Otherwise, the
original orientation/state is restored.
The boundary energy in Eq 7 is often

assumed to follow the classic Read-Shockley
behavior for low-angle boundaries (y < 15�)
and exhibit a constant (maximum) energy for

nonspecial, high-angle boundaries (y � 15�)
(Fig. 8a):

g ¼ gmax

y
ymax

� �
1� ln

y
ymax

� �� �
for y < 15�

(Eq 8a)

g ¼ gmax for y � 15� (Eq 8b)

The mobility dependence on misorientation
(M(y)) can be based on specific measurements
or the formulation of Rollett and Holm
(Ref 37) (Fig. 8a):

MðyÞ ¼ Mmax 1�ma exp � y
10�

� �3
" #( )

(Eq 9)

In this expression, Mmax is the maximum
mobility (corresponding to nonspecial, high-
angle boundaries), and the parameter ma is set
equal to 0 or 1 for the isotropic and the most
anisotropic case, respectively.
For flip trials focusing on a site i located at

the recrystallization front, Eq 7(a) is replaced
by an expression of the following form:

P ¼ UðyÞ Hi

Hmax

expð��EL=kbTsÞ (Eq 10)

Here, Hi denotes the stored energy at site i, and
Hmax is the maximum stored energy in the

Fig. 8 Baseline dependences. (a) Normalized grain-
boundary energy and mobility (ma = 1)

dependence on misorientation. (b) Normalized stored
energy dependence on location used in Monte Carlo
simulations of recrystallization and grain growth. “A,”
“B,” and “C” are energy-level distributions used in
Fig. 9. MU, model lattice units. Source: Ref 34
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material; the grain-boundary energy in the pre-
multiplier term is neglected because its value
is usually several orders of magnitude less than
the typical levels of stored work associated
with dislocations. An expression similar to
Eq 7(c), but which incorporates the stored
energy Hi/Hmax, is used to estimate EL and
hence DEL associated with the flip trial, that
is, migration of the recrystallization front.
Various spatial dependences of stored energy
can be used. These include uniform stored
energy within each grain (with each grain’s
energy scaled by its Taylor factor, MT) and a
stored-work distribution whose magnitude
decreases from a maximum at the grain bound-
ary toward the center of the grain (Fig. 8b).
In the MC simulations described in Ref 34,

nucleation was assumed to occur at a constant
rate (10�4 nuclei/ MU3 per MCS; MU � model
lattice unit/ lattice spacing) at grain boundaries
and local regions of high stored energy.
Oriented nucleation was introduced by assigning
various probabilities for the possible misorienta-
tions between the deformed matrix and the
recrystallization nucleus. Specifically, it was
assumed that nuclei were either randomly ori-
ented or formed a S9, S19, or S27 special
boundary with the deformed matrix grain, thus
giving rise to misorientation angles/rotation axes
of 39�<110>, 26.5�<110>, or 35�<110>,
respectively; these misorientations are com-
monly observed in the recrystallization of bcc
metals (Ref 38, 39). A special boundary refers
to the boundary between two grains (or a matrix
grain and a twin within it) for which a certain
fraction 1/X of the lattice sites of the two grains
coincide. The special boundary is then denoted
as being of the type SX.
Monte Carlo Simulation Results. A number

of interesting predictions were obtained by
Ivasishin et al. (Ref 34) from 3-D MC simula-
tions using the aforementioned formulation.
The simulated materials and initial textures
were based on cold-drawn beta titanium alloy
Timetal LCB (Ti-4.5Fe-6.8Mo-1.5Al), with
partial fibers denoted as b and Z (Ref 1) or
hot rolled sheet of VT22 (Ti-5Al-5Mo-5V-
1Cr-1Fe) with an a fiber (Ref 1). Some of the
key findings were:

� Not surprisingly, oriented nucleation assum-
ing a preponderance of S9 nuclei gives rise
to a noticeably different texture from the
deformation texture after recrystallization is
complete.

� The nature of the stored-energy distribution
can have a strong effect on recrystallization
kinetics. This behavior can be demonstrated
using three cases, each assuming randomly
oriented nuclei and the same initial total
stored energy but with one of three different
initial stored-energy distributions: (A) uniform
within each grain, scaled by MT, (B) energy
gradient varying smoothly within each grain,
and (C) energy gradient within each grain
with a number of local maxima (Fig. 8b).
The most rapid recrystallization rate is

found for case C due to the large number
of recrystallization nuclei (Fig. 9). The
recrystallization rate for case B is initially
high due to the high level of stored energy
near the grain boundaries but decreases sub-
stantially at long times; this behavior is
accentuated in Avrami plots of the recrys-
tallization kinetics (Fig. 9b).

� The mobility of special boundaries can
have a pronounced effect on microstruc-
ture/texture evolution and recrystallization
kinetics, as illustrated in Fig. 10. These
dependencies can be illustrated using two
simulations, both of which assumed oriented
nucleation with nuclei probabilities, P, of
P(S9) = 0.4, P(S19) = 0.3, P(S27) = 0.3, and
P(random) = 0. In one case, the special bound-
aries were given the samemobility (Fig. 10b),
and in the other, the mobility was 40% higher
than that of nonspecial high-angle boundaries
(Fig. 10c). A noticeable difference in micro-
structure and recrystallized fraction after a
time of 100 MCS is evident in simulation
predictions for the two cases.

� Oriented nucleation has a strong effect on
recrystallization texture, which in turn affects
subsequent grain-growth kinetics, as dis-
cussed earlier in the section on the modeling
of beta grain growth.

Recrystallization of Alpha Titanium

Significant progress has been made in model-
ing the recrystallization of alpha titanium. The
principal focus in this area has been on the
static recrystallization of cold- or warm-worked
unalloyed (alpha) titanium.
Experimental Observations. Modeling and

simulation of the static recrystallization of
alpha titanium has been guided by detailed
characterization of the deformed microstructure
and experimental observations of recrystalliza-
tion kinetics and so on. For both commercial-
purity (CP) and high-purity unalloyed titanium,
very inhomogeneous microstructures are devel-
oped as a result of the competition between
crystallographic slip and twinning at cold and,
to a lesser extent, warm working temperatures
(Ref 13, 14, 40, 41). At cold working tempera-
tures, for example, twinning is activated at very
low strains (�0.05) and reaches a saturation
level at effective strains of �0.3 to 0.6 in
both uniaxial compression and rolling due to a
Hall-Petch type of strengthening. Furthermore,
as shown by Salem et al. (Ref 13) for a highly
textured lot of pure titanium, the amount of
twinning that is activated is heavily dependent
on the imposed strain state. Imposed strains that
require compressive or tensile strains along the
c-axis of many of the grains in a polycrystalline
aggregate lead to high-volume fractions of
twins. Those strain states that require limited
extension or compression along the c-axis result
in the accommodation of the imposed deforma-
tion primarily by slip processes in the majority
of the grains.

Chun et al. (Ref 14, 40) have done extensive
characterization of the microstructure devel-
oped during the cold rolling and recrystalliza-
tion annealing of CP titanium (CP Ti) sheet.
It was found that cold rolling to a moderate
reduction (�40%) activates slip and mechanical
twinning, primarily f11�22g < �1�123 > com-
pressive twins and f10�12g < �1011 > tensile
twins (Fig. 11a). The formation of twins results
in an inhomogeneous microstructure, in which
regions containing twins are refined and the
grains that deform primarily by slip remain rel-
atively coarse (Fig. 11b). The occurrence of
twinning can weaken the starting texture, lead-
ing to a moderate basal texture (Fig. 12). Above
40% reduction, during which deformation by
slip predominates, a split-basal texture typical
of cold-rolled hcp metals (with a principal
ODF component of j1 = 0�, F = 35 to 90�,
j2 = 30�) is developed.
During subsequent recrystallization annealing

of CP Ti at temperatures of the order of 600 �C
(1110 �F), twinned grains, which contain high
stored energy and numerous high-angle bound-
aries, become the preferential sites for nucle-
ation. Despite their impingement, the
recrystallized grains grow quickly, consuming
the neighboring deformed regions in short times
(�15 min). The coarse, elongated remnant
grains with low stored energy hinder the recrys-
tallization process and require considerably
longer times (of the order of 100 min) to be con-
sumed. Although the overall recrystallization

Fig. 9 Monte Carlo simulation predictions of the
effect of initial stored-energy distribution on

recrystallization, assuming randomly oriented nuclei.
(a) Recrystallized fraction X. (b) Corresponding Avrami
plots (Ref 34). The letters “A,” “B,” and “C” refer to the
stored-energy distributions shown in Fig. 8(b). MCS,
Monte Carlo steps.
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kineticsmay exhibit a sigmoidal behavior, the cor-
responding Avrami plot is bilinear (Fig. 13a, b).
During recrystallization, the cold rolling tex-

ture diminishes in intensity, and a recrystalliza-
tion-texture component (j1 = 15�, F = 35�,
j2 = 35�) appears. The recrystallization texture
component strengthens during the subsequent
grain growth stage as grains with this orientation
become larger than average.
Formulation for Monte Carlo Simulations.

Similar to the work of Ivasishin et al. (Ref 34)
dealing with the recrystallization of beta tita-
nium, Chun et al. (Ref 42) developed and
applied a 2-D MC code to describe the recrystal-
lization of cold-worked alpha titanium. The key
components of this formulation consist of
descriptions of (1) the stored energy associated
with the deformed (cold-worked) state, (2) the
decrease in stored energy during annealing due
to static recovery, (3) nucleation behavior, and
(4) the flip probability for recrystallization/
migration of the recrystallization front.
The spatial distribution of cold work can be

quantified by deformation models such as crys-
tal-plasticity techniques (Ref 39, 43) or direct
measurements based on image-quality maps
derived from electron backscatter diffraction
(EBSD) (Ref 44, 45). Because of the complexity
of the microstructure developed during the cold
deformation of CP Ti, the EBSD image-quality-
map approach is preferable. The technique uses

EBSD Kikuchi-pattern bands whose sharpness
is dependent on elastic strains that distort the
crystal lattice. Chun et al. used the following
relation to quantify this effect:

Hi ¼ k 1� IQi

f�IQmax

� �
(Eq 11)

in which Hi and IQi denote the stored energy
(in arbitrary units) and the image quality, respec-
tively, at MC lattice site i; IQmax is the maximum
value of the image quality; and k and f are con-
stants that specify the upper and lower bounds
for the stored-energy distribution. In line with
other measurements, Chun et al. chose k = 70
and f = 1.3, respectively, which resulted in
stored-energy values ranging from 16 to 65. An
example image-quality map for CP Ti rolled to
a thickness reduction of 60% is shown in Fig. 11
(c). Regions with fine microstructure (developed
in grains that underwent both twinning and slip)
have high stored energy. The coarse remnants of
the initial grain structure (which deformed only
by slip) exhibit low values of stored energy.
Static recovery is described using the follow-

ing relation:

Hnew ¼ ð1� bÞHold (Eq 12)

in which Hold and Hnew are the stored energy
before and after recovery, and b is a simulation

parameter. This relation quantifies the exp-
onential decay of stored energy with time,
which is typical of the static recovery of metals
(Ref 46).
In the work of Chun et al. (Ref 42), nucle-

ation was assumed to comprise site saturation;
that is, all nuclei were assumed to be formed
at the beginning of the annealing process. The
nucleation sites were placed either randomly
in the lattice or at sites with high stored energy.
For the latter high-stored-energy nucleation
case, 1000 lattice sites among those belonging
to the upper 1% of stored energy were chosen.
The stored energies of these nuclei were set to
zero, and their orientations were taken to be
the same as that for the lattice site in the
deformed state.
The probability for recrystallization/migra-

tion of the recrystallization front can be treated
in a manner analogous to that embodied in
Eq 10. In the work of Chun et al. (Ref 42),
however, an explicit expression for strain-
induced migration of the recrystallization front
between sites i and j as a function of the local
variation in stored energy and the grain-bound-
ary mobility was used:

nij ¼ ar��Hij�M (Eq 13)

In this equation, vij denotes a velocity that var-
ies between 0 and 1; ar is a constant that
ensures a realistic rate of recrystallization
corresponding to the range of energy differ-
ences DHij between sites i and j (e.g., 0 to
65), and M is the mobility (as a function of
misorientation), as given in Eq 9. When vij is
greater than the probability obtained from a
random-number generator that produces values
between 0 and 1, the recrystallized grain grows
at the expense of the deformed site j. As a con-
sequence, the stored energy of site j is reset to
zero, and the orientation of site j is changed to
that of site i.
The calculation procedure in already recrys-

tallized regions is similar to that for standard
MC simulations of grain growth.
Monte Carlo Simulation Results. The MC

simulations of Chun et al. (Ref 42) illustrate the
effects of concurrent recovery, the spatial distri-
bution of nuclei, the heterogeneous distribution
of stored energy, and anisotropy of grain-bound-
ary energy and mobility on static recrystallization
kinetics and texture evolution and thus aid in
the interpretation of observations for CP Ti.
For the ideal case of no recovery, site saturation
with randomly placed nuclei, uniformly
distributed stored energy, and isotropic boundary
properties, MC predictions reveal a linear Avrami
plot with a slope p of �2.15 (Fig. 13c), in good
agreement with the classical Johnson-Mehl-
Avrami-Kolmogorov (JMAK) prediction of 2.0.
A number of useful predictions can be

obtained for special cases in which only one
parameter (i.e., recovery, nuclei distribution,
stored-energy distribution) is varied relative to
the ideal case that mirrors JMAK behavior.
When static recovery is included in MC

Fig. 10 Monte Carlo-predicted dependence of microstructure evolution. (a) Initially wrought material. (b) After 100
Monte Carlo steps (MCS), assuming identical nuclei orientations and a mobility of the special boundaries

which was the same as that for nonspecial boundaries. (c) After 100 MCS with the same orientation and a mobility
40% higher than that of other nonspecial high-angle boundaries. Source: Ref 34
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simulations, for example, Avrami curves show
a negative deviation from the linear JMAK
behavior. The deviation becomes more dra-
matic as the parameter b (Eq 12) is increased,
accentuating the rate of recovery and thus the
loss of the driving force for boundary migration
associated with the stored energy. The distribu-
tion of the nuclei can also lead to deviations
from the linear JMAK trend. When the nuclei
are uniformly or heterogeneously distributed
rather than at random locations, positive or neg-
ative deviations, respectively, are predicted.
The range of stored energy (e.g., 15 < H <
65, 20 < H < 86, 50 < H < 92) has little influ-
ence on recrystallization kinetics. Increasing

the average level of stored energy reduces the
recrystallization time, but the distribution per
se does not result in deviations from linear
JMAK behavior. When these various factors and
anisotropic grain-boundary properties are all
incorporated into the MC simulation, Avrami
plots that mirror experimental observations are
obtained (e.g., Fig. 13b versus Fig. 13c).
The spatial and temporal information from

MC simulations provides a useful tool for
investigating the source of deviations from lin-
ear JMAK behavior. Such interpretations often
involve microstructural-path analysis, for
example, determination of the average velocity
VCH of the recrystallization front as a function

of the recrystallized fraction X, using the
Cahn-Hagel relation (Ref 47):

vCH ¼ 1

Sv

� dX
dt

(Eq 14)

Here, Sv and t denote the total area of the
recrystallization front per unit volume and the
time, respectively. For 2-D MC simulations, Sv
and t can be replaced by the total length of
the recrystallization front per unit area, LA,
and the simulation time in MCS, respectively.
As examples, plots of VCH, LA, and the

recrystallization rate (DX/DMCS) as a function
of X are shown in Fig. 14. For the ideal case
giving rise to linear JMAK kinetics (Fig. 14a),
the recrystallization front moves at a nearly
constant speed during the entire recrystallization
process; the parameters LA and DX/DMCS
exhibit maxima at X � 0.42. By contrast, for
the simulation involving recovery, heteroge-
neous nucleation at nonuniformly distributed
sites of high stored energy, and anisotropic
grain-boundary properties (Fig. 14b), the front
velocity increases rapidly during the very early
stage of recrystallization and then decreases; LA
and DX/DMCS both reach maxima at lower
values of the recrystallized fraction (i.e., X �
0.3) than the classic JMAK case. This situation
corresponds to the Avrami plot in Fig. 13(c).
Thus, a negative deviation in recrystallization
kinetics can be correlated to the onset of
decreasing LA at a lower value of X compared
to that for JMAK kinetics or an average veloc-
ity of the recrystallization front that decreases
with time.
The MC simulations also provide an invalu-

able tool to investigate the coupling of micro-
structure and texture evolution during
recrystallization of a material such as CP Ti
whose as-deformed condition is so complex.
For instance, observed and simulated micro-
structures for recrystallization of CP titanium
cold rolled to a thickness reduction of 60%
and annealed at 600 �C (1100 �F) show excel-
lent agreement (Fig. 15). These results illustrate
the heterogeneity of recrystallization at short
times in local regions with high stored energy
and the subsequent grain growth in these areas
during longer times at which the balance of
the microstructure with lower initial stored
energy is still undergoing recrystallization.
Similar remarks apply to predictions of texture,
quantified, for example, by ODFs (Fig. 16).
For CP Ti, the as-deformed texture used for
MC simulations (Fig. 16b, top) was obtained
by EBSD over a limited area of observation
(120 � 100 mm) and thus differs slightly from
that obtained by x-ray diffraction (Fig. 16a,
top); that is, the peak intensity of the x-ray dif-
fraction analysis appeared at j1 = 0�, F = 35�,
and j2 = 30�, while that of the EBSD analysis
was at j1 = 0�, F = 55�, and j2 = 30�. How-
ever, both the experimental and MC-predicted
recrystallization textures (Fig. 16a, bottom and
16b bottom, respectively) show a weakening
of the j1 = 0�, F = 50 to �90�, and j2 = 30�

Fig. 11 Microstructures developed during cold rolling of commercially pure titanium to a thickness reduction of (a)
20% or (b) 60%. (c) An electron backscatter diffraction image-quality map for material cold rolled to a 60%

reduction. The rolling direction is horizontal, and the sheet normal direction is vertical in all micrographs. Source:
Ref 14, 40, 42
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orientations and a strengthening of j1 = 0 to
�30�, F = 20 to �40�, and j2 = 30� orienta-
tions. The strengthened texture component
corresponds to the orientation of regions of high
stored energy in the as-cold rolled CP Ti. This
finding tends to support the MC-simulation
assumption of identical orientations for both
the deformed material and the nuclei and the
importance of nucleation behavior in controlling
recrystallization textures of alpha titanium.

Simulation of Deformation
Texture Evolution

The simulation of deformation textures in
titanium alloys can be performed using a num-
ber of different approaches, including the Tay-
lor (isostrain) formulation; viscoplastic self-
consistent (VPSC) analysis; and the crystal-
plasticity, finite-element method (CPFEM).

Taylor Analysis

The Taylor analysis can be used for simulat-
ing the evolution of deformation texture for
both single- and two-phase titanium alloys to
various degrees of accuracy.
Single-Phase Beta Titanium. Glavicic et al.

(Ref 19) and Gey et al. (Ref 48) demonstrated
that a rate-sensitive Taylor-type model can be
used to simulate beta-texture development dur-
ing hot working of Ti-6Al-4V in the single-phase
beta field. The former effort focused on texture
evolution during the initial beta hot working
breakdown operations for production-scale
ingots. To this end, the local strains imparted to
the workpiece were first estimated using a com-
mercial continuum finite-element method
(FEM) code, DEFORM (Scientific Forming
Technologies Corporation, Columbus, OH).
The strain increments so determined were
inserted in the Los Alamos polycrystalline plas-
ticity (LApp) code (Ref 49), assuming deforma-
tion via slip on {110}<111> and {112}<111>
systems. By this means, a <110> fiber texture
was predicted for the billet center at which the
initial (solidification) texture had been random.
Model predictions showed good agreement with
the experimental beta texture, whose determina-
tion required measurements of the alpha-phase
texture due to the limited amount of beta phase
for Ti-6Al-4V at room temperature (Ref 50, 51).
Gey et al. (Ref 48) analyzed the rolling of

Ti-6Al-4V plate in the beta phase field. They
assumed the same slip systems as in the work of
Glavicic et al. (Ref 19) but chose a relaxed-con-
straints approach. That is to say, two of the three
shear strains were not forced to be identical in all
grains because of the pancake shape of the grains
developed during rolling to heavy reductions.
The simulated texture for a 75% thickness reduc-
tion showed relatively good agreement with
measurements (Fig. 17). The major difference
lay in the absolute intensity of texture compo-
nents; the simulations showed stronger maxima
compared to the observations. Such differences
are common for crystal-plasticity models that
typically neglect accommodation of the imposed
deformation via dynamic-recovery/dislocation-
climb processes or heterogeneous strain in
different regions of the same grain.
Two-Phase Titanium Alloys. Taylor-type

models can also be used to estimate the deforma-
tion textures developed in the individual phases
during the hot working of two-phase titanium
alloys with an equiaxed alpha microstructure,
such as occurs during alpha/beta forging or rolling
of alpha/beta titanium alloys. One such approach
is that developed by Glavicic et al. (Ref 52) for
the prediction of texture evolution during the hot
pancake forging of Ti-6Al-4V. In this approach,
a continuum FEM code is used first to estimate
the macroscopic strains/strain increments and
rigid-body rotations at each point of the work-
piece. An approximate analysis is then used to
estimate the partitioning of strain between the
(harder) alpha-phase particles and the (softer)

Fig. 12 Pole figures for commercially pure titanium cold rolled to percent thickness reductions of (a) 0%, (b) 40%,
and (c) 60%. The maximum x-random texture intensities were (a) 4.4, (b) 3.9, and (c) 3.7. The contour levels

for all pole figures are 1.5, 2.0, 2.5, . . .7.5. RD, rolling direction; TD, transverse direction. Source: Ref 14
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beta-phase matrix grains at specific points of
interest. Next, a rate-sensitive Taylor analysis is
applied to estimate the rotations associated with
slip within each separate phase. Last, the rotations
due to rigid-bodymotion (metal flow) and crystal-
lographic slip are summed to determine the final
texture of the alpha and beta phases.
To partition the strain between the alpha and

beta phases, Glavicic et al. (Ref 52) used an
approximate self-consistent analysis for two-
phase materials, each of whose constituents
has the same strain-rate sensitivity, m, and a
constitutive response of the form si ¼ ki _e

m
i ;

sð _eÞ and ki denote the flow stress as a function
of strain rate and the strength coefficient for the
specific phase, respectively. The model was
based on the approach developed by Hill
(Ref 53) for linearly elastic solids, which was
later extended to the case of rate-sensitive,
incompressible materials by Suquet (Ref 54).
Subsequently, it was applied to titanium alloys
by Briottet et al. (Ref 55) and Semiatin et al.
(Ref 56). The analysis leads to the determina-
tion of an effective strength coefficient, k, for
the two-phase aggregate, whose overall consti-
tutive response is assumed to be s ¼ k _em.
The strength coefficient k depends on the ratio
of the strength coefficients of the two phases,
ka/kb, and the volume fraction of the harder
phase (alpha for the case of alpha/beta titanium

alloys), that is, fa. Results of the analysis for
m = 0.23 (i.e., the m for the alpha and beta
phases of Ti-6Al-4V) are shown in Fig. 18(a).
Results for m = 0.15 and m = 0.30 are similar.
The values of ka and kb depend on phase

composition and temperature (Ref 56, 57). An
analysis of a large collection of flow stress data
for various alloys has led to the finding that
the ratio ka/kb for the alpha and beta phases in
Ti-6Al-4V is almost constant at temperatures
between 815 and 982 �C (1500 and 1800 �F)
and has a value of 3 (Ref 56).
The average strain rates in the alpha and beta

phases (and hence the strain partitioning
between the phases) are readily calculated from
the values of k, ka, kb, and fa by noting that the
aggregate flow stress and strain rate are volume
averages of the corresponding quantities for the
components (Ref 58). This leads to the follow-
ing expressions for _ea= _eov and _eb= _eov, in which
_eovis the overall (aggregate) strain rate:

k=ka ¼ fað_ea= _eovÞm
þ ½ð1� faÞð1�mÞðkb=kaÞf1� fað_ea= _eovÞgm�

(Eq 15a)

_eb= _eov ¼ ½1� fað_ea= _eovÞ�=ð1� faÞ (Eq 15b)

Equation 15(a) cannot be solved analytically
but is readily evaluated using numerical

techniques, leading to nomographs such as
those in Fig. 18(b, c).
Using this approach for strain partitioning,

Glavicic et al. (Ref 52) applied the rate-sensi-
tive Taylor code LApp to predict the deforma-
tion texture of the primary alpha phase at
various locations in a pancake of Ti-6Al-4V
forged at 955 �C (1750 �F), which is �40 �C
(�72 �F) below the beta-transus temperature.
The predictions showed reasonable qualitative
agreement with measurements (Fig. 19). The
angular difference in the location of the texture
maxima may be ascribed to small errors in
the metal-flow part of the texture prediction.
In addition, the magnitudes of the predicted
texture components were high, a trend similar
to that discussed previously with regard to the
work of Gey et al. (Ref 48).

VPSC and CPFEM Analyses

Viscoplastic self-consistent (VPSC) and
crystal-plasticity FEM (CPFEM) approaches
can also be used to model the evolution of
deformation texture in two-phase titanium
alloys. In the former approach, the strain is
assumed to be homogeneous with each grain
but may vary from one grain/phase to another.
The CPFEM technique enables the investiga-
tion of strain variations within grains/phases
as well as from grain to grain. Details on these
simulation techniques are contained in other

Fig. 13 Static recrystallization behavior of commercially pure titanium rolled to a thickness reduction of 60% and
annealed at 600 �C (1100 �F). (a) Measured recrystallization kinetics. (b) Corresponding experimental

Avrami plot. (c) Predicted kinetics from a Monte Carlo simulation; see text for details. JMAK, Johnson-Mehl-Avrami-
Kolmogorov; GB, grain boundary; MCS, Monte Carlo steps. Source: Ref 42

Fig. 14 Monte Carlo predictions of the dependence
on recrystallized fraction X of the average

velocity (V
CH

) and total length per unit area (L
A
) of the

recrystallization front and the rate of recrystallization
(DX/DMCS). (a) Classical Johnson-Mehl-Avrami-
Kolmogorov (JMAK) condition. (b) A condition involving
recovery, heterogeneous nucleation at sites of high
stored energy, and anisotropic grain-boundary (GB)
properties. MCS, Monte Carlo steps. Source: Ref 42
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articles in this Volume. Hence, only some key
results of such analyses are summarized here.
The VPSC analysis has been applied to

alpha/beta titanium alloys with an equiaxed
alpha or a lamellar colony microstructure.
In the work of Dunst and Mecking (Ref 59),

for example, texture evolution during the rolling
of plate to a 70% thickness reduction in a single
pass at 800 �C (1470 �F) was investigated for a
series of equiaxed alpha alloys with different
volume fractions of the two phases. Alloying
was chosen so that the compositions of the

alpha and beta phases were the same in each
case. The evolution of deformation texture
was simulated using the VPSC approach of
Lebensohn and Tome (Ref 60). Using a fitting
procedure to get the best deformation-texture
predictions for single-phase alloys, the critical
resolved shear stresses (CRSS) for slip were
taken to be in the ratio of 1:1:1.5:3:1/3:1/3:1/3
for the four assumed alpha-phase systems
(prism <a>, pyramidal <a>, basal <a>, pyra-
midal <c + a>) and the three assumed beta-
phase systems ({110}<111>, {112}<111>,
and {123}<111>). The strain-rate sensitivity
(m) was set at 0.2 for both phases.
Alpha-phase rolling textures predicted by

Dunst and Mecking using the VPSC approach
showed good agreement with measurements
(Fig. 20). The calculated activity of different
slip systems and microstructure observations
revealed that hard alpha-grain orientations
(i.e., those whose c-axes lay in the plate normal
direction) tended to remain undeformed as the
volume fraction of alpha decreased. On the
other hand, soft alpha grains deformed predom-
inantly by single slip (along prism <a> sys-
tems) as the alpha volume fraction increased;
the strain incompatibility was accommodated
by the deformation of the beta phase. Predicted
beta-phase textures showed poorer agreement
with measurements, an effect ascribed to local
interactions between the beta and alpha phases
that were not treated in the VPSC model.
Deformation-texture development in alpha/

beta titanium alloys with a colony-alpha micro-
structure can also be described using a VPSC
approach (Ref 61). The best alpha-phase pre-
dictions are obtained when the correlation
between alpha lamellae and the beta matrix
(i.e., the Burgers relation between the phases
and an alpha-beta interface close to a prism
plane in the alpha phase) is taken into consider-
ation. Local interactions and nonuniform local
flow of the beta phase make the prediction of
beta deformation textures somewhat problemat-
ical, as in VPSC simulations for equiaxed
microstructures, however.
Crystal-plasticity FEM simulations can also

be used to quantify strain partitioning and tex-
ture evolution in two-phase titanium alloys.
For example, Turner and Semiatin (Ref 62)
examined the effect of the degree of micro-
structure discretization on strain partitioning
between a hard and a soft phase. Predictions
were found to differ noticeably for so-called
meso-scale and micro-scale modeling
approaches. For the former, each grain is repre-
sented by a single element in the CPFEM sim-
ulation, whereas each grain is divided into
multiple elements for micro-scale simulations.
The higher level of discretization produces pre-
dictions of strain partitioning similar to those
from the approximate self-consistent model
of Suquet, Semiatin, and their co-workers
(Ref 54, 56) (Fig. 21a).
The usefulness of CPFEM to quantify local

deformation and texture evolution for two-
phase alpha/beta titanium alloys has been

Fig. 15 Comparison of microstructure evolution during recrystallization of commercially pure titanium cold rolled
to a 60% thickness reduction and then annealed at 600 �C (1110 �F). (a) Experimental observations.

(b) Monte Carlo predictions. MCS, Monte Carlo steps. Source: Ref 42
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demonstrated by Barton and Dawson (Ref 63).
In this work, the hot rolling of plate in which
the volume fractions of the alpha and beta
phases were varied was simulated; because of
excessive mesh distortions, the thickness reduc-
tion was limited to 25%. The values of CRSS
were similar to those used in the VPSC simula-
tions of Dunst and Mecking (Ref 59). As for
other modeling approaches, the partitioning of
strain between the alpha and beta phases is pre-
dicted by CPFEM to increase with a decrease in
the volume fraction of the harder alpha phase
(Fig. 21b). Furthermore, nonnegligible shear
strain components can be quantified in CPFEM
simulations. In the work of Barton and Dawson
(Ref 63), it was shown that the shear strains
tend to be higher in the beta phase and increase
in magnitude with an increase in the volume
fraction of alpha, thus underlining the need to
quantify local neighborhood effects on texture
evolution in the beta phase. In a similar vein,
CPFEM simulations reveal that strain localiza-
tion tends to occur in materials with roughly
equal amounts of alpha and beta or slightly

beta-rich alloys. In titanium alloys with a large
volume fraction of beta, on the other hand, the
alpha particles tend to undergo little deforma-
tion (but may experience noticeable rotations),
and thus, they are essentially carried along with
the plastic flow of the beta. Textures predicted
by CPFEM mirror measured ones, but limita-
tions on the reduction level that can be
simulated (due to excessive mesh distortion)
preclude quantitative comparisons. Current
and future increases in computing power are
now overcoming such limitations for CPFEM
simulations of texture evolution.

Transformation Texture Evolution

The decomposition of the high-temperature
metastable bcc beta phase during cooling often
results in the preferential selection of a subset
of the 12 possible hcp lamellar-alpha variants.
This effect has been investigated most often
for alpha/beta titanium alloys such as Ti-6Al-
4V, and various approaches have been proposed

to interpret observations for both heat treatment
and deformation processes.
In the area of heat treatment, it has been

found that variant selection tends to be weak
for cold- or hot-rolled Ti-6Al-4V plate that is
beta annealed and slow cooled (Ref 64, 65).
By contrast, a strong variant-selection process
can occur for this material during rapid cooling
from a heat treatment in the alpha + beta phase
field (Ref 64). For example, an analysis of the
data of Moustahfid et al. (Ref 64) by Divinski
et al. (Ref 66) suggests that the orientation of
the beta-phase plane relative to the rolling plane
controls the variants that are formed. In partic-
ular, good agreement between measured and
predicted pole figures (Fig. 22) is obtained when
only one-half of the possible variants are chosen
for each of the two principal beta-texture com-
ponents (f112g < 1�10 > and f111g < 11�2 >,
in which the two indices refer to the

Fig. 16 Comparison of textures developed during recrystallization of commercially pure titanium cold rolled to a
60% thickness reduction and then annealed at 600 �C (1110 �F). (a) Measured. (b) Monte Carlo

prediction. In both (a) and (b), the orientation distribution function on the top is for the as-deformed condition, and
that on the bottom is for the fully recrystallized condition. Source: Ref 42

Fig. 17 Comparison of (a) measured and (b) predicted
(100) beta-phase pole figures for Ti-6Al-4V

plate hot rolled to a 75% thickness reduction in the beta
phase field. RD, rolling direction. Source: Ref 48
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crystallographic plane/direction parallel to the
rolling plane/rolling direction). It has been
hypothesized that local stresses developed in
two-phase material during cooling (as a result
of differences in coefficients of thermal expan-
sion) tend to favor the formation of alpha var-
iants whose orientation is similar to that of the
primary alpha (Ref 66). In later work byHumbert
and Gey (Ref 67), such biasing of the texture of
the secondary alpha by that of the primary alpha
was modeled based on a minimum strain-energy
hypothesis. In yet other work, Zeng and Bieler
(Ref 68) have postulated that the anisotropic con-
traction of primary alpha during cooling may
activate slip on selected {110} slip planes in
the beta phase, thus biasing the secondary-alpha
variants that are formed.
When beta-phase decomposition follows hot

deformation in the beta field, noticeable pre-
ferred variant selection tends to occur (Ref 48).
In such cases, the selected alpha variants tend
to correlate with the beta slip systems that have
been most active during the prior deformation.
The plausibility of this approach was demon-
strated by Gey et al. (Ref 69) for beta hot work-
ing via plate rolling. As described in the section
on the modeling of deformation texture, the rel-
ative slip activity in the beta phase can be esti-
mated using a Taylor-type model assuming
deformation on {110}<111> and {112}<111>

Fig. 18 Predictions from an approximate self-
consistent model for strain partitioning in a

two-phase material with a rate sensitivity of 0.23. The
graphs show the dependence on the ratio ka/kb and the
volume fraction of the harder phase fa (a) Aggregate
strength coefficient k relative to ka (b) Strain rate in
the harder phase ( _ea). (c) Strain rate in the softer phase
( _eb). Both relative to the overall (aggregate) strain rate
( _eov). Source: Ref 56

Fig. 19 Comparison of the deformation texture
(in terms of (0001) pole figures) developed

in the primary alpha phase at the corner location of a
Ti-6Al-4V billet that was pancake forged at 955 �C
(1550 �F). (a) Measured. (b) Predicted. Source: Ref 52

Fig. 20 Comparison of measured (a-d) and simulated (e-h) alpha-phase (0001) pole figures for heavily rolled titanium
alloys having alpha/beta volume fractions (in %) of (a) and (e) 96/4, (b) and (f) 78/22, (c) and (g) 36/64, and

(d) and (h) 18/82. Source: Ref 59

Fig. 21 Strain partitioning in two-phase alloys. (a)
Comparison of crystal-plasticity finite element

method (CPFEM) meso-scale and micro-scale model
predictions with those from a self-consistent (SC) model.
(b) CPFEM predictions of the strain-rate components, ij, in
the alpha and beta phases during rolling of titanium plate
with two different volume fraction ratios. i or j: 1, normal
direction; 2, transverse direction; 3, rolling direction.
Source: (a) Ref 62, (b) Ref 63
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systems. Alpha variants may be presumed to
nucleate on highly active {110}<111> beta-
phase systems because of the direct Burgers
orientation relation between the close-packed
planes and directions in the two phases. In
addition, Burgers (Ref 9) suggested that the
beta-to-alpha transformation begins with shear
movements of atoms on {112} planes in <111>
directions. Thus, prior activity of specific
{112}<111> systems may also favor the forma-
tion of related alpha variants. In the specific work
of Gey et al. (Ref 69), therefore, the volume frac-
tions of alpha variants for each beta crystal orien-
tation were assigned in direct proportion to the
relative activity on those slip systems that under-
went a certain minimum shear strain; the mini-
mum was taken to be 50% of the maximum
shear strain for the particular crystal orientation.
With a variant-selection rule of this form, texture
predictions in good agreement with observation
can be made (Fig. 23).
An alternate but related variant-selection rule

for the decomposition of hot-worked beta has

been proposed and validated by Moustahfid
et al. (Ref 70). This alternate rule chooses
among the various possible {110}<111> and
{112}<111> slip systems for each crystal ori-
entation based on their relative Schmid fac-
tors/resolved shear stresses. Those systems
whose Schmid factors are within 10% of the
maximum Schmid factor are assumed to form
an alpha variant.

Future Outlook

The current status of the modeling and simu-
lation of the evolution of crystallographic tex-
ture in titanium and titanium alloys due to
recrystallization, grain growth, deformation,
and phase transformation has been summarized.
For these materials, the development of a fun-
damental understanding of texture formation
tends to be challenging from an experimental
standpoint because of the high temperatures
involved in typical industrial processes and the

allotropic transformation of many alloys of
commercial interest. Hence, modeling and sim-
ulation provide useful tools to investigate phe-
nomena that are not easily observed. Recent
developments in this area underscore the cou-
pled nature of the evolution of texture and
microstructure and the need to treat both
aspects in realistic physics-based models.
Important areas of future development include
the following:

� Development of databases of material prop-
erties needed for simulations. These proper-
ties include grain-boundary energy and
mobility and stress-strain/strain-rate consti-
tutive behavior at large strains for slip in
both alpha and beta titanium.

Fig. 22 Comparison of (0001) alpha-phase pole figures for Ti-6Al-4V plate that was heat treated high in the alpha +
beta phase field and then rapidly cooled. (a) Measured. (b) Predicted assuming random variant selection.

(c) Predicted assuming biased variant selection. RD, rolling direction. Source: (a) Ref 64, (b) and (c) Ref 66
Fig. 23 Comparison of (0001) pole figures for colony

alpha formed during cooling following hot
rolling of Ti-6Al-4V plate to a 75% thickness reduction
in the beta-phase field. (a) Measured. (b) Predicted using
a Taylor-type crystal-plasticity model and alpha-variant
selection based on relative slip-system activity. RD,
rolling direction. Source: Ref 69
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� Development of an understanding of the
effect of strain path on large-strain constitu-
tive behavior at the crystal scale

� Incorporation of recovery in deformation-
texture models

� Development of variant-selection rules to
describe the decomposition of beta during
cooling following heat treatment or hot
working, especially for alpha/beta titanium
alloys processed in the two-phase field
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Consistent Anisotropic Approach for the

Simulation of Plastic Deformation and
Texture Development of Polycrystals:
Application to Zirconium Alloys,” Acta
Metall. Mater., 1993, Vol 41, pp. 2611–
2624.

61. R.A. Lebensohn and G.R. Canova, “A Self-
Consistent Approach for Modelling Tex-
ture Development of Two-Phase Polycrys-
tals: Application to Titanium Alloys,”
Acta Mater., 1997, Vol 45, pp. 3687–3694.

62. T.J. Turner and S.L. Semiatin, “A Crystal-
Plasticity Model for the Flow Behavior of
Two-Phase Alloy Systems,” Numiform
2004, S. Ghosh, J.M. Castro, and J.K.
Lee, Eds., American Institute of Physics,
College Park, Maryland, 2004, pp. 1792–
1797.

63. N.R. Barton and P.R. Dawson, “On the
Spatial Arrangement of Lattice Orientation
in Hot-Rolled Multiphase Titanium,”Model.
Simul. Mater. Sci. Eng., 2001, Vol 9,
pp. 433–463.

64. H. Moustahfid, N. Gey, M. Humbert, and
M.J. Philippe, “Study of the Beta-Alpha
Phase Transformations of a Ti-64 Sheet
Induced from a High-Temperature Beta
State and a High-Temperature Alpha+Beta
State,” Metall. Mater. Trans. A, 1997,
vol. 28A, pp. 51–59.

65. M.G. Glavicic, P.A. Kobryn, T.R. Bieler,
and S.L. Semiatin, “An Automated Method
to Determine the Orientation of the High-
Temperature Beta Phase from Measured
EBSD Data for the Low-Temperature
Alpha-Phase in Ti-6Al-4V,” Mater. Sci.
Eng. A, 2003, Vol A351, pp. 258–264.

66. S.V. Divinski, V.N. Dnieprenko, and O.M.
Ivasishin, “Effect of Phase Transformation
on Texture Formation Ti-Base Alloys,”
Mater. Sci. Eng. A, 1998, Vol A243,
pp. 201–205.

67. M. Humbert, L. Germaine, N. Gey,
P. Bocher, and M. Jahazi, “Study of the
Variant Selection in Sharp Textured
Regions of Bimodal IMI 834 Billet,”Mater.
Sci. Eng. A, 2006, Vol A430, pp. 157–164.

68. L. Zeng and T.R. Bieler, “Effects of
Working, Heat Treatment, and Aging on
Microstructural Evolution and Crystallo-
graphic Texture of a, a0, a00, and b Phases
in Ti-6Al-4V Wire,” Mater. Sci. Eng. A,
2005, Vol A392, pp. 403–414.

69. N. Gey, M. Humbert, M.J. Philippe, and Y.
Combres, “Modeling the Transformation
Texture of Ti-64 Sheets after Rolling in
the Beta Field,” Mater. Sci. Eng. A, 1997,
Vol A230, pp. 68–74.

70. H. Moustahfid, M. Humbert, and M.J.
Philippe, “Modeling of the Texture Trans-
formation in a Ti-64 Sheet after Hot
Compression,” Acta Mater., 1997, Vol 45,
pp. 3785–3790.

552 / Modeling of Microstructures

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Application of Neural-Network Models
Wei Sha and Savko Malinov, Queen’s University, Belfast, United Kingdom

MANY COMPUTER-BASED MODELS
and software have been developed to aid the
understanding of metallurgical processes and
to help reduce the investment of time and
money for experimental work in research or
for plant trials in production. Generally, the
modeling techniques can be classified into two
large groups: physical modeling and statistical
modeling. Each has advantages and may be
more suitable for certain areas of application.
Both are constantly being improved and applied
to a variety of processes and correlations in
metallurgy and materials science.
Physical models and software are usually

based on fundamental theories and laws
describing the physical nature of the process.
There are major achievements in the field of
physical modeling of the correlations between
processing parameters, microstructure forma-
tion, and product properties of metals and
alloys, including thermodynamics and kinetics
modeling and many other areas covered in
other sections of this Handbook.
Statistical models, on the other hand, have

applications in areas where large quantities of
data exist and there are no physical models to
adequately describe the process. A huge amount
of data for various correlations in metals and
alloys at different conditions is currently avail-
able in the literature. However, these data are
sometimes rather confusing for use in the engi-
neering practice because of contradicting data
from various sources, for example.
Artificial neural network (ANN) is currently

one of the most powerful and advanced model-
ing techniques based on a statistical approach,
with very quick return for the practice. Neu-
ral-network (NN) modeling is most suitable
for simulations of correlations that are hard to
describe or cannot be accurately predicted by
physical models. Because ANN modeling is a
nonlinear statistical technique, it can be used
to solve problems that are not amenable to con-
ventional statistical methods. The ANNs have
been applied to model complicated processes
in many engineering fields—aerospace, auto-
motive, electronic, manufacturing, robotics,
telecommunication, and so on—and the method

is now a standard modeling technique. Since
the1990s, there has been increasing interest in
ANN modeling in various fields of materials
science (Ref 1–4). The ANN models have been
developed to model various correlations and
phenomena in steels (Ref 5–13), aluminum
alloys (Ref 14), nickel-base superalloys,
mechanically alloyed materials, and so on. A
special feature of the models is the ability to
provide upper and lower limits of the predicted
value, thanks to the introduction of probability
theory into nonlinear data statistical analysis.
How to calculate the error associated with the
prediction, that is, the confidence level, is
described by Ref 15. As a few examples,
ANN modeling has been employed to study
the mechanical properties of microalloyed
steels as functions of alloy composition and
rolling process parameters, the effect of carbon
content on the hot strength of austenitic steels,
continuous cooling transformation diagrams of
vanadium-containing steels, and the hardness
after surface nitriding of titanium alloys (Ref
16).
This article describes the NN technique, its

software development, and its applications. The
organization and features of NN models are pre-
sented. The effectiveness and applications of
the programs are discussed. Examples for use of
the models for simulation and optimization of
various processes are demonstrated. Ways to
improve and upgrade the models are given.

Principles and Procedures of
NN Modeling

One direction of titanium research has been
dedicated to ANN modeling and software
development for simulation of processes, corre-
lations, and phenomena in titanium alloys
(Ref 16–23). This section describes the princi-
ples of NN modeling, using mostly examples
from this program of work for demonstration
purposes where needed, while the next section
demonstrates NN applications, expanding to
models concerning other types of materials.

Examples of the types of correlations that
can be modeled are schematically shown in
Fig. 1. The input parameters for each particular
case of output are chosen based on the physical
background of the process; all relevant input
parameters must be represented. The graphical
user interfaces of the corresponding software
products are shown in Fig. 2. The basic princi-
ples of NN modeling and the algorithms of soft-
ware programs are discussed in the following
sections. The use of graphical user interfaces
is discussed further.

Basic Principles

Artificial neural-network modeling is essen-
tially an operation linking input to output data
by using a particular set of nonlinear basis func-
tions. An NN consists of simple synchronous
processing elements that are inspired by the
biological central nervous systems in living
organisms. It comes to a conclusion, given the
relevant information, or stimuli, and experi-
ence. The basic unit, or building block, in the
ANN is the neuron, also referred to as the node.
Neurons are connected to each other by links
known as synapses. Figure 3 shows the sche-
matic layout of the neurons within a network,
with each arrow representing a link, or a syn-
apse, between neurons. Each of these synapses
has a weight attached to it that governs the out-
put of the neuron. As the synapses are built up,
a network is formed. For metallurgical model-
ing, hierarchical types of networks are most
suited. In all cases in this article, feed-forward
hierarchical (also referred to as multilayer per-
ceptron) ANNs are used (Fig. 3). In a feed-for-
ward NN, the input information is processed in
a one-way direction––from input to output—
and the neurons are ordered in layers, with an
input set, hidden set(s), and an output set of
neurons (input layer, hidden layer(s), and out-
put layer in Fig. 3). Most of the NNs for metal-
lurgical studies follow this structure, fully
connected and feed-forward.
When developing a model, these steps should

be followed:
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1. Determination of input/output parameters
2. Database collection
3. Analysis and preprocessing of the data
4. Training of the NN
5. Test of the trained network
6. Use of the trained network for simulation

and prediction

Input Parameters. Selection of the property-
related parameters, or input parameters, is
based on the physical background of how the
target property is determined. Omitting the
unimportant parameters benefits the develop-
ment of the model and simplifies further appli-
cation. The input parameters should ideally be
independent variables. However, closely related
input parameters, such as processing tempera-
ture and processing phase fraction although
one is a function of the other (but not solely
due to, for example, factor(s) in addition to
temperature also contributing to the phase frac-
tion), can be used as separate input parameters.
Sometimes, the selection is limited by data
availability, but this could lead to an inadequate
model if an important input variable is not
included.
Example 1: Maraging Steels. For maraging

steels (Ref 6), there are two major thermal
treatment processes: austenitizing and aging.
A cold deformation procedure is sometimes
used between the two treatments to increase
the achievable strength level. As long as the
austenitizing process ensures a full transforma-
tion to austenite, the temperature and time only
marginally affect the mechanical properties
after aging, in that an increase in austenitizing
temperature (Taus) or time (taus) usually leads
to slightly better toughness and a slight drop
in strength. Therefore, Taus and taus need not
be used as inputs. In practice, the chosen Taus
and taus should be, respectively, sufficiently
high and long to ensure a fully austenitic struc-
ture and then as low and short as possible to
avoid austenite grain growth. The cooling
method after austenitizing is usually air cooling
or water quenching (occasionally oil quench-
ing). It is chosen to ensure a full martensitic
transformation and need not be taken as an

Fig. 1 Schematic models of artificial neural networks for simulation and prediction of various correlations in titanium
alloys. (a) Time-temperature transformation (TTT) diagrams. (b) Mechanical properties of conventional

titanium alloys. (c) Fatigue stress life diagrams. (d) Mechanical properties of titanium aluminides

Fig. 2 Graphical user interfaces of artificial neural-network software for simulation and prediction of various
correlations in titanium alloys. (a) Time-temperature transformation (TTT) diagrams. (b) Mechanical properties

of conventional titanium alloys. (c) Fatigue stress life diagrams. (d) Mechanical properties of titanium aluminides

Fig. 3 Schematic of the structure of a feed-forward
hierarchical artificial neural network
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input parameter. The cold deformation and
aging treatment are important to the mechanical
properties of maraging steels. Therefore, the
input parameters include cold deformation
degree, aging temperature, and aging time.
Maraging steels are frequently used and some-
times essential for many high-temperature
applications, so the working temperature is
another input parameter to the ANN model.
The chemical composition of the maraging

alloys contains 13 elements: carbon, aluminum,
cobalt, chromium, copper, manganese, molyb-
denum, niobium, nickel, silicon, titanium, vana-
dium, and tungsten. Elements boron and
zirconium are not efficient alloying elements,
and their uses are rare in the development of
maraging steels. Element beryllium, although
classified as a strong hardener, has not been
widely employed because of toxicity concerns.
Influences from residual impurities of calcium,
nitrogen, oxygen, phosphorus, and sulfur are
ignored.
Contradicting Information from Various

Sources. In some cases, there is a contradiction
between the data (for example, time-temperature
transformation diagrams and mechanical prop-
erties) (Ref 23) for the same alloy taken from
different sources and authors. If there is no rea-
son to discard one source against the others, all
data should be included in the database. How-
ever, the contradiction in the experimental data
will be a main source of deviation of the net-
work response. Usually, the calculated results
are within the range of experimental data pub-
lished in various sources (Ref 23), showing an
averaging effect. The difference between the
NN predictions and the experimental data
should be comparable with the difference
between experimental data published in various
sources.
Sometimes, the input parameter is qualita-

tive, for example, microstructural types (Ref
23). There may be overlap in microstructural
types due to the different terminology used in
various sources. For example, for gamma tita-
nium aluminides, fully transformed microstruc-
ture is similar to fully lamellar. These different
terminologies should be preserved in modeling,
however, to avoid possible distortion from orig-
inal literature data.
Training. As indicated by step four, the NN

must be trained. The training procedure is the
most significant part of NN modeling. Training
is a procedure whereby a network is adjusted to
do a particular job. Usually, NNs are trained
using a large amount of data containing input
with corresponding output values, called input/
output pairs, so that a particular set of known
inputs produces, as nearly as possible, a specific
set of known target outputs. Training involves
adjusting the weight associated with each con-
nection (synapse) between neurons within the
network by comparison of the computed out-
puts and the targets, until the computed outputs
for each set of data inputs are as close as possi-
ble to the target data outputs. The weight of a

synapse, multiplied by the strength of the signal
on that synapse, defines the contribution of that
synapse to the activation of the neuron for
which it is input. The total activation of a neu-
ron is then the sum of the activation of all its
inputs plus a bias value, and this defines the
value of the output signal for that neuron, via
a transfer function. By adjusting the values of
these synaptic weights throughout the network,
the outputs of the NN for any given set of
inputs can be altered. Training is a continuous
process, until the network correctly simulates
the known behavior of the system to be mod-
eled. The simulation will rarely be exact; train-
ing is usually aimed at minimizing the sum of
the squares of the differences (the errors)
between the predicted and experimentally
measured values of the outputs.
Training algorithm (also known as learning

rule) refers to the procedure for modifying the
weights and biases of a network. The training
algorithm is applied to train the network to per-
form some particular task. It is the mathemati-
cal apparatus by which the data are used to fit
(train) the network. There are many different
training algorithms. To achieve the best result,
various training algorithms may be attempted.
For feed-forward NN, the most commonly used
ones are batch gradient descent, batch gradient
descent with momentum, one-step secant,
scaled conjugate gradient, resilient backpropa-
gation, Polak-Ribiere conjugate gradient,
Fletcher-Powell conjugate gradient, Powell-
Beale conjugate gradient, variable learning rate,
and Levenberg-Marquardt. These training algo-
rithms are standard. Their mathematics can be
found in many NN books. In software, the
training algorithms are implemented in the
computer code.
The method used in this article is the Leven-

berg-Marquardt algorithm. Typically, the use of
Levenberg-Marquardt leads to a reduction of
orders of magnitude in the number of training
iterations required compared with backpropaga-
tion, and it is highly reliable. From a compara-
tive work (Ref 21), the algorithms based on
batch gradient descent require approximately
1000 times longer training time compared to
the Levenberg-Marquardt training and do not
give better results. The algorithms based on
conjugate gradient require 20 to 30 times longer
training time compared to the Levenberg-Mar-
quardt training. The Levenberg-Marquardt
training algorithm is the fastest, but the results
for the test and the whole dataset for this algo-
rithm are not acceptable. The most probable
reason for this is the problem with overfitting.
When Bayesian regularization in combination
with the Levenberg-Marquardt training was
used, the training time was increased, but the
R-values (Ref 23) for the test and the whole
dataset were better. The training with variable
learning rate is slower than Levenberg-
Marquardt.
The two most popular algorithms are the

Levenberg-Marquardt algorithm and Bayesian

regularization. The Levenberg-Marquardt algo-
rithm is the fastest training algorithm for net-
works of moderate size. It has a memory-
reduction feature for use when the training set
is large. The time required for training can be
dramatically reduced using this method. How-
ever, it is sometimes difficult to find the best
model using this algorithm. Bayesian regulari-
zation is a modification of the Levenberg-
Marquardt algorithm for obtaining networks
that generalize well. It reduces the difficulty in
determining the optimum network parameters.
Generally, the features of ANNs can be sum-

marized as follows:

� The NN models are statistical models; that
is, they are not based on any physical theory.
However, they can be used to model com-
plex processes and correlations.

� The NNs work with numerical characteris-
tics (input/outputs).

� A large amount of data is required. Through
the use of such a database, an NN can be
trained to perform complex functions.

Algorithm of Computer Program for
NN Training

This part of the development encompasses
step two, populating the database; step three,
analyzing and processing the data; and step
four, training the NN.
Pretraining Procedures The block diagram

(Fig. 4) starts with the accumulation of the
database. The database can only be constructed
by collecting available data for the correlation
being modeled. The data can be from hand-
books, journal papers, and one’s own experi-
mental data and usually span back over a long
period. The initial organization of the accumu-
lated data can be in a standard spreadsheet file
format. Each row in this file represents one
input/output data pair. Each column in this file
represents one input or output. Some of the
inputs or outputs are properties that are not
numerical values but rather categories. Exam-
ples of this are heat treatment (Ref 20), micro-
structure (Ref 18, 22), material grade (Ref 18),
environment (Ref 18, 22), surface treatment
(Ref 22), and cooling method (Ref 9). At this
stage of pretraining, these should be digitized
by means of attributing different digits to the
various categories. In some cases, the output
is a graph (Fig. 1a, 1c). In these cases, the graph
should be appropriately digitized and presented
as a set of numbers (Ref 9, 19, 22). Once the
data accumulation is completed, the file con-
taining the database is converted and saved in
ASCII format. This file is read by the computer
program for creation of the model (Fig. 4) and
is put as a matrix M for further manipulations.
The matrix M has the dimension m � n, where
m is the number of rows and is equal to the
number of data pairs in the database, and n is
the number of the columns and is equal to the
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number of inputs plus the number of outputs.
The spreadsheet and the ASCII files are dyna-
mically linked, so that each change and addi-
tion in the spreadsheet file results in an
automatic upgrade of the ASCII file and the
matrix M to be used for the model design.
The next step in the computer program is the

random redistribution of the database (Fig. 4).
In NN modeling, one part of the data (usually
two-thirds) is used for model training, and the
remaining part (usually one-third) is not used
in the training procedure but is used for testing
of the model. Before training, the database is
randomly divided into these two parts. In the
computer program, this is done by the block
for random redistribution of the database. First,
a vector with random numbers between 0 and 1
is generated. The size of this vector is equal to
the number of the data pairs (m). This vector
is thereafter stored as an additional (n + 1)th
column of the matrix M. The next operation is
an automatic rearrangement of the rows of
matrix M in ascending order of the numbers
in the (n + 1)th column. After implementation
of this operation, the (n + 1)th column is taken
out, and the new matrix Mr is produced. Mr,
with dimension m � n, contains the same data
as M. The only difference is that the rows (data
pairs) in Mr are randomly redistributed as com-
pared to the original M matrix. Written in this
way, the computer program allows new random
distribution of the whole database into the sub-
datasets each time it is run, because the vector
with generated random numbers will be differ-
ent each time.
The next step in the computer program is to

extract the training (Mrtr) and the testing
(Mrtst) matrices for input and corresponding
output (Fig. 4). The first 2/3 rows from Mr are
extracted as matrix Mrtr and the last 1/3 rows
as matrix Mrtst. These new matrices have
dimensions m1 � n and m2 � n. Obviously,

m1 + m2 = m; m1 = (2/3)m, and m2 = (1/3)m.
Mrtr(m1,n) and Mrtst(m2,n) contain data pairs
(input with corresponding output) that will be
used for training and testing of the model,
respectively. The next step is to divide these
matrices into matrices containing inputs and
outputs only––Mtrin(m1,n1), Mtrout(m1,n2),
Mtstin(m2,n1), and Mtstout(m2,n2). Here,
Mtrin(m1,n1) is the matrix containing the inputs
for training,Mtrout(m1,n2) is the matrix contain-
ing outputs for training, and so on. n1 is equal
to the number of the inputs, n2 is equal to the
number of the outputs, and n1 + n2 = n. These
four matrices are further used for training and
testing of the model. It should be restated that
each time the program is run, new random
redistribution of the database will be executed,
and, as a result, these four matrices will contain
different data. It should also be mentioned that
the various random redistribution of the data-
base results in different NN performance. This
is discussed in a following section.
The values in thematrices for training and test-

ing have different dimensions and ranges. To
overcome this, the next block in the computer
program is for normalization of the data.
Depending on the transfer function used, the data
are normalized between 0 and 1 or between �1
and 1, applying Eq 1(a) or (b), respectively:

xN ¼ x� xmin

xmax � xmin

(Eq 1a)

xN ¼ 2
x� xmin

xmax � xmin

� 1 (Eq 1b)

where xN is the normalized value of a certain
parameter, x is the measured value for this
parameter, and xmin and xmax are the smallest
and the largest values in the database for this
parameter, respectively.

Training Parameters. The next blocks in the
computer program are for creating the NN,
defining the training parameters, and the actual
training of the model. The following matters
are important in the design and training of NNs:

� Database and its distribution
� Choice of architecture of the NN
� Training algorithm and parameters
� Transfer function

Other training parameters, such as learning rate,
performance goal, and minimum performance
gradient, may have minor influence but aim
mainly at the optimization of the training time
and computer memory use and have only little
influence on the final performance of the
trained model.
If software is developed on the user level, an

option can be incorporated to enable the user to
add his own data and retrain the model. This
option is discussed in a following section. Here,
some recommendations on the selection of the
important parameters and their influences on
the NN performance are discussed. The reliabil-
ity of the NN model for any particular combina-
tion of database distribution, architecture,
training algorithm, and transfer function can
be tested by an analysis of the network response
in a form of linear regression between network
outputs (predictions) and corresponding targets
(experimental data) for the training and testing
datasets (Fig. 5).
Effect of Creating Random Sets. Dividing

Mr into training and testing subsets can result
in significantly different model performance.
This difference can be explained with the
ranges of input data variation for the training
and testing datasets. In some cases of random
dividing, instances may occur where the range
of variation of the data for the training dataset
is narrow compared to the range of variation
of the test dataset. In these cases, most of the
data pairs in the test datasets are a new
encounter for the trained NN and fall outside
the range of variables for which the model
has been trained. An appropriately trained
NN model can give reliable predictions for
new instances within the ranges that it has
been trained (interpolation), but appreciable
errors are possible for predictions outside these
ranges (extrapolation). Hence, it is recom-
mended to run not one but a number of train-
ing cycles with different random
redistribution to find the case with the most
suitable dividing of the data to training and
testing sets.
Architecture of the NN refers to the num-

ber of layers in the NN and the number of neu-
rons in each layer. The numbers of neurons in
the input layer and the output layer are
determined by the numbers of input and output
parameters, respectively, while the number(s)
of neurons in the hidden layer(s) can vary.
The number of hidden layers could be one
or more. One hidden layer is enough for appro-
priate model performance. Increasing the layers

Fig. 4 Algorithm of computer program for creation of neural-network model
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to two results in a remarkable increase in
the unknown parameters (connections) to be
fitted, which itself drastically increases the
requirements for the amount of data without
any noticeable improvement in the final model
performance (Ref 20). Hence, the general
structure of input, one hidden, and one output
layer is preferred. To find the optimal

architecture, various numbers of neurons in
the hidden layer should be attempted. The num-
ber of neurons in the hidden layer (NNHL)
considerably influences the model performance.
Some practical recommendations for selection
of the NNHL are given. Two factors are
important for determining the number of
neurons:

� First, an increase in the NNHL increases the
connections and weights to be fitted. The
NNHL cannot be increased without limit.
The maximum NNHL is different for each
particular case and depends on the number
of inputs, number of outputs, and number
of available data pairs. The number of con-
nections to be fitted can be worked out by
drawing the scheme of the NN (Fig. 3) for
the particular case of inputs, outputs, and
NNHL and calculating the connections to
be fitted.

� Second, the initial increase in the NNHL
usually results in improvement of the model
performance. However, one problem that
can occur when training with a large number
of neurons is that the network can overfit on
the training set and not generalize well to
new data. In other words, the network is
too flexible, and the error of the training set
is driven to very small values, but when
new data are presented to the network, the
error is large. The optimal NNHL depends
on the database, nature of the problem to
be modeled, and the training algorithm and
should be determined for each particular
case. Overfitting can be prevented by vari-
ous techniques aimed at better generalization
of the model.

Example 2: Yield Strength of Titanium
Alloys. Figure 6 demonstrates one example of
finding the optimal architecture of the NN in
terms of the number of neurons in the hidden
layer. The case is for the prediction of yield
strength of titanium alloys (Fig. 1b). The num-
ber of inputs is 13, the number of outputs is 1
(if just yield strength is considered), and the
number of available data pairs is 662 (441 for
training and 221 for testing). To find the opti-
mal architecture, various numbers of neurons
in the hidden layer were attempted. The Leven-
berg-Marquardt training algorithm was used for
this study. The results for the influence of the
number of neurons in the hidden layer on the
NN response are given in Fig. 5 and 6. The
results in Fig. 5 are for single training with 14
neurons in the hidden layer and show the net-
work response in a form of linear regression
analysis between the network outputs (predic-
tions) and the corresponding targets (experi-
mental data) for two different training
algorithms. The results in Fig. 6 are presented
in the form of correlation of the regression
coefficient (R) between the NN predictions
and the experimental data for the training and
testing datasets for various numbers of neurons
in the hidden layer. For each case, the values
for the R coefficient are averaged from five sep-
arate training runs at the same conditions and
using different random division of the dataset.
When the number of neurons in the hidden
layer is increased from 1 to 5, the R coefficient
for both training and test datasets quickly
increases (Fig. 6a). Further increase in the num-
ber of neurons results in further increase of the
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Fig. 5 Posttraining linear regression analysis between experimental data (horizontal axis, T values) and neural-
network predictions (vertical axis, A values). The diagonal dashed line is A = T. (a) and (c) Training

datasets. (b) and (d) Testing datasets. Levenberg-Marquardt training alone is used for (a) and (b). Levenberg-Marquardt
with Bayesian regularization is used for (c) and (d). All cases have 14 hidden neurons.

Fig. 6 Regression coefficients between the neural-network predictions and the experimental data for various
numbers of neurons in the hidden layer using Levenberg-Marquardt training (a) without and (b) with

Bayesian regularization
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R coefficient for the training dataset that is
approaching the value of 1 (Fig. 5, 6). How-
ever, the regression coefficient for the test data-
set quickly decreases to average values <0.8
with large error bars (Fig. 5, 6). This observa-
tion shows that there is an effect of overfitting
when the number of neurons is increased to
six and above. One way to prevent overfitting
is by applying Bayesian regularization in com-
bination with the Levenberg-Marquardt training
(Fig. 5, 6). This is one of the techniques aimed
at better generalization. The results obtained for
the various numbers of neurons in the hidden
layer are appreciably stable (Fig. 6b). Values
of coefficient R for both training and test data-
sets increase when the number of neurons is
increased to eight. Further increase of the neu-
rons does not result in overfitting, and the
results for the regression analyses of both train-
ing and test datasets are comparable (Fig. 5c,
5d). However, at the same time, an increase in
the number of neurons above eight does not
give appreciable improvement, while the train-
ing time was significantly increased. Consider-
ing all of the aforementioned, the optimum for
this case of NN architecture is eight neurons
in the hidden layer.
The type of training algorithm used is impor-

tant for both NN response and the computa-
tional resources necessary for training. A
summary analysis of the influence of various
training algorithms on the performance of the
NN model is given subsequently. Various train-
ing options can be carried out, including train-
ing on variations of mean square error for
better generalization, training against a valida-
tion set, and training until the gradient of the
error reaches a minimum. Improvement of the
generalization can be achieved by means of
regularization and early stopping with valida-
tion. The general opinion is that automated reg-
ularization based on Bayesian regularization in
combination with Levenberg-Marquardt train-
ing usually gives the best result in terms of
model performance and training speed. How-
ever, in some cases, other training algorithms,
such as one-step secant, Polak-Ribiere conju-
gate gradient, and variable learning rate, may
give competitive results.
The transfer function transforms the neuron

input value into the output value. The most
popular functions are hard limit (hardlim),
linear (purelin), log sigmoid (logsig), and
hyperbolic tangent sigmoid (tansig). For all
cases of NN, a linear transfer function is suit-
able in the output layer. The transfer func-
tions in the hidden layer are generally s-
shaped curves, with the output value confined
within limits of (0,1) or (�1,1) for log sig-
moid and tan sigmoid functions, respectively.
Mathematical formulations of the main trans-
fer functions and their general shapes can be
found in Ref 19. Usually, there is little
influence whether log sigmoid or tangent sig-
moid function is used. Hence, this is not con-
sidered as a significant parameter for the NN
response.

Optimal Model Parameters. The computer
program for design of the NN model can be
written in a way to find the best combination
of database distribution, network architecture,
and training algorithm by grid search (Fig. 4).
Loops are organized for the previously men-
tioned parameters. By varying these, all possi-
ble combinations of network architecture and
training algorithm with different database dis-
tribution are attempted and stored. For each
combination, the correlation coefficients
between the NN predictions and the experimen-
tal data for the training and testing datasets are
stored and used for further evaluation. The pro-
gram realization is as follows. First, the number
of neurons in the hidden layer is put equal to
one, and the first training algorithm, for exam-
ple, one-step secant, is used. For this combina-
tion, at least five attempts at training with
different random redistribution of the database
are executed. Next, the number of neurons is
increased to two, and again, five attempts at
training with different random redistribution
(but the same as those for the aforementioned
case and for all cases) of the database are exe-
cuted. The same is executed for three, four,
five, and so on NNHL. The next loop is to
change the training algorithm, and the same
procedure is repeated for the new and for all
training algorithms given previously. In this
way, the NNs that have been trained with all
possible combinations of network architecture,
training algorithm, and various random redistri-
butions of the datasets are stored. The next step
is to find the best case. To do this, the following
procedure is applied. First, using the runs with
various random redistributions, the average
regression coefficients between NN predictions
and the experimental data for the training and
testing datasets for various network architecture
and training algorithms are calculated. For one
training algorithm, the regression coefficients
after training with various NNHL are com-
pared, and the best case (the winner) in terms
of best architecture for this training algorithm
is found. This procedure is executed for each
training algorithm. The winners for the various
training algorithms are thereafter compared,
and the best combination of network architec-
ture and training algorithm is found. For this
combination, the best case among the five
cycles of training with various random redistri-
butions is extracted, and this is the final winner
in a sense of best database distribution, network
architecture, and training algorithm. This case
is then stored, and the NN trained with these
parameters is used for further simulations
and predictions. Readers should be reminded
that the optimal combination of database distri-
bution, network architecture, and training algo-
rithm depends on many factors, such as nature
of the problem to be modeled, number of inputs
and outputs, and database available, and can
differ considerably from case to case. The pro-
cedure described here for finding the optimal
case of trained NN, and reliable NN modeling,
in general, requires a significant amount of

data, but, once trained and created, the model
can quickly and easily be used for the predic-
tion of new instances.
Posttraining Procedures. The next block of

the work procedure is for further experimental
verification of the model by statistical analysis
of the model predictions error. The relative
error (relative difference between the model
simulations and the experimental data) is calcu-
lated for each data pair. The results are pre-
sented by plotting them in the classical plot of
occurrence versus error, also referred to as
frequency versus error. This plot is more infor-
mative compared to the plots of linear regres-
sion analysis (Fig. 5). Using it, specialists in
the field can conclude whether the achieved
accuracy in terms of error variation is accept-
able for the phenomenon being modeled. Here,
an example is given of such an analysis for
modeling the modulus of elasticity of titanium
alloys (Fig. 7). Additional plots and analyses
for other correlations are given and discussed
in Ref 9.
Further verification of the model simulations

can be performed by the user by means of
direct comparison of the software predictions
and experimental data. The user can calculate
the results for new input values and thereafter
can compare these predictions with experimen-
tal data taken from the literature or with one’s
own experimental data. Some comparisons of
this type are given in Ref 9.

Use of NN Modeling

General Organization of Software and
Graphical User Interfaces. Software systems
should be designed in a modular fashion, with
each module designed in such a way that it
can be upgraded by a later version without sub-
stantially affecting the operation of the remain-
der of the model. Various modules can be
linked according to the block diagram given in
Fig. 8. The modules for databases, the computer
program for training, and trained ANN are
described in the previous section. Once the
NN models are trained and verified, they can
be used for further simulations and predictions
for an arbitrary, user-defined new (unused in
the training) combination of input values. One
way of organizing the interactions with the sys-
tem is by interface modules. Two types of inter-
face are possible: text user interface and
graphical user interface (GUI). In the text ver-
sion, the user is asked interactively for input
of the necessary information; once it is com-
pleted, the output from the system is generated.
Over the years, MatLab Neural Network

Toolbox (Ref 24) has become one of the most
popular commercial software that can be used
to develop and use NN models. An example
of an NN program code is given in Ref 23.
Graphical user interfaces (examples shown in
Fig. 2) can be developed using the MatLab pro-
gramming language that allow easy and further
use of the models (matching examples shown in
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Fig. 1). The user can run GUIs in the way
shown in Fig. 2 to input the desired new combi-
nation of input values using the textboxes,
menus, list boxes, pop-up menus, radio buttons,
sliders, and so on. Once the information is
entered, the user can click on “predict” or
“plot.” The entered information is then
acquired, organized, and processed (Fig. 8) as
a new input combination to the trained NN for
the corresponding GUI. The trained ANN cal-
culates output for this combination of inputs.
The output is returned to the GUI and is visua-
lized in the form of a graph (Fig. 1a, c, for
example) or the dependence of the properties
on a desired parameter. In this way, the user
can very easily obtain and evaluate different

kinds of dependence of any property involved,
that is, the dependence of the outputs from the
chosen input. Furthermore, the GUI provides
the opportunity for easy comparison of output
properties corresponding to various sets of
inputs by plotting them together. In the cases
where the output is a graph, the GUIs also
allow smoothing of the predicted profile with
a user-defined coefficient.
Training of the various modules is performed

using the collected databases for each particular
case. However, the system can be made open
for further upgrading by the users by adding
additional data and training (see the left block
in Fig. 8). This feature is discussed in a follow-
ing section.

In practice, integrating and linking by an
introductory GUI window allows easy switch-
ing between the various applications. Such
organization is convenient for the user. Once
any of the GUIs have been used to predict a
property (for example, a mechanical property),
it is straightforward to switch to others to check
if the other properties (for example, a time-
temperature transformation diagram) are
satisfactory.
Predicting Properties of Existing Materi-

als. New materials with special properties are
continuously being developed to meet engi-
neering requirements. The aim is usually to
achieve desirable values of one or a combina-
tion of properties. However, most often, the
other properties of these materials are
unknown when they are first designed, and
these properties are studied by additional
experiments after the materials are introduced
in certain applications. The lack of knowledge
of these other properties inhibits full exploita-
tion of the new materials. Neural-network
models can be used to predict unknown
properties of existing materials. For this pur-
pose, the user can input and fix the composi-
tion of the alloy and can predict the
unknown property (mechanical, kinetics of
phase transformation, etc., as desired) for vari-
ous conditions. To demonstrate this mode of
application of the NN technique, three exam-
ples are given.
Example 3: Time-Temperature Transfor-

mation Diagrams. Neural-network modeling
is used for the prediction of time-temperature
transformation (TTT) diagrams (Fig. 1a, 2a).
Experimental investigation of TTT (and con-
tinuous cooling transformation) diagrams is
both costly and time-consuming. Hundreds of
experiments are necessary to construct such
diagrams for a single alloy. For that reason,
when a new material is designed, its TTT dia-
grams are usually unknown. Presently, there is
still a lack of such diagrams, even for widely
used alloys. Using an NN model, TTT dia-
grams are predicted (Ref 18, 19) for many
existing titanium alloys for which experimen-
tally determined TTT diagrams are not avail-
able in the literature. These simulation
results can be used to explain the transforma-
tion kinetics during cooling of corresponding
alloys. The diagrams will also be useful in
the design of experimental studies of TTT dia-
grams for these alloys. In this way, the
amount of experimental work could be signif-
icantly reduced. In this respect, it should be
mentioned that, for some of the alloys, exper-
imental TTT diagrams have become available
after simulations and good correspondence
between the predictions and the later available
experimental diagrams are demonstrated.
These agreements provide confidence in the
model simulations. Other cases of using the
developed model to predict properties of exist-
ing titanium alloys include the calculation of
fatigue strength S-N diagrams and mechanical
properties (Ref 23).

Fig. 8 Block diagram of a software system for modeling based on the artificial neural-network approach

Fig. 7 Posttraining validation of software simulations by statistical analysis of the error of model simulations for
modulus of elasticity
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Example 4: Correlation of Composition,
Processing, and Properties of Austenitic
Stainless Steels. This work (Ref 25) includes:

� Correlation between chemical composition,
process variables, and flow stress of austen-
itic stainless steels under hot compression

� Constitutive flow behavior of type AISI
304L stainless steel during hot torsion

� Microstructural evolution during dynamic
recrystallization

� Correlation between chemical composition
and tensile properties

Multilayer perceptron-based feed-forward
networks have been trained by comprehensive
in-house datasets. Very good performance
of the NNs is achieved in modeling the
following:

� Influence of alloy composition and proces-
sing parameters on flow behavior of austen-
itic stainless steels

� Effect of strain rate on torsional flow behav-
ior of 304L stainless steel

� Combined influence of temperature and
strain on dynamic recrystallization behavior

The simulated results are found to be consis-
tent with the expected metallurgical trends. Fig-
ure 9 shows an example of model calculation
results, demonstrating the capability of using
NNs to evaluate the importance of different
input parameters.
Example 5: Applications of ANN in Mod-

eling Maraging Steel Properties. Artificial
neural-network models can be used to predict
the martensitic start temperature, Ms, and
mechanical properties of maraging steels with
sufficient accuracy within the data range used
in model development. In maraging steels, the
interactions between cobalt and molybdenum
are complicated. Many alloy developments are
based on these interactions. They are examined
here based on model calculations. Since the
models have been designed on statistical analy-
sis and not on physical theories, some of the
model outcomes are discussed from the metal-
lurgical point of view, to justify and validate
them.
To demonstrate the interactions between

cobalt and molybdenum on Ms temperature,
the alloy system is chosen to base around the
chemical composition of the classical Fe-18Ni
maraging steels, Fe-0.01C-0.1Al-18Ni-0.4Ti-
9Co-4Mo (referred to as Fe-18Ni-9Co-4Mo).
The amounts of cobalt and molybdenum are
variables with values as low as zero, so that
the influence from these elements can be shown
(Fig. 10). Cobalt always raises the Ms tempera-
ture when no molybdenum is present. However,
with molybdenum present, the influence of
cobalt becomes complicated. Experimentally,
with the addition of 1.5% Mo, cobalt decreases
the Ms temperature when its amount is higher
than 15%. Such a tendency can be seen in the
curve corresponding to 2% Mo in Fig. 10,

where the increase in Ms with cobalt ceases
when cobalt is higher than approximately 9%.
From the ANN model, an amount of cobalt
above 6% will cause a reduction in Ms when
molybdenum is 6%. The increase in molybde-
num always suppresses Ms, and the extent of
the reduction is enhanced by the increase in
the percentage of cobalt in the alloy.
The rate of precipitation is reflected by the

increase in hardness at early stages of the aging
process. There is a combined influence of
cobalt and molybdenum on age-hardening
kinetics. The rate of increased hardness for sys-
tems with cobalt is greater than for the system

without it (Fig. 11). The hardness increase at
the peak position of cobalt-containing systems
is much larger than that of the cobalt-free sys-
tem. This effect can be explained with a metal-
lurgical mechanism. One important role of
cobalt in maraging steels is to lower the solubil-
ity of molybdenum in martensite, thus produc-
ing more densely distributed molybdenum-
containing precipitates to increase the strength.
The equilibrium fraction of such precipitates
increases, promoting the hardening effect. The
precipitation of molybdenum is strongly modi-
fied by the presence of other elements, most
noticeably cobalt. Without cobalt, the

Fig. 9 Relative importance (RI) of individual input variables (composition and external factors) for flow stress
predictions in austenitic stainless steels. Source: Ref 25

Fig. 10 Influence of cobalt and molybdenum on the
martensitic start (Ms) temperature of the Fe-

18Ni-Co-Mo system

Fig. 11 Influence of cobalt on the precipitation age-
hardening kinetics of an Fe-18Ni-Co-4Mo

system at 482 �C simulated using the artificial neural-
network model. HV, Vickers hardness
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precipitation of molybdenum takes place much
more slowly. In conclusion, the prediction of
the NN model is in agreement with what is
expected from a metallurgical viewpoint.
The combined influence of cobalt andmolybde-

num on other mechanical properties is demon-
strated here, using ultimate tensile strength (UTS)
and Charpy impact energy (Ak) as examples. The
alloy system is Fe-18Ni-xCo-xMo aged at 482 �C
for 4 hwithout colddeformation and tested at room
temperature. The calculated results show that the
addition of a small amount of molybdenum
decreases the UTS (Fig. 12). Experimentally, the
combined effects of cobalt and molybdenum may
not be beneficial when the alloying amount of
molybdenum is less than 2%. In fact, in commer-
cial maraging steels, the amount of molybdenum
is usually higher than 2%.
Without molybdenum, the alloying of cobalt

increases the Ak values (Fig. 13), but such a
system will have little aging response. Alloying
with 2% Mo significantly increases the Ak
value of the alloy for cobalt concentrations
lower than 8%. When the amount of molybde-
num is further increased, the Ak value is signif-
icantly decreased. The establishment of Fe-
18Ni-9Co-4Mo-0.4Ti as the nominal composi-
tion of commercial-grade C250 is of no sur-
prise, because this provides a good
combination of strength and toughness. The
laboratory-tested UTS and Ak of C250 alloy
(Fe-18Ni-8.5Co-5Mo-0.4Ti) aged at 480 �C
for 5 h are 1870 MPa and 37 J, respectively,
which are in reasonable agreement with the pre-
dicted values shown in Fig. 12 and 13.
The maraging steel 1RK91 (Fe-12Cr-9Ni-

4Mo-2Cu-1Ti-0.3Al) was developed by Sand-
vik and is characterized with good fatigue
strength at elevated temperatures. It can reach
ultrahigh strength through aging treatment.
The agreement between calculation and experi-
mental measurement is acceptable (Fig. 14).
The calculated room-temperature UTS value is
2543 MPa (4 h aging at 475 �C), within the
range of 2450 to 3000 MPa quoted by Ref 26
for aged products. This alloy differs from many
previous maraging grades in that it contains

approximately 2 wt% Cu. Without copper, the
alloy may still be age hardened, but the time
to achieve considerable hardening will be
extraordinarily long, as shown in Fig. 14. In
fact, although the good mechanical properties
of this alloy are attributed to precipitates rich
in nickel, aluminum, and titanium, copper clus-
ters form before these and act as nucleation
sites. The application of the NN model to this
alloy demonstrates that it can be a good guide
in the development of new alloys.
In conclusion, these ANN models can predict

well even the complicated cobalt-molybdenum
influences on Ms temperature and mechanical
properties of maraging steels. The ANN models
can also be a guide for new alloy design. Based
on these models, optimization of alloy composi-
tion and processing parameters can be carried
out (Ref 23). For a specifiedworking temperature
and the required combination of strength and
toughness properties, the model can recommend
themost economical composition and processing
routes and therefore benefit the industry.
New Alloy Design. Neural-network models

are usually used to predict outputs for a user-
defined combination of inputs. However, very
often in practice, it is necessary to solve the
reverse problem, namely, to find combinations
of inputs that would produce a desirable output
or a combination of outputs. For example, it is
of great interest for theory and practice to find
the optimal alloy composition, processing, and
environmental conditions that would provide a
desirable property or combination of properties.
The background of new alloy design is the
knowledge of the correlations between the alloy
composition and the properties. The optimiza-
tion of one or some of the properties of the
material being designed is closely related to
the optimization of its composition. However,
new materials are still mainly designed empiri-
cally, by carrying out expensive and time-con-
suming experimentation on trial alloys. An
NN model has assembled results from hundreds
of experiments, and it is trained with them. As a
result, it is capable of predicting properties for
new alloy composition. It can be used for

optimization of the composition of the alloy
being designed to achieve an optimal value for
the desired properties. Based on the trained
NNs, computer programs for optimization of
the input values (the alloy composition and pro-
cessing) to obtain the desired property (or com-
bination of properties) can be developed by
incorporating the trained NN in the body of
the program. The optimization criteria can be
user-defined. This approach was first applied
for the model on mechanical properties of tita-
nium alloys (Ref 23). At first, the quest for the
best solution can be based on a simple grid
search, but the NN models can also be com-
bined with efficient optimization methods for
faster location of the best solution. The user
can fix the other inputs (such as temperature,
environment, and treatment) on a certain level
and vary the composition of the alloy. The alloy
composition can be altered by varying a single
element concentration and fixing the others on
chosen values or by varying the combination
and ratios of elements. In this way, the user
can analyze the influence of the different ele-
ments (or combination of elements) on the out-
put properties and predict the optimal
composition of the new alloy that would pro-
duce the desired properties. The use of an NN
model in this mode would reduce the amount
of experimentation for new alloy design.
Examples of this kind of software application

include (Ref 23):

� Influence of aluminum and vanadium con-
tents on the tensile properties of Ti-xAl-yV
alloys

� Influence of aluminum, vanadium, oxygen,
molybdenum, tin, and chromium contents
on the isothermal transformation kinetics of
various alloys

� Influence of aluminum content on yield
strength, impact strength, and hardness of
Ti-xAl-6V-2Sn alloys

Here, one of the modules (Fig. 1b, 2b) is used
to demonstrate how an NN model can be used
for alloy composition optimization. For this

Fig. 12 Influence of cobalt and molybdenum on
the ultimate tensile strength (UTS) of the

Fe-18Ni-Co-Mo system

Fig. 13 Influence of cobalt and molybdenum on
the Charpy impact energy (Ak) value of the

Fe-18Ni-Co-Mo system

Fig. 14 Age-hardening kinetics curves of 1RK91
maraging steel simulated from a model

calculation in comparison with experimental hardness
measurement data. HV, Vickers hardness
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purpose, the Ti-Al-Fe system is used, which is a
base system for designing a new class of low-
cost titanium alloys. By varying the alloying
element contents, the program can be used to
find the optimal alloy composition that would
result in maximum yield strength (Fig. 15).
Integration of various models would allow
simultaneous optimization of different mechan-
ical properties.
Industrial usage and the application of NN in

real alloy design are discussed in Ref 1, 5, 27,
28, and 29.
Materials Selection. The materials selection

procedure has become of extreme importance
for engineering. Many software systems are
developed for selection of materials for user-
defined requirements. One of the popular sys-
tems of this kind is Cambridge Engineering
Selector, developed initially as Cambridge
Materials Selector (Ref 30). Most of these com-
puter-based systems use the classical approach
of searching in a database of materials proper-
ties according to user-defined criteria for a
combination of properties.
A NN software system can also be used for

the materials selection procedure. For this pur-
pose, a special module (Fig. 8) and GUI (such
as the one shown in Fig. 16) are needed. The
user can use the GUI to define the working con-
ditions (such as temperature and environment)
and the requirements for materials properties
(such as strength and elasticity). Once these
are defined, the user can run the module by
clicking on “search.” The input information is

acquired, organized, and processed to the mod-
ules with the trained NNs. Each input is pro-
cessed only to the modules to which it is
relevant. The trained NNs are the core of the
computer program that searches for conditions
to satisfy the user-defined criteria. The para-
meters that are fixed by the user are fixed inputs
of the trained NN. The other inputs, essentially
the material composition, are varied by
organized loops, and the trained NNs are used
to predict properties at each loop. The predicted
combination of properties is compared with the
user requirements at each step, and if they are
satisfied, the current combination of material
composition and processing parameters is sug-
gested as a possible solution. The loops are
organized so that all possible combinations
between the changeable inputs are attempted.
After the completion of this procedure, material
compositions that satisfy the user requirements
are suggested, if such are found. In the general
case, a list of possible material compositions
and processing is suggested.
In this mode, a NN model can be used for the

materials selection procedure. For example, it
can find material compositions that satisfy the
user-defined combination of mechanical proper-
ties for any work temperature. The approach
used here, based on trained ANNs, differs from
the approaches that are based on a database
search. In the latter, only material that exists
in the database can be found and suggested as
a material that satisfies the user criteria. In the
NN approach, along with the existing materials,

a composition of material that satisfies the cri-
teria can be suggested, even if such a material
does not exist. It should be restated that for this
and all modes, an NN model works only within
the ranges of input parameter values that are
used for training.
Optimization of the Processing Para-

meters. Neural-network models can be used
for optimization of the processing parameters
of a material to achieve a desirable combination
of properties at various working conditions.
The alloy composition and the working condi-
tions (such as working temperature and envi-
ronment) should be fixed on the required
values. By varying the processing conditions
such as heat treatment, time, temperature, and
cooling, the user can study their influence on
the properties. The user can use the simulations
to find optimal processing and heat treatment
procedures that would produce the desired com-
bination of properties for various working con-
ditions and alloys. Examples for such usage of
the programs are given in Ref 9, where the
ANN model is used to study and optimize the
influence of the processing parameters (time
and temperature) on the microhardness profiles
after surface nitrocarburizing of steels. An
example is provided here that uses the model
to simulate the influence of the processing route
on the fatigue strength of corrosion-resistant Ti-
6Al-2Sn-4Zr-6Mo alloy (Fig. 17). The alloy
composition is fixed. The desired property
(in this case, fatigue strength) is selected. This
property is studied as a function of the

Fig. 15 Use of a neural-network model for optimization of alloy composition in the Ti-Al-Fe system to maximize
room-temperature yield strength

Fig. 16 Graphical user interface of a module for
materials selection based on a trained

artificial neural network
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temperature at various processing procedures,
namely, a + b annealing, solution treatment fol-
lowed by aging, and duplex annealing. In a sim-
ilar way, the modules can be used to study the
influences of the processing route on other
selected properties for various alloy
compositions.
Apart from heat treatment, many other mate-

rials processing techniques can be studied and
modeled by using ANNs, such as rolling, mill-
ing, and welding. For example, Dutta and Prati-
har (Ref 31) have modeled the tungsten inert gas
(TIG) welding process using conventional
regression analysis and NN-based approaches
(Fig. 18). In their work, statistical analyses were
carried out on experimental data for the TIG
welding process (obtained from published litera-
ture) to find its input-output relationships. The
performances of the conventional regression
analysis approach, a back-propagation NN, and
a genetic-neural system were compared on some
randomly generated experimental test cases,
which are different from the training cases. The
NN-based approaches could yield predictions

that are more adaptive in nature compared to
those of the more conventional regression analy-
sis approach.
Theoretical Studies. Neural networks can

also assist theoretical studies in materials sci-
ence, although this is not as common as appli-
cation-oriented work. Although often regarded
as a black box or incorrectly as a model without
relationships being expressed using equations,
an NN actually has exact mathematical rela-
tionships between the neuron connections. Such
relationships can be given explicitly using
mathematical equations. An example is the
work in fracture mechanics, expressing the
explicit formulation of stress-intensity factor
(KI ) (Fig. 19) based on NN analysis (Ref 32).
In Fig. 19, “Type” refers to crack type, includ-
ing center-cracked geometry, double-cracked
geometry, and single-cracked geometry; w is
the crack width; a is the crack length; and
sapplied is the applied stress. Explicit formula-
tions for KI values are obtained using the para-
meters of the trained NN. Some numerical
applications are performed to show the

generalization capability of the trained NN.
Formulation of the stress-intensity factor for
three different geometries commonly used in
fracture mechanics is obtained. It is shown that
the results of the explicit formulation are in
good agreement with finite-element calcula-
tions, which determine the stress-intensity fac-
tor using the displacement extrapolation
method, ANSYS, and previous work in the lit-
erature for those common cases.

Upgrading Software Systems by
Database Enhancement and
Retraining

A NN model will work with sufficient accu-
racy within the range of the dataset used in
training. If the user defines input conditions
outside this range, a software system will still
generate an output, but it may not be correct.
In such a case, the program should provide a
warning message that the result may not be reli-
able. Hence, a software system is restricted to
predict with a reliable accuracy within certain
ranges of input parameter values that are lim-
ited by the database used for training. The strat-
egy should be to create general models that will
be open for constant upgrade and improvement.
Following this goal, modules should be devel-
oped that allow the user to input his own data
and to retrain the ANNs (left side of Fig. 8).
The input of new data can be organized in

two ways. The first option is by simple addition
of new data in the spreadsheet files. Since the
files are dynamically linked, the new data are
automatically updated in the ASCII file and
introduced in the matrix M that will be used
for retraining. This option is more convenient
when new data are inputted in batches and the
user already has the data in electronic form
(as a spreadsheet). The second option is by add-
ing data one by one, using the purposely devel-
oped GUI. This option is more convenient
when a single data pair is inputted.
Once the new data addition process is com-

pleted, the modules should be retrained so they
can absorb the information that is contained in
the new data. This is organized by the GUI
for selection of the retraining parameters. There
are three options for retraining:

� Simple retraining with the optimal combina-
tion of network architecture and training

Fig. 17 Use of a neural-network model for optimization of the processing procedure

Fig. 18 Input and output variables of the tungsten inert gas (TIG) welding process. Source: Ref 31

Fig. 19 Neural network (NN) for stress-intensity factor
(SIF) calculation. “Type” refers to crack type,

including center-cracked geometry, double-cracked
geometry, and single-cracked geometry; w, crack width;
a, crack length; and sapplied, applied stress. Source: Ref 32
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algorithm found in the sections on training
in this article. This is the fastest retraining
procedure. However, this option is recom-
mended only in cases where the amount of
new data is relatively small. Input of large
amounts of new data could require a differ-
ent NN architecture and training algorithm.

� User-defined parameters for retraining. In
this option, the user can define the number
of the neurons in the hidden layer, the train-
ing algorithm, the transfer functions, and so
on. Advanced users who are familiar with
ANN modeling should use this option. Some
recommendations for selection are given in
the section “Training Parameters” in this
article.

� Retraining with all possible network architec-
ture and training algorithms for finding the
optimal combination. In this option, the pro-
gram executes the entire procedure described
in the section “Algorithm of Computer Pro-
gram for NN Training” to find the optimal
case of trained NN. This is the slowest option
that requires significant computational time
for retraining, but it is still recommended
because, in this option, the user can be sure
that the best possible combination in terms
of database distribution, network architecture,
and learning rule is achieved.

Organized in this way, a software system
effectively accumulates and intelligently stores
experience and will constantly be improved
and expanded to serve the user in the best pos-
sible way. The NN developer should consider
these options as well when updating a model
with new data.

Summary

Neural-network models are powerful tools
for simulation and prediction of materials prop-
erties and correlations among processing para-
meters, microstructure, and properties. The
applications of NN models include:

� Prediction of properties of existing materials
as functions of their chemical composition,
heat treatment conditions, and working tem-
perature; easy comparison of properties
corresponding to different conditions by
plotting them together; and investigation of
the influence of various factors on the
properties

� Simulation of TTT diagrams as a function of
alloy chemical composition and design of
diagrams for new alloys, and investigation
of the influence of various alloying elements
on phase-transformation kinetics

� Simulation of S-N curves under different
input conditions and practical applications
in solving various problems of fatigue
behavior, and investigation of the influence
of different factors affecting fatigue

� Significant reduction of the experimental
work for measurement of TTT diagrams,

S-N fatigue strength diagrams, and other
mechanical properties

� New alloys design
� Materials selection
� Practical optimization of the alloy composi-

tion and processing parameters

The aforementioned is far from an exhaustive
list, because it only contains exemplars. Neural-
network models can benefit the industry, espe-
cially metals and alloys manufacturing compa-
nies. Graphical user interfaces facilitate easy
use of the models. Neural-network models are
convenient tools to obtain the desired combina-
tion of properties at various working tempera-
tures, with minimal investments for
experimental and plant trial work.
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Modeling of Microstructure
Evolution during the Thermomechanical
Processing of Nickel-Base Superalloys
J.P. Thomas, ATI Allvac, an Allegheny Technologies company
F. Montheillet, CNRS, Ecole Nationale Supérieure des Mines de Saint-Etienne
S.L. Semiatin, Air Force Research Laboratory

THE MODELING OF MICROSTRUCTURE
EVOLUTION during the processing of nickel-
base superalloys aims to address the challenges
posed by the variety of manufacturing opera-
tions by which parts are produced. These pro-
cesses are chosen and carefully controlled for a
specific end application. For instance, models
have been developed to describe microstructure
development during the manufacture of direc-
tionally solidified superalloy blades for aircraft
engines and its subsequent evolution in service
as well as the consolidation of powder used to
produce engine disks of heavily alloyed grades
with very tight tolerances (Ref 1). This article
focuses solely on the conventional cast-and-
wrought manufacturing route for superalloys,
which typically comprises the conversion of
large ingots into semifinished mill products that
are then made into shaped components via
forging, sheet forming, and other metalworking
operations (Ref 2). This approach is similar to
that used for a large number of metallic alloys
and is commonly referred to as thermomechani-
cal processing (TMP) (Ref 3). It is usually the
most cost-effective method and is thus used for
materials applications in the aerospace market,
energy production, chemical industry, oil and
gas extraction and refining, and nuclear plants.
In this article, the general features of micro-

structure evolution during the TMP of nickel-
base superalloys and the challenges posed by
the modeling of such phenomena are summarized
first. In subsequent sections, various modeling
methodologies are described. These comprise
so-called JMAK (Avrami) models, topological
models, and last, mesoscale physics-based
models.
Additional related information on the general

formulation of models for microstructure evolu-
tion is contained in the articles “Models of
Recrystallization,” “Cellular Automaton Mod-
els of Recrystallization,” “Monte Carlo Models

for Grain Growth and Recrystallization,” and
“Network and Vertex Models for Grain
Growth” in this Volume.

Overview of Microstructure
Evolution in Nickel-Base
Superalloys during Hot Working

Experimental observations of the various fea-
tures and mechanisms of microstructure evolu-
tion during the TMP of superalloys (and
similar materials) form the basis for the different
types of models that have been developed to pro-
vide quantitative descriptions for scientific and
engineering applications. Such observations
and the conventional terminology used to
describe them are summarized in this section.

Recrystallization Mechanisms. Deforma-
tion at high temperature, usually at and above
70% of the melting point (on the absolute tem-
perature scale), triggers a marked transforma-
tion of microstructure called recrystallization.
When it happens during deformation, it is
called dynamic recrystallization. When it con-
tinues immediately after deformation due to
the energy stored and mechanisms initiated dur-
ing deformation, it is called metadynamic
recrystallization. If it occurs after deformation
with some delay (incubation) time or due to
mechanisms such as static recovery, it is called
static recrystallization (Ref 2, 3).
Recrystallization, be it static or dynamic, can

be defined as the generation of new high-angle,
mobile grain boundaries and their subsequent
migration driven by stored energy in the form
of dislocations that are free or arranged in sub-
boundaries. In the wake of such migration, new
grains virtually devoid of the defects previously
generated by deformation are produced. For
dynamic recrystallization, this microstructural

process gives rise to a flow curve comprised
of an initial strain-hardening transient, during
which dislocation multiplication (mitigated par-
tially by dynamic recovery) occurs, a peak
stress, and flow softening, during which large
numbers of dislocations are annihilated
(Fig. 1). Recrystallization has been observed
in many crystalline materials, including metals,
minerals, and even ice.
Depending on the specific alloy and proces-

sing temperature, dynamic recrystallization can
actually take one of two forms, denoted as
discontinuous or continuous, which are differ-
entiated by their topology and kinetics. Discon-
tinuous dynamic recrystallization (DDRX), or
the kind described in the previous paragraph,
was observed and quantified first. It occurs in
steels forged in the austenitic domain as well as
in copper and brass alloys. During DDRX, new
grains typically appear first at the periphery of
the initial grains through some nucleation mech-
anism and form a so-called necklace topology
(Fig. 2, 3). This necklace of recrystallized grains
progresses until the initial grains have been
entirely consumed (Fig. 4). After a large enough
deformation (i.e., when the microstructure is
entirely recrystallized), DDRX enters a dissipa-
tive steady-state regime in which the microstruc-
ture constantly renews itself by generating new
boundaries and accompanying grains to replace
those that disappeared, which allows the elimi-
nation of defects (dislocations and subbound-
aries) generated by the continued deformation.
The flow stress then reaches a stable (steady-
state) value (Fig. 5a). For the specific case in
which the DDRX grain size is significantly
larger than that of the initial microstructure, typ-
ically at least twice as much, DDRXmay exhibit
a synchronous behavior, because recrystalliza-
tion is complete before a second generation of
nuclei appears in the first recrystallized grains
(Fig. 5b).
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The introduction of the term discontinuous to
describe dynamic recrystallization was not nec-
essary and did not come into use until relatively
recently. It followed the extensive investigation
of the recrystallization of minerals, ferritic
steels, and aluminum alloys, especially via
crystallographic-orientation mapping based on
electron backscatter diffraction (EBSD) in
scanning electron microscopes. Observations
revealed another form of dynamic recrystalliza-
tion that was termed continuous (CDRX).
When CDRX occurs during high-temperature
deformation, the formation of new high-angle
boundaries happens through the progressive
and widespread disorientation of subboundaries
within the initial grains. It thus appears to trans-
form the microstructure continuously from ini-
tial to recrystallized states. In CDRX, the
definition or measurement of a recrystallized
fraction, typically done for materials under-
going DDRX, is thus not possible.
Effect of Stacking-Fault Energy on

Dynamic Recrystallization. The type of
recrystallization exhibited by a specific material
is related to its stacking-fault energy (SFE). In
materials with high SFE, dynamic recovery
occurs readily because dislocations are not

dissociated and therefore may climb readily.
Climb enables the annihilation of dislocations
of opposite sign, thereby limiting significantly
the increase of stored energy. It also promotes
the accumulation of geometrically necessary
dislocations in subboundaries, which translates
in their disorientation. Such processes may
delay or inhibit typical nucleation of DDRX
(it requires high stored energy to ensure nuclei
stability and growth) and hence may activate
CDRX instead. Aluminum exhibits a high
SFE, especially in comparison to austenitic
steels or carbon steels in the austenite phase
field (Table 1). For copper, alloying additions
dramatically lower its SFE. Pure copper, with
a moderate SFE, undergoes DDRX, probably
because pure metals exhibit a high grain-bound-
ary mobility, which eases the bulging of initial
grain boundaries, one of the precursors of
nucleation (Fig. 6).
When SFE is low, twin boundaries (whose

surface energy is approximately one-half of

the SFE) (Ref 9) tend to be created behind
migrating grain boundaries as a fault when the
new crystal grows, because the energy differ-
ence between the front of the migrating bound-
ary (containing dislocations) and the rear
(a defect-free crystal) is still largely beneficial,
even when a faulty twin boundary is formed.
Such twin boundaries commonly close the pro-
tuberances formed by bulging, which effec-
tively isolates the nuclei (Fig. 6c). Continuing
deformation disorients twin boundaries into
ordinary mobile grain boundaries. The same
reasoning applies for pure nickel to explain its
DDRX behavior. Depending on the specific
alloying addition (Table 1), however, the SFE
of nickel-base alloys may not drop signifi-
cantly. This tends to suggest that some nickel
alloys could exhibit significant dynamic recov-
ery with grain-boundary mobility that is lower
than that of pure nickel. Such characteristics
would delay nucleation and promote the mech-
anism represented in Fig. 6(b). As a matter of
fact, careful examination of Fig. 2 reveals the
presence of nuclei inside the initial grains.
These observations suggest that nuclei can be
generated in nickel-base superalloys by a sub-
boundary disorientation process through a loca-
lized process of continuous recrystallization.
The use of crystallographic orientation mapping
by EBSD validates such observations (Fig. 7).
In the case of very coarse ingot structures, sim-
ilar behavior is observed. In addition, second-
phase particles such as carbides can trigger
particle-stimulated nucleation (PSN) (Fig. 8).
The PSN can dramatically increase the density
of sites at which recrystallization can be initi-
ated and therefore the overall recrystallization
kinetics.
In summary, the dynamic recrystallization of

nickel-base superalloys exhibits features that
belong to both the discontinuous and continu-
ous behaviors. Partially recrystallized micro-
structures reveal the necklace topology typical
of DDRX, often with numerous twin bound-
aries. In addition, islands of recrystallized
grains may develop inside the initial grains
due to the local disorientation of subboundaries
arising from deformation incompatibility
between neighboring grains or between the
matrix and coarse particles. These phenomena
seem to operate at a level of SFE that separates
discontinuous and continuous behaviors (Fig. 9).
Effect of Process Variables on Dynamic

Recrystallization. The various factors that
control dynamic recrystallization, from disloca-
tion generation and recovery to nucleation and
grain-boundary migration, are thermally acti-
vated. Therefore, an increase in temperature
induces an acceleration of such mechanisms
and the overall recrystallization kinetics. Simi-
larly, for a given temperature, if the deforma-
tion is applied at a lower strain rate, thermally
activated mechanisms are given more time to
operate, resulting in higher recrystallized frac-
tions in the material. The combined effect of
temperature and strain rate is often quantified
by the Zener-Hollomon parameter (Z) (Ref 11):

Fig. 2 Microstructures developed in Nimonic 80A
deformed at 1055 �C and 0.1 s�1 to strains of

(a) 0.37, (b) 0.73, and (c) 1.13. Arrows indicate bulging
of the initial grain boundaries. Source: Ref 5
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Fig. 1 True stress-true plastic strain curves obtained
in compression of alloy 718 at various strain

rates and test temperatures of (a) 975 �C or (b) 1050 �C.
Source: Ref 4
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Z ¼ _e exp
Q

RT

� �
(Eq 1)

in which Q is the apparent activation energy of
deformation, R is the gas constant, and T is the
absolute temperature. The value of Q is typi-
cally determined from the steady-state flow
stress, ss, and the expression:

ss ¼ kZm (Eq 2)

in which k is a constant for a given material,
and m is the strain-rate sensitivity of the fully
recrystallized material.
The Zener-Hollomon parameter is extremely

important, inasmuch as it describes well the
dependence of numerous parameters on strain
rate and temperature. For example, the recrys-
tallized grain size during steady-state flow, ds,
can generally be fit by a relation of the form:

ds ¼ kds Z
�mds (Eq 3)

in which kds and mds are material constants.
These expressions enable the interpretation of
behavior for different alloys using a unified
approach. For example, the ratio m/mds is typi-
cally close to 2/3 for a wide range of materials
(Ref 12, 13). Any significant deviation from
these expressions should trigger more detailed
analysis of measurement techniques and analy-
sis (e.g., accounting for friction, deformation
heating, a delay between the end of deforma-
tion and the actual quench of samples)
(Ref 14) before investigating an atypical micro-
structural response. When such verifications are
done and the reason for any deviation is under-
stood, corrected, or compensated for, it is possi-
ble to derive a reliable microstructure-evolution
model to replicate experimental observations.

Modeling Challenges

It is important that the time allocated and the
goals of microstructure modeling are well
established, because each of the various possi-
ble approaches presents its own advantages,
challenges, and intrinsic limitations. The main
challenge in recrystallization modeling lies in
the superposition of length scales at which
recrystallization happens and expresses itself,
namely, the macroscopic, mesoscopic, and
microscopic scales. The macroscopic scale is
that of the sample or workpiece upon which
deformation is applied. The material opposes
the applied load through its flow stress
integrated over the surface of contact with the
tools that impose the deformation. The flow
stress is well defined at the mesoscopic scale,
that is, that of a grain or a few grains. For small
enough samples or regions that deform

0.11 0.30 0.50 0.70 0.92

Fig. 4 Electron backscatter diffraction inverse-pole-figure maps for Nimonic 80A showing the deformed (top) and recrystallized (bottom) fraction as a function of the indicated
strains. The black areas represent the corresponding second fraction. Coherent twins have been removed. The width of each image is 809 mm. Source: Ref 7

Fig. 3 Electron backscatter diffraction inverse-pole-figure map for alloy 718 with an initial grain size of 200 mm
deformed in torsion at 980 �C, 1 s�1 to an effective strain of 0.7 and then held for 140 s. Boundary

misorientations are indicated in light gray (2�) to dark gray or red (12�) to black (�15�); twin boundaries are light
gray or green. Source: Ref 6
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homogeneously, the mesocopic flow stress
should be identical to the macroscopic measure-
ment. Nevertheless, one may be interested in the
precise distribution of strain and flow stress
within each grain to be able to quantify how
the incompatibility of deformation between
neighboring grains is accommodated. In this
case, the strain and flow stress are local, micro-
scopic values.
All mechanisms that govern recrystallization

(dislocation generation, recovery, nucleation,
grain-boundary migration) as well as the pre-
cipitation of secondary phases operate at a
microscopic scale. However, their behavior is
generally averaged over entire grains in order to
deal with them in a mesoscopic fashion. This
requires the definition of overall driving forces
that depend on mesoscopic quantities such as

grain size, which enables the effect of mechani-
cal interaction with neighboring grains, for
instance, to be taken into account, at least
approximately. The common expression of these
microscopic mechanisms through the progress
of recrystallization is inherently mesoscopic
because it transforms the grain structure. The
modeling of microstructure evolution in general
and recrystallization in particular during hot
deformation therefore must address two main
issues: how to translate microscopic mechanisms
into somewhat mesoscopic driving forces, and
how to represent combined geometric and topo-
logical effects on the evolution of grain structure.
The latter is controlled by the sites of nucleation
of recrystallized grains and the migration of their
boundaries, whether they interface with the
initial grains (their behavior then defines the

progress of recrystallization) or with other
recrystallized grains (resulting in impingement).
There are three methods to address these

challenges: JMAK, topological, and mesoscale
physics-based models. The first approach was
proposed by Johnson, Mehl, Avrami, and
Kolmogorov (Ref 15–19), whose work led to
the JMAK, or Avrami, equation, to describe
static phase transformations as a function of
time. The JMAK equation is readily applied to
static recrystallization, for example, by treating
the recrystallized grains as a new phase that
grows into the initial, strained structure.
A number of enhancements to the classical
JMAK formalism were proposed throughout
the second half of the last century to address
the modeling of dynamic and metadynamic
recrystallization. With these changes, the

Table 1 Stacking-fault energies; gSFE

Metal or alloy gSFE, mJ/m2

Cu 78
Cu-5wt%Al 20

Fe-19wt%Cr-9wt%Ni 21
Fe-18wt%Cr-14wt%Ni 40
Fe-18wt%Cr-19wt%Ni 50

Al 166
Al-1wt%Si 145

Ni 128
Ni-20wt%Co 120
Ni-20wt%Cr 40

Source: Ref 9

Fig. 6 Schematic representation of nucleation by bulging. (a) A protuberance accentuates local heterogeneities of
deformation. It is closed by (b) a subboundary or (c) a twin boundary. GB, grain boundary. Source: Ref 10

Fig. 5 Calculated stress-strain curves showing successive waves of recrystallization. (a) Asynchronous discontinuous dynamic recrystallization (DDRX). (b) Synchronous DDRX.
Source: Ref 8
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physical basis of the basic model tends to
become more questionable, thus leading to
JMAK approaches for dynamic and metady-
namic recrystallization that are largely
phenomenological. The second method, com-
prising topological models, includes discrete
(cellular automata, Monte Carlo) and continu-
ous (vertex networks) techniques. They can be
physics based but tend to be computationally
intensive. The third method, mesoscale phys-
ics-based models, provides an approach that
attempts to combine simplicity and a light
computational footprint, characteristic of
JMAK approaches, while retaining a sound
physical basis.

JMAK Models

The basis of the formulation developed by
Johnson, Mehl, Avrami, and Kolmogorov
(Ref 15–19) lies in the definition of an extended
volume, denoted Xext, as that of the total vol-
ume occupied by recrystallized grains should
their growth not be constrained by impingement
(Ref 20).
Fundamentals of JMAK Models. From a

physical standpoint, recrystallized regions can-
not grow and increase their volume over
regions that are already recrystallized. Hence,
at any specific time, only a fraction of the
increase of the extended volume translates into
an increase of the actual volume of recrystal-
lized regions. Assuming a perfectly random dis-
tribution of nucleation sites in the material, this
fraction is that of the unrecrystallized regions.
In mathematical terms, the rate of increase of
the recrystallized fraction X is given by:

_X ¼ _Xext 1�Xð Þ (Eq 4)

Integration with respect to time yields the
relation:

lnð1�XÞ ¼ �Xext (Eq 5)

or

X ¼ 1� exp �Xextð Þ (Eq 6)

For the case of static recrystallization (SRX)
in which the grain-boundary velocity for the
growth of recrystallized grains is a constant
denoted as v, the recrystallized grain size,
D, in the absence of impingement is:

D ¼ 2vt (Eq 7)

If all the nuclei exist at the end of deformation
with a volume density N, the evolution of the
extended volume is then given by the relation:

Xext ¼ N
pD3

6
¼ 4p

3
Nv3t3 (Eq 8)

However, due to impingement, in accordance
with Eq 6, the actual recrystallized fraction X is:

X ¼ 1� exp � 4p
3
Nv3t3

� �
(Eq 9)

The general form of the JMAK equation for
recrystallized fraction as a function of time is:

X ¼ 1� exp �ktnð Þ (Eq 10)

The constants k and n depend on the material,
temperature, previous strain, initial grain size,
and so on. The coefficient n, often called the

Avrami exponent, varies between 2 and 5,
depending on geometric considerations and the
nucleation rate. For example, in the case of
three-dimensional growth of pre-existing
nuclei, as assumed previously, n is equal to 3.
For a two-dimensional growth, n is equal to 2.
If nuclei appear continuously during recrystalli-
zation, n can be greater than 3, but this is rarely
observed experimentally (Ref 20).
In general then, the geometric (impingement-

related) aspects of recrystallization are handled
in JMAK models by an equation of the form in
“1 � exp()”; topological effects are captured
somewhat by the Avrami exponent n; and the
effects of driving forces on recrystallization
are represented by the kinetics of evolution of
the extended volume.
JMAK Models for TMP. Specific JMAK-

type expressions for dynamic, metadynamic,
and static recrystallization during TMP are sim-
ilar to Eq 10. For DDRX, which occurs during
deformation, the JMAK equation is typically
written as:

X ¼ 1� exp � ln 2
e� ec
e0:5 � ec

� �n� �
(Eq 11)

In Eq 11, e denotes the applied strain; e0.5 is the
strain required at a specific temperature and
strain rate for a given initial grain size to recrys-
tallize one-half of the initial structure during
deformation; and ec is the so-called critical strain
at which sufficient energy is stored to initiate
nucleation of recrystallization. In some cases, ec
is not needed or is simply too low to be identified
and is then assumed to be equal to zero (Ref 21).
For metadynamic recrystallization (MDRX),

a time t0.5, defined as the holding time after
deformation at which one-half of the starting
structure has recrystallized, is used in the
corresponding JMAK relation:

X ¼ 1� exp � ln 2
t

t0:5

� �n� �
(Eq 12)

The value of t0.5 for MDRX typically depends
on the initial grain size, strain, strain rate, and
the temperature at which the predeformation
and subsequent holding time have been per-
formed. The corresponding relation for static
recrystallization is similar to Eq 12, with the
time variables reduced by a factor of tinc, the
incubation time for SRX.
The value of the Avrami exponent n may be

different for DDRX and MDRX. Moreover, n
has a great effect on the shape of the sigmoidal
curve described by the JMAK relation. The
ability to fit a wide range of experimental
observations is thus an important reason for
the versatility of JMAK-type models.
For the DDRX of nickel-base superalloys, in

particular, the Avrami exponent is usually
�2 to 3 (Tables 2–4). It may be greater for
the case of coarse initial structures, as in
the case of Waspaloy (UNS N07001) ingot
material. For this material, an acceleration of
recrystallization has been observed due to the

Fig. 7 Electron backscatter diffraction inverse-pole-figure map for alloy 718 with an initial grain size of 50 mm
deformed in uniaxial compression at 980 �C, 0.01 s�1 to a true strain of 0.4. Boundary misorientations are

indicated in light gray (2�) to dark gray or red (12�) to black (�15�); twin boundaries are light gray or green. Nuclei
that appeared inside an initial grain are indicated by the letter “a”. A nucleus formed by the bulging of an initial
grain boundary is indicated by the letter “b”. Source: Ref 6
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presence of additional nucleation sites within
the grains associated with carbides that lead to
PSN (Ref 24). It should also be remembered
that values of n not readily explained by the

original JMAK theory are commonly identified
as the best fit. As an example, n = 1 is com-
monly found for MDRX of superalloys
(Tables 2–4).

Instead of using e0.5 or t0.5 as normalization
factors in the JMAK relations, some models
(such as those of Sellars for modeling the
recrystallization of steels forged in the austen-
itic domain (Ref 25) make use of the values
of the strain or time at which the microstructure
is 95% recrystallized, that is, e0.95 or t0.95. In
such cases, the term “ln 2” in Eq 11 and 12
should be replaced by ln(1/0.05) � 2.996. This
formulation is not recommended for the JMAK
modeling of nickel-base superalloys, however.
By using such a reference state, one may
assume that the structure is essentially fully
recrystallized and overlook potentially deleteri-
ous unrecrystallized material. Such an assump-
tion may be acceptable for steels. For high-
integrity superalloys intended for aerospace
applications, however, product specifications
define not only the matrix (recrystallized) grain
size but also the size of so-called as-large-as
(ALA) grains, which are typically the remnants
of partially recrystallized grains. Such ALA
grains must be considered during component
design, for they may seriously degrade proper-
ties such as fatigue behavior.
When large strains are applied, a large fraction

of the microstructure may be dynamically recrys-
tallized. The application of Eq 12 for subsequent
metadynamic evolution typically reinitializes the
recrystallized fraction to 0, which is inappropri-
ate. In such cases, an alternate form of the JMAK
formalism should be used:

Xmdyn ¼ Xdyn

þ 1�Xdyn

� 	
1� exp � ln 2

t

t0:5

� �n� �� �
(Eq 13)

in which Xdyn and Xmdyn are the dynamic and
metadynamic recrystallized fractions, respec-
tively (Ref 6). For workpieces that are very large,
the application of Eq 13 may not yield signifi-
cantly better results, because the typical times
for metadynamic or static recrystallization are
long enough and the cooling of the material is
slow enough that modeling results should not be
needed at, or shortly after, the completion of
deformation. By contrast, for hot working opera-
tions consisting of cumulative deformations and
considerable metadynamic evolution, such as
multistand hot rolling, Eq 13 may provide more
precise results, even though the strain applied at
each pass is typically small and fast enough
that the material may not recrystallize much at
all during the deformation itself.
The quantitative dependence of e0.5 and t0.5

on process variables is often well described
using an Arrhenius relation for temperature, T
(introducing an apparent activation energy for
recrystallization), and power laws for the
effects of strain, e, strain rate, _e, and initial
grain size, D0. From a mathematical standpoint,
material-dependent coefficients kd, ad, md, and
Qd are introduced for dynamic recrystallization,
and kmd, amd, bmd, mmd, and Qmd for metady-
namic recrystallization:

Fig. 8 (a),(b) Electron backscatter diffraction inverse-pole-figure map for Waspaloy ingot material that was deformed
in uniaxial compression at 1120 �C, 0.01 s�1 to a true strain of 0.27. (c) Optical micrograph showing

Waspaloy ingot material that was deformed at 1120 �C, 0.1 s�1 to a true strain of 1.51. Courtesy of the Air Force
Research Laboratory.

Fig. 9 Relative tendency of different metals and alloys to undergo discontinuous versus continuous dynamic
recrystallization (DRX) during hot working
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e0:5 ¼ kdD
ad
0 _emd exp

Qd

RT

� �
(Eq 14)

t0:5 ¼ kmdD
amd

0 ebmd _emmd exp
Qmd

RT

� �
(Eq 15)

In some cases, the dependence of e0.5 on strain
rate and temperature can be directly related to
the Zener-Hollomon parameter by assuming
that Qd = mdQ, thus yielding an expression that
is simpler than Eq 14:

e0:5 ¼ kdD
ad
0 Zmd (Eq 16)

Expressions such as Eq 14 to 16 enable the
determination of the material coefficients by
performing multilinear regression analysis on
plots of ln(�ln(1 � X)) as a function of the log-
arithm of the initial grain size, strain, strain
rate, Zener-Hollomon parameter, and the
inverse temperature. For example, for the case
of DDRX, neglecting the critical strain ec,
Eq 11 and 16 yield the following relation:

ln � ln 1�Xð Þð Þ ¼ ln ln 2ð Þ
þ n ln e� ln kd � ad lnD0 �md lnZ½ �

(Eq 17)

It is also possible to determine the material
coefficients using readily available software
tools such as the Solver routine in Microsoft
Excel.

Grain-Size Predictions in JMAK Modeling.
Similar combinations of Arrhenius and power
laws are used in JMAK models to quantify the
dependence of recrystallized grain size on pro-
cess variables and the initial grain size, D0.
An expression for the recrystallized grain size
ds pertaining to the steady-state regime of
DDRX was given earlier (Eq 3). While
dynamic recrystallization is in progress, the
instantaneous recrystallized grain size d is:

d ¼ dsX
a ¼ kds Z

�mdsXa (Eq 18)

in which a denotes a material constant between
0 and 1.

The size of grains during MDRX is also gen-
erally evaluated in two steps. First, their size at
the completion of MDRX, dmdyn, is determined
using an expression of the form of Eq 19, in
which kmdd, p, q, r, and Qmdd are material-
dependent parameters. Then, the instantaneous
grain size while MDRX progresses is given by
Eq 20, in which b is another material constant,
whose value is between 0 and 1:

dmdyn ¼ kmddD
p
0e

q _er exp �Qmdd

RT

� �
(Eq 19)

d ¼ dmdynX
b (Eq 20)

Static grain growth is usually modeled in
accordance with the following expression:

dw ¼ dwmdyn þKg exp � Qg

RT

� �
t (Eq 21)

Table 2 JMAK model for dynamic and metadynamic recrystallization and grain growth for
wrought Waspaloy

Zener-Hollomon parameter Z ¼ _e exp 468; 000=RTð Þ
Dynamic recrystallized fraction X ¼ 1� exp � ln 2 e=e0:5ð Þnð Þ

n = 3 for T < 1010 �C
n = 2 for 1010 �C < T < 1027 �C
n = 1.8 for 1027 �C < T

Strain for dynamic recrystallized fraction of one-half e0:5 ¼ 0:1449 d 0:32
0 Z 0:03 for T < 1010 �C

e0:5 ¼ 0:056 d 0:32
0 Z 0:03 for 1010 �C < T <1027 �C

e0:5 ¼ 0:035 d 0:29
0 Z 0:04 for 1027 �C < T

Dynamic recrystallized grain size, mm ddyn ¼ 8103 Z�0:16 for T < 1027 �C
ddyn ¼ 108:85 Z�0:0456 for 1027 �C < T

Metadynamic recrystallized fraction X ¼ 1� exp � ln 2 t=t0:5ð Þn½ � with n = 1 for 1027 �C < T
No metadynamic recrystallization otherwise

Time(s) for metadynamic recrystallized fraction of one-
half

t0:5 ¼ 4:54 � 10�5 d 0:51
0 e�1:28 _e�0:073 exp 80; 687=RTð Þ for

1027 �C < T
No metadynamic recrystallization otherwise

Metadynamic recrystallized grain size, mm dm�dyn ¼ 14:56 d 0:33
0 e�0:44 Z�0:026 for 1027 �C < T

Dynamic recrystallized grain size otherwise

Static grain growth, d, mm; t, s d3 ¼ d3ini þ 2 � 1026 t exp �595; 000=RTð Þ for 1027 �C < T
No static grain growth otherwise

Source: Ref 21

Table 3 JMAK model of dynamic, metadynamic, and static recrystallization and grain
growth for superalloy 718

Zener-Hollomon parameter, (T), K Z ¼ _e exp 508; 000=RTð Þ
Critical strain ec ¼ 2:74 � 10�7 Z0:28 for _e > 0:01 s�1

ec ¼ 9:112 � 10�4 Z0:0982 for _e � 0:01 s�1
Dynamic recrystallized fraction Xdrx ¼ 1� exp � ln 2 e� ec=e0:5ð Þn½ � with n = 2
Strain for dynamic recrystallized fraction of one-half e0:5 ¼ 0:1343 Z0:0515

Dynamic recrystallized grain size, mm ddrx ¼ 1:0602 � 105 Z�0:185
Metadynamic recrystallized fraction Xmdrx ¼ 1� exp � ln 2 t=t0:5ð Þn½ � with n = 1
Time for metadynamic recrystallized fraction of
one-half

t0:5 ¼ 1:7 � 10�5 d 0:5
0 e�2:0 _e�0:08 exp 12; 000=RTð Þ

Metadynamic recrystallized grain size, mm dmdrx ¼ 8:28 d 0:29
0 e�0:14 _e�0:03 exp �13; 440=RTð Þ

Static recrystallized fraction Xsrx ¼ 1� exp � ln 2 t=t0:5ð Þn½ � with n = 1
Time for static recrystallized fraction of
one-half

t0:5 ¼ �3:92þ 5508=T½ � e�0:75 exp 74; 829=RTð Þ

Static recrystallized grain size, d, mm; T, K; t, s dsrx ¼ 28 T=1223ð Þ3exp 3 � 10�5 T � 1223ð Þ t
 �
Static grain growth, D, mm; t, s D15

1 ¼ D15
0 þ 5:63 � 1020 t exp �115; 000=RTð Þ for T < 1027 �C, T (K)

Dtr ¼ D1 �D2ð Þ cos p=2� T � 1017=1050� 1017ð Þ½ �t=104þD2 for
1027 �C < T < 1050 �C, T (�C)

D15
2 ¼ D15

0 þ 8:05 � 1036 t exp �115; 000=RTð Þ for T > 1050 �C, T (K)

Unrecrystallized fraction Xn ¼ 1�Xdrx �Xmdrx �Xsrx

Unrecrystallized grain size, mm dn ¼ d0 exp �e=4ð Þ in which d0 is the initial grain size
Average grain size, mm 1=d2AV ¼ Xdrx=d

2
drx þXmdrx=d

2
mdrx þXsrx=d

2
srx þXn=d

2
n

Retained strain ere ¼ eXn

Source: Ref 22

Table 4 JMAK model of metadynamic and static recrystallization and grain growth for
superalloy 718

Strain at peak stress ep ¼ 0:4659 � 10�2 _e0:1238 exp 49; 520=RTð Þ
Critical strain ec ¼ 5=6ep
Metadynamic or recrystallized fraction Xmdrx ¼ 1� exp � ln 2 t=t0:5ð Þn½ � with n = 1
Time for metadynamic recrystallized fraction of one-half t0:5 ¼ 5:043 � 10�9 e�1:42 _e�0:408 exp 196; 000=RTð Þ
Metadynamic recrystallized grain size, mm dmrx ¼ 4:85 � 1010 e�0:41 _e�0:028 exp �240; 000=RTð Þ
Static recrystallized fraction Xsrx ¼ 1� exp � ln 2 t=t0:5ð Þn½ � with n = 1
Time for static recrystallized fraction of one-half t0:5 ¼ 3:16 e�0:75 exp 74; 826=RTð Þ
Static recrystallized grain size, mm dsrx ¼ 6:78 � 102 exp �31; 710=RTð Þ
Static grain growth, d, mm; t, min d2gg ¼ d20 þ 9:44 � 1019 t exp �467; 114:7=RTð Þ
Source: Ref 23
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in which Kg and Qg are constants, and w is an
exponent, typically �2 or 3. Higher values of
w are possible, for example, when second-phase
particles slow growth. When second-phase par-
ticles essentially pin the growing grains, even
very high values of w may not be sufficient,
and different expressions may be needed alto-
gether (Table 3). An expression of the form of
Eq 21 can yield better results than Eq 19 and
20 for grain growth just after deformation,
already during metadynamic evolution, for
nickel-base superalloys. However, the recrystal-
lized grain size at the end of deformation from
Eq 18 should be used as the starting grain size
for grain growth instead of dmdyn (Ref 6).

Implementation of JMAK Models in Finite-
Element Method Simulations. The workpiece
temperature is rarely constant during real-life
TMP operations but may vary due to deforma-
tion heating, die chilling, and so on. Such tem-
perature transients are readily predicted at each
location within a workpiece via finite-element
method (FEM) analysis. In such cases, the mod-
eling of microstructure evolution using the clas-
sical JMAK approach must be extended from
isothermal to transient (nonisothermal) condi-
tions. In these cases, a relatively simple and
practical approach consists of introducing a fic-
titious (virtual) time or strain representative of
that which would pertain if the structure had
evolved until that moment under isothermal or
constant strain-rate conditions, and applying
the JMAK model for one (typically short)
subsequent strain or time increment. For the
case of air cooling a workpiece after forging
(in which metadynamic or static evolution
applies), for instance, FEM is used to determine
the temperature Ti at the ith time step ti of the
simulation at some node of the mesh. Assuming
that the recrystallized fraction X(ti) has been
computed up to that moment, one can define a
virtual time tv by rearrangement of:

X tið Þ ¼ 1� exp � ln 2
tv

t0:5 Tið Þ
� �n� �

(Eq 22)

and apply the model to reach the next time step,
ti+1 = ti + dti, in accordance with the relation:

X tiþ1ð Þ ¼ 1� exp � ln 2
tv þ dti
t0:5 Tið Þ

� �n� �
(Eq 23)

A similar procedure can be applied during
deformation by defining a virtual strain and using
the value of e0.5 that is appropriate for the temper-
ature and strain rate of the considered time step
and node. Instead of using the strain rate calcu-
lated by the FEM simulation, it is recommended
to approximate it as (e(ti+1) � e(ti))/dt to ensure
consistency. In both the dynamic and metady-
namic cases, this numerical integration procedure
supposes that temperature and strain rate do not
vary much from one step to the next. Otherwise,
one may use the average temperatures for steps i
and i+1 to mitigate undesirable numerical effects.
Alternatively, one can rerun the FEM simulation
to calculate and store the thermomechanical

history of the workpiece during shorter, more fre-
quent time steps.
Industrial metalworking processes such as

cogging, tandem rolling, and radial forging
usually involve multiple deformations. In
such instances, the microstructures may not
fully recrystallize by the completion of each
deformation. For nickel-base superalloys in par-
ticular, dealing appropriately with partially
recrystallized structures is of major importance,
inasmuch as it is related to the persistence of
undesirable (coarse) ALA grains. Thus, it is
useful to distinguish at least two families of
grains during TMP: one comprising the initial
grains that continue to accumulate strain and
the other consisting of grains that have been
recrystallized at least once, thus being typically
finer and totally or partially free of strain (Ref
6). It is thus necessary to determine different
values of e0.5 and t0.5, depending on the sizes
of the remnants of the initial grains and the pre-
viously recrystallized grains. Such analysis of
the different generations of recrystallized grains
(Fig. 10) allows the application of JMAK anal-
ysis to each deformation step and its subsequent
metadynamic evolution while tracking specifi-
cally the recrystallization of the initial grains.
The analysis of multistep operations should

also include the effect of static recovery between
successive deformations. The appropriate strain
in equations for the initial deformed grains is
therefore not equal to the total strain accumu-
lated since the beginning of the metalworking
operation. Specifically, if the strain increment
applied during the ith deformation is denoted as
Dei, the strain ei to use in the JMAK equations
for the strained grains is computed as:

ei ¼ lei�1 þ Dei (Eq 24)

in which l is a temperature- and/or time-depen-
dent parameter ranging between 0 and 1. For
previously recrystallized grains, l is equal to
zero, because recrystallization can be expected
to have eliminated most, if not all, of their
stored energy.
In cases requiring less accuracy, partially

recrystallized structures may be analyzed by
focusing on only one set of “average” grains
for each increment of deformation (Table 3,
Fig. 11), as is commonly done for steels.
In summary, JMAK models have departed

from their initial physics basis but are nonethe-
less very useful in many instances, such as the
design and refinement of forging practices (Ref
26). They make use of a number of intermediate
Arrhenius and power laws to capture the com-
bined effects of process parameters and other
variables on recrystallization behavior. However,
they may not be totally adequate due to their
phenomenological nature. In particular, when a
JMAK model has been calibrated for a specific
superalloy, it is not possible to modify it reliably
to address the behavior of other, even similar
alloys, because the contributions of all driving
forces are mixed in the equations. Thus, other
forms of modeling must be explored.

Topological Models

There are two types of topological models
that can be used to model microstructure evolu-
tion in nickel-base superalloys: discrete and
continuous (Ref 27).
Discrete models are based on the mapping of

microstructure onto a regular (and usually
rather large) grid of cells or lattice points,
namely squares or hexagons. Cells are assigned
at least one state variable such as a grain num-
ber, crystallographic orientation, or dislocation
density/level of stored work. Areas formed by
cells with an identical grain number or similar
state variable(s) define the grains. A set of rules
defines the conditions by which cells may
switch, that is, may change their state variable(s)
to those of a neighboring cell. Grain growth
or the migration of a recrystallization front
occurs as the cell-switch process is repeated.
This repetition is made by picking cells at
random; a time step is complete when there
has been as many random picks as there are
cells in the grid.
There are two main variants of discrete topo-

logical models: cellular automata (CA) and
Monte Carlo (MC). They are distinguished pri-
marily by the rules that govern the switch of
state. Cellular automata are more suitable to
represent the progress of recrystallization, while
Monte Carlo models are more often applied for
static grain growth.
Continuous models rely on networks of

interconnected points called vertices. The con-
nections between vertices describe boundaries.
In the simplest approaches of this sort, vertices
are positioned only at triple junctions. In more
complex models, there can be a number of verti-
ces along the boundaries (typically�7) to capture
their curvature in addition to the vertices at triple
junctions. Grains are then defined as the regions
enclosed inside loops of interconnected vertices.

Fig. 10 Model algorithm for treating the evolution of a
microstructure comprising initial grains and

prior recrystallized grains. Source: Ref 6
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The movement of vertices under the influence of
surface tension forces induces the growth or
shrinkage of the grains they surround.
In the sections that follow, the application of

the CA technique to model recrystallization is
described first. This discussion is followed by
a summary of the modeling of grain growth
by MC models and network models.

Discrete Topological Models: Cellular
Automata. In CA models for recrystallization,
each cell is allocated a grain number as well as
a variable that indicates its state of recrystalli-
zation and/or the recrystallization-wave number
to which it belongs. All cells of the initial struc-
ture are considered unrecrystallized; they
belong to recrystallization wave “0.” When a
cell is randomly picked, two events can cause
it to switch its recrystallization state and grain
number. First, if it meets the requirements set
for nucleation, its grain number will also be
changed to a new value, such as the maximum
grain number in the grid incremented by one.
Second, if a neighboring cell chosen at random
is recrystallized, the cell will change its grain
number to that of the recrystallized neighbor,
in effect making that grain grow.
Geometric Considerations. The geometry of

the array of CA cells plays a key role in the
topological evolution of grain structure. For an
array of hexagonal cells in two-dimensional
(2-D) simulations, grains tend to grow in the
shape of hexagons until impingement. Arrays
of square cells, while more simple to program,
may yield unrealistic grain shapes. If neighbor-
ing cells are considered to be only those that

share a side (i.e., a so-called von Neumann
neighborhood), nuclei will grow into diamond-
shaped grains. If all eight surrounding neigh-
bors are considered (i.e., if neighbors are
defined as sharing at least a corner, as in a
Moore neighborhood), grains will approximate
squares. To correct for those shape effects, an
alternate seven-cell pattern can be used. Each
time a cell is chosen, only six of its neighbors
are considered for the random-pick-and-switch
analysis, alternating between the two configura-
tions, such as those shown in Fig. 12. This
tends to produce more realistic octagonal
grains, until they impinge with other recrystal-
lized grains.
The CA models also often assume that the

top edge of the array is in contact with the bot-
tom edge and that the right edge is in contact
with the left. By this means, a form of spatial
periodicity is introduced, thereby preventing
boundary effects and essentially extending the
size of the model domain.
Driving Forces. The geometric considera-

tions and switching rules described previously
are sufficient to reproduce simple recrystalliza-
tion behaviors via CA. However, it is necessary
to add driving forces to create more realistic
representations of recrystallization kinetics and
to adapt CA to specific materials. This implies
the need for additional cell state variables, such
as the dislocation density r, which are key to
defining quantitative rules for nucleation and
growth. A typical formulation to introduce
driving forces has been used in the CA models
developed by Goetz and Seetharaman for the
DDRX of wrought structures (Ref 28); the

approach was extended by Goetz to address
DDRX of ingot structures characterized by the
occurrence of PSN of recrystallization at car-
bide particles (Ref 29).
The 2-D CA approach of Goetz and Seerhara-

man uses an array of 490 by 490 square cells. At
the beginning of each time step, the dislocation
density of all cells is uniformly increased at a
fixed rate dr/dt, which is assumed to be propor-
tional to the strain rate. Then, a number of cells
N (N < 4902) are randomly picked and updated
to account for dynamic recovery by dividing
their dislocation density by two (i.e., r becomes
r/2 in those cells). This operation introduces a
nonuniform dislocation density into the struc-
ture. The evolution of cell dislocation density is
connected to the flow stress. The average dislo-
cation density, rA, is calculated from:

rA ¼
P
cells

r

4902
(Eq 25)

and the flow stress is assumed proportional to
the square root of rA.
When a steady state of strain hardening and

dynamic recovery is reached, the average dislo-
cation density reaches a constant value, rDR,
because, by definition, there is not net accumu-
lation of dislocations in the structure. This bal-
ance of strain hardening and dynamic recovery
is described by the following equation:

dr
dt
¼ N

4902
rDR
2

(Eq 26)

Because the rate at which dislocations are gen-
erated (dr/dt ) is considered proportional to the
strain rate, the assumption that the stress, sDR,
reached during such steady state exhibits a
strain-rate sensitivity, m, is given by:

sDR ¼ K
dr
dt

� �m
(Eq 27)

in which K and m are model parameters. Then,
one can derive an expression for N:

N ¼ 2
4902

K

� �2
dr
dt

� �1�2m
(Eq 28)

Nucleation is modeled by randomly picking a
fraction of the cells that are on the grain bound-
aries or next to second-phase particles (to describe

Fig. 12 Alternating seven-cell neighborhoods used in
cellular automata models that lead to

octagonal grains in two-dimensional simulations
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Fig. 11 Model algorithm in which recrystallization is treated by focusing on only one set of “average” grains for each
increment of deformation. Source: Ref 22
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PSN on carbides). This fraction was taken to be
dr/dt/1000 in the work of Goetz and Seethara-
man. Nucleation is performed on those cells if
their dislocation density has reached a critical
value assumed to be rDR. For each nucleus, the
dislocation density is set back to zero.
The sequential switching trials for 4902 ran-

dom cell picks during each CA time step is per-
formed to simulate the growth of recrystallized
grains. When a cell is randomly picked, if it is
an unrecrystallized cell, the cell grain number
will switch to that of a randomly chosen neigh-
bor cell (according to the alternate patterns in
Fig. 12) if the latter is recrystallized. After a
switch, the cell dislocation density is set back
to zero as well.
Output of CA Models. The CA models are

commonly used to predict microstructure

evolution. The approach is capable of reprodu-
cing a number of features commonly observed
during DDRX (Fig. 13). For the case of MDRX
or SRX, on the other hand, the results may not
show such good agreement with observations
(e.g., Fig. 14). Specifically, the energy stored
in the form of dislocations diminishes when
MDRX or SRX is almost complete. Grain-
boundary energy, which is not taken into
account in CA models, then becomes the
prevalent driving force for the evolution of
microstructure, which is then typically charac-
terized by isotropic, equiaxed grains. In these
instances, MC models are better suited to simu-
late microstructure evolution.
Discrete Topological Models: Monte-

Carlo. The MC models function in essentially
the same way as CAmodels. Cells, or lattice sites

as they are commonly known inMC terminology,
are picked randomly, and a neighboring lattice site
is chosen. The switch, also called a reorientation,
is determined by the change in energy, DE, it
would produce. If the change in energy is negative
or equal to zero, the cell reorientation is accepted.
If it is positive, it is subjected to aBoltzmann prob-
ability, p, given by:

p ¼ exp
DE
kT

� �
(Eq 29)

The energy, E, of the system is evaluated
based on grain-boundary energy in the form of
a Potts model. In the case of a 2-D hexagonal
lattice, such as proposed by Coste et al. (Ref
31) for static grain growth in alloy 718 (UNS
No 1718), E is given by:

Fig. 13 Cellular automata results for discontinuous dynamic recrystallization (DRX). (a) Initial structure. (b) Necklace structure formed by partial dynamic recrystallization of (a).
(c) Partial dynamic recrystallization of an ingot structure with particle-stimulated nucleation (PSN). GB, grain boundary. Source: Ref 29

Fig. 14 Cellular automata results for static recrystallization. (a) Initial structure and structures after (b) 50% or (c) 100% static recrystallization. Source: Ref 30
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E ¼ �g
X
k

X6
j¼1

d Qk;QN k;jð Þ
� 	� 1


 �
(Eq 30)

in which Qk is the grain number of lattice point
k; N(k, j) for j between 1 and 6 is the index of
each neighbor of lattice point k in the grid; g
is the grain-boundary energy; and d is the
Kronecker delta.
In the approach of Coste et al., a specific

grain number is introduced for lattice points
representing d-phase precipitates (Ni3Nb) that
may be present in alloy 718 at temperatures
below 1020 �C. These precipitate cells cannot
be reoriented but are required to reproduce the
effect of Zener pinning on grain growth. In
alloy 718, regions located within the former
dendrite cores tend to exhibit slightly lower
niobium contents despite homogenization heat
treatment. This may lead to an inhomogeneous
distribution of d precipitates, which translates
into different grain growth kinetics and the for-
mation of alternating bands of coarse and fine
grains corresponding to zones in which there
are few d precipitates (dendrite cores) or many
(interdentritic regions), respectively. Such
behavior is very well captured by the MC
model of Coste et al. (Fig. 15).
The challenge associated with coupling CA

and MC models prevents their extensive use,
especially for industrial applications. This is
largely due to the uncertainty as to the point dur-
ing microstructure evolution at which the transi-
tion between the two modeling approaches
should be made. Some work relevant to this
question has been performed by Rollett and
Raabe for aluminum alloys (Ref 32). The authors
propose a continuous alternation between CA
and MC evaluations. However, this approach
raises a number of difficulties when it comes to
determining the frequency of using one or the
other of the two modeling approaches.
The CA and MC models do not provide a

clear connection between their time steps and

physical time. These models are also computa-
tionally intensive. The typical time for one sim-
ulation is of the order of minutes, and they
require extensive computer memory to store
the cells/grid and the values of their associated
state variables. These requirements become
somewhat unmanageable in view of the fact
that such microstructure models would be
needed at each of the thousands of nodes com-
prising an FEM mesh used to simulate an
industrial process. In view of such challenges,
CA and MC are typically used at selected track-
ing points to simulate microstructure evolution
in regions of interest. These approaches can
thus complement JMAK and mesoscale phys-
ics-based techniques that provide microstruc-
ture throughout a workpiece.
Continuous Topological Models: Net-

work/Vertex Models. Network models based
on the migration of vertices are used primarily
for simulating static recrystallization and grain
growth. They are the most physics-based models
of microstructure evolution at high temperature.
In brief, in network models, vertex move-

ment is determined by the evaluation of the
dynamic balance of grain-boundary surface ten-
sions, with the decrease of overall grain-bound-
ary energy controlled by a dissipation potential
(Ref 27). Such models can represent micro-
structure using a lighter computational footprint
that MC or CA models. However, they require
significantly more upfront programming, such
as that needed to address topological situations
that arise as grains disappear during grain
growth, necessitating the reconnection of verti-
ces. Similar difficulties are met when second-
phase particles are introduced, because new
vertices are needed to represent the contact of
grain boundaries with precipitates (Ref 33).
The precision and versatility of network mod-

els is better than MC models. For instance, the
size of second-phase particles may be limited
in MC approaches. Network models can treat

virtually any precipitate size and fraction. As a
result, they can represent the behavior of banded
structures (Fig. 16) more accurately than MC
models. Hence, network models can be of great
interest for nickel-base superalloys. In addition,
these models simulate microstructure evolution
in physical time instead of mathematical MC
(or CA) time steps. Nevertheless, a comparison
of various network and MC models by Maurice
(Ref 27) provides a path to resolve the MC
time-step issue through a calibration procedure
using the network model results for the same
material. In this approach, the MC time step is
normalized by the ratio of the number of lattice
points in the array to the initial number of grains,
that is, by the average number of lattice points
per grain in the initial configuration.
There are still numerous issues to resolve

before topological models can be used routinely
to predict microstructure development during
the TMP of nickel-base superalloys with the
level of precision and reliability that is needed.
Nevertheless, progress is expected in academic
research that will allow this in the future.

Mesoscale Physics-Based Models

The introduction of a sound physics basis
into models of microstructure evolution for
industrial applications has been most successful
using simple, albeit approximate, mesoscale
models.
Early Mesoscale Physics-Based Models.

Mesoscale microstructure-evolutionmodels com-
prise various formulations, each of which
attempts to provide a description of the geometry
and topology of recrystallization as well as repre-
sentative equations for the underlying driving
forces involved in various complex phenomena.
The most common features of these methods are
their reliance on an explicit evaluation of disloca-
tion density, similar to that used for CA models,
and their treatment of the relationship between
grain-boundary velocities and recrystallization.
Furthermore, unlike JMAKmodels, a nonuniform
distribution of nucleation sites in the microstruc-
ture is also frequently assumed.
The first mesoscale physics-based model for

hot working and recrystallization was probably
that developed by Sandstrom and Lagneborg
in 1975 (Ref 35). Approaches of this type were
not pursued for some time thereafter, most
likely because of the computing demands and
high degree of complexity of these models.
It was not until 1997 that the first mesoscale

physics-based model for a nickel-base superal-
loy was developed and applied successfully by
Marty et al. (Ref 36) for the forging of alloy
718 parts. This model includes a simple geo-
metric description of microstructure undergoing
recrystallization in the form of a necklace of
recrystallized grains surrounding deformed
grains of diameter A (Fig. 17). The dislocation
density within the initial grains is taken to be
r, and that of the recrystallized grains is rL.
The evolution of r is described by the relation:

Fig. 15 (a) Micrograph showing a heterogeneous distribution of delta particles (black dots) and banded grain
structure. (b) Simulated microstructure after the final step of a Monte Carlo simulation for a material

containing an initial distribution of delta particles typical of that in (a). Source: Ref 31
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dr
dt
¼ B1

ffiffiffiffiffi
r
r0

r
_e�B2

r
r0
� 1

� �2

exp �Tr

T

� �" #

(Eq 31)

in which B1 and B2 denote coefficients that
depend on temperature and grain size, r0 is

the minimum dislocation density (1012 m�2),
and Tr is an activation temperature for recovery.
The term involving Tr can be easily translated
in the more usual form of an activation energy
divided by RT, however. In the recrystallized
necklace, the dislocation density rL is evalu-
ated through a complex scheme to account for
assumed localized adiabatic heating, partly so
that the approach can be used to simulate
strain-localization effects during rolling.
The temporal evolution of the recrystallized

fraction X in the model ofMarty et al. (Ref 36) is:

dX

dt
¼ A1

1�Xð Þ2=3
D0

exp �TX

T

� �
r� rLð Þ

(Eq 32)

Here, A1 is a material parameter, D0 is the ini-
tial grain size, and TX is a so-called activation
temperature for recrystallization. The term (1
� X)2/3/D0 is, in effect, proportional to the

surface area of the grain boundaries of the
deformed grains divided by the initial grain vol-
ume. Therefore, Eq 32 is a geometrically valid
expression for the rate at which volume is lost
by the deformed grains when their grain bound-
aries migrate under the influence of a difference
in dislocation density between them and their
surrounding necklace of recrystallized grains.
However, this model accounts for the behavior
of recrystallized grains in only an approximate
fashion, and it is not clear how microstructures
are reinitialized to continue modeling during
multiple deformations.
In 1999, a mesoscale model for the steady-

state regime of dynamic recrystallization was
proposed by Montheillet (Ref 37) and subse-
quently modified to simulate the recrystalliza-
tion of alloy 718 (Ref 6). This form of
mesoscale physics-based modeling was later
extended to ingot microstructures by incorpor-
ating the topological and geometric effects of
intragranular PSN (Ref 38). It is described in
detail in a subsequent section.
Model of Sommitsch et al. In 2002, a dislo-

cation-density-based model for simulating hot
forming processes was formulated by Sommitich
et al. and applied first to Nimonic 80A (UNS
N07080) (Ref 39) and then to alloy 718 (UNS
N07718) (Ref 7). This model puts a strong
emphasis on the formulation of the driving
forces that control nucleation and growth. The
formulation draws from the concepts introduced
by Sandstrom and Lagneborg and results in sim-
ilarly complex expressions (Ref 40).
The Sommitsch et al. model (Ref 39) starts

with expressions commonly used as the founda-
tion of other mesoscale physics-based models.
Strain hardening and recovery are described by
the same equation used by Sandstrom and Lag-
neborg (Ref 35):

dr
dt
¼ _e

bl
� 2Mtr2 (Eq 33)

In this equation, b denotes the Burgers vector,
l is the mean free path of dislocations, M is a
so-called mobility of recovery, and t is the
average energy per unit length of disloca-
tions. The latter is generally assumed to be
�0.5Gb2, in which G is the shear modulus.
The recovery term in Eq 33 (second term on
the right side) is similar to that used by Marty
et al. (Ref 36) in that it is proportional to the
square of the dislocation density. On the other
hand, the strain-hardening term (first term on
the right side of Eq 33) is different. Neverthe-
less, a similarity to the form assumed by
Marty et al. (Ref 36) is obtained if the mean
free path of dislocations, l, is related to the
average distance between dislocations. The
latter is proportional to the inverse square
root of the dislocation density. Whether l
depends only on strain rate and temperature
(e.g., subgrain size) or is related to the free
dislocation density should not affect the
steady-state values, because it is always pos-
sible to adjust the recovery term to

Fig. 17 Schematic representation of the necklace
recrystallization structure assumed in the

model of Marty et al. Source: Ref 36

Fig. 16 Vertex model predictions of microstructure evolution from the initial configuration (a) to the final pinned
state (d) for the case of a banded distribution of particles. Source: Ref 34
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compensate. However, it does change the ini-
tial shape of stress-strain curves, which
depend on the square root of the dislocation
density. A constant mean free path, l, pro-
duces an initial linear increase in dislocation
density, leading to a rounded (square-root)
shape for the stress-strain curve. In contrast,
if l depends on the square root of the disloca-
tion density, the initial portion of the stress-
strain curve would increase linearly.
As in other models, the velocity of grain

boundaries in the Sommitsch et al. model is
derived from Turnbull’s equation:

v ¼ mDP ¼ m tDr� PZð ÞPS (Eq 34)

in which m is the grain-boundary mobility, and
DP is the difference in stored energy between
the two sides of the boundary (Ref 41). Som-
mitsch et al. chose to define DP to account not
only for the effect of a difference in dislocation
density, Dr, but also for additional effects such
as Zener pinning due to second-phase particles
(PZ) and solute drag (PS).
The analytical integration of expressions

such as Eq 33 and 34, combined with nucle-
ation and growth, leads to complex equations
describing the evolution of grains undergoing
a wave of recrystallization.
In contrast to the detailed analysis of driving

forces, the representation of the geometry of the
grain structure in the Sommitsch et al. model is
rather limited, inasmuch as it only allows for
the first two waves of recrystallization (as
represented in Fig. 5a), although the approach
could be extended to deal with subsequent ones
as well. Furthermore, the location of nucleation
sites is not explicitly addressed. With regard to
interactions between recrystallized grains, the
Sommitsch et al. model assumes strict impinge-
ment; that is, there is no migration of the
boundaries formed by the contact between
recrystallized grains that belong to the same
wave of recrystallization. Specifically, the frac-
tion C of recrystallized grain boundaries for
which migration stops due to impingement is
introduced:

C Xð Þ ¼ 1� X �XC

1�XC

� �n

S X;XCð Þ (Eq 35)

The value of C depends on the recrystallized
fraction XC at which impingement is assumed
to start, a constant n, and a step function S that
is equal to 0 if X < XC, and 1 otherwise This
equation may be somewhat approximate in view
of its underlying assumptions. In particular, the
coefficients XC and n cannot be related to any
geometric value yet probably have a great impact
on the outcome of the model, similar to that of
the Avrami exponent in JMAK formulations.
The Sommitsch et al. model was implemented

into the FEM software DEFORM. An example
of the output of the coupled microstructure-evo-
lution/FEM model for the industrial processing
of Nimonic 80A is shown in Fig. 18.

Model of Montheillet and Thomas. The,
geometry-related shortcomings of the Sommitich
et al. model (Ref 39, 40) are addressed in detail
in the approach formulated by Montheillet and
Thomas (Ref 37, 38, 42). Their approach com-
prises a rigorous framework to describe both
the geometric/topological aspects and driving
forces that pertain to recrystallization problems,
such as those of importance for superalloys.
Geometric Framework. The modeling

approach originally introduced by Montheillet
(Ref 37) incorporates a rigorous geometric
description of a microstructure undergoing the
steady state of DDRX. It provided the basis
for the development of two subsequent meso-
scale physics-based models that were applied
to the microstructure evolution for alloy 718
(Ref 6) and Waspaloy (Ref 38). These models
were implemented using RX-MOD, a computer
program dedicated to the modeling of micro-
structure evolution during hot working. The
geometric part of these models evolved pro-
gressively into a framework capable of describ-
ing microstructures undergoing recrystallization
via both a necklace of recrystallized grains on
grain boundaries and intragranular recrystal-
lized regions (Ref 42).
The geometric framework is based on so-

called mesostructure units (MSUs) that can be
viewed as aggregates of grains that exhibit

similar properties, such as grain size and dislo-
cation density. Each MSU is assigned its own
index. In its simplest version, a model of dis-
continuous recrystallization requires two
MSUs: one for the initial grains and the other
for the recrystallized grains. In the specific
model developed for Waspaloy, five MSUs are
allocated. The first two represent the initial
grains, distinguished by their Taylor factor.
Similarly, two are used to store the grains that
recrystallized during previous deformations.
The final MSU (of highest index) consists of
the recrystallized grains formed during the lat-
est or current deformation step.
The framework is self-consistent in that it not

only describes the microstructural state at any
given time but also implements the rules that
govern geometric changes in the grain struc-
ture. These rules are activated in reaction to
the two types of input derived from the
driving-force module of the model, namely,
the rate at which nuclei are formed in each
MSU and the velocity of grain boundaries
between each pair of MSUs. Initially, the rates
at which volume is lost through nucleation by
each MSU and its grains are evaluated, assum-
ing an identical nucleus size for all MSUs.
The total volume of nuclei is added to that of
the MSU of highest index, because this MSU
consists of the grains recrystallized during the

Fig. 18 Model predictions for slab rolling. (a) Strain rate (s�1). (b) Strain. (c) Recrystallized fraction. (d) Dislocation
density during the first recrystallization cycle. Due to symmetry, only a quarter section of the slab is shown.

Source: Ref 39
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current deformation step. Next, the rates of vol-
ume variation of each MSU and its grains due
to grain-boundary migration are calculated
based on the probabilities of contact between
grains and in a way that naturally ensures vol-
ume conservation of the overall microstructure.
Volume conservation is a very important fea-

ture of the method introduced by Montheillet
and therefore its geometric framework. To ade-
quately address this requirement, MSUs are
geometrically defined by five primary variables,
three of which are volumes, denoted Vi, vei, and
vi for each MSU of index i. These denote,
respectively, the total volume of MSU i, the
volume enclosed in the outer grain boundary
(envelope) of each grain of MSU i, and the
actual volume of the crystal that constitutes
each grain of MSU i. The term vi is allowed
to become less than vei to account for the devel-
opment of intragranular recrystallized regions.
Specifically, in the model formulation for the
recrystallization of Waspaloy ingots, this fea-
ture is activated for the first two MSUs when
they represent an initial structure of coarse
columnar grains containing carbide particles
that serve as PSN sites. The two other principal
variables (axyi and axzi) are the y:x and z:x
aspect ratios of the grains of MSU i, respec-
tively. When the grains are spherical, axyi and
axzi are equal to unity.
A number of other (secondary) variables of

the geometric description can be derived from
the five primary ones. For example, the grain
density ni is the ratio of Vi to vi. In the case of
spherical grains, the grain diameter Di is equal
to (6vei/p)

1/3, the boundary surface area of each
grain of MSU i is sei = pDi

2; and the total grain-
boundary surface area of MSU i is Sei = ni�sei.
The density of grain boundaries in the volume
of MSU i is Svei = 0.5sei/vei. (The coefficient
0.5 in this relation accounts for the fact that a
grain boundary separates two grains, but it
should contribute to an evaluation of grain-
boundary density only once.)
The rate at which the volume, v, of a grain

changes is defined by the surface area, s, of its
boundary and the velocity, _u, at which its bound-
ary migrates under the effect of driving force:

_v ¼ s _u (Eq 36)

Because the grains of any MSU i can be in con-
tact with grains of different MSUs, Eq 36 must
be refined to account for the variety of possible
interactions in accordance with the following
equation:

_vei ¼
XN
j¼1

_ve ij ¼
XN
j¼1

sij _uij (Eq 37)

Here, _uij is the grain-boundary velocity
between MSUs i and j (provided as input to
the framework), se ij is the average surface area
of grains of MSU i in contact with grains of
MSU j, and N is the total number of MSUs.
Assuming a uniform probability of contact

with grains of any MSU j in the structure, one
can define Stotal as the total density of grain
boundaries in the structure and the probability,
qj, of contact of any grain boundary in the
structure with that of a grain of MSU j such
that:

sij ¼ qj sei (Eq 38)

qj ¼ nj sejPN
k¼1

nk sek

¼ Sej

Stotal

(Eq 39)

Equations 37 to 39 are useful to determine
the rate of volume variation due to interactions
between grains of different MSUs. However,
they are not applied in the case of interactions
between grains of the same MSU. In such a
case, grain growth arises from the elimination
of grain boundaries as they migrate and meet
each other. It is evaluated through the grain-
boundary density, Svei, and the volume it
sweeps under the effect of its migration,
Sveiqi _uii. Grain boundaries present in the vol-
ume swept are eliminated, and therefore, the
grain-boundary density decreases at a rate
dSvei=dt ¼ S2

veiqi _uii. The solution of this differ-
ential equation gives the contribution of intra-
MSU interactions to the rate at which the vol-
ume of its grains varies:

_ve ii
vei
¼ 3 qi Svei _uii (Eq 40)

It may be shown that the incorporation of the
nuclei generated by all MSUs of the structure
into the MSU of highest index N is given by
the expression

_vnucleN

veN
¼ � _nnucl

total

nN
1� vnucl

veN

� �
(Eq 41)

in which vnucl is the volume of a nucleus, and _nnucl
total

is the total number of nuclei generated in the
structure. Because the size of nuclei can reason-
ably be assumed to be finer than that of growing
recrystallized grains, the incorporation of nuclei
in the MSU of highest index contributes as a neg-
ative term to the rate of volume variation of the
grains of that MSU, that is, leads to their refine-
ment. When all other MSUs have been consumed
by recrystallization, qN = 1. Then, the addition of
the positive term given by Eq 40 (with i = N) and
the negative term provided by Eq 41 in order to
calculate the rate of volume variation of the grains
of that MSU shows that a steady state of dynamic
recrystallization is reached, assuming an appro-
priate nucleation-rate input is provided to the geo-
metric framework by the driving-force side of the
model.
The aforementioned geometric framework

may appear to be an oversimplified representa-
tion of the renewal of grains in a recrystallized
structure, especially with regard to the typical
understanding of DDRX and its steady state.
In actuality, however, it is a very reasonable
approach for nickel-base superalloys, considering

that the recrystallized grains in these materials
undergo cycles of growth and fragmentation
governed by the gradual disorientation of
their subboundaries and twin boundaries. In
fact, when the geometric framework is tested
with rather simple inputs, it does indeed
reproduce the expected range of behaviors
(e.g., Fig. 19, 20).
The geometric framework also treats the

development of intragranular recrystallized
regions. The calculation in this case relies on
specific probabilities of interaction, identified
by a similar reasoning as before. In brief, if a
volume-nucleation rate is provided as input to
the framework for the first two MSUs (for
coarse ingot grains), it induces a faster diminu-
tion of vi than vei, because the latter is defined
as the volume enclosed in the outer envelope
of grains and is therefore not affected by intra-
granular nucleation, whereas vi always is, by
definition. For a given density of second-phase
particles, typically carbides, this volume differ-
ence is translated in the average volume
surrounding particles occupied by nuclei/

Fig. 19 Evolution of recrystallized fraction predicted
by the mesoscale geometric framework for

two-mesostructure unit simulations with nucleation rates
of one nucleus per (a) 5, (b) 100, and (c) 5000 mm2 of
boundary and per unit strain and grain-boundary
velocities of (a) 0, (b) 42, and (c) 105 mm per unit strain.
The volume of the nucleus was assumed to be 100 mm3.
Source: Ref 42

Fig. 20 Avrami analysis of the recrystallized-fraction
curves in Fig. 19. X denotes the

recrystallized fraction; the slope of the curves is the
Avrami exponent n. Source: Ref 42
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recrystallized grains. It then leads to the evalu-
ation of the diameter of those regions and of
their surface area (Sbi), where the coarse initial
grains can be consumed from within by the
growth of recrystallized grains through a new,
intragranular form of interaction. The surface
area of those regions provides the starting point
to evaluate the various probabilities of interac-
tion needed to translate grain-boundary velocity
inputs into the rates of volume variation of
grains and MSUs.
Driving Forces. In addition to the primary

and secondary geometric variables of the geo-
metric framework, MSUs are provided with
variables for the modeling of driving forces.
At a minimum, these driving-force variables
include a dislocation density and various values
that describe the substructure and/or twin
boundaries that serve as nucleation sites, which
may vary among different model formulations.
In the model developed for Waspaloy, the

rate of dislocation generation is taken to be:

_rþ ¼ _e
ffiffiffi
r
p
nb

(Eq 42)

in which n is an estimate of the average number
of forest dislocations a new, mobile dislocation
can cross before it is stopped. Assuming the
flow stress is expressed by:

s ¼ s0 þ aGb
ffiffiffi
r
p

(Eq 43)

the apparent recovery rate can be derived from
a measured stress-strain curve using:

dr�

de
¼ s� s0

aGb2
1

n
� 2

aG
ds
de

� �
(Eq 44)

As an example, Fig. 21(a) shows actual stress-
strain curves for a lot of wrought Waspaloy.
The results in Fig. 21(b) are the apparent recov-
ery rates for the two 0.1 s�1 increments of
deformation (calculated in accordance with
Eq 44) as a function of the instantaneous dislo-
cation density obtained by rearrangement of
Eq 43. The initial linear response shows that
the rate of dynamic recovery is directly propor-
tional to the dislocation density. The additional
softening evidenced by the differences between
the calculated apparent recovery rates and the
corresponding initial linear responses is a result
of DDRX. Therefore, the mesoscale model for
Waspaloy should assume that dislocation densi-
ties for each MSU evolve according to an equa-
tion of the form:

_r ¼ _e
ffiffiffi
r
p
n b
� rr

� �
(Eq 45)

in which n and r depend on temperature, strain
rate, and so on.
With regard to the modeling of nucleation,

nickel-base superalloys exhibit generation and
disorientation of subboundaries and, to a lesser
extent, the formation and disorientation of twin
boundaries. When a subboundary reaches a

critical disorientation, it becomes mobile and
thus serves a viable nucleus. The tracking of
the kinetics of disorientation provides a quanti-
tative description of nucleation, but it increases
computation time.
In the case of the model developed for alloy

718 (Ref 6), subboundaries and twin boundaries
are represented by two distributions of bound-
ary densities with disorientations ranging from
1 to 15� or from 60 to 55�, respectively. The
calculation of the evolution of these distribu-
tions requires careful integration with fine time
steps to prevent numerical instabilities and
requires rather large amounts of computer
memory. As a result, the approach for nucle-
ation cannot be used at every node of a large
three-dimensional FEM mesh.
The disorientation and nucleation model

implemented for the dynamic recrystallization
of Waspaloy assumes a simpler description of

subboundaries and neglects twin boundaries
altogether. It distinguishes between two types
of subboundaries: those generated at the periph-
ery of grains and those inside the grains, such
as in the vicinity of coarse carbide particles.
For each kind of subboundary, the model uses
a density (Ssb and SsbV) and a phenomenologi-
cal value representing the overall level of disor-
ientation (x and xv). The first subboundaries
control the nucleation of recrystallized grains
at the surface/periphery of grains, that is, the
formation of the necklace. The second sub-
boundaries drive nucleation within the volume
of grains and hence the development of intra-
granular recrystallized regions if the MSU to
which they belong allows it; otherwise, they
are simply added to the first.
The equations used for volume subbound-

aries in the model for Waspaloy ingot material
serve as an example for the approach. The

Fig. 21 Constitutive analysis for wrought Waspaloy deformed in uniaxial compression at 1177 �C. (a) Measured
stress-strain curves and (b) apparent recovery rate for the two increments of deformation imposed at a

strain rate of 0.1 s�1. Source: Ref 38
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generation rate of subboundaries within the vol-
ume of grains is given by:

_SþsbV ¼ kV exp
QV

RT

� �
_eFV MTaylor

� 	
(Eq 46)

A critical strain for the activation of nucleation
(and of recrystallization) is calculated from:

ecV ¼ kcV exp
QcV

RT

� �
FcV MTaylor

� 	
(Eq 47)

This leads to the evaluation of the rate of
increase of x or xV:

_xþV ¼
_e

ecV
(Eq 48)

Finally, the rate of transformation of subbound-
aries into grain boundaries is:

_S�sbV ¼ _SþgbV ¼ kNV þ k0NV Sp
b

� 	
_e xv � 1ð ÞSsbV

(Eq 49)

Nucleation rates are derived from the rates of
generation of new grain boundaries ( _Sþgb and
_SþgbV) by dividing them by the surface area of
a nucleus. Equation 49 shows that nucleation
starts when xv (or x) becomes greater than
one, which happens when the strain exceeds
the critical value given by Eq 48. Sb is the sur-
face area of intragranular regions, one of the
secondary variables characterizing MSUs in
the geometric framework, as mentioned previ-
ously. When the development of intragranular
regions is activated for an MSU, such as for
coarse ingot grains, Sb expands throughout
recrystallization and provides increasing

numbers of sites for subsequent nucleation in
the form of a positive feedback loop. This is in
part responsible for the acceleration of recrystal-
lization observed when PSN is activated. FV and
FcV are functions that provide acceleration or
deceleration of PSN, depending on the Taylor
factor of ingot structures. The Taylor factor itself
is a function of the orientation of the fiber-tex-
tured as-cast grains with regard to the axis of
compression. The functions FV and FcV are set
equal to unity for wrought structures that typi-
cally exhibit a random texture. In most cases,
even for fiber-textured ingot grains, the orienta-
tion dependence is relatively weak and may be
neglected to a first order.
The coupling of mesoscale physics-based

models with FEM simulations allows the pre-
diction of microstructure evolution throughout
a thermomechanical process. As an example,
Fig. 22 shows the evolution of the size of
recrystallized grains predicted by the mesoscale
model developed for Waspaloy when it is cou-
pled with DEFORM-3D for the FEM simula-
tion of a billet-cogging process.

Current Status and Future Outlook

There are three main forms of models for the
prediction of microstructure evolution during
the TMP of nickel-base superalloys. First,
JMAK models have demonstrated their reliabil-
ity and usefulness throughout years of develop-
ment and application in both academia and
industry. Second, topological models primarily
address more research-oriented issues than
full-scale industrial applications, but this may
change thanks to future improvements,

especially in terms of computing power. Third,
mesoscale physics-based models have become
increasingly relevant and applicable since the
end of the 1990s. They are capable of addres-
sing the complex industrial issues posed by
the TMP of nickel-base superalloys. They com-
bine the advantages of a relatively light com-
puter footprint, similar to that of JMAK
models, with a firm physical basis reminiscent
of topological models.
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Periodic Table of Elements

FUNDAMENTAL TO MODELING is the
fact that engineering materials are composed of
chemical elements, and the performance of engi-
neering materials reflects the chemistry of these
elements. Basic information is provided here on
the chemical elements and their arrangement into
a periodic table (Fig. 1) based on recurring simila-
rities in the fundamental nature of the elements.
Elements are the basic substances that cannot

be decomposed further by chemical means or
made by chemical union. These elements fol-
low a periodic pattern related to the electron
configuration that allows them to be arranged
into the convenient periodic table. In the peri-
odic table, the elements are arranged in the
order of increasing atomic number (the number
of protons in the nucleus), but those that have
the same number of electrons inhabiting their
outermost electron shells (and therefore having
similar chemical behavior) are grouped under
each other; hence, the vertical columns of
related elements in the periodic table are called
groups. As atomic number increases, more
orbital electrons must be accommodated in the
shells, and as each outermost shell is filled, a
new outermost shell (and a new period of the
table) is begun. Because the additional shells
are larger than the preceding shells, there is
room for more electrons, and the periods get
longer: from two (period 1) to eight and eight
(periods 2 and 3), then to eighteen and eighteen
(periods 4 and 5), and finally to thirty-two and
(probably) thirty-two (periods 6 and 7).
Over the years, various conventions have

been used to identify each group in the periodic
table. For example, the 1948 edition of the
Metals Handbook used a system similar to that
adopted in 1970 by the International Union of
Pure and Applied Chemistry (IUPAC) in which
the left-side and right-side elements in periods
4 through 7 are distinguished by the addition
of the letters “A” and “B,” respectively, the
only difference being that the Handbook used
small (lower-case) letters with the Roman
numerals rather than capital (upper-case) let-
ters. In contrast to the 1970 IUPAC system,
which was commonly used in Europe, the

Chemical Abstracts Service (CAS) of the
American Chemical Society and many other
U.S. chemists applied the “B” to the additional
groups (groups 3 through 12) in periods 4
through 7 and “A” to the rest. Other conven-
tions that have been occasionally followed in
the past are to use “0” instead of VIIIA or
VIIIB to identify group 18, and to use Arabic
numerals instead of Roman numerals. The most
recent (1988) IUPAC recommendation is to
eliminate both practices and to use Arabic
numerals 1 through 18 instead.
Another common practice is to identify

groups of similar elements with collective
names. For example, the elements lithium,
sodium, potassium, rubidium, cesium, and fran-
cium in group 1 are called alkali metals from
the Arabic for “the ashes” (hydrogen, which is
not normally a solid, is not included), and all
the elements in group 2 are called alkaline earth
metals. While not yet approved by IUPAC, the
term pnicogens or pnictides has been applied to
the elements in group 15; the term is from the
Greek for “stifle, choke, or strangle,” which
alludes to nitrogen, that is, “burnt air.” The term
chalcogens has been applied to group 16 ele-
ments; the term is from the Greek for “copper,”
which first alluded to the common occurrence of
oxygen and sulfur in many copper ores but later
referred to all these elements that were “ore for-
mers.” The term halogens (from the Greek for
“salt”) has been applied to group 17, and the ele-
ments in group 18 are called noble gases or inert
gases. Sometimes, hydrogen is positioned at the
top of the halogen group in addition to its nor-
mal position at the top of group 1.
Rows of some similar elements are similarly

named. For example, the elements in rows 3
through 10, whose atoms have an incomplete
d subshell of electrons, are called transition ele-
ments or transition metals. IUPAC 1988, how-
ever, also includes the atoms in row 11 in the
group of transition elements, while other orga-
nizations include all the elements between rows
2 and 12. The elements lanthanum through lute-
tium (atomic numbers 57 through 71) are
termed lanthanide elements, lanthanide metals,

or simply lanthanides. The lanthanides together
with group 3 elements yttrium (atomic number
39) and scandium (atomic number 21) are
called rare earth elements, rare earth metals,
or simply rare earths. The elements actinium
through lawrencium (atomic numbers 89
through 103) are similarly termed actinide ele-
ments, actinide metals, or simply actinides
(or sometimes second-series rare earths), while
those from thorium (atomic number 90) through
lawrencium (atomic number 103) are termed
actinoids.
Most of the chemical elements are metals.

A metal is any element that tends to lose elec-
trons from the outer shells of its atoms, with
the resulting positive ions held together in a
unique crystal structure by the cloud of these
free electrons in a mechanism that has been
called metallic bonding. This type of atomic
bonding is in contrast to ionic bonding and to
covalent bonding. In ionic bonding, transfer of
valence (outer shell) electrons between dissimi-
lar atoms produces stable outer shells in each
and results in positive and negative ions that
are mutually attracted by coulombic forces but
do not form a crystal. In covalent bonding,
valence electrons are shared rather than
exchanged, and a nonmetallic crystal can form,
for example, the diamond form of carbon.
The cloud of free electrons in metallic crys-

tals gives rise to the three physical characteris-
tics typical of solid metals: metals are good
conductors of electricity, good conductors of
heat, and they have a lustrous appearance. In
addition, most elemental metals are malleable,
ductile, generally denser than other elemental
substances, and usually form positive ions.
Those elements that do not display the charac-
teristics of the metallic elements are called non-
metals. However, there are some elements that
act as metals under some circumstances and
like nonmetals under different circumstances
and are called semimetal. As shown, the bound-
aries separating the regions in the periodic table
covered by the three classes of elements are not
distinct, except that nonmetals never form pos-
itive ions.
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Fig. 1 Periodic Table of Elements
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Periodic System for Ferrous Metallurgists

The basic principles of alloying were applied
to develop the periodic system shown here,
which illustrates the fundamental alloying
nature of iron. The solid solubility of each ele-
ment in iron can be resolved accurately with

few exceptions by considering only atomic size.
Alloying valence, crystal structure and electro-
negativity are useful supplementary factors of
varying significance. The tendency to form
compounds, intermetallic or ionic, is related to

the difference in electronegativity which, in
general, increases in a sweep from lower left
to upper right of the periodic system.

Fig. 1 Source: ASM Metals Reference Book, 2nd ed., American Society for Metals, 1983, p 83
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Physical Constants and
Physical Properties of the Elements

Table 1 Fundamental physical constants

Quantity Symbol Numerical value(a) Units

Speed of light (in vacuum) c 299,792,458 (exact) m � s�1

Electronic charge e 1.602176487 (40) � 10�19 C
Planck constant h 6.62606896 (33) � 10�34 J � s
Pianck constant/2p h(bar) 1.054571628 (53) � 10�34 J � s
Avogadro constant (number) NA 6.02214179 (30) � 1023 mol�1

Atomic mass unit amu or u 1.660538782 (83) � 10�27 kg
Electron rest mass me 9.10938215 (45) � 10�31 kg
Proton rest mass mp 1.672621637 (83) � 10�27 kg
Neutron rest mass mn 1.674927211 (84) � 10�27 kg
Faraday constant (NAe) F 9.64853399 (24) C � mol�1

Electron magnetic moment me �9.28476377 (23) � 10�26 J � T�1

Molar gas constant R 8.314472 (15) J � mol�1 � K�1

Molar value of ideal gas at STP(b) Vm 22.710981 (40) � 10�3 m3 mol�1

Boltzmann constant (R/NA) k 1.3806504 (24) � 10�23 J � K�1

Stefan-Boltzmann constant s 5.670400 (40) � 10�8 W m�2 K�4

Standard gravity (gravitational acceleration) g 9.80665 (exact) m � s�2

Energy equivalent, thermochemical calorie cal 4.184 (exact) J
Absolute temperature T0

�C 273.150 þ� 0.010 K

(a) The number in parenthesis is the estimated one-standard-deviation uncertainty in the last digits of the quoted value. (b) STP = standard temperature and pressure (273.15 K, 100 kPa). Source: NIST, current (2006) CODATA
recommended values, accessed June 2, 2009

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 588-598

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Table 2 Standard atomic weights of the elements

Symbol Atomic number Atomic weight Symbol Atomic number Atomic weight Symbol Atomic number Atomic weight

Ac 89 227.0278 He 2 4.00260 Ra 88 226.0254
Al 13 26.98154 Ho 67 164.9304 Rn 86 (222)
Am 95 (243) H 1 1.0079 Re 75 186.207
Sb 51 121.75* In 49 114.82 Rh 45 102.9055
Ar 18 39.948 I 53 126.9045 Rb 37 85.4678*
As 33 74.9216 Ir 77 192.22* Ru 44 101.07*
At 85 (210) Fe 26 55.847* Sm 62 150.36*
Ba 56 137.33 Kr 36 83.80 Sc 21 44.9559
Bk 97 (247) La 57 138.9055* Se 34 78.96*
Be 4 9.01218 Lr 103 (260) Si 14 28.0855*
Bi 83 208.9804 Pb 82 207.2 Ag 47 107.868
B 5 10.81 Li 3 6.941*
Br 35 79.904 Lu 71 174.967* Na 11 22.98977
Cd 48 112.41 Mg 12 24.305 Sr 38 87.62
Cs 55 132.9054 Mn 25 54.9380 S 16 32.06
Ca 20 40.08 Md 101 (258) Ta 73 180.9479
Cf 98 (251) Hg 80 200.59* Tc 43 (98)
C 6 12.011 Mo 42 95.94 Te 52 127.60*
Ce 58 140.12 Nd 60 144.24* Tb 65 158.9254
Cl 17 35.453 Ne 10 20.179 Tl 81 204.383
Cr 24 51.996 Np 93 237.0482 Th 90 232.0381
Co 27 58.9332 Ni 28 58.69 Tm 69 168.9342
Cu 29 63.546* Nb 41 92.9064 Sn 50 118.69*
Cm 96 (247) N 7 14.0067 Ti 22 47.88*
Dy 66 162.50* No 102 (259)
Es 99 (252) Os 76 190.2 W 74 183.85*
Er 68 167.26* O 8 15.9994* (Unh) 106 (263)
Eu 63 151.96 Pd 46 106.42 (Unp) 105 (262)
Fm 100 (257) P 15 30.97376 (Unq) 104 (261)
F 9 18.998403 Pt 78 195.08* U 92 238.0289
Fr 87 (223) Pu 94 (244) V 23 50.9415
Gd 64 157.25* Po 84 (209) Xe 54 131.29*
Ga 31 69.72 K 19 39.0983 Yb 70 173.04*
Ge 32 72.59* Pr 59 140.9077 Y 39 88.9059
Au 79 196.9665 Pm 61 (145) Zn 30 65.38
Hf 72 178.49* Pa 91 231.0359 Zr 40 91.22

Note: The atomic weights are in atomic mass units (amu) relative to 12C = 12. The atomic weights of many elements are not invariant but depend on the origin and treatment of the material. The values given apply to elements
as they exist naturally on earth and to certain artificial elements. They are considered reliable to þ�1 in the last digit or þ�3 when followed by an asterisk (*). Values in parentheses are used for radioactive elements whose atomic
weights cannot be quoted precisely without knowledge of the origin of the elements; the value given is the atomic mass number of the isotope of that element of longest known half-life. Source: M. Bauccio, Ed., ASM Metals
Reference Book, 3rd ed., ASM International, 1993
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Table 3 Melting points of the elements

Symbol Atomic number

Melting point

Estimated error; footnotes Symbol Atomic number

Melting point

Estimated error; footnotesK �C K �C

Ac 89 1324 1051 þ�50 Mn 25 1519 1246 þ�5
Ag 47 1235.08 961.93 (a) Mo 42 2896 2623 (b)
Al 13 933.602 660.452 (b) N 7 63.1458 �210.0042 þ�0.0002; (c, d)
Am 95 1449 1176 (e) Na 11 371.0 97.8 þ�0.1
Ar 18 83.798 �189.352 (a, c) Nb 41 2742 2469 (b)
As 33 876 603 (f) Nd 60 1294 1021 (e)
At 85 (575) (302) est.; (g) Ne 10 24.563 �248.587 þ�0.002; (b, c)
Au 79 1337.58 1064.43 (a) Ni 28 1728 1455 (b)
B 5 2365 2092 (g) No 102 (1100) (827) est.; (g)
Ba 56 1002 729 þ�2 Np 93 910 637 þ�2
Be 4 1562 1289 þ�5 O 8 54.361 �218.789 (a, c)
Bi 83 544.592 271.442 (b) Os 76 3306 3033 þ�20
Bk 97 1256 983 (e) P 15 317.29 44.14 þ�0.1; (h)
Br 35 265.90 �7.25 (c) Pa 91 1848 1575 (g)
C 6 4100 3826 (f) Pb 82 600.652 327.502 (b)
Ca 20 1113 840 þ�2 Pd 46 1828 1555 þ�0.4; (d)
Cd 48 594.258 321.108 (b) Pm 61 1315 1042 (e)
Ce 58 1071 798 þ�3; (e) Po 84 527 254 (g)
Cf 98 1213 940 (e) Pr 59 1204 931 (e)
Cl 17 172.18 �100.97 (c) Pt 78 2042.1 1769.0 (b)
Cm 96 1613 1340 (g) Pu 94 913 640 þ�1
Co 27 1768 1495 (b) Ra 88 973 700 (g)
Cr 24 2133 1860 þ�20 Rb 37 312.63 39.48 þ�0.5
Cs 55 301.54 28.39 þ�0.05 Re 75 3459 3186 þ�20
Cu 29 1358.02 1084.87 þ�0.04; (d) Rh 45 2236 1963 (b)
Dy 66 1685 1412 (e) Rn 86 202 �71 . . .
Er 68 1802 1529 (e) Ru 44 2607 2334 þ�10; (d)
Es 99 1093 820 (e) S 16 388.37 115.22 . . .
Eu 63 1095 822 (e) Sb 51 903.905 630.755 (b)
F 9 53.48 �219.67 (c) Sc 21 1814 1541 (e)
Fe 26 1808 1535 (b) Se 34 494 221 . . .
Fm 100 (1800) (1527) est.; (g) Si 14 1687 1414 þ�2
Fr 87 (300) (27) est.; (g) Sm 62 1347 1074 (e)
Ga 31 302.9241 29.7741 þ�0.001; (c,d) Sn 50 505.1181 231.9681 (a)
Gd 64 1586 1313 (e) Sr 38 1042 769 . . .
Ge 32 1211.5 938.3 . . . Ta 73 3293 3020 . . .
H 1 13.81 �259.34 (a, c) Tb 65 1629 1356 (e)
He 2 4.215 �268.935 (j) Tc 43 2477 2204 þ�50
Hf 72 2504 2231 þ�20 Te 52 722.72 449.57 þ�0.3
Hg 80 234.314 �38.836 (b) Th 90 2031 1758 þ�10
Ho 67 1747 1474 (e) Ti 22 1943 1670 þ�6; (d)
I 53 386.7 113.6 (c) Tl 81 577 304 þ�2
In 49 429.784 156.634 (b) Tm 69 1818 1545 (e)
Ir 77 2720 2447 (b) U 92 1407 1134 . . .
K 19 336.34 63.19 þ�0.5 V 23 2202 1929 þ�6
Kr 36 115.765 �157.385 þ�0.001; (d) W 74 3695 3422 (b)
La 57 1191 918 (e) Xe 54 161.3918 �111.7582 þ�0.0002; (c, d)
Li 3 453.7 180.6 þ�0.5 Y 39 1795 1522 (e)
Lr 103 (1900) (1627) est.; (g) Yb 70 1092 819 (e)
Lu 71 1936 1663 (e) Zn 30 692.73 419.58 (a)
Md 101 (1100) (827) est.; (g) Zr 40 2128 1855 þ�5
Mg 12 922 649 þ�0.5
Note: The melting points, except those footnoted to indicate otherwise, are derived from R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley and D.D. Wagman, Selected Values of the Thermodynamic Properties of
the Elements, American Society for Metals, 1973, which are based on the 1948 International Practical Temperature Scale. Values have been corrected to the 1968 scale (IPTS-68). Except for triple points, values are for a
pressure of 1 atm. (Note that melting and freezing points should be identical for pure elements.) (a) Defined fixed point on 1968 International Practical Temperature Scale (IPTS-68): Amended Edition of 1975, Metrologia,
Vol 12, 1976, p 7–17 (b) Secondary reference point in Extended List of Secondary Reference Points on 1968. International Practical Temperature Scale (IPTS-68), Metrologia, Vol 13, 1977, p 197–206 (c) Triple point.
(d) Secondary reference point 1980 supplement to 1977 Extended List of Secondary Reference Points on 1968 International Practical Temperature Scale (IPTS-68): Amended Edition of 1975, Report 5 of Working
Group II, April 1980. (e) From Metals Handbook, 9th ed., Vol 2, American Society for Metals, 1979. (f) Sublimation point at atmospheric pressure. (g) R.H. Lamoreaux Melting Point, Gram-Atomic Volumes and Enthalpies
of Atomization for Liquid Elements, nLBL Report 4995, 1976. (h) Melting point for white a-P; red P sublimes without melting at atmospheric pressure and has a triple point of 862.8 K (589.7 �C). (j) Boiling point at 1 atm;
there are various triple points; see Hultgren et al., 1973
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Table 4 Atomic size parameters for the elements

Element

Atomic

number

Pearson

symbol

Atomic volume

(V), nm3
Interatomic

distance (S0), nm
Equivalent atomic

radius (r0), nm Notes Element

Atomic

number

Pearson

symbol

Atomic volume

(O), nm3
Interatomic

distance (S0), nm
Equivalent atomic

radius (r0), nm Notes

Ac 89 cF4 0.037451 0.3755 0.2076 . . . bNa 11 cl2 0.039493 0.3716 0.2113 . . .
Ag 47 cF4 0.017056 0.2889 0.1597 . . . Nb 41 cl2 0.017980 0.2859 0.1625 . . .
Al 13 cF4 0.016603 0.2864 0.1583 . . . aNd 60 hP4 0.034179 0.3322 0.2013 . . .
aAm 95 hP4 0.029271 0.3451 0.1911 . . . Ne 10 cF4 0.022212 0.3155 0.1744 (a)
Ar 18 cF4 0.037473 0.3756 0.2076 (a) Ni 28 cF4 0.010942 0.2492 0.1377 . . .
aAs 33 hR2 0.021518 0.2517 0.1726 . . . aNp 93 oP8 0.019224 0.2599 0.1662 . . .
Au 79 cF4 0.016959 0.2884 0.1594 . . . aO 8 mC4 0.017360 (0.115) (0.1606) (a, b)
gB 5 tP50 0.007786 (0.1624) (0.1230) (c) Os 76 hP2 0.013988 0.2735 0.1495 . . .
Ba 56 cl2 0.063367 0.4350 0.2473 . . . P (black) 15 oC8 0.018993 (0.2224) (0.1655) (c)
aBe 4 hP2 0.008108 0.2225 0.1246 . . . aPa 91 tl2 0.025212 0.3214 0.1819 . . .
aBi 83 hR2 0.035384 0.3071 0.2037 . . . Pb 82 cF4 0.030326 0.3500 0.1935 . . .
aBk 97 hP4 0.027965 0.3398 0.1883 . . . Pd 46 cF4 0.014717 0.2751 0.1520 . . .
Br 35 oC8 0.03277 (0.227) (0.199) (a, b) Pm 61 hP4 0.03360 0.330 0.200 . . .
C(graph) 6 hP4 0.008800 (0.1421) (0.1281) (c) aPo 84 cP1 0.038137 0.3366 0.2088 . . .
aCa 20 cF4 0.043631 0.3952 0.2184 . . . aPr 59 hP4 0.034545 0.3338 0.2020 . . .
Cd 48 hP2 0.021581 0.2979 0.1727 . . . Pt 78 cF4 0.015097 0.2774 0.1533 . . .
aCe 58 cF4 0.034367 0.3650 0.2017 . . . aPu 94 mP16 0.019998 0.257 0.1684 . . .
Cl 17 oC8 0.02886 (0.198) (0.190) (a,b) Ra 88 cl2 0.068216 0.4459 0.2535 . . .
aCm 96 hP4 0.029984 0.3479 0.1927 . . . Rb 37 cl2 0.092743 0.4939 0.2808 . . .
aCo 27 hP2 0.011076 0.2497 0.1383 . . . Re 75 hP2 0.014713 0.2740 0.1520 . . .
Cr 24 cl2 0.012003 0.2498 0.1420 . . . Rh 45 cF4 0.013753 0.2689 0.1486 . . .
Cs 55 cl2 0.115794 0.5318 0.3024 . . . Ru 44 hP2 0.013568 0.2650 0.1480 . . .
Cu 29 cF4 0.011809 0.2238 0.1413 . . . aS 16 oF128 0.025754 (0.2037) (0.1832) (c)
aDy 66 hP2 0.031558 0.3504 0.1960 . . . aSb 51 hR2 0.030201 0.2908 0.1932 . . .
aEr 68 hP2 0.030636 0.3467 0.1941 . . . aSc 21 hP2 0.024974 0.3254 0.1813 . . .
Eu 63 cl2 0.048121 0.3969 0.2256 . . . gSe 34 hP3 0.027274 0.2374 0.1867 . . .
aF 9 mC8 0.01605 (0.149) (0.197) (a, b) Si 14 cF8 0.020020 0.2352 0.1684 . . .
aFe 26 cl2 0.011777 0.2483 0.1411 . . . aSm 62 hR3 0.033202 0.3587 0.1994 . . .
aGa 31 oC8 0.019580 0.2484 0.1672 . . . bSn 50 tl4 0.027049 0.3022 0.1862 . . .
aGd 64 hP2 0.033050 0.3572 0.1991 . . . aSr 38 cF4 0.056299 0.4302 0.2378 . . .
aGe 32 cF8 0.022634 0.2450 0.1755 . . . Ta 73 cl2 0.018019 0.2861 0.1626 . . .
aH 1 hP2 0.037882 (0.3768) (0.2083) (a,b) aTb 65 hP2 0.032066 0.3528 0.1971 . . .
aHe 2 hP2 0.032367 0.3577 0.1977 (a) Te 43 hP2 0.014264 0.2707 0.1505 . . .
aHf 72 hP2 0.022321 0.3127 0.1747 . . . aTe 52 hP3 0.033969 0.2834 0.2009 . . .
aHg 80 hR1 0.023354 0.2993 0.1773 (a) aTh 90 cF4 0.032873 0.3596 0.1987 . . .
aHo 67 hP2 0.031139 0.3487 0.1952 . . . aTi 22 hP2 0.017653 0.2986 0.1615 . . .
I 53 oC8 0.042696 (0.269) (0.2168) (b) aT1 81 hP2 0.028586 0.3408 0.1897 . . .
In 49 tl2 0.026158 0.3252 0.1842 . . . aTm 69 hP2 0.030006 0.3447 0.1928 . . .
Ir 77 cF4 0.014146 0.2715 0.1500 . . . aU 92 oC4 0.020747 0.2753 0.1705 . . .
K 19 cl2 0.075327 0.4608 0.2620 . . . V 23 cl2 0.013824 0.2619 0.1489 . . .
Kr 36 cF4 0.044992 0.3992 0.2206 (a) W 74 cl2 0.015844 0.2741 0.1558 . . .
aLa 57 hP4 0.037532 0.3456 0.2077 . . . Xe 54 cF4 0.057463 0.4336 0.2396 (a)
bLi 3 cl2 0.021609 0.3309 0.1728 . . . aY 39 hP2 0.033033 0.3557 0.1991 . . .
aLu 71 hP2 0.029524 0.3434 0.1917 . . . aYb 70 cF4 0.041250 0.3878 0.2143 . . .
Mg 12 hP2 0.023239 0.3197 0.1770 . . . Zn 30 hP2 0.015214 0.2664 0.1537 . . .
aMn 25 cl58 0.012245 0.2258 0.1430 . . . aZr 40 hP2 0.023279 0.3179 0.1771 . . .
Mo 42 cl2 0.015583 0.2745 0.1550 . . .
aN 7 cP8 0.022653 (0.1098) (0.1755) (a, b)

Note: The atomic size parameters were derived from the crystal structure data for the Elements given in Bull. Alloy Phase Diagrams, Vol 2 (No.3), 1981, p 401–402. The volume per atom of the structure, O, was derived from
the room-temperature lattice parameter data by calculating the volume of the unit cell and dividing by the number of atoms contained within the unit cell, which is given by the numerals in the Pearson symbol. The closest
distance of approach, S0, was derived from the minimum interatomic distances in the unit cell, except for the diatomic gases and the nonmetallic elements that exist in molecular form. The atomic radius, r0, was derived from the
volume per atom data, using the relationship 4=3�r30 ¼ volume per atom. (a) These elements are gaseous, or liquid, at room temperature. The structural data for Ar, H, Kr, Ne, and Xe refer to 4.2 K, whereas that for Br, Cl, He,
Hg, N, and O refer to 123 K, 113 K, 1.5 K, 227 K, 20 K, and 23 K, respectively. (b) These elements form diatomic gases, and the basis of the crystal structure is therefore the molecular unit R2. The volume-per-atom data are
thus more meaningful if considered in terms of two times the volume per molecule, whereas the values of the parameter r0 (listed in parentheses) should not be equated with atomic radii in this context. The values of S0
(also listed in parentheses) refer to interatomic distances in the covalently bonded molecule R2, rather than distance between equipositioned neighbors in a crystal. (c) The chemistry of these elements permits them to form
a number of allotropes at room temperature, with crystal structures based on different molecular bases. The previous comments on volume per atom and r0 are thus also applicable to these elements, because they form crystal
structures based on chains or network layers
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Table 5 Heats of transition of the elements

Element Atomic number Transformation Enthalpy (DH), J/mol Temperature, �C Element Atomic number Transformation Enthalpy (DH), J/mol Temperature, �C

Ag 47 L $ S 11,300 961.93(a) Nd 60 b $ a 3030 855
Al 13 L $ S 10,700 660.457(b) Ne 10 L $ S 331.7 24.561 K(c)
Am 95 L $ g 14,395 1,176 Ni 28 L $ S 17,470 1,455(b)

g $ b 5,860 1,077 Np 93 L $ g 5,190 639
b $ a 775 650 g $ b 5,270 576

Ar 18 L $ S 1,190 83.798 K(d) b $ a 5,605 280
Au 79 L $ S 13,000 1,064.43(a) O 8 L $ g 223 54.361 K(d)
B 5 L $ b 50,200 2,077 g $ b 371.3 43.801 K
Ba 56 L $ S 7,120 727 b $ a 48.4 23.867 K
Be 4 L $ b (12,600) 1,287 Os 76 L $ S (31,800) 3,025

b $ a (2,100) 1,277 P(white a) 15 L $ a 629 44
Bi 83 L $ S 11,300 271.442(c) Pa 91 L $ b 12,340 1,572
Br 35 L $ S 5,286 265.9 K b $ a 6,640 1,170
Ca 20 L $ b 8,540 842 Pb 82 L $ S 4,800 327.502(b)

b $ a 842 443 Pd 46 L $ S (17,560) 1,554(b)
Cd 48 L $ S 6,200 321.108(b) Pm 61 L $ S (7,550) . . .
Ce 58 L $ d 5,460 800 B $ A (2,900) . . .

d $ g 2,990 725 Pr 59 L $ b 6,890 930
g $ b 190 . . . b $ a 3,170 795
b $ a 1,950 . . . Pt 78 L $ S (19,650) 1,769(b)

Cl 17 L $ S 3,203 172.16 K Pu 94 L $ e 2,825 640
Cm 96 L $ b 14,645 1,345 e $ d0 1,840 479

b $ g 3,245 1,277 d0 $ d 80 457
Co 27 L $ b 16,200 1,495(b) d $ g 585 315

b $ a 450 427 g $ b 565 207
Cr 24 L $ S (20,500) 1,857 b $ a 3,375 122
Cs 55 L $ S 2,090 28.44 Rb 37 L $ S 2,190 39.32
Cu 29 L $ S 13,050 1,084.88(b) Re 75 L $ S (33,230) 3,180
Dy 66 L $ b 11,060 1,409 Rh 45 L $ S (21,490) 1,963(b)

b $ a 4,160 1,385 Rn 86 L $ S (2,890) �71
Er 68 L $ S 19,900 1,522 Ru 44 L $ S (24,280) 2,250
Eu 63 L $ S 9,210 817 S 16 L $ b 1,718 115
F 9 L $ b 255 53.48 K b $ a 402 95

b $ a 364 45.55 K Sb 51 L $ S 19,900 630.775(b)
Fe 26 L $ d 13,800 1,535(d) Sc 21 L $ b 14,100 1,539

d $ g 840 1,392 b $ a 4,010 1,335
g $ a 900 911 Se 34 L $ S 6,700 220

Ga 31 L $ S 5,565 29.771(b) Si 14 L $ S 50,210 1,417
Gd 64 L $ b 10,050 1,312 Sm 62 L $ b 8,620 1,072

b $ a 3,910 1,260 b $ a 3,110 917
Ge 32 L $ S 37,030 937 Sn 50 L $ b 7,195 231.9681(a)
H 1 L $ S 58.68 13.81 K(d) Sr 38 L $ g 7,431 777
Hf 72 L $ S (29,300) 2,227 g $ a 837 547

b $ a (5,910) 1,781 Ta 73 L $ S 36,570 2,985
Hg 80 L $ a 2,295 �38.836(b) Tb 65 L $ b 10,800 1,355
Ho 67 L $ b (16,900) 1,470 b $ a 5,020 1,285
1 53 L $ S 7,820 113.5 Te 52 L $ S 17,490 449.5
In 49 L $ S 3,280 156.634(b) Th 90 L $ b 13,807 1,750
Ir 77 L $ S (26,140) 2,447(d) b $ a 3,599 1,360
K 19 L $ S 2,320 63.71 Ti 22 L $ b 14,150 1,663
Kr 36 L $ S 1,638 115.770 K(c) b $ a 4,170 893
La 57 L $ g 6,200 920 TI 81 L $ b 4,200 303

g $ b 3,120 860 b $ a 360 234
b $ a 360 275 Tm 69 L $ S 16,840 1,545

Li 3 L $ b 3,000 180.54 U 92 L $ g 9,142 1,135
Lu 71 L $ S (18,650) 1,663 b $ g 4,757 776
Mg 12 L $ S 8,477 650 a $ b 2,791 669
Mn 25 L $ d (12,060) 1,245 V 23 L $ S 22,845 1,917

d $ g 1,880 1,135 W 74 L $ S 46,000 3,422(b)
g $ b 2,120 1,085 Xe 54 L $ S 2,300 161.388 K(c)
b $ a 2,230 700 Y 39 L $ b 11,400 1,525

Mo 42 L $ S 35,980 2,623(b) b $ a 4,990 1,480
N 7 L $ b 360.4 63.146 K(c) Yb 70 L $ b 7,660 824

b $ a 116 35.61 K b $ a 1,750 760
Na 11 L $ b 2,600 97.86 Zn 30 L $ S 7,320 419.58(a)
Nb 41 L $ S (26,900) 2473(b) Zr 40 L $ b 20,920 1,855(b)
Nd 60 L $ b 7,140 1,015 b $ a 4,015 862

(a) Melting points or freezing points, which are defined fixed points of IPTS-68. (b) Melting points or freezing points, which are secondary reference points of IPTS-68. (c) Triple-point values, which are secondary reference
points of IPTS-68. (d) Triple-point values, which are defined fixed points of IPTS-68.
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Table 6 Thermal properties of the elements

Symbol

Coefficient of linear thermal

expansion(a), 10�6/�C (10�6/�F)
Thermal conductivity(a),

cal/(cm � s � �C)
Specific heat(b)

cal/g � �C (J/kg � K)

Heat of fusion,

cal/g (Btu/lb)

Ac . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Al 23.6(c) 0.53 0.215 94.5
(13.1)(c) (900) (170)

Am . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Sb 8.5 to 10.8(d) 0.045 0.049 38.3
(4.7 to 6)(d) (205) (68.9)

A . . . 0.406 � 10�4 0.125 6.7
(. . .) (523) (12)

As 4.7 . . . 0.082 88.5
(2.6) (343) (159.3)

At . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Ba . . . . . . 0.068 . . .
(. . .) (285) (. . .)

Bk . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Be 11.6(e) 0.35 0.45 260
(6.4)(e) (190) (470)

Bi 13.3 0.020 0.0294 12.5
(7.4) (123) (22.5)

B 8.3(f) . . . 0.309 . . .
4.6(f) (1290) (. . .)

Br . . . . . . 0.070 16.2
(. . .) (290) (29.2)

Cd 29.8 0.22 0.055 13.2
(16.55) (230) (23.8)

Ca 22.3(g) 0.3 0.149(h) 52
(12.4)(g) (624)(h) (93.6)

Cf . . . . . . . . . . . .
(. . .) (. . .) (. . .)

C 0.6 to 4.3(c) 0.057 0.165 . . .
(0.3 to 2.4)(c) (691) (. . .)

Ce 8 0.026(i) 0.045 8.5
(4.44) (190) (15.9)

Cs 97(j) . . . 0.04817 3.8
(54)(j) (201.7) (6.8)

Cl . . . 0.172 � 10�4 0.116 21.6
(. . .) (486) (38.9)

Cr 6.2 0.16 0.11 96
(3.4) (460) (173)

Co 13.8 0.165 0.099 58.4
(7.66) (410) (105)

Cu 16.5 0.941 þ� 0.005 0.092 50.6
(9.2) (380) (91.1)

Cm . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Dy 9 0.024(i) 0.041 25.2
(5) (170) (45.4)
(. . .) (. . .) (. . .)

Er 9 0.023(i) 0.040 24.5
(5) (170) (44.1)

Eu 26 . . . 0.039 16.5
(14.44) (160) (29.6)

Fm . . . . . . . . . . . .
(. . .) (. . .) (. . .)

F . . . . . . 0.18 10.1
(. . .) (750) (18.2)

Fr . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Gd 4(k) 0.021(i) 0.071 23.5
(2.22)(k) (360) (42.4)

Ga 18(l) 0.07 to 0.09(m) 0.079 19.16
(10)(l) (330) (34.49)

Ge 5.75 0.14 0.073 . . .

(continued)

(a) Near 20 �C (68 �F). (b) At 20 �C (68 �F). (c) From 20 to 100 �C (68 to 212 �F). (d) From 20 to 60 �C (68 to 140 �F). (e) From 25 to 100 �C (77 to 212 �F)
(f) From 20 to 750 �C (68 to 1380 �F). (g) For a at 0 to 400 �C (32 to 750 �F). (h) From 0 to 100 �C (32 to 212 �F). (i) At 28 �C (82 �F). (j) From 0 to 26 �C
(32 to 70 �F). (k) Near 40 �C (105 �F); the coefficient of expansion of gadolinium changes rapidly between �100 and +100 �C (�150 and +212 �F). (l) From
0 to 30 �C (32 to 86 �F). (m) At melting point. (n) At 18 �C (64 �F). (o) From 20 to 200 �C (68 to 390 �F). (p) W/cm/�C at 50 �C (120 �F). (q) At 25 �C (77
�F) for high-purity k iron. (r) For ingot iron at 0 �C (32 �F). (s) Annealed. (t) From 17 to 100 �C (63 to 212 �F). (u) At 0 �C (32 �F). (v) Along a-axis; 24.3
along c-axis. (w) a; g, 14; both from 0 to 100 �C (32 to 212 �F). (x) a; g, 0.120; both at 25.2 �C (77.3 �F). (y) Estimated (z) At �2.22 �C (28 �F). (aa) At 25
�C (77 �F). (bb) At 50 �C (122 �F), parallel to a-axis, mean value; parallel to c-axis at 50 �C (122 �F), 5.8. (cc) At 17 �C (63 �F). (dd) From 21 to 104 �C (70
to 219 �F). (ee) For a at 25 �C (77 �F). (ff) From 20 to 500 �C (68 to 930 �F). (gg) Calculated. (hh) From 25 to 1000 �C (77 to 1830 �F), for iodide thorium.
(ii) At 100 �C (212 �F). (jj) From 0 to 100 �C (32 to 212 �F), for polycrystalline metal. (kk) Btu � ft/h � ft2 � �F at �400 �F. (ll) Rolled rods. (mm) At 70 �C
(158 �F). (nn) At 27 �C (80 �F). (oo) From 23 to 100 �C (73 to 212 �F). (pp) From 20 to 250 �C (68 to 480 �F), for polycrystalline metal. (qq) a, polyerystal-
line. (rr) W/cm/�C at 27 �C (80.6 �F)

Physical Constants and Physical Properties of the Elements / 593

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Table 6 (continued)

Symbol

Coefficient of linear thermal

expansion(a), 10�6/�C (10�6/�F)
Thermal conductivity(a),

cal/(cm � s � �C)
Specific heat(b)

cal/g � �C (J/kg � K)

Heat of fusion,

cal/g (Btu/lb)

(3.19) (310) (. . .)
Au 14.2 0.71 0.0312(n) 16.1

(7.9) (131)(n) (29.0)
Hf 519(o) 0.223(p) 0.0351 . . .

(288)(o) (147) (. . .)
He . . . 3.32 � 10�4 1.25 . . .

(. . .) (5230) (. . .)
Ho . . . . . . 0.039 24.9

(. . .) (160) (44.7)
H . . . 4.06 � 10�4 3.45 15.0

(. . .) (14.400) (27.0)
In 33 0.057 0.057 6.8

(18) (240) (12.2)
I 93 10.4 � 10�4 0.052 14.2

(52) (220) (25.6)
Ir 6.8 0.14 0.0307 . . .

(3.8) (129) (. . .)
Fe 11.76(q) 0.18(r) 0.11 65.5

(6.53)(q) (460) (117.9)
Kr . . . 0.21 � 10�4 . . . . . .

(. . .) (. . .) (. . .)
La 5 0.033(s) 0.048 17.3

(2.77) (200) (31.1)
Lw . . . . . . . . . . . .

(. . .) (. . .) (. . .)
Pb 29.3(t) 0.083(u) 0.0309(u) 6.26

(16.3)(t) (129)(u) (11.27)
Li 56 0.17 0.79 104.2

(31) (3300) (187.6)
Lu . . . . . . 0.037 26.29

(. . .) (150) (47.32)
Mg 27.1(v) 0.367 0.245 88 þ� 2

(15.05)(v) (1030) (158 þ� 4)
Mn 22(w) . . . 0.115(x) 63.7

(12.22)(w) (481)(x) (114.7)
Mv . . . . . . . . . . . .

(. . .) (. . .) (. . .)
Hg . . . 0.0196(u) 0.033 2.8

(. . .) (140) (5.0)
Mo 4.9(c) 0.34 0.066 69.8(y)

(2.7)(c) (280) (125.6)(y)
Nd 6 0.031(z) 0.045 11.78

(3.33) (190) (21.20)
Ne . . . 0.00011 . . . . . .

(. . .) (. . .) (. . .)
Np . . . . . . . . . . . .

(. . .) (. . .) (. . .)
Ni 13.3(h) 0.22(aa) 0.105 73.8

(7.39)(h) (440) (132.8)
Nb 7.31 0.125(u) 0.065(u) 69

(4.06) (270)(u) (124.2)
N . . . 0.000060 0.247 6.2

(. . .) (1030) (11.2)
No . . . . . . . . . . . .

(. . .) (. . .) (. . .)
Os 4.6(bb) . . . 0.031 . . .

(2.6)(bb) (130) (. . .)
O . . . 0.000059 0.218 3.3

(. . .) (913) (5.9)
Pd 11.76 1.68(n) 0.0584(u) 34.2

(6.53) (245)(u) (61.6)
P 125 . . . 0.177 5.0

(70) (741) (9.0)
Pt 8.9 0.165(cc) 0.0314(u) 26.9

(4.9) (131)(u) (48.4)
Pu 55(dd) 0.020(aa) 0.033(ee) . . .

(30.55)(dd) (140)(ee) (. . .)

(continued)

(a) Near 20 �C (68 �F). (b) At 20 �C (68 �F). (c) From 20 to 100 �C (68 to 212 �F). (d) From 20 to 60 �C (68 to 140 �F). (e) From 25 to 100 �C (77 to 212 �F)
(f) From 20 to 750 �C (68 to 1380 �F). (g) For a at 0 to 400 �C (32 to 750 �F). (h) From 0 to 100 �C (32 to 212 �F). (i) At 28 �C (82 �F). (j) From 0 to 26 �C
(32 to 70 �F). (k) Near 40 �C (105 �F); the coefficient of expansion of gadolinium changes rapidly between �100 and +100 �C (�150 and +212 �F). (l) From
0 to 30 �C (32 to 86 �F). (m) At melting point. (n) At 18 �C (64 �F). (o) From 20 to 200 �C (68 to 390 �F). (p) W/cm/�C at 50 �C (120 �F). (q) At 25 �C (77
�F) for high-purity k iron. (r) For ingot iron at 0 �C (32 �F). (s) Annealed. (t) From 17 to 100 �C (63 to 212 �F). (u) At 0 �C (32 �F). (v) Along a-axis; 24.3
along c-axis. (w) a; g, 14; both from 0 to 100 �C (32 to 212 �F). (x) a; g, 0.120; both at 25.2 �C (77.3 �F). (y) Estimated (z) At �2.22 �C (28 �F). (aa) At 25
�C (77 �F). (bb) At 50 �C (122 �F), parallel to a-axis, mean value; parallel to c-axis at 50 �C (122 �F), 5.8. (cc) At 17 �C (63 �F). (dd) From 21 to 104 �C (70
to 219 �F). (ee) For a at 25 �C (77 �F). (ff) From 20 to 500 �C (68 to 930 �F). (gg) Calculated. (hh) From 25 to 1000 �C (77 to 1830 �F), for iodide thorium.
(ii) At 100 �C (212 �F). (jj) From 0 to 100 �C (32 to 212 �F), for polycrystalline metal. (kk) Btu � ft/h � ft2 � �F at �400 �F. (ll) Rolled rods. (mm) At 70 �C
(158 �F). (nn) At 27 �C (80 �F). (oo) From 23 to 100 �C (73 to 212 �F). (pp) From 20 to 250 �C (68 to 480 �F), for polycrystalline metal. (qq) a, polyerystal-
line. (rr) W/cm/�C at 27 �C (80.6 �F)
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Table 6 (continued)

Symbol

Coefficient of linear thermal

expansion(a), 10�6/�C (10�6/�F)
Thermal conductivity(a),

cal/(cm � s � �C)
Specific heat(b)

cal/g � �C (J/kg � K)

Heat of fusion,

cal/g (Btu/lb)

Po . . . . . . . . . . . .
(. . .) (. . .) (. . .)

K 83 0.24 0.177 14.6
(46) (741) (26.3)

Pr 4 0.28(z) 0.045 11.71
(2.22) (188) (21.08)

Pm . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Pa . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Ra . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Rn . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Re 6.7(ff) C.17 0.033 . . .
(3.7)(ff) (140) (. . .)

Rh 8.3 0.21(cc) 0.059(u) . . .
(4.6) (250)(u) (. . .)

Rb 90 . . . 0.080 6.5
(50) (330) (11.79)

Ru 9.1 . . . 0.057(u) . . .
(5.1) 240(u) (. . .)

Sm . . . . . . 0.042(gg) 17.29
(. . .) (180)(gg) (31.12)

Sc . . . . . . 0.134 84.52
(. . .) (561) (152.14)

Se 37 7 to 18.3 � 10�4 0.084(s) 16.4
(21) (350)(s) (29.5)

Si 2.8 to 7.3 0.20 0.162(u) 432
(1.6 to 4.1) (678)(u) (778)

Ag 19.68(h) 1.0(u) 0.0559(u) 25
(10.9)(h) (234(u) (45)

Na 71 0.32 0.295 27.5
(39) (1240) (49.5)

Sr . . . . . . 0.176 25
(. . .) (737) (45)

S 64 6.31 � 10�4 0.175 9.3
(36) (733) (16.7)

Ta 6.5 0.130 0.034(aa) 38
(3.6) (140) (68)

Tc . . . . . . . . . . . .
(. . .) (. . .) (. . .)

Te 16.75 0.014 0.047 32
(9.3) (200) (58)

Tb 7 . . . 0.044 24.54
(3.88) (180) (44.17)

Tl 28 0.093 0.031 5.04
(16) (130) (9.07)

Th 12.5(hh) 0.090(ii) 0.034 <19.82
(6.9)(hh) (140) (<35.68)

Tm . . . . . . 0.038 26.04
(. . .) (160) (46.87)

Sn 23(jj) 1.50(d) 0.054 14.5
(13)(jj) (230) (26.1)

Ti 8.41 6.6(kk) 0.124 104(y)
(4.67) (519) (188)(y)

W 4.6 0.397(d) 0.033 44
(2.55) (140) (70)

U 6.8 to 14.1(ll) 0.07(mm) 0.02709(nn) . . .
(3.8 to 7.8)(ll) (113.4)(nn) (. . .)

V 8.3(oo) 0.074(ii) 0.119(g) . . .
(4.6)(oo) (498)(g) (. . .)

Xe . . . 1.24 � 10�1 . . . . . .
(. . .) (. . .) (. . .)

Yb 25 . . . 0.035 12.71
(13.9) (150) (22.88)

Y . . . 0.035(z) 0.071 46

(continued)

(a) Near 20 �C (68 �F). (b) At 20 �C (68 �F). (c) From 20 to 100 �C (68 to 212 �F). (d) From 20 to 60 �C (68 to 140 �F). (e) From 25 to 100 �C (77 to 212 �F)
(f) From 20 to 750 �C (68 to 1380 �F). (g) For a at 0 to 400 �C (32 to 750 �F). (h) From 0 to 100 �C (32 to 212 �F). (i) At 28 �C (82 �F). (j) From 0 to 26 �C
(32 to 70 �F). (k) Near 40 �C (105 �F); the coefficient of expansion of gadolinium changes rapidly between �100 and +100 �C (�150 and +212 �F). (l) From
0 to 30 �C (32 to 86 �F). (m) At melting point. (n) At 18 �C (64 �F). (o) From 20 to 200 �C (68 to 390 �F). (p) W/cm/�C at 50 �C (120 �F). (q) At 25 �C (77
�F) for high-purity k iron. (r) For ingot iron at 0 �C (32 �F). (s) Annealed. (t) From 17 to 100 �C (63 to 212 �F). (u) At 0 �C (32 �F). (v) Along a-axis; 24.3
along c-axis. (w) a; g, 14; both from 0 to 100 �C (32 to 212 �F). (x) a; g, 0.120; both at 25.2 �C (77.3 �F). (y) Estimated (z) At �2.22 �C (28 �F). (aa) At 25
�C (77 �F). (bb) At 50 �C (122 �F), parallel to a-axis, mean value; parallel to c-axis at 50 �C (122 �F), 5.8. (cc) At 17 �C (63 �F). (dd) From 21 to 104 �C (70
to 219 �F). (ee) For a at 25 �C (77 �F). (ff) From 20 to 500 �C (68 to 930 �F). (gg) Calculated. (hh) From 25 to 1000 �C (77 to 1830 �F), for iodide thorium.
(ii) At 100 �C (212 �F). (jj) From 0 to 100 �C (32 to 212 �F), for polycrystalline metal. (kk) Btu � ft/h � ft2 � �F at �400 �F. (ll) Rolled rods. (mm) At 70 �C
(158 �F). (nn) At 27 �C (80 �F). (oo) From 23 to 100 �C (73 to 212 �F). (pp) From 20 to 250 �C (68 to 480 �F), for polycrystalline metal. (qq) a, polyerystal-
line. (rr) W/cm/�C at 27 �C (80.6 �F)
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Table 6 (continued)

Symbol

Coefficient of linear thermal

expansion(a), 10�6/�C (10�6/�F)
Thermal conductivity(a),

cal/(cm � s � �C)
Specific heat(b)

cal/g � �C (J/kg � K)

Heat of fusion,

cal/g (Btu/lb)

(. . .) (300) (83)
Zn 39.7(pp) 0.27(aa) 0.0915 24.09

(22.0)(pp) (383) (43.36)
Zr 5.85(qq) 0.211(rr) 0.067 þ� 0.001 60(y)

(3.2)(qq) (280 þ� 4) (110)(y)

(a) Near 20 �C (68 �F). (b) At 20 �C (68 �F). (c) From 20 to 100 �C (68 to 212 �F). (d) From 20 to 60 �C (68 to 140 �F). (e) From 25 to 100 �C (77 to 212 �F)
(f) From 20 to 750 �C (68 to 1380 �F). (g) For a at 0 to 400 �C (32 to 750 �F). (h) From 0 to 100 �C (32 to 212 �F). (i) At 28 �C (82 �F). (j) From 0 to 26 �C
(32 to 70 �F). (k) Near 40 �C (105 �F); the coefficient of expansion of gadolinium changes rapidly between �100 and +100 �C (�150 and +212 �F). (l) From
0 to 30 �C (32 to 86 �F). (m) At melting point. (n) At 18 �C (64 �F). (o) From 20 to 200 �C (68 to 390 �F). (p) W/cm/�C at 50 �C (120 �F). (q) At 25 �C (77
�F) for high-purity k iron. (r) For ingot iron at 0 �C (32 �F). (s) Annealed. (t) From 17 to 100 �C (63 to 212 �F). (u) At 0 �C (32 �F). (v) Along a-axis; 24.3
along c-axis. (w) a; g, 14; both from 0 to 100 �C (32 to 212 �F). (x) a; g, 0.120; both at 25.2 �C (77.3 �F). (y) Estimated (z) At �2.22 �C (28 �F). (aa) At 25
�C (77 �F). (bb) At 50 �C (122 �F), parallel to a-axis, mean value; parallel to c-axis at 50 �C (122 �F), 5.8. (cc) At 17 �C (63 �F). (dd) From 21 to 104 �C (70
to 219 �F). (ee) For a at 25 �C (77 �F). (ff) From 20 to 500 �C (68 to 930 �F). (gg) Calculated. (hh) From 25 to 1000 �C (77 to 1830 �F), for iodide thorium.
(ii) At 100 �C (212 �F). (jj) From 0 to 100 �C (32 to 212 �F), for polycrystalline metal. (kk) Btu � ft/h � ft2 � �F at �400 �F. (ll) Rolled rods. (mm) At 70 �C
(158 �F). (nn) At 27 �C (80 �F). (oo) From 23 to 100 �C (73 to 212 �F). (pp) From 20 to 250 �C (68 to 480 �F), for polycrystalline metal. (qq) a, polyerystal-
line. (rr) W/cm/�C at 27 �C (80.6 �F)

Table 7 Temperature-dependent allotropic structures of the elements

Allotrope Pearson symbol

Lattice parameters, nm

c/a, or a or b Stability range(a) Allotrope Pearson symbol

Lattice parameters, nm

c/a, or a or b Stability range(a)a b c a b c

aAm hP4 0.3468 . . . 1.1241 2 � 1.621 RT bNa cl2 0.42096 . . . . . . . . . RT
bAm cF4 0.4894 . . . . . . . . . >605 �C aNd hP4 0.36582 . . . 1.17966 2�1.6124 RT
aAr cF4 0.5312 . . . . . . . . . <83.8 K bNd cl2 0.413 . . . . . . . . . >862 �C
bAr hP2 0.3760 . . . 0.6141 1.633 <83.8 K aNp oP8 0.6683 0.4723 0.4887 . . . RT
aAs hR2 0.41320 . . . . . . a = 54.12 � RT bNp tP4 0.4896 . . . 0.3387 0.692 >280 �C
EAs oC8 0.362 1.085 0.448 . . . >448 �C gNp cl2 0.352 . . . . . . . . . >577 �C
aBe hP2 0.22857 . . . 0.35839 1.5680 RT aO mC4 0.5403 0.3429 0.5086 b = 132.53 � 4.2 K
bBe cl2 0.25515 . . . . . . . . . >1250 �C bO hR2 0.4210 . . . . . . a = 46.27 � >23.9 K
aBk hP4 0.3416 . . . 1.1069 2 � 1.620 RT gO cP16 0.683 . . . . . . . . . >43.6 K
bBk cF4 0.4997 . . . . . . . . . �RT aPa tl2 0.3945 . . . 0.3242 0.822 RT
aCa cF4 0.55884 . . . . . . . . . RT bPa cl2 0.381 . . . . . . . . . >1170 �C
gCa cl2 0.4480 . . . . . . . . . >737 �C aPo cP1 0.3366 . . . . . . . . . RT
aCe cF4 0.51610 . . . . . . . . . RT bPo hR1 0.3373 . . . . . . a = 98.08 � >54 �C
bCe hP4 0.3673 . . . 1.1802 2�1.607 <263 K aPr hP4 0.36721 . . . 1.18326 2�1.6111 RT
gCe cF4 0.485 . . . . . . . . . <95 K bPr cl2 0.413 . . . . . . . . . >821 �C
aCm hP4 0.3496 . . . 1.1331 2�1.621 RT aPu mP16 0.6183 0.4822 1.0968 a = 101.78 � RT
bCm cF4 0.4382 . . . . . . . . . �RT bPu ml34 0.9284 1.0463 0.7859 a = 92.13 � >122 �C
aCo hP2 0.25071 . . . 0.40694 1.6232 RT gPu oF8 0.31587 0.57682 1.0162 . . . >235 �C
bCo cF4 0.35445 . . . . . . . . . >388 �C dPu cF4 0.46371 . . . 0.3279 . . . >319 �C
aDy hP2 0.35915 . . . 0.56501 1.5732 RT d0Pu tl2 0.33261 . . . 0.44630 1.3418 >450 �C
bDy cl2 ? . . . . . . . . . >970 �C EPu cl2 0.5703 . . . . . . . . . >471 �C
gDy oF4 0.3595 0.6184 0.5678 . . . <86 K aSc hP2 0.33088 . . . 0.52680 1.5921 RT
aEr hP2 0.35592 . . . 0.55850 1.5692 RT bSc cl2 ? . . . . . . . . . >1334 �C
bEr cl2 ? . . . . . . . . . HT aSe mP32 0.9054 0.9083 0.2336 b = 90.82 � RT
aF mC8 0.550 0.338 0.728 b = 102.17 � 4.2 K bSe mP64 1.5018 1.4713 0.8879 b = 93.6 � RT
bF cP16 0.667 . . . . . . . . . >45.6 K gSe hP3 0.43655 . . . 0.49576 1.1356 RT
aFe cl2 0.28665 . . . . . . . . . RT aSm hR3 0.36290 . . . 2.6207 4.5�1.6084 RT
gFe cF4 0.36467 . . . . . . . . . >910 �C bSm cl2 ? . . . . . . . . . >917 �C
dFe cl2 0.29135 . . . . . . . . . >1390 �C aSn cF8 0.64892 . . . . . . . . . <18 �C
aGd hP2 0.36336 . . . 0.57810 1.5910 RT bSn tl4 0.58316 . . . 0.31815 0.5456 RT
bGd cl2 0.406 . . . . . . . . . >1262 �C aSr cF4 0.6084 . . . . . . . . . RT
aH hP2 0.3771 . . . 0.6152 1.631 4.2 K bSr hP2 0.428 . . . 0.705 1.647 >213 �C
bH cF4 0.5334 . . . . . . . . . <1.3 K gSr cl2 0.487 . . . . . . . . . >605 �C
aHf hP2 0.31946 . . . 0.50511 1.5811 RT aTb hP2 0.36055 . . . 0.56966 1.5800 RT
bHf cl2 0.3610 . . . . . . . . . >1995 �C bTb cl2 ? . . . . . . . . . >1316 �C
aHo hP2 0.35778 . . . 0.56178 1.5702 RT aTh cF4 0.50851 . . . . . . . . . RT
bHo cl2 ? . . . . . . . . . HT bTh cl2 0.411 . . . . . . . . . >1400�C
aLa hP4 0.37740 . . . 1.2171 2�1.6125 RT aTi hP2 0.29503 . . . 0.46836 1.5875 RT
bLa cF4 0.53045 . . . . . . . . . >340�C bTi cl2 0.33065 . . . . . . . . . >900 �C
gLa cl2 0.4265 . . . . . . . . . >868 �C aT1 hP2 0.34563 . . . 0.55263 1.5989 RT
aLi hP2 0.3111 . . . 0.5093 1.637 <72 K bT1 cl2 0.3879 . . . . . . . . . >230 �C
bLi cl2 0.35093 . . . . . . . . . RT aTm hP2 0.3575 . . . 0.55540 1.5700 RT
aLu hP2 0.35052 . . . 0.55494 1.5832 RT bTm cl2 ? . . . . . . . . . RT
bLu cl2 ? . . . . . . . . . HT aU oC4 0.28538 0.58680 0.49557 . . . RT
aMn cl58 0.89219 . . . . . . . . . RT bU tP30 1.0759 . . . 0.5654 0.526 >662 �C
bMn cP20 0.63152 . . . . . . . . . >727 �C gU cl2 0.3524 . . . . . . . . . >772 �C
gMn cF4 0.38624 . . . . . . . . . >1095 �C aYb cF4 0.54848 . . . . . . . . . RT
dMn cl2 0.30806 . . . . . . . . . >1135 �C bYb cl2 0.444 . . . . . . . . . >732 �C
aN cP8 0.5659 . . . . . . . . . 4.2 K gYb hP2 0.38799 . . . 0.63859 1.6459 <270 K
bN hP4 0.4046 . . . 0.6629 1.638 >35.6 K aZr hP2 0.32317 . . . 0.51476 1.5928 RT
aNa hP2 0.3767 . . . 0.6154 1.634 <36 K bZr cl2 0.3609 . . . . . . . . . >865 �C

The accuracy of the data in this table is considered to be reliable to þ�2 in the last reported digit. (a) RT, room temperature; HT, high temperature
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Table 8 Pressure-dependent allotropic structures of the elements

Allotrope Pearson symbol

Lattice parameters, nm

c/a, or a or b Stability range(a) Allotrope Pearson symbol

Lattice parameters, nm

c/a, or a or b Stability range(a)a b c a b c

Al-I cF4 0.40496 . . . . . . . . . RTP K-II ? . . . . . . . . . . . . 280 kB; 77 K
Al-II hP2 0.2693 . . . 0.4398 1.633 >205 kB K-III ? . . . . . . . . . . . . 360 kB; 77 K
aAm hP4 0.3468 . . . 1.1241 2�1.621 RTP aLa hP4 0.37740 . . . 1.2171 2�1.6125 RTP
gAm oC4 0.3063 0.5968 0.5169 . . . >150 kB b0La cF4 0.517 . . . . . . . . . >20 kB
aBa cl2 0.5023 . . . . . . . . . RTP aLi cl2 0.35093 . . . . . . . . . RTP
bBa hP2 0.3901 . . . 0.6154 1.578 >53.3 kB gLi cF4 0.4388 . . . . . . . . . CW at <72 K
gBa ? . . . . . . . . . . . . >230 kB aN cP8 0.5659 . . . . . . . . . 4.2 K
aBi hR2 0.4760 . . . . . . a = 57.23� RTP N-II tP4 0.3957 . . . 5.101 1.289 >33 kB; 20 K
bBi ? . . . . . . . . . . . . >28 kB aNd hP4 0.36582 . . . 1.17966 2�1.6124 RTP
gBi mP3 0.605 0.420 0.465 b = 85.33� >30 kB gNd cF4 0.480 . . . . . . . . . >50 kB
dBi ? . . . . . . . . . . . . >43 kB Pb-I cF4 0.49502 . . . . . . . . . RTP
EBi ? . . . . . . . . . . . . >65 kB Pb-II hP2 0.3265 . . . 0.5387 1.653 >103 kB
zBi cl2 3.800 . . . . . . . . . >90 kB aPr hP4 0.36721 . . . 1.18326 2�1.6111 RTP
C (graph) hP4 0.24612 . . . 0.67090 2.7259 RTP gPr cF4 0.488 . . . . . . . . . >40 kB
C (dia) cF8 0.35669 . . . . . . . . . 600 kB aRb cl2 0.5703 . . . . . . . . . RTP
aCe cF4 0.51610 . . . . . . . . . RTP bRb ? . . . . . . . . . . . . >10.8 kB
a0Ce cF4 0.482 . . . . . . . . . >15 kB gRb ? . . . . . . . . . . . . >20.5 kB
Ce-III ml2 0.4762 0.3170 0.3169 b = 91.7� >51 kB Sb-I hR2 0.45065 . . . . . . a = 57.11� RTP
aCr cl2 0.28847 . . . . . . . . . RTP Sb-II cP1 0.2992 . . . . . . . . . >50 kB
a0Cr tl2 0.2882 . . . 0.2887 1.002 HP Sb-III hP2 0.3376 . . . 0.5341 1.582 >75 kB
Cs-I cl2 0.6141 . . . . . . . . . RTP Sb-IV mP4 0.556 0.404 0.422 b = 86.0� >140 kB
Cs-II cF4 0.5984 . . . . . . . . . >23.7 kB aSi cF8 0.54306 . . . . . . . . . RTP
Cs-III cF4 0.5800 . . . . . . . . . >42.2 kB bSi tl4 0.4686 . . . 0.2585 0.551 >95 kB
aDy hP2 0.35915 . . . 0.56501 1.5731 RTP gSi cl16 0.636 . . . . . . . . . >160 kB
gDy hR3 0.3436 . . . 2.4830 4.5�1.606 >75 kB dSi hP4 0.380 . . . 0.628 1.635 Decompressed bSi
aFe cl2 0.28665 . . . . . . . . . RTP
EFe hP2 0.2485 . . . 0.3990 1.606 >130 kB aSm hR3 0.36290 . . . 2.607 4.5�1.6048 RTP
aGa oC8 0.45192 0.76586 0.45258 . . . RTP gSm hP4 0.3618 . . . 1.166 2�1.611 >40 kB
bGa tl2 0.2808 . . . 0.4458 1.587 >12 kB bSn tl4 0.58316 . . . 0.31815 0.5456 RTP
gGa oC40 1.0593 1.3523 0.5203 . . . >30 kB; 220 K gSn tl2 0.370 . . . 0.337 0.911 >90 kB
aGd hP2 0.36336 . . . 0.57810 1.5910 RTP aSr cF4 0.6084 . . . . . . . . . RTP
gGd hR3 0.361 . . . 2.603 4.5�1.60 >30 kB Sr-II cl2 0.4437 . . . . . . . . . >35 kB
aGe cF8 0.56574 . . . . . . . . . RTP aTb cP2 0.36055 . . . 0.56966 1.5800 RTP
bGe tl4 0.4884 . . . 0.2692 0.551 >120 kB Tb-II hR3 0.341 . . . 2.45 4.5�1.60 >60 kB
gGe tP12 0.593 . . . 0.698 0.18 Decompressed bGe aTe hP3 0.44561 . . . 0.59271 1.3301 RTP

bTe hR2 0.469 . . . . . . a = 53.30� >30 kB
dGe cl16 0.692 . . . . . . . . . >120 kB gTe hR1 0.3002 . . . . . . a = 103.3� >70 kB
aHe hP2 0.3577 . . . 0.5842 1.633 4.2 K aTi hP2 0.34563 . . . 0.55263 1.5989 RTP
bHe cF4 4.240 . . . . . . . . . 1.25 kB; 1.6 K oTi hP2 0.4625 . . . 0.2813 0.608 Decompressed
gHe cl2 4.110 . . . . . . . . . 0.3 kB; 1.73 K
aHg hR1 0.3005 . . . . . . a = 70.53� 227 K aT1 hP2 0.34563 . . . 0.55540 1.5700 RTP
bHg tl2 0.3995 . . . 0.2825 0.707 HP; 77 K gT1 cF4 . . . . . . . . . . . . HP
aHo hP2 0.35778 . . . 0.56178 1.5702 RTP aZr hP2 0.32217 . . . 0.51476 1.5928 RTP
gHo hR3 0.334 . . . 2.45 4.5�1.63 >40 kB oZr hP2 0.506 . . . 0.3109 0.617 Decompressed
K-I cl2 0.5321 . . . . . . . . . RTP

The accuracy of the data in this table is considered to be reliable to þ�2 in the last reported digit. (a) RTP, room temperature and pressure; HP, high pressure. High-pressure data refer to pressures within þ�1 of the last reported
digit in kilobars.
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Table 9 Magnetic phase transition temperatures of the elements

Chemical

symbol

Atomic

number

Allotrope

(a)

Phase transition

temperature (Tc), K

Type of magnetic

ordering (b)

Phase transition

temperature (Tc2), K
Type of magnetic

ordering(b)

Phase transition

temperature (Tc3), K
Type of magnetic

ordering(b)

Saturation magnetic

moment, mB

Ce(c) 58 b- dcph 13.7 AC? 12.5 AC? . . . . . . 2.61
g- fcc 14.4 AC? . . . . . . . . . �2.5

Cm 96 . . . 52 AC . . . . . . . . . . . . . . .
Co 27 fcc 1388 FM . . . . . . . . . . . . 1.715
Cr 24 . . . 312.7 AI . . . . . . . . . . . . 0.45
Dy 66 a-cph 179.0 AI 89.0 FM . . . . . . 10.33
Er 68 . . . 85.0 AI 53 AC 20.0 CF 9.1
Eu 63 . . . 90.4 AC . . . . . . . . . . . . 5.9
Fe 26 a-bcc 1044 FM . . . . . . . . . . . . 2.216

g- fcc 67 AC . . . . . . . . . . . . 0.75
Gd 64 a- cph 293.4 FM . . . . . . . . . . . . 7.63
Ho 67 . . . 132.0 AI 20.0 CF . . . . . . 10.34
Mn 25 a- bcc 100 AC . . . . . . . . . . . . (d)
Nd 60 a- dcph 19.9 AI 7.5 AC . . . . . . 1.84
Ni 28 . . . 627.4 FM . . . . . . . . . . . . 0.616
Pm 61 a- dcph 98 FM? . . . . . . . . . . . . 0.24
Pr 59 a- dcph 0.06 AC . . . . . . . . . . . . 0.36
Sm 62 a-rhomb. 106 h, A(e) 13.8 c, A(e) . . . . . . 0.1
Tb 65 a- cph 230.0 AI 219.5 FM . . . . . . 9.34
Tm 69 . . . 58.0 AI 40 to 32 FI . . . . . . 7.14

(a) dcph, double close-packed hexagonal; fcc, face-centered cubic; cph close-packed hexagonal; bcc, body-centered cubic. (b) FM, transition from paramagnetic to ferromagnetic state; AC, transition to periodic (antiferromag-
netic) state that is commensurate with the lattice periodicity (e.g., spins on three atom layers directed up followed by three layers down, etc.); AI, transition to periodic (antiferromagnetic) state that is generally not commensurate
with the lattice periodicity (e.g., helical spin ordering); CF, transition to conical ferromagnetic state (combination of planar helical antiferromagnet plus ferromagnetic component); FI, transition to ferromagnetic periodic struc-
ture (unequal number of up and down spin layers). (c) Ce exists in five crystal structures, two of which are magnetic (g, fcc; and b, dcph). gCe is estimated to be antiferromagnetic below 14.4 K by extrapolation from fcc Ce-La
alloys. (aCe does not exist in pure form below �100 K.) bCe is thought to exhibit antiferromagnetism on the hexagonal lattice sites below 13.7 K and on the cubic sites below 12.5 K. (d) The magnetic moment assignments of
Mn are complex: see R.S. Tebble and D.J. Craik Magnetic Materials, Wiley Interscience, London, 1969, p 60–62. (e) h, A;c, A indicate that sites of hexagonal and cubic point symmetry order antiferromagnetically but at
different temperatures
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Density of Metals and Alloys

Table 1 Density of metals and alloys

Metal or alloy

Density

g/cm3 lb/in.3

Aluminum and aluminum alloys

Aluminum (99.996%) 2.6989 0.0975

Wrought alloys

EC, 1060 alloys 2.70 0.098
1100 2.71 0.098
2011 2.82 0.102
2014 2.80 0.101
2024 2.77 0.100
2218 2.81 0.101
3003 2.73 0.099
4032 2.69 0.097
5005 2.70 0.098
5050 2.69 0.097
5052 2.68 0.097
5056 2.64 0.095
5083 2.66 0.096
5086 2.65 0.096
5154 2.66 0.096
5357 2.70 0.098
5456 2.66 0.096
6061, 6063 2.70 0.098
6101, 6151 2.70 0.098
7075 2.80 0.101
7079 2.74 0.099
7178 2.82 0.102

Casting alloys

A13 2.66 0.096
43 2.69 0.097
108, A108 2.79 0.101
A132 2.72 0.098
D132 2.76 0.100
F132 2.74 0.099
138 2.95 0.107
142 2.81 0.101
195, B195 2.81 0.101
214 2.65 0.096
220 2.57 0.093
319 2.79 0.101
355 2.71 0.098
356 2.68 0.097
360 2.64 0.095
380 2.71 0.098
750 2.88 0.104
40E 2.81 0.101

Copper and copper alloys

Wrought coppers

Pure copper 8.96 0.324
Electrolytic tough
pitch copper (ETP) 8.89 0.321

Deoxidized copper, high residual
phosphorus (DHP) 8.94 0.323

Free-machining copper
0.5% Te 8.94 0.323
1.0% Pb 8.94 0.323

Metal or alloy

Density

g/cm3 lb/in.3

Wrought alloys

Gilding, 95% 8.86 0.320
Commercial bronze, 90% 8.80 0.318
Jewelry bronze, 87.5% 8.78 0.317
Red brass, 85% 8.75 0.316
Low brass, 80% 8.67 0.313
Cartridge brass, 70% 8.53 0.308
Yellow brass 8.47 0.306
Muntz metal 8.39 0.303
Leaded commercial bronze 8.83 0.319
Low-leaded brass (tube) 8.50 0.307
Medium-leaded brass 8.47 0.306
High-leaded brass (tube) 8.53 0.308
High-leaded brass 8.50 0.307
Extra-high-leaded brass 8.50 0.307
Free-cutting brass 8.50 0.307
Leaded Muntz metal 8.41 0.304
Forging brass 8.44 0.305
Architectural bronze 8.47 0.306
Inhibited admiralty 8.53 0.308
Naval brass 8.41 0.304
Leaded naval brass 8.44 0.305
Manganese bronze (A) 8.36 0.302
Phosphor bronze, 5% (A) 8.86 0.320
Phosphor bronze, 8% (C) 8.80 0.318
Phosphor bronze, 10% (D) 8.78 0.317
Phosphor bronze, 1.25% 8.89 0.321
Free-cutting phosphor bronze 8.89 0.321
Cupro-nickel, 30% 8.94 0.323
Cupro-nickel, 10% 8.94 0.323
Nickel silver, 65-18 8.73 0.315
Nickel silver, 55-18 8.70 0.314
High-silicon bronze (A) 8.53 0.308
Low-silicon bronze (B) 8.75 0.316
Aluminum bronze, 5% Al 8.17 0.294
Aluminum bronze, (3) 7.78 0.281
Aluminum-silicon bronze 7.69 0.278
Aluminum bronze, (1) 7.58 0.274
Aluminum bronze, (2) 7.58 0.274
Beryllium copper 8.23 0.297

Casting alloys

Chromium copper (1% Cr) 8.7 0.31
88Cu-10Sn-2Zn 8.7 0.31
88Cu-8Sn-4Zn 8.8 0.32
89Cu-11Sn 8.78 0.317
88Cu-6Sn-1.5Pb-4.5Zn 8.7 0.31
87Cu-8Sn-1Pb-4Zn 8.8 0.32
87Cu-10Sn-1Pb-2Zn 8.8 0.32
80Cu-10Sn-10Pb 8.95 0.323
83Cu-7Sn-7Pb-3Zn 8.93 0.322
85Cu-5Sn-9Pb-1Zn 8.87 0.320
78Cu-7Sn-15Pb 9.25 0.334
70Cu-5Sn-25Pb 9.30 0.336
85Cu-5Sn-5Pb-5Zn 8.80 0.318
83Cu-4Sn-6Pb-7Zn 8.6 0.31
81Cu-3Sn-7Pb-9Zn 8.7 0.31

Metal or alloy

Density

g/cm3 lb/in.3

76Cu-2.5Sn-6.5Pb-15Zn 8.77 0.317
72Cu-1Sn-3Pb-24Zn 8.50 0.307
67Cu-1Sn-3Pb-29Zn 8.45 0.305
61Cu-1Sn-1Pb-37Zn 8.40 0.304
Manganese bronze
60 ksi 8.2 0.30
65 ksi 8.3 0.30
90 ksi 7.9 0.29
110 ksi 7.7 0.28

Aluminum bronze
Alloy 9A 7.8 0.28
Alloy 9B 7.55 0.272
Alloy 9C 7.5 0.27
Alloy 9D 7.7 0.28

Nickel silver
12% Ni 8.95 0.323
16% Ni 8.95 0.323
20% Ni 8.85 0.319
25% Ni 8.8 0.32

Silicon bronze 8.30 0.300
Silicon brass 8.30 0.300

Iron and iron alloys

Pure iron 7.874 0.2845
Ingot iron 7.866 0.2842
Wrought iron 7.7 0.28
Gray cast iron 7.15(a) 0.258(a)
Malleable iron 7.27(b) 0.262(b)
0.06% C steel 7.871 0.2844
0.23% C steel 7.859 0.2839
0.435% C steel 7.844 0.2834
1.22% C steel 7.830 0.2829

Low-carbon chromium-molybdenum steels

0.5% Mo steel 7.86 0.283
1Cr-0.5Mo steel 7.86 0.283
1.25Cr-0.5Mo steel 7.86 0.283
2.25Cr-1.0Mo steel 7.86 0.283
5Cr-0.5Mo steel 7.78 0.278
7Cr-0.5Mo steel 7.78 0.278
9Cr-1Mo steel 7.67 0.276

Medium-carbon alloy steels

1Cr-0.35Mo-0.25 V steel 7.86 0.283
H11 die steel (5Cr-1.5Mo-0.4V) 7.79 0.281

Other iron-base alloys

A-286 7.94 0.286
16-25-6 alloy 8.08 0.292
RA-330 8.03 0.290
Incoloy 8.02 0.290
Incoloy T 7.98 0.288
Incoloy 901 8.23 0.297
T1 tool steel 8.67 0.313
M2 tool steel 8.16 0.295
H41 tool steel 7.88 0.285
20W-4Cr-2V-12Co steel 8.89 0.321
Invar (36% Ni) 8.00 0.289
Hipernik (50% Ni) 8.25 0.298

(continued)

(a) 6.95 to 7.35 g/cm3 (0.251 to 0.265 lb/in.3). (b) 7.20 to 7.34 g/cm3 (0.260 to 0.265 lb/in.3). (c) Face-centered cubic. (d) Hexagonal. (e) Body-centered cubic. (f) Close-packed hexagonal. (g) Rhombohedral. Source:
M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 599-601

Copyright © 2009 ASM International®
All rights reserved.
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Metal or alloy

Density

g/cm3 lb/in.3

4% Si 7.6 0.27
10.27% Si 6.97 0.252

Stainless steels and heat-resistant alloys

Corrosion-resistant steel castings

CA-15 7.612 0.2750
CA-40 7.612 0.2750
CB-30 7.53 0.272
CC-50 7.53 0.272
CE-30 7.67 0.277
CF-8 7.75 0.280
CF-20 7.75 0.280
CF-8M, CF-12M 7.75 0.280
CF-8C 7.75 0.280
CF-16F 7.75 0.280
CH-20 7.72 0.279
CK-20 7.75 0.280
CN-7M 8.00 0.289

Heat-resistant alloy castings

HA 7.72 0.279
HC 7.53 0.272
HD 7.58 0.274
HE 7.67 0.277
HF 7.75 0.280
HH 7.72 0.279
HI 7.72 0.279
HK 7.75 0.280
HL 7.72 0.279
HN 7.83 0.283
HT 7.92 0.286
HU 8.04 0.290
HW 8.14 0.294
HX 8.14 0.294

Wrought stainless and heat-resisting steels

Type 301 7.9 0.29
Type 302 7.9 0.29
Type 302B 8.0 0.29
Type 303 7.9 0.29
Type 304 7.9 0.29
Type 305 8.0 0.29
Type 308 8.0 0.29
Type 309 7.9 0.29
Type 310 7.9 0.29
Type 314 7.72 0.279
Type 316 8.0 0.29
Type 317 8.0 0.29
Type 321 7.9 0.29
Type 347 8.0 0.29
Type 403 7.7 0.28
Type 405 7.7 0.28
Type 410 7.7 0.28
Type 416 7.7 0.28
Type 420 7.7 0.28
Type 430 7.7 0.28
Type 430F 7.7 0.28
Type 431 7.7 0.28
Types 440A, 440B, 440C 7.7 0.28
Type 446 7.6 0.27
Type 501 7.7 0.28
Type 502 7.8 0.28
19-9DL 7.97 0.29

Precipitation-hardening stainless steels

PH15-7 Mo 7.804 0.2819
17-4 PH 7.8 0.28
17-7 PH 7.81 0.282

Nickel-base alloys

D-979 8.27 0.299
Nimonic 80A 8.25 0.298
Nimonic 90 8.27 0.299
M-252 8.27 0.298
Inconel 8.51 0.307
Inconel “X” 550 8.30 0.300
Inconel 700 8.17 0.295
Inconel “713C” 7.913 0.2859
Waspaloy 8.23 0.296

Metal or alloy

Density

g/cm3 lb/in.3

René 41 8.27 0.298
Hastelloy alloy B 9.24 0.334
Hastelloy alloy C 8.94 0.323
Hastelloy alloy X 8.23 0.297
Udimet 500 8.07 0.291
GMR-235 8.03 0.290

Cobalt-chromium-nickel-base alloys

N-155 (HS-95) 8.23 0.296
S-590 8.36 0.301
Cobalt-base alloys

S-816 8.68 0.314
V-36 8.60 0.311
HS-25 9.13 0.330
HS-36 9.04 0.327
HS-31 8.61 0.311
HS-21 8.30 0.300

Molybdenum-base alloy

Mo-0.5Ti 10.2 0.368

Lead and lead alloys

Chemical lead (99.90+% Pb) 11.34 0.4097
Corroding lead (99.73 +% Pb) 11.36 0.4104
Arsenical lead 11.34 0.4097
Calcium lead 11.34 0.4097
5-95 solder 11.0 0.397
20-80 solder 10.2 0.368
50-50 solder 8.89 0.321

Antimonial lead alloys

1% antimonial lead 11.27 0.407
Hard lead (96Pb-4Sb) 11.04 0.399
Hard lead (94Pb-6Sb) 10.88 0.393
8% antimonial lead 10.74 0.388
9% antimonial lead 10.66 0.385

Lead-base Babbitt alloys

Lead-base Babbitt
SAE 13 10.24 0.370
SAE 14 9.73 0.352
Alloy 8 10.04 0.363
Arsenical lead
Babbitt (SAE 15) 10.1 0.365
“G” Babbitt 10.1 0.365

Magnesium and magnesium alloys

Magnesium (99.8%) 1.738 0.06279

Casting alloys

AM100A 1.81 0.065
AZ63A 1.84 0.066
AZ81A 1.80 0.065
AZ91A, B, C 1.81 0.065
AZ92A 1.82 0.066
HK31A 1.79 0.065
HZ32A 1.83 0.066
ZH42, ZH62A 1.86 0.067
ZK51A 1.81 0.065
ZE41A 1.82 0.066
EZ33A 1.83 0.066
EK30A 1.79 0.065
EK41A 1.81 0.065
Wrought alloys

M1A 1.76 0.064
A3A 1.77 0.064
AZ31B 1.77 0.064
PE 1.76 0.064
AZ61A 1.80 0.065
AZ80A 1.80 0.065
ZK60A, B 1.83 0.066
ZE10A 1.76 0.064
HM21A 1.78 0.064
HM31A 1.81 0.065

Nickel and nickel alloys

Nickel (99.95% Ni + Co) 8.902 0.322
“A” Nickel 8.885 0.321
“D” Nickel 8.78 0.317
Duranickel 8.26 0.298
Cast nickel 8.34 0.301
Monel 8.84 0.319

Metal or alloy

Density

g/cm3 lb/in.3

“K” Monel 8.47 0.306
Monel (cast) 8.63 0.312
“H” Monel (cast) 8.5 0.31
“S” Monel (cast) 8.36 0.302
Inconel 8.51 0.307
Inconel (cast) 8.3 0.30
Ni-o-nel 7.86 0.294

Nickel-molybdenum-chromium-iron alloys

Hastelloy B 9.24 0.334
Hastelloy C 8.94 0.323
Hastelloy D 7.8 0.282
Hastelloy F 8.17 0.295
Hastelloy N 8.79 0.317
Hastelloy W 9.03 0.326
Hastelloy X 8.23 0.297

Nickel-chromium-molybdenum-copper alloys

Illium G 8.58 0.310
Illium R 8.58 0.310

Electrical resistance alloys

80Ni-20Cr 8.4 0.30
60Ni-24Fe-16Cr 8.247 0.298
35Ni-45Fe-20Cr 7.95 0.287
Constantan 8.9 0.32

Tin and tin alloys

Pure tin 7.3 0.264
Soft solder (30% Pb) 8.32 0.301
Soft solder (37% Pb) 8.42 0.304
Tin Babbitt

Alloy 1 7.34 0.265
Alloy 2 7.39 0.267
Alloy 3 7.46 0.269
Alloy 4 7.53 0.272
Alloy 5 7.75 0.280

White metal 7.28 0.263
Pewter 7.28 0.263

Titanium and titanium alloys

99.9% Ti 4.507 0.1628
99.2% Ti 4.507 0.1628
99.0% Ti 4.52 0.163
Ti-6A1-4V 4.43 0.160
Ti-5A1-2.5Sn 4.46 0.161
Ti-2Fe-2Cr-2Mo 4.65 0.168
Ti-8Mn 4.71 0.171
Ti-7Al-4Mo 4.48 0.162
Ti-4Al-4Mn 4.52 0.163
Ti-4Al-3Mo-1V 4.507 0.1628
Ti-2.5Al-16V 4.65 0.168

Zinc and zinc alloys

Pure zinc 7.133 0.2577
AG40A alloy 6.6 0.24
AC41A alloy 6.7 0.24
Commercial rolled zinc

0.08% Pb 7.14 0.258
0.06 Pb, 0.06 Cd 7.14 0.258
0.3 Pb, 0.3 Cd 7.14 0.258

Copper-hardened, rolled zinc (1% Cu) 7.18 0.259
Rolled zinc alloy (1 Cu, 0.010 Mg) 7.18 0.259
Zn-Cu-Ti alloy (0.8 Cu, 0.15 Ti) 7.18 0.259

Precious metals

Silver 10.49 0.379
Gold 19.32 0.698
70Au-30Pt 19.92 . . .
Platinum 21.45 0.775
Pt-3.5Rh 20.9 . . .
Pt-5Rh 20.65 . . .
Pt-10Rh 19.97 . . .
Pt-20Rh 18.74 . . .
Pt-30Rh 17.62 . . .
Pt-40Rh 16.63 . . .
Pt-5Ir 21.49 . . .
Pt-10Ir 21.53 . . .
Pt-15Ir 21.57 . . .
Pt-20Ir 21.61 . . .
Pt-25Ir 21.66 . . .
Pt-30Ir 21.70 . . .

(continued)

Table 1 (continued)

(a) 6.95 to 7.35 g/cm3 (0.251 to 0.265 lb/in.3). (b) 7.20 to 7.34 g/cm3 (0.260 to 0.265 lb/in.3). (c) Face-centered cubic. (d) Hexagonal. (e) Body-centered cubic. (f) Close-packed hexagonal. (g) Rhombohedral. Source:
M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993
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(a) 6.95 to 7.35 g/cm3 (0.251 to 0.265 lb/in.3). (b) 7.20 to 7.34 g/cm3 (0.260 to 0.265 lb/in.3). (c) Face-centered cubic. (d) Hexagonal. (e) Body-centered cubic. (f) Close-packed hexagonal. (g) Rhombohedral. Source:
M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993

Metal or alloy

Density

g/cm3 lb/in.3

Pt-35Ir 21.79 . . .
Pt-5Ru 20.67 . . .
Pt-10Ru 19.94 . . .
Palladium 12.02 0.4343
60Pd-40Cu 10.6 0.383
95.5Pd-4.5Ru 12.07(a) . . .
95.5Pd-4.5Ru 11.62(b) . . .

Permanent magnet materials

Cunico 8.30 0.300
Cunife 8.61 0.311
Comol 8.16 0.295
Alnico I 6.89 0.249
Alnico II 7.09 0.256
Alnico III 6.89 0.249
Alnico IV 7.00 0.253
Alnico V 7.31 0.264
Alnico VI 7.42 0.268
Barium ferrite 4.7 0.17
Vectolite 3.13 0.113

Pure metals

Antimony 6.62 0.239
Beryllium 1.848 0.067
Bismuth 9.80 0.354
Cadmium 8.65 0.313
Calcium 1.55 0.056
Cesium 1.903 0.069

Metal or alloy

Density

g/cm3 lb/in.3

Chromium 7.19 0.260
Cobalt 8.85 0.322
Gallium 5.907 0.213
Germanium 5.323 0.192
Hafnium 13.1 0.473
Indium 7.31 0.264
Iridium 22.5 0.813
Lithium 0.534 0.019
Manganese 7.43 0.270
Mercury 13.546 0.489
Molybdenum 10.22 0.369
Niobium 8.57 0.310
Osmium 22.583 0.816
Plutonium 19.84 0.717
Potassium 0.86 0.031
Rhenium 21.04 0.756
Rhodium 12.44 0.447
Ruthenium 12.2 0.441
Selenium 4.79 0.174
Silicon 2.33 0.084
Silver 10.49 0.379
Sodium 0.97 0.035
Tantalum 16.6 0.600
Thalium 11.85 0.428
Thorium 11.72 0.423
Tungsten 19.3 0.697

Metal or alloy

Density

g/cm3 lb/in.3

Uranium 19.07 0.689
Vanadium 6.1 0.22
Zirconium 6.5 0.23

Rare earth metals

Cerium 8.23(c) . . .
Cerium 6.66(d) . . .
Cerium 6.77(e) . . .
Dysprosium 8.55(f) . . .
Erbium 9.15(f) . . .
Europium 5.245(e) . . .
Gadolinium 7.86(f) . . .
Holmium 6.79(f) . . .
Lanthanum 6.19(d) . . .
Lanthanum 6.18(c) . . .
Lanthanum 5.97(e) . . .
Lutetium 9.85(f) . . .
Neodymium 7.00(d) . . .
Neodymium 6.80(e) . . .
Praseodymium 6.77(d) . . .
Praseodymium 6.64(e) . . .
Samarium 7.49(g) . . .
Scandium 2.99(f) . . .
Terbium 8.25(f) . . .
Thulium 9.31(f) . . .
Ytterbium 6.96(c) . . .
Yttrium 4.47(f) . . .

Table 1 (continued)
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Linear Thermal Expansion of
Metals and Alloys

Table 1 Linear thermal expansion of selected metals and alloys

Metal or alloy Temp., �C

Coefficient

of expansion,

10
�6/�C

Aluminum and aluminum alloys

Aluminum (99.996%) 20 to 100 23.6

Wrought alloys

EC. 1060, 1100 20 to 100 23.6
2011, 2014 20 to 100 23.0
2024 20 to 100 22.8
2218 20 to 100 22.3
3003 20 to 100 23.2
4032 20 to 100 19.4
5005, 5050, 5052 20 to 100 23.8
5056 20 to 100 24.1
5083 20 to 100 23.4
5086 60 to 300 23.9
5154 20 to 100 23.9
5357 20 to 100 23.7
5456 20 to 100 23.9
6061, 6063 20 to 100 23.4
6101, 6151 20 to 100 23.0
7075 20 to 100 23.2
7079, 7178 20 to 100 23.4

Casting alloys

A13 20 to 100 20.4
43 and 108 20 to 100 22.0
A108 20 to 100 21.5
A132 20 to 100 19.0
D132 20 to 100 20.05
F132 20 to 100 20.7
138 20 to 100 21.4
142 20 to 100 22.5
195 20 to 100 23.0
B195 20 to 100 22.0
214 20 to 100 24.0
220 20 to 100 25.0
319 20 to 100 21.5
355 20 to 100 22.0
356 20 to 100 21.5
360 20 to 100 21.0
750 20 to 100 23.1
40E 21 to 93 24.7

Copper and copper alloys

Wrought coppers

Pure copper 20 16.5
Electrolytic tough pitch
copper (ETP)

20 to 100 16.8

Deoxidized copper, high
residual phosphorus (DHP)

20 to 300 17.7

Oxygen-free copper 20 to 300 17.7
Free machining copper,
0.5% Te or 1% Pb

20 to 300 17.7

Wrought alloys

Gilding, 95% 20 to 300 18.1
Commerical bronze, 90% 20 to 300 18.4
Jewelry bronze, 87.5% 20 to 300 18.6

Metal or alloy Temp., �C

Coefficient

of expansion,

10
�6/�C

Red brass, 85% 20 to 300 18.7
Low brass, 80% 20 to 300 19.1
Cartridge brass, 70% 20 to 300 19.9
Yellow brass 20 to 300 20.3
Muntz metal 20 to 300 20.8
Leaded commercial bronze 20 to 300 18.4
Low-leaded brass 20 to 300 20.2
Medium-leaded brass 20 to 300 20.3
High-leaded brass 20 to 300 20.3
Extra-high-leaded brass 20 to 300 20.5
Free-cutting brass 20 to 300 20.5
Leaded Muntz metal 20 to 300 20.8
Forging brass 20 to 300 20.7
Architectural bronze 20 to 300 20.9
Inhibited admiralty 20 to 300 20.2
Naval brass 20 to 300 21.2
Leaded naval brass 20 to 300 21.2
Manganese bronze (A) 20 to 300 21.2
Phosphor bronze, 5% (A) 20 to 300 17.8
Phosphor bronze, 8% (C) 20 to 300 18.2
Phosphor bronze, 10% (D) 20 to 300 18.4
Phosphor bronze, 1.25% 20 to 300 17.8
Free-cutting phosphor bronze 20 to 300 17.3
Cupro-nickel, 30% 20 to 300 16.2
Cupro-nickel, 10% 20 to 300 17.1
Nickel silver, 65–18 20 to 300 16.2
Nickel silver, 55–18 20 to 300 16.7
Nickel silver, 65–12 20 to 300 16.2
High-silicon bronze (a) 20 to 300 18.0
Low-silicon bronze (b) 20 to 300 17.9
Aluminum bronze (3) 20 to 300 16.4
Aluminum-silicon bronze 20 to 300 18.0
Aluminum bronze (1) 20 to 300 16.8
Beryllium copper 20 to 300 17.8

Casting alloys

88Cu-8Sn-4Zn 21 to 177 18.0
89Cu-11Sn 20 to 300 18.4
88Cu-6Sn-1.5Pb-4.5Zn 21 to 260 18.5
87Cu-8Sn-1Pb-4Zn 21 to 177 18.0
87Cu-10Sn-1Pb-2Zn 21 to 177 18.0
80Cu-10Sn-10Pb 21 to 204 18.5
78Cu-7Sn-15Pb 21 to 204 18.5
85Cu-5Sn-5Pb-5Zn 21 to 204 18.1
72Cu-1Sn-3Pb-24Zn 21 to 93 20.7
67Cu-1Sn-3Pb-29Zn 21 to 93 20.2
61Cu-1Sn-1Pb-37Zn 21 to 260 21.6
Manganese bronze
60 ksi 21 to 204 20.5
65 ksi 21 to 93 21.6
110 ksi 21 to 260 19.8
Aluminum bronze
Alloy 9A . . . 17
Alloy 9B 20 to 250 17
Alloys 9C, 9D . . . 16.2

Metal or alloy Temp., �C

Coefficient

of expansion,

10
�6/�C

Iron and iron alloys

Pure iron 20 11.7
Fe-C alloys
0.06% C 20 to 100 11.7
0.22% C 20 to 100 11.7
0.40% C 20 to 100 11.3
0.56% C 20 to 100 11.0
1.08% C 20 to 100 10.8
1.45% C 20 to 100 10.1
Invar (36% Ni) 20 0.2
13Mn-1.2C 20 18.0
13Cr-0.35C 20 to 100 10.0
12.3Cr-0.4Ni-0.09C 20 to 100 9.8
17.7Cr-9.6Ni-0.06C 20 to 100 16.5
18W-4Cr-1V 0 to 100 11.2
Gray cast iron 0 to 100 10.5
Malleable iron (pearlitic) 20 to 400 12

Lead and lead alloys

Corroding lead (99.73 + % Pb) 17 to 100 29.3
5-95 solder 15 to 110 28.7
20-80 solder 15 to 110 26.5
50-50 solder 15 to 110 23.4
1% antimonial lead 20 to 100 28.8
Hard lead (96Pb-4Sb) 20 to 100 27.8
Hard lead (94Pb-6Sb) 20 to 100 27.2
8% antimonial lead 20 to 100 26.7
9% antimonial lead 20 to 100 26.4
Lead-base babbitt
SAE 14 20 to 100 19.6
Alloy 8 20 to 100 24.0

Magnesium and magnesium alloys

Magnesium (99.8%) 20 25.2

Casting alloys

AM100A 18 to 100 25.2
AZ63A 20 to 100 26.1
AZ91A, B, C 20 to 100 26
AZ92A 18 to 100 25.2
HZ32A 20 to 200 26.7
ZH42 20 to 200 27
ZH62A 20 to 200 27.1
ZK51A 20 26.1
EZ33A 20 to 100 26.1
EK30A, EK41A 20 to 100 26.1

Wrought alloys

M1A, A3A 20 to 100 26
AZ31B, PE 20 to 100 26
AZ61A, AZ80A 20 to 100 26
ZK60A, B 20 to 100 26
HM31A 20 to 93 26.1

Nickel and nickel alloys

Nickel (99.95% Ni + Co) 0 to 100 13.3
Duranickel 0 to 100 13.0
Monel 0 to 100 14.0

(continued)

(a) Longitudinal; 23.4 transverse. (b) Longitudinal; 21.1 transverse. (c) Longitudinal; 19.4 transverse. Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993
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Metal or alloy Temp., �C

Coefficient

of expansion,

10
�6/�C

Monel (cast) 25 to 100 12.9
Inconel 20 to 100 11.5
Ni-o-nel 27 to 93 12.9
Hastelloy B 0 to 100 10.0
Hastelloy C 0 to 100 11.3
Hastelloy D 0 to 100 11.0
Hastelloy F 20 to 100 14.2
Hastelloy N 21 to 204 10.4
Hastelloy W 23 to 100 11.3
Hastelloy X 26 to 100 13.8
Illium G 0 to 100 12.19
Illium R 0 to 100 12.02
80Ni-20Cr 20 to 1000 17.3
60Ni-24Fe-16Cr 20 to 1000 17.0
35Ni-45Fe-20Cr 20 to 500 15.8
Constantan 20 to 1000 18.8

Tin and tin alloys

Pure tin 0 to 100 23
Solder (70Sn-30Pb) 15 to 110 21.6

Metal or alloy Temp., �C

Coefficient

of expansion,

10
�6/�C

Solder (63Sn-37Pb) 15 to 110 24.7

Titanium and titanium alloys

99.9% Ti 20 8.41
99.0% Ti 93 8.55
Ti-5Al-2.5Sn 93 9.36
Ti-8Mn 93 8.64

Zinc and zinc alloys

Pure zinc 20 to 250 39.7
AG40A alloy 20 to 100 27.4
AC41A alloy 20 to 100 27.4

Commercial rolled zinc

0.08 Pb 20 to 40 32.5
0.3 Pb, 0.3 Cd 20 to 98 33.9(a)
Rolled zinc alloy
(1 Cu, 0.010 Mg)

20 to 100 34.8(b)

Zn-Cu-Ti alloy (0.8 Cu, 0.15 Ti) 20 to 100 24.9(c)

Pure metals

Beryllium 25 to 100 11.6

Metal or alloy Temp., �C

Coefficient

of expansion,

10
�6/�C

Cadmium 20 29.8
Calcium 0 to 400 22.3
Chromium 20 6.2
Cobalt 20 13.8
Gold 20 14.2
Iridium 20 6.8
Lithium 20 56
Manganese 0 to 100 22
Palladium 20 11.76
Platinum 20 8.9
Rhenium 20 to 500 6.7
Rhodium 20 to 100 8.3
Ruthenium 20 9.1
Silicon 0 to 1400 5
Silver 0 to 100 19.68
Tungsten 27 4.6
Vanadium 23 to 100 8.3
Zirconium . . . 5.85

(a) Longitudinal; 23.4 transverse. (b) Longitudinal; 21.1 transverse. (c) Longitudinal; 19.4 transverse. Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993

Table 1 (continued)
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Thermal Conductivity of
Metals and Alloys

Table 1 Thermal conductivity of selected metals and alloys

Metal or alloy

Thermal conductivity

near room temperature,

cal/(cm � s � �C)
Aluminum and aluminum alloys

Wrought alloys

EC(O) 0.57
1060(O) 0.56
1100 0.53
2011 (T3) 0.34
2014 (O) 0.46
2024 (O) 0.45
2218 (T72) 0.37
3003 (O) 0.46
4032 (O) 0.37
5005 0.48
5050 (O) 0.46
5052 (O) 0.33
5056 (O) 0.28
5083 0.28
5086 0.30
5154 0.30
5357 0.40
5456 0.28
6061 (O) 0.41
6063 (O) 0.52
6101 (T6) 0.52
6151 (O) 0.49
7075 (T6) 0.29
7079 (T6) 0.29
7178 0.29

Casting alloys

A13 0.29
43 (F) 0.34
108 (F) 0.29
A108 0.34
A132 (T551) 0.28
D132 (T5) 0.25
F132 0.25
138 0.24
142 (T21, sand) 0.40
195 (T4, T62) 0.33
B195 (T4, T6) 0.31
214 0.33
200 (T4) 0.21
319 0.26
355 (T51, sand) 0.40
356 (T51, sand) 0.40
360 0.35
380 0.23
750 0.44
40E 0.33

Copper and copper alloys

Wrought coppers

Pure copper 0.941
Electrolytic tough pitch copper
(ETP)

0.934

Deoxidized copper, high residual
phosphorus (DHP)

0.81

Metal or alloy

Thermal conductivity

near room temperature,

cal/(cm � s � �C)
Free-machining copper (0.5% Te) 0.88
Free-machining copper (1% Pb) 0.92

Wrought alloys

Gilding, 95% 0.56
Commercial bronze, 90% 0.45
Jewelry bronze, 87.5% 0.41
Red brass, 85% 0.38
Low brass, 80% 0.33
Cartridge brass, 70% 0.29
Yellow brass 0.28
Muntz metal 0.29
Leaded-commercial bronze 0.43
Low-leaded brass (tube) 0.28
Medium-leaded brass 0.28
High-leaded brass (tube) 0.28
High-leaded brass 0.28
Extra-high-leaded brass 0.28
Leaded Muntz metal 0.29
Forging brass 0.28
Architectural bronze 0.29
Inhibited admiralty 0.26
Naval brass 0.28
Leaded naval brass 0.28
Manganese bronze (A) 0.26
Phosphor bronze, 5% (A) 0.17
Phosphor bronze, 8% (C) 0.15
Phosphor bronze, 10% (D) 0.12
Phosphor bronze, 1.25% 0.49
Free-cutting
phosphor bronze

0.18

Cupro-nickel, 30% 0.07
Cupro-nickel, 10% 0.095
Nickel silver, 65-18 0.08
Nickel silver, 55-18 0.07
Nickel silver, 65-12 0.10
High-silicon bronze (A) 0.09
Low-silicon bronze (B) 0.14
Aluminum bronze, 5% Al 0.198
Aluminum bronze, (3) 0.18
Aluminum-silicon bronze 0.108
Aluminum bronze, (1) 0.144
Aluminum bronze, (2) 0.091
Beryllium copper 0.20(a)

Casting alloys

Chromium copper (1% Cr) 0.4(a)
89cu-11Sn 0.121
88Cu-6Sn-1.5Pb-4.5Zn (b)
87Cu-8Sn-1Pb-4Zn (c)
87Cu-10Sn-1Pb-2Zn (c)
80Cu-10Sn-10Pb (c)
Manganese bronze, 110 ksi (d)
Aluminum bronze
Alloy 9A (e)
Alloy 9B (f)
Alloy 9C (b)
Alloy 9D (c)

Propeller bronze (g)

Metal or alloy

Thermal conductivity

near room temperature,

cal/(cm � s � �C)
Nickel silver
12% Ni (h)
16% Ni (h)
20% Ni (j)
25% Ni (k)

Silicon bronze (h)

Iron and iron alloys

Pure iron 0.178
Cast iron (3.16 C, 1.54 Si, 0.57 Mn) 0.112
Carbon steel (0.23 C, 0.64 Mn) 0.124
Carbon steel (1.22 C, 0.35 Mn) 0.108
Alloy steel (0.34 C, 0.55 Mn, 0.78
Cr, 3.53 Ni, 0.39 Mo, 0.05 Cu)

0.079

Type 410 0.057
Type 304 0.036
T1 tool steel 0.058

Lead and lead alloys

Corroding lead (99.73 + % Pb) 0.083
5-95 solder 0.085
20-80 solder 0.089
50-50 solder 0.111
1% antimonial lead 0.080
Hard lead (96Pb-4Sb) 0.073
Hard lead (94Pb-6Sb) 0.069
8% antimonial lead 0.065
9% antimonial lead 0.064
Lead-base babbitt (SAE 14) 0.057
Lead-base babbitt (alloy 8) 0.058

Magnesium and magnesium alloys

Magnesium (99.8%) 0.367

Casting alloys

AM100A 0.17
AZ63A 0.18
AZ81A (T4) 0.12
AZ91A, B, C 0.17
AZ92A 0.17
HK31A (T6, sand cast) 0.22
HZ32A 0.26
ZH42 0.27
ZH62A 0.26
ZK51A 0.26
ZE41A (T5) 0.27
EZ33A 0.24
EK30A 0.26
EK41A (T5) 0.24

Wrought alloys

M1A 0.33
AZ31B 0.23
AZ61A 0.19
AZ80A 0.18
ZK60A, B (F) 0.28
ZE10A (O) 0.33
HM21A (O) 0.33

(continued)

(a) Depends on processing. (b) 18% of Cu. (c) 12% of Cu. (d) 9.05% of Cu. (e) 15% of Cu. (f) 16% of Cu. (g) 11% of Cu. (h) 7% of Cu. (j) 6% of Cu. (k) 6.5% of Cu. To convert cal/(cm � s � �C) to w/m � k, multiply by
418%, Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993.
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Metal or alloy

Thermal conductivity

near room temperature,

cal/(cm � s � �C)
HM31A 0.25

Nickel and nickel alloys

Nickel (99.95% Ni + Co) 0.22
“A” nickel 0.145
“D” nickel 0.115
Monel 0.062
“K” Monel 0.045
Inconel 0.036
Hastelloy B 0.027
Hastelloy C 0.03
Hastelloy D 0.05
Illium G 0.029
Illium R 0.031
60Ni-24Fe-16Cr 0.032
35Ni-45Fe-20Cr 0.031
Constantan 0.051

Tin and tin alloys

Pure tin 0.15
Soft solder (63Sn-37Pb) 0.12
Tin foil (92Sn-8Zn) 0.14

Titanium and titanium alloys

Titanium (99.0%) 0.043

Metal or alloy

Thermal conductivity

near room temperature,

cal/(cm � s � �C)
Ti-5Al-2.5Sn 0.019
Ti-2Fe-2Cr-2Mo 0.028
Ti-8Mn 0.026

Zinc and zinc alloys

Pure zinc 0.27
AG40A alloy 0.27
AC41A alloy 0.26
Commercial rolled zinc
0.08 Pb 0.257
0.06 Pb, 0.06 Cd 0.257
Rolled zinc alloy (1 Cu, 0.010 Mg) 0.25
Zn-Cu-Ti alloy (0.8 Cu, 0.15 Ti) 0.25

Pure metals

Beryllium 0.35
Cadmium 0.22
Chromium 0.16
Cobalt 0.165
Germanium 0.14
Gold 0.71
Indium 0.057
Iridium 0.14

Metal or alloy

Thermal conductivity

near room temperature,

cal/(cm � s � �C)
Lithium 0.17
Molybdenum 0.34
Niobium 0.13
Palladium 0.168
Platinum 0.165
Plutonium 0.020
Rhenium 0.17
Rhodium 0.21
Silicon 0.20
Silver 1.0
Sodium 0.32
Tantalum 0.130
Thallium 0.093
Thorium 0.090
Tungsten 0.397
Uranium 0.071
Vanadium 0.074
Yttrium 0.035

(a) Depends on processing. (b) 18% of Cu. (c) 12% of Cu. (d) 9.05% of Cu. (e) 15% of Cu. (f) 16% of Cu. (g) 11% of Cu. (h) 7% of Cu. (j) 6% of Cu. (k) 6.5% of Cu. To convert cal/(cm � s � �C) to w/m � k, multiply by
418%, Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993.
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Electrical Conductivity of
Metals and Alloys

Table 1 Electrical conductivity and resistivity of selected metals and alloys at ambient temperature

Metal or alloy

Conductivity,

% IACS

Resistivity

mV � cm

Aluminum and aluminum alloys

Aluminum (99.996%) 64.95 2.65
EC (O, H19) 62 2.8
5052 (O, H38) 35 4.93
5056 (H38) 27 6.4
6101 (T6) 56 3.1

Copper and copper alloys

Wrought copper

Pure copper 103.06 1.67
Electrolytic (ETP) 101 1.71
Oxygen-free copper (OF) 101 1.71
Free-machining copper
0.5% Te 95 1.82
1.0% Pb 98 1.76

Wrought alloys

Cartridge brass, 70% 28 6.2
Yellow brass 27 6.4
Leaded commercial bronze 42 4.1
Phosphor bronze, 1.25% 48 3.6
Nickel silver, 55-18 5.5 31
Low-silicon bronze (B) 12 14.3
Beryllium copper 22 to 30(a) 5.7 to 7.8(a)

Casting alloys

Chromium
copper (1% Cr)

80 to 90(a) 2.10

88Cu-8Sn-4Zn 11 15
87Cu-10Sn-1Pb-2Zn 11 15

Electrical contact materials

Copper alloys

0.04 oxide 100 1.72
1.25 Sn + P 48 3.6
5 Sn + P 18 11
8 Sn + P 13 13
15 Zn 37 4.7
20 Zn 32 5.4
35 Zn 27 6.4
2 Be + Ni or Co(b) 17 to 21 9.6 to 11.5

Silver and silver alloys

Fine silver 106 1.59
92.5Ag-7.5Cu 85 2
90Ag-10Cu 85 2
72Ag-28Cu 87 2
72Ag-26Cu-2Ni 60 2.9
85Ag-15Cd 35 4.93
97Ag-3Pt 50 3.5
97Ag-3Pd 60 2.9
90Ag-10Pd 30 5.3
90Ag-10Au 40 4.2
60Ag-40Pd 8 23
70Ag-30Pd 12 14.3

Metal or alloy

Conductivity,

% IACS

Resistivity

mV � cm

Platinum and platinum alloys

Platinum 16 10.6
95Pt-5Ir 9 19
90Pt-10Ir 7 25
85Pt-15Ir 6 28.5
80Pt-20Ir 5.6 31
75Pt-25Ir 5.5 33
70Pt-30Ir 5 35
65Pt-35Ir 5 36
95Pt-5Ru 5.5 31.5
90Pt-10Ru 4 43
89Pt-11Ru 4 43
86Pt-14Ru 3.5 46
96Pt-4W 5 36

Palladium and palladium alloys

Palladium 16 10.8
95.5Pd-4.5Ru 7 24.2
90Pd-10Ru 6.5 27
70Pd-30Ag 4.3 40
60Pd-40Ag 4.0 43
50Pd-50Ag 5.5 31.5
72Pd-26Ag-2Ni 4 43
60Pd-40Cu 5 35(c)
45Pd-30Ag-20Au-5Pt 4.5 39
35Pd-30Ag-14Cu-10Pt-
10Au-1Zn

5 35

Gold and gold alloys

Gold 75 2.35
90Au-10Cu 16 10.8
75Au-25Ag 16 10.8
72.5Au-14Cu-8.5Pt-4Ag-
1Zn

10 17

69Au-25Ag-6Pt 11 15
41.7Au-32.5Cu-18.8Ni-
7Zn

4.5 39

Electrical heating alloys

Ni-Cr and Ni-Cr-Fe alloys

78.5Ni-20Cr-1.5Si (80-20) 1.6 108.05
73.5Ni-20Cr-5Al-1.5Si 1.2 137.97
68Ni-20Cr-8.5Fe-2Si 1.5 116.36
60Ni-16Cr-22.5Fe-1.5Si 1.5 112.20
35Ni-20Cr-43.5Fe-1.5Si 1.7 101.4

Fe-Cr-Al alloys

72Fe-23Cr-5Al 1.3 138.8
55Fe-37.5Cr-7.5Al 1.2 166.23

Pure metals

Molybdenum 34 5.2
Platinum 16 10.64
Tantalum 13.9 12.45
Tungsten 30 5.65

Nonmetallic heating element materials

Silicon carbide, SiC 1 to 1.7 100 to 200

Metal or alloy

Conductivity,

% IACS

Resistivity

mV � cm

Molybdenum disilicide,
MoSi2

4.5 37.24

Graphite . . . 910.1

Instrument and control alloys

Cu-Ni alloys

98Cu-2Ni 35 4.99
94Cu-6Ni 17 9.93
89Cu-11Ni 11 14.96
78Cu-22Ni 5.7 29.92
55Cu-45Ni (constantan) 3.5 49.87

Cu-Mn-Ni alloys

87Cu-13Mn (manganin) 3.5 48.21
83Cu-13Mn-4Ni
(manganin)

3.5 48.21

85Cu-10Mn-4Ni (shunt
manganin)

4.5 38.23

70Cu-20Ni-10Mn 3.6 48.88
67Cu-5Ni-27Mn 1.8 99.74

Ni-base alloys

99.8 Ni 23 7.98
71Ni-29Fe 9 19.95
80Ni-20Cr 1.5 112.2
75Ni-20Cr-3Al+Cu or Fe 1.3 132.98
76Ni-17Cr-4Si-3Mn 1.3 132.98
60Ni-16Cr-24Fe 1.5 112.2
35Ni-20Cr-45Fe 1.7 101.4

Fe-Cr-Al alloy

72Fe-23Cr-5Al-0.5Co 1.3 135.48

Pure metals

Iron (99.99%) 17.75 9.71

Thermostat metals

75Fe-22Ni-3Cr 3 78.13
72Mn-18Cu-10Ni 1.5 112.2
67Ni-30Cu-1.4Fe-1Mn 3.5 56.52
75Fe-22Ni-3Cr 12 15.79
66.5Fe-22Ni-8.5Cr 3.3 58.18

Permanent magnet materials

Carbon steel (0.65% C) 9.5 18
Carbon steel (1% C) 8 20
Chromium steel
(3.5% Cr)

6.1 29

Tungsten steel (6% W) 6 30
Cobalt steel (17% Co) 6.3 28
Cobalt steel (36% Co) 6.5 27

Intermediate alloys

Cunico 7.5 24
Cunife 9.5 18
Comol 3.6 45

Alnico alloys

Alnico I 3.3 75

(continued)

(a) Precipitation hardened; depends on processing. (b) A heat-treatable alloy. (c) Annealed and quenched. (d) At low field strength and high electrical resistance. (e) At higher field strength; annealed for optimum magnetic
properties. Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993.
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Metal or alloy

Conductivity,

% IACS

Resistivity

mV � cm

Alnico II 3.3 65
Alnico III 3.3 60
Alnico IV 3.3 75
Alnico V 3.5 47
Alnico VI 3.5 50

Magnetically soft materials

Electrical steel sheet

M-50 9.5 18
M-43 6 to 9 20 to 28
M-36 5.5 to 7.5 24 to 33
M-27 3.5 to 5.5 32 to 47
M-22 3.5 to 5 41 to 52
M-19 3.5 to 5 41 to 56
M-17 3 to 3.5 45 to 58
M-15 3 to 3.5 45 to 69
M-14 3 to 3.5 58 to 69
M-7 3 to 3.5 45 to 52
M-6 3 to 3.5 45 to 52
M-5 3 to 3.5 45 to 52

Moderately high-permeability materials(d)

Thermenol 0.5 162
16 Alfenol 0.7 153
Sinimax 2 90
Monimax 2.5 80
Supermalloy 3 65

Metal or alloy

Conductivity,

% IACS

Resistivity

mV � cm

4-79 Moly Permalloy,
Hymu 80

3 58

Mumetal 3 60
1040 alloy 3 56
High Permalloy 49, A-L
4750, Armco 48

3.6 48

45 Permalloy 3.6 45

High-permeability materials(e)

Supermendur 4.5 40
2V Permendur 4.5 40
35% Co, 1% Cr 9 20
Ingot iron 17.5 10
0.5% Si steel 6 28
1.75% Si steel 4.6 37
3.0% Si steel 3.6 47
Grain-oriented 3.0% Si
steel

3.5 50

Grain-oriented 50% Ni iron 3.6 45
50% Ni iron 3.5 50

Relay steels and alloys after annealing

Low-carbon iron and

steel

Low-carbon iron 17.5 10
1010 steel 14.5 12

Silicon steels

1% Si 7.5 23

Metal or alloy

Conductivity,

% IACS

Resistivity

mV � cm

2.5% Si 4 41
3% Si 3.5 48
3% Si, grain-oriented 3.5 48
4% Si 3 50

Stainless steels

Type 410 3 57
Type 416 3 57
Type 430 3 60
Type 443 3 68
Type 446 3 61

Nickel irons

50% Ni 3.5 48
78% Ni 11 16
77% Ni (Cu, Cr) 3 60
79% Ni (Mo) 3 58

Stainless and heat-resisting alloys

Type 302 3 72
Type 309 2.5 78
Type 316 2.5 74
Type 317 2.5 74
Type 347 2.5 73
Type 403 3 57
Type 405 3 60
Type 501 4.5 40
HH 2.5 80
HK 2 90
HT 1.7 100

(a) Precipitation hardened; depends on processing. (b) A heat-treatable alloy. (c) Annealed and quenched. (d) At low field strength and high electrical resistance. (e) At higher field strength; annealed for optimum magnetic
properties. Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993.
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Vapor Pressures of the Elements

Table 1 Vapor pressures of selected metallic elements

Element

Pressure, atm

0.0001 0.001 0.01 0.1 0.50 1.0

�C �F �C �F �C �F �C �F �C �F �C �F

Aluminum 1110 2030 1263 2305 1461 2662 1713 3115 1940 3524 2056 3733
Antimony 759 1398 872 1602 1013 1855 1196 2185 1359 2478 1440 2624
Arsenic 308 586 363 685 428 802 499 930 578 1072 610 1130
Bismuth 914 1677 1008 1846 1121 2050 1254 2289 1367 2493 1420 2588
Cadmium 307(a) 585(a) 384(b) 723(b) 471 880 594 1101 708 1306 765 1409
Calcium 688 1270 802(c) 1476(c) 958(b) 1756(b) 1175 2147 1380 2516 1487 2709
Carbon 3257 5895 3547 6417 3897 7047 4317 7803 4667 8433 4827 8721
Chromium 1420(a) 2588(a) 1594(b) 2901(b) 1813 3295 2097 3807 2351 4264 2482 4500
Copper 1412 2574 1602 2916 1844 3351 2162 3924 2450 4442 2595 4703
Gallium 1178 2152 1329 2424 1515 2759 1751 3184 1965 3569 2071 3760
Gold 1623 2953 1839 3342 2115 3839 2469 4476 2796 5065 2966 5371
Iron 1564 2847 1760 3200 2004 3639 2316 4201 2595 4703 2735 4955
Lead 815 1499 953 1747 1135 2075 1384 2523 1622 2952 1744 3171
Lithium 592 1098 707 1305 858 1576 1064 1947 1266 2311 1372 2502
Magnesium 516 961 608(a) 1126(a) 725(b) 1337(b) 886 1627 1030 1886 1107 2025
Manganese 1115(d) 2039(d) 1269(b) 2316(b) 1476 2889 1750 3182 2019 3666 2151 3904
Mercury 77.9(b) 172.2(b) 120.8 249.4 176.1 349.0 251.3 484.3 321.5 610.7 357 675
Molybdenum 2727 4941 3057 5535 3477 6291 4027 7281 4537 8199 4804 8679
Nickel 1586 2887 1782 3240 2025 3677 2321 4210 2593 4699 2732 4950
Platinum 2367 4293 2687 4869 3087 5589 3637 6579 4147 7497 4407 7965
Potassium 261 502 332 630 429 804 565 1051 704 1299 774 1425
Rubidium 223 433 288 550 377 711 497 927 617 1143 679 1254
Selenium 282 540 347 657 430 806 540 1004 634 1173 680 1256
Silicon 1572 2862 1707 3105 1867 3393 2057 3735 2217 4023 2287 4149
Silver 1169 2136 1334 2433 1543 2809 1825 3317 2081 3778 2212 4014
Sodium 349 660 429 804 534 993 679 1254 819 1506 892 1638
Strontium . . . . . . (a) (a) 877(b) 1629(b) 1081 1978 1279 2334 1384 2523
Tellurium (a) (a) 509(b) 948(b) 632 1170 810 1490 991 1816 1087 1989
Thallium 692 1277 809 1488 962 1764 1166 2131 1359 2478 1457 2655
Tin . . . . . . . . . . . . . . . . . . 1932(b) 3510(b) 2163 3925 2270 4118
Tungsten 3547 6417 3937 7119 4437 8019 5077 9171 5647 10197 5927 10701
Zinc 399(a) 750(a) 477(b) 891(b) 579 1074 717 1323 842 1548 907 1665

(a) In the solid state. (b) In the liquid state. (c) b. (d) g. Source: M. Bauccio, ASM Metals Reference Book, 3rd ed., ASM International, 1993.
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Metric Conversion Guide

This Section is intended as a guide for
expressing weights and measures in the Sys-
tème International d’Unités (SI). The purpose
of SI units, developed and maintained by the
General Conference of Weights and Measures,
is to provide a basis for worldwide standardiza-
tion of units and measure. For more information
on metric conversions, the reader should con-
sult the following references:

� The International System of Units, SP 330,
1991, National Institute of Standards and
Technology. Order from Superintendent of
Documents, U.S. Government Printing
Office, Washington, DC 20402-9325

� Metric Editorial Guide, 5th ed. (revised),
1993, American National Metric Council,
4340 East West Highway, Suite 401,
Bethesda, MD 20814-4411

� “Standard for Use of the International sys-
tem of Units (SI): The Modern Metric Sys-
tem,” IEEE/ASTM SI 10-1997 Institute of
Electrical and Elcectronics Enigineers, 345
East 47th Street, New York, NY 10017, USA

� Guide for the Use of the Internaitional
System of Units (SI), SP811, 1995, National
lInstitute of Standers and Technolohy, U.S.
Government Printing Office, Washington,
DC 20402

Base, supplementary, and derived SI units

Measure Unit Symbol Measure Unit Symbol

Base units Entropy joule per kelvin J/K

Force newton N
Amount of substance mole mol Frequency hertz Hz
Electric current ampere A Heat capacity joule per kelvin J/K
Length meter m Heat flux density watt per square meter W/m2

Luminous intensity candela cd Illuminance lux lx
Mass kilogram kg Inductance henry H
Thermodynamic temperature kelvin K Irradiance watt per square meter W/m2

Time second s Luminance candela per square meter cd/m2

Luminous flux lumen lm

Supplementary units Magnetic field strength ampere per meter A/m
Plane angle radian rad Magnetic flux weber Wb
Solid angle steradian sr Magnetic flux density tesla T

Molar energy joule per mole J/mol
Molar entropy joule per mole kelvin J/mol � K

Derived units Molar heat capacity joule per mole kelvin J/mol � K
Absorbed does gray Gy Moment of force newton meter N � m
Acceleration meter per second squared m/s2 Permeability henry per meter H/m
Activity (of radionuclides) becquerel Bq Permittivity farad per meter F/m
Angular acceleration radian per second squared rad/s2 Power, radiant flux watt W
Angular velocity radian per second rad/s Pressure, stress pascal Pa
Area square meter m2 Quantity of electricity, electric charge coulomb C
Capacitance farad F Radiance watt per square meter steradian W/m2 � sr
Concentration (of amount of substance) mole per cubic meter mol/m3 Radiant intensity watt per steradian W/sr
Current density ampere per square meter A/m2 Specific heat capacity joule per kilogram kelvin J/kg � K
Density, mass kilogram per cubic meter kg/m3 Specific energy joule per kilogram J/kg
Does equivalent, dose equivalent index sievert Sv Specific entropy joule per kilogram kelvin J/kg � K
Electric change density coulomb per cubic meter C/m3 Specific volume cubic meter per kilogram m3/kg
Electric conductance siemens S Specific volume cubic meter per kilogram m3/kg
Electric field strength volt per cubic meter V/m Surface tension newton per meter N/m
Electric flux density coulomb per square meter C/m2 Thermal conductivity watt per meter kelvin W/m � K

Velocity meter per second m/sElectric potential, potential difference,
electromotive force

volt V
Viscosity, dynamic pascal second Pa � s

Electric resistance ohm O Viscosity, kinematic square meter per second m2/s
Energy, work, quantity of heat joule J Volume cubic meter m3

Energy density joule per cubic meter J/m3 Wavenumber 1 per meter 1/m
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Conversion factors

To convert from to multiply by

Angle

degree rad 1.745 329 E � 02

Area

in.2 mm2 6.451 600 E + 02
in.2 cm2 6.451 600 E + 00
in.2 m2 6.451 600 E � 04
ft2 m2 9.290 304 E � 02

Bending moment or torque

lbf � in. N � m 1.129 848 E � 01
lbf � ft N � m 1.355 818 E + 00
kgf � m N � m 9.806 650 E + 00
ozf � in. N � m 7.061 552 E � 03

Bending moment or torque per unit length

lbf � in./in. N � m/m 4.448 222 E + 00
lbf � ft/in. N � m/m 5.337 866 E + 01

Current density

A/in.2 A/cm2 1.550 003 E � 01
A/in.2 A/mm2 1.550 003 E � 03
A/ft2 A/m2 1.076 400 E + 01

Electricity and magnetism

gauss T 1.000 000 E � 04
maxwell mWb 1.000 000 E � 02
mho S 1.000 000 E + 00
Oersted A/m 7.957 700 E + 01
O � cm O � m 1.000 000 E � 02
O circular�mil/ft mO � m 1.662 426 E � 03

Energy (impact, other)

ft � lbf J 1.355 818 E + 00
Btu (thermochemical) J 1.054 350 E + 03
cal (thermochemical) J 4.184 000 E + 00
kW � h J 3.600 000 E + 06
W � h J 3.600 000 E + 03

Flow rate

ft3/h L/min 4.719 475 E � 01
ft3/min L/min 2.831 000 E + 01
gal/h L/min 6.309 020 E � 02
gal/min L/min 3.785 412 E + 00

Force

lbf N 4.448 222 E + 00
kip (1000 lbf) N 4.448 222 E + 03
tonf kN 8.896 443 E + 00
kgf N 9.806 650 E + 00

Force per unit length

lbf/ft N/m 1.459 390 E + 01
lbf/in. N/m 1.751 268 E + 02

Fracture toughness

ksi
ffiffiffiffiffiffi
in:
p

MPa
ffiffiffiffi
m
p

1.098 800 E + 00

Heat content

Btu/lb kJ/kg 2.326 000 E + 00
cal/g kJ/kg 4.186 800 E + 00

Heat input

J/in. J/m 3.937 008 E + 01
kJ/in. kJ/m 3.937 008 E + 01

To convert from to multiply by

Impact energy per unit area

ft.lbf/ft2 J/m2 1.459 002 E + 01

Length

Å nm 1.000 000 E � 01
min. mm 2.540 000 E � 02
mil mm 2.540 000 E + 01
in. mm 2.540 000 E + 01
in. cm 2.540 000 E + 00
ft m 3.048 000 E � 01
yd m 9.144 000 E � 01
mile, international km 1.609 344 E + 00
mile, nautical km 1.852 000 E + 00
mile, U. S. statute km 1.609 347 E + 00

Mass

oz kg 2.834 952 E � 02
lb kg 4.535 924 E � 01
ton (short, 2000 lb) kg 9.071 847 E + 02
ton (short, 2000 lb) kg � 103(a) 9.071 847 E � 01
ton (long, 2240 lb) kg 1.016 047 E + 03

Mass per unit area

oz/in.2 kg/m2 4.395 000 E + 01
oz/ft2 kg/m2 3.051 517 E � 01
oz/yd2 kg/m2 3.390 575 E � 02
lb/ft2 kg/m2 4.882 428 E + 00

Mass per unit length

lb/ft kg/m 1.488 164 E + 00
lb/in. kg/m 1.785 797 E + 01

Mass per unit time

lb/h kg/s 1.259 979 E � 04
lb/min kg/s 7.559 873 E � 03
lb/s kg/s 4.535 924 E � 01

Mass per unit volume (includes density)

g/cm3 kg/m3 1.000 000 E + 03
lb/ft3 g/cm3 1.601 846 E � 02
lb/ft3 kg/m3 1.601 846 E + 01
lb/in.3 g/cm3 2.767 990 E + 01
lb/in.3 kg/m3 2.767 990 E + 04

Power

Btu/s kW 1.055 056 E + 00
Btu/min kW 1.758 426 E � 02
Btu/h W 2.928 751 E � 01
erg/s W 1.000 000 E � 07
ft � lbf/s W 1.355 818 E + 00
ft � lbf/min W 2.259 697 E � 02
ft � lbf/h W 3.766 161 E � 04
hp (550 ft � lbf/s) kW 7.456 999 E � 01
hp (electric) kW 7.460 000 E � 01

Power density

W/in.2 W/m2 1.550 003 E + 03

Pressure (fluid)

atm (standard) Pa 1.013 250 E + 05
bar Pa 1.000 000 E + 05
in. Hg (32 �F) Pa 3.386 380 E + 03
in. Hg (60 �F) Pa 3.376 850 E + 03
lbf/in.2 (psi) Pa 6.894 757 E + 03
torr (mm Hg, 0 �C) Pa 1.333 220 E + 02

To convert from to multiply by

Specific heat

Btu/lb � �F J/kg � K 4.186 800 E + 03
cal/g � �C J/kg � K 4.186 800 E + 03

Stress (force per unit area)

tonf/in.2 (tsi) MPa 1.378 951 E + 01
kgf/mm2 MPa 9.806 650 E + 00
ksi MPa 6.894 757 E + 00
lbf/in.2 (psi) MPa 6.894 757 E � 03
MN/m2 MPa 1.000 000 E + 00

Temperature
�F �C 5/9 � (�F � 32)
�R �K 5/9

K �C K�273.15
Temperature interval
�F �C 5/9

Thermal conductivity

Btu � in./s � ft2 � �F W/m � K 5.192 204 E + 02
Btu/ft � h � �F W/m � K 1.730 735 E + 00
Btu � in./h � ft2 � �F W/m � K 1.442 279 E � 01
cal/cm � s � �C W/m � K 4.184 000 E + 02

Thermal expansion(b)

in./in. � �C m/m � K 1.000 000 E + 00
in./in. � �F m/m � K 1.800 000 E + 00

Velocity

ft/h m/s 8.466 667 E � 05
ft/min m/s 5.080 000 E � 03
ft/s m/s 3.048 000 E � 01
in./s m/s 2.540 000 E � 02
km/h m/s 2.777 778 E � 01
mph km/h 1.609 344 E + 00

Velocity of rotation

rev/min (rpm) rad/s 1.047 164 E � 01
rev/s rad/s 6.283 185 E + 00

Viscosity

poise Pa � s 1.000 000 E � 01
stokes m2/s 1.000 000 E � 04
ft2/s m2/s 9.290 304 E � 02
in.2/s mm2/s 6.451 600 E + 02

Volume

in.3 m3 1.638 706 E � 05
ft3 m3 2.831 685 E � 02
fluid oz m3 2.957 353 E � 05
gal (U.S. liquid) m3 3.785 412 E � 03

Volume per unit time

ft3/min m3/s 4.719 474 E � 04
ft3/s m3/s 2.831 685 E � 02
in.3/min m3/s 2.731 177 E � 07

(a) kg � 103 = 1 metric ton or 1 megagram (Mg). (b) Preferred expression is 10-6/K or 10-6/F as length units are unnecessary.
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Thermodynamics*

First Law of Thermodynamics—
Conservation of Energy

One of the fundamental laws of thermody-
namics is that energy cannot be created or
destroyed. Energy can only be converted from
one form to another, for example, from poten-
tial to kinetic energy, heat to work, internal
energy to kinetic energy, or transferred from
one mass to another as heat or work.

Closed-System Formulation. The general
energy equation is Q � W = Ef = Ei, where:

Q = heat transfer across the system boundary as
the system proceeds from state i to state f.
Heat is an energy transfer across a system
boundary due to a temperature difference.
Heat transfer to the system is positive,
and heat transfer from the system is
negative

W = work transfer across the system boundary as
the system proceeds from state i to state f.
Work is an energy transfer across a system
boundary due to a property difference other
than a temperature difference. Work done
by the system is positive, and work done on
the system is negative. The criterion for
work being done by a system is that the sys-
tem could pass through the same sequence of
states as the system passes from state i to
state f, and the sole effect on the surround-
ings could be the raising of aweight. The cri-
terion for work done on the system is
obtained by interchanging the system and
the surroundings and applying the criterion
to the new system.

Ef � Ei = energy change of the system and
includes changes in internal,
kinetic, potential, electrical, chemi-
cal, nuclear, or surface energies

The reduced energy equation is

Q � W0 = Uf � Ui, where:

W0 = same as defined previously, except W0
includes only work transfers due to a
deformation of the control volume

Uf � Ui = internal energy change of the system
boundary

The reduced energy equation is a form of the
principle of conservation of energy that is writ-
ten by an observer on a coordinate system fixed
on the center of mass of the closed system. This
observer does not record any change in the
kinetic and potential energies of the mass or
any translation work on the mass.
Control-Volume Formulation. The general

energy equation for a control volume is:

Q� _W ¼ d

dt

ð
V�
r uþ V 2

2
þ gz

� �
d �V

þ
ð
A

r hþ V 2

2

� �
þ gz

�
ð~u�n̂ÞdA ðEq 1Þ

where:

_Q ¼ rate of heat transfer across the control sur-
face (or open system boundary) without a
mass transfer and due to a temperature dif-
ference. Heat transfer to the material
inside the control volume is positive, and
heat transfer from the material inside the
control volume is negative

_W ¼ rate of work (or power) transfer across the
control surface without a mass transfer
and due to a property difference other
than a temperature difference. Power
transfer from the material in the control
volume is positive, and power transfer to
the material in the control volume is neg-
ative. The criterion for a power transfer
by or on the material in the control vol-
ume is similar to the work criterion for a
closed system (or systems). _W would
include the rate of work done on or by
the material in the control volume also
when the control volume changes size
and shape.

t = time
r = mass density
u = internal energy per unit mass. u could be

interpreted as including surface energy
and electromagnetic energies, if involved
in the process.

V = velocity measured relative to a convenient
frame of reference

g = local acceleration of gravity
z = elevation above some reference datum
�V = volume of control volume

h = enthalpy = u + p/r, where p is the absolute
pressure

~u = velocity of fluid leaving or entering the
control volume and measured relative to
the local control surface

n̂ ¼ unit outward normal vector at the local
control surface

A = control volume surface area
The energy-equation for uniform properties

throughout the control volume and at each inlet
and outlet is given by:

_Q� _W ¼ d

dt
mCV uþ V 2

2
þ gz

� �
CV

� �
þ

X
out

_m hþ V 2

2
þ gz

� �
�
X
in

_m hþ V 2

2
þ g

� �
(Eq 2)

where:

mCV = mass in the control volume at any instant
of time t

_m = mass flow rate into or out of the control
volume at each inlet or outlet

The time derivative d/dt in Eq 2 is used if the
control volume is moving relative to the coordi-
nate system, and @/@t is used if the control vol-
ume is fixed relative to the coordinate system.
When a control volume is fixed relative to the
coordinate system and steady-state conditions
and uniform properties exist:

_Q� _W ¼
X
out

_m hþ 1

2
V 2 þ gz

� �

�
X
in

_m hþ 1

2
V 2 þ gz

� �
(Eq 3)

The values _Q; _W , and _m do not change with
time.
Gibbs’ equations may be applied to a pro-

cess followed by a closed system or may be
applied to a fixed amount of mass as it flows
through a control volume. They may be applied
regardless of whether the fixed amount of mass
undergoes a reversible or irreversible process as
long as the end points of such a process are true
thermodynamic states; that is, properties are
uniform throughout the fixed amount of mass.
Gibbs’ equations can then be applied between

*Adapted from ASM Handbook of Engineering Mathematics, American Society for Metals, 1983

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 613-624
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All rights reserved.
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the inlet and outlet of a control volume for
steady-state conditions. Gibbs’ equations are:

Tds ¼ duþ pdn Tds ¼ dh� ndp

where T is absolute temperature, s is entropy
per unit mass, p is absolute pressure, and v is
specific volume.
Thermodynamic Processes for a Control

Volume. A steady-state process is character-
ized by the condition where the mass flow rates
and all properties of each point in the control
volume do not change with time, that is, @/@
t = 0. Consider a control volume moving rela-
tive to one coordinate system (XYZ) and fixed
relative to another (xyz), as shown in Fig. 1.
The xyz observer may see a steady-state condi-
tion in his coordinate system but the XYZ
observer may not. For steady-state conditions
seen by the xyz observer, use Eq 1 (with d/dt
= @/@t = 0) if nonuniform properties exist
throughout the control volume and at the inlet
and outlet flow areas, and Eq 3 if uniform prop-
erties exist throughout the control volume and
at the inlet and outlet flow areas.
A steady-flow process is characterized by the

condition where _Q; _W (Eq 1), the mass flow
rate, and all properties at each point of each
inlet and outlet are constant in time. For exam-
ple, consider an air compressor with constant _Q
and _W An observer on the compressor casing
does not observe a steady-flow condition
because there are flow-rate pulsations at the
inlet and outlet. If the control surface is suffi-
ciently far from the compressor, so that flow
and property fluctuations have been damped
out, the process is considered a steady-flow
process.

Many authors consider the terms steady flow
and steady state as being equivalent and the
same as a steady-state, steady-flow process
described as follows. Use Eq 1 if properties
are nonuniform and Eq 2 if properties are
uniform. The steady-state, steady-flow process
is characterized by:

� A control volume that is fixed relative to the
coordinate system

� A condition where mass flow rate as well as
all properties at each point of each inlet and
outlet flow area are constant in time

� A condition where mass flow rate and all
properties at each point inside the control
volume are constant in time

� A condition where _Q and _W are constant
in time

Equation 1 (with @/@t = 0) is used if properties
are nonuniform, and Eq 3 is used if properties
are uniform.
The uniform state, uniform flow process is

characterized by:

� A control volume that is fixed relative to the
coordinate system

� A condition where properties of the mass
flow rate are uniform over each inlet and
outlet flow area are constant in time, that
is, the mass flow rates may change with time
but the properties will not

� A condition where properties of the mass
inside the control volume are uniform
throughout the control volume at each
instant of time but may change with time

Equation 2 is used under these conditions.

Work Equations

Closed System—Work of Deformation.
The general equation for the work of deforma-
tion, W0, for a reversible process is given by:

W 0 ¼
ðf
i

pd �V

where the system proceeds from the initial
state, i, to the final state, f. The work of defor-
mation, w0, per unit mass is:

w0 ¼
ðf
i

pdv

where p is the absolute pressure used to calcu-
late the work done by the system or the gage
pressure used to calculate the net useful work,
that is, system work minus work done on the
atmosphere (Fig. 2).
The following equations in cases 1 through

6 are used to calculate the work of deformation
for specific reversible processes.
Case 1: Constant pressure (isobaric), revers-

ible processes:

W 0 ¼ pð �V f � �V iÞ w0 ¼ pðvf � viÞ

where p is the absolute pressure or gage pres-
sure, depending on whether system work or
net work is being calculated.
Case 2: Constant pressure (isobaric), revers-

ible process for an ideal gas:

W 0 ¼ mRðTf � TiÞ w0 ¼ RðTf � TiÞ

Case 3: Constant volume (isometric), revers-
ible process:

W 0 ¼ 0 w0 ¼ 0

Case 4: Constant temperature (isothermal),
reversible process for an ideal gas:

W 0 ¼ mRTi ln
vf
vi

W 0 ¼ mRTi ln
�V f

�V i

W 0 ¼ mRTi ln
pi
pf

w0 ¼W 0

m

Case 5: Adiabatic or adiabatic and revers-
ible process (isentropic process):

W 0 ¼ mðui � uf Þ w0 ¼ ðui � uf Þ

An adiabatic and reversible process is isentro-
pic, but an isentropic process need not necessar-
ily be both adiabatic and reversible.
Case 6: Polytropic, reversible process:

W 0 ¼ ðpf �V f � pi �V iÞ
1� n

w0 ¼ pfvf � pivi
1� n

Control Volume, Steady-State Conditions
(Constant g). The general equations for work

Fig. 1 Relative control-volume movement. Control volume fixed relative to xyz, which moves with velocity ~V
relative to XYZ

Fig. 2 Work by closed system

W 0
net ¼

ðf
i

pgaged �V

W 0
svs ¼

ðf
i

pabsd �V
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for a reversible process under steady-state con-
ditions are:

w ¼ �
ð2
1

v dpþ V2
2 � V1

2

2
þ gðz2 � z1Þ

� �
_W ¼ _mw

where p is the absolute pressure. Point 1 repre-
sents the inlet state and point 2 the outlet state.
The following equations in cases 1 through 7

are used to calculate the control-volume work
or power for specific reversible processes.
Case 1: Constant pressure (isobaric), revers-

ible process:

w ¼ V1
2 � V2

2

2
þ gðz1 � z2Þ

_W ¼ _mw

Case 2: Constant specific volume (isometric),
reversible process:

w ¼ vðp1 � p2Þ þ V1
2 � V2

2

2
þ gðz1 � z2Þ

_W ¼ _mw

Case 3: Constant specific volume (isometric),
reversible process for an ideal gas:

w ¼ RðT1 � T2Þ þ V1
2 � V3

2

2
þ gðz1 � z2Þ

_W ¼ _mw

Case 4: Constant temperature (isothermal),
reversible process for an ideal gas:

w ¼ RT1 ln
p1
p2
þ V1

2 � V2
2

2
þ gðz1 � z2Þ

w ¼ RT1 ln
v2
v1
þ V1

2 � V2
2

2
þ gðz1 � z2Þ

_W ¼ _mw

Case 5: Adiabatic or adiabatic and revers-
ible process (isentropic process):

_W ¼ � _m ðh2 � h1Þ þ V2
2 � V1

2

2
þ gðz2 � z1Þ

� �

w ¼ � ðh2 � h1Þ þ V2
2 � V1

2

2
þ gðz2 � z1Þ

� �

Case 6: Polytropic, reversible process:

w ¼ �n
n� 1

ðp2v2 � p1v1Þ þ V1
2 � V2

2

2
þ gðz1 � z2Þ

_W ¼ _mw

Case 7: Adiabatic, reversible process for an
ideal gas with constant specific heat:

w ¼ kRT1

k� 1
1� p2

p1

� �k�1
k

" #
þ V1

2 � V2
2

2
þ gðz1 � z2Þ

Heat-Transfer Equations

Closed System. The general equation for the
heat transfer,Q, for a reversible process is given by:

Q ¼
ðf
i

T dS

where Q is the total heat transfer as the system
proceeds from the initial state, i, to the final
state, f; T is the absolute temperature (K or
�R); and S is the total entropy of the mass, m.
The heat transfer per unit mass, q, is:

q ¼
ðf
i

T ds

Also:

Q ¼ mq ¼ m

ðf
i

T ds

where s is the entropy per unit mass.
The following equations in cases 1 through 7

are used to calculate the heat transfer for spe-
cific reversible process.
Case 1: Constant pressure (isobaric), revers-

ible process:

Q ¼ mðhf � hiÞ q ¼ hf � hi

Case 2: Constant pressure (isobaric), revers-
ible process for an ideal gas with constant spe-
cific heat:

Q ¼ mCp ln
Tf

Ti
q ¼ Cp ln

Tf

Ti

Case 3: Constant volume (isometric), revers-
ible process:

Q ¼ mðuf � uiÞ q ¼ uf � ui

Case 4: Constant volume (isometric), revers-
ible process for an ideal gas with constant spe-
cific heat:

Q ¼ mCv ln
Tf

Ti
q ¼ Cv ln

Tf

Ti

Case 5: Constant temperature (isothermal),
reversible process for an ideal gas:

Q ¼ TiðSf � SiÞ ¼ W

Q ¼ mRTi ln
vf
vi

Q ¼ mRTi ln
�V f

�V i

Q ¼ mRTi ln
pi
pf

q ¼ Q

m
¼ w

Case 6: Adiabatic or adiabatic and revers-
ible process (isentropic process):

Q ¼ 0 q ¼ 0

Case 7: Polytropic, reversible process:

q ¼ hf � hi � n

n� 1
ðpfvf � piviÞ

q ¼ uf � ui � 1

n� 1
ðpfvf � piviÞ

Q ¼ mq

Control-Volume, Steady-State Conditions
(Constant q). The general equations for heat
transfer for a reversible process are given by:

q ¼
ð2
1

Tds _Q ¼ _mq

The following equations in cases 1 through 7
are used to calculate the heat transfer for spe-
cific reversible processes.
Case 1: Constant pressure (isobaric), revers-

ible process:

q ¼ ðh2 � h1Þ _Q ¼ _mq

Case 2: Constant specific volume (isometric),
reversible process:

q ¼ ðu2 � u1Þ _Q ¼ _mq

Case 3: Constant specific volume (isometric),
reversible process for an ideal gas with con-
stant specific heat:

q ¼ CvðT2 � T1Þ _Q ¼ _mq

Case 4: Constant temperature (isothermal),
reversible process for an ideal gas:

q ¼ h2 � h1 � RT1 ln
p1
p2

q ¼ h2 � h1 � RT1 ln
v2
v1

q ¼ T1ðs2 � s1Þ
_Q ¼ _mq

Case 5: Constant temperature (isothermal),
reversible process for an ideal gas with con-
stant specific heat:

q ¼ CpðT2 � T1Þ � RT1 ln
p1
p2

q ¼ CpðT2 � T1Þ � RT1 ln
v2
v1

q ¼ T1ðs2 � s1Þ
_Q ¼ _mq

Case 6: Adiabatic or adiabatic and revers-
ible process (isentropic process):

q ¼ 0 _Q ¼ 0

Case 7: Polytropic, reversible process:

q ¼ ðh2 � h1Þ � n

n� 1
ðp2v2 � p1v1Þ

_Q ¼ _mq

Property Relations

Entropy Change Equations—Closed
System or Control Volume, Steady-State
Conditions. For a reversible process, the gen-
eral equations for the entropy change of a pure
substance are given by:

s2 � s1 ¼
ð2
1

du

T
þ
ð2
1

p

T
dv

s2 � s1 ¼
ð2
1

dh

T
�
ð2
1

v

T
dp

s2 � s1 ¼
ð2
1

Cv

dT

T
þ
ð2
1

@p

@T

� �
n
dv

s2 � s1 ¼
ð2
1

Cp

dT

T
�
ð2
1

@v

@T

� �
p

dp
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where T is absolute temperature, v is specific
volume, Cv is specific heat at constant volume,
and Cp is specific heat at constant pressure. For
a closed system, 1 represents the initial state
and 2 the final state. For a control volume, 1
represents the inlet and 2 the outlet.
The following equations in cases 1 through 9

are used to calculate the entropy change of a
pure substance for specific reversible processes.
Case 1: Reversible process for an ideal gas:

s2 � s1 ¼
ð2
1

Cv

dT

T
þR ln

v2
v1

s2 � s1 ¼
ð2
1

Cp

dT

T
�R ln

p2
p1

where R is the specific gas constant.
Case 2: Reversible process for an ideal gas

with constant specific heats:

s2 � s1 ¼ Cv ln
T2

T1

þR ln
v2
v1

s2 � s1 ¼ Cp ln
T2

T1

�R ln
p2
p1

s2 � s1 ¼ Cp ln
v2
v1
þ Cv ln

p2
p1

Case 3: Constant pressure (isobaric), revers-
ible process:

s2 � s1 ¼
ð2
1

dh

T

Case 4: Constant pressure, reversible pro-
cess for an ideal gas:

s2 � s1 ¼
ð2
1

Cp

dT

T

Case 5: Constant specific volume (isometric),
reversible process:

s2 � s1 ¼
ð2
1

du

T

Case 6: Constant specific volume, reversible
process for an ideal gas:

s2 � s1 ¼
ð2
1

Cv

dT

T

Case 7: Adiabatic, reversible process:

s2 � s1 ¼ 0

Case 8: Isentropic process:

s2 � s1 ¼ 0

Case 9: Mixing of ideal gases at constant
temperature and constant total pressure, p:

�S ¼
XN
‘¼1

niR ln
pi
p

where:

pi = partial pressure of component i
p = total pressure of mixturePN
‘¼1

Xipi = initial pressure of each component

before mixing

N = number of components
ni = moles of component i
Xi = mole fraction of component i
Process Equations. The following equations

in cases 1 through 6 relate the properties of a pure
substance during specific reversible processes.
Case 1: Constant pressure (isobaric), revers-

ible process for an ideal gas:

v

T
¼ Constant ¼ R

p

Case 2: Constant specific volume (isometric),
reversible process for an ideal gas:

p

T
¼ Constant ¼ R

v

Case 3: Constant temperature (isothermal),
reversible process for an ideal gas:

pv ¼ Constant ¼ RT1

Case 4: Polytropic, reversible process:

pvn ¼ Constant n ¼ Constant ¼
ln p2

p1

� �
ln v1

v2

� �
Case 5: Polytropic, reversible process for an

ideal gas:

pvn ¼ Constant

Tp
1�n
n ¼ Constant

Tvn�1 ¼ Constant

n ¼ Constant ¼
ln p2

p1

� �
ln v1

v2

� �
Case 6: Isentropic process for an ideal gas

with constant specific heats:

pvk ¼ Constant

Tp
1�k
k ¼ Constant

Tvk�1 ¼ Constant

k ¼ Cp

Cv

¼ Constant

Equations of State. The following equations
relate the properties of a pure substance (Table 1
and 2). In all equations:

T = absolute temperature Tc = critical point temperature
p = absolute pressure pc = critical point pressure
n = mass specific volume vc = critical point

specific volume
v = molar specific volume
R = specific gas constant = R

M M = molecular weight

R ¼ universal gas constant ¼ 0:08205
‘�atm
gmol�K ¼ 8:315 J

gmol�K
R ¼ 0:08315

bar�m3

kgmol�K ¼ 1545
ft�lbf

lbmol��R ¼ 1:986 kcal
kmol�K

R ¼ 0:730
atm�ft3
lbmol��R ¼ 10:73

psia�ft3
kmol�K

The ideal gas law (perfect gas law) is
expressed as:

pv ¼ RT

pv ¼ RT

The van der Waals equation is:

pþ a

v2

� �
ðv� bÞ ¼ RT

where:

a ¼ 27

64

R2T 2
c

pc

b ¼ RTc

8pc

vc ¼ 3RTc

8pc

The constants a and b are found in Tables 1
and 2. The compressibility factor equation is
expressed as:

Z ¼ pv

RT

where Z is the compressibility factor, pR is the
reduced pressure ¼ p

pc
; TR is the reduced

temperature ¼ T
Tc
, and vR is the reduced specific

volume ¼ vpc
RTc

.

Table 1 Critical properties and van der Waals constants, SI units

Substance Tc, K pc, bar
vc;m

3=kmol Zc ¼ Pcvc
RTc

van der Waals

a; bar
m3

kmol

� �2

b;
m3

kmol

Acetylene (C2 H2) 309 62.8 0.112 0.274 4.410 0.0510
Air (equivalent) 133 37.7 0.0829 0.284 1.358 0.0364
Ammonia (NH3) 406 112.8 0.0723 0.242 4.233 0.0373
Benzene (C6 H6) 562 49.3 0.256 0.274 18.63 0.1181
n-Butane (C4 H10) 425.2 38.0 0.257 0.274 13.80 0.1196
Carbon dioxide (CO2) 304.2 73.9 0.0941 0.276 3.643 0.0427
Carbon monoxide (CO) 133 35.0 0.0928 0.294 1.463 0.0394
Refrigerant 12 (CCl2 F2) 385 40.1 0.214 0.270 10.78 0.0998
Ethane (C2 H6) 305.4 48.8 0.221 0.273 5.575 0.0650
Ethylene (C2H4) 283 51.2 0.143 0.284 4.563 0.0574
Helium (He) 5.2 2.3 0.0579 0.300 0.0341 0.0234
Hydrogen (H2) 33.2 13.0 0.0648 0.304 0.247 0.0265
Methane (CH4) 190.7 46.4 0.0991 0.290 2.285 0.0427
Nitrogen (N2) 126.2 33.9 0.0897 0.291 1.361 0.0385
Oxygen (O2) 154.4 50.5 0.0741 0.290 1.369 0.0315
Propane (C3 H8) 370 42.7 0.195 0.276 9.315 0.0900
Sulfur dioxide (SO2) 431 78.7 0.124 0.268 6.837 0.0568
Water (H2 O) 647.3 220.9 0.0558 0.230 5.507 0.0304
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Modified critical temperature, T 0c, and pres-
sure, p0c, are defined by:

p0c ¼ pc þ 8 T 0c ¼ Tc þ 8

and are used for hydrogen and helium, where Tc
is in K and pc is in atmospheres. Figure 3 shows
the generalized compressibility factor in
graphic form.
The virial equations of state are expressed as:

pv ¼ aþ bpþ cp2 þ dp3 þ � � �
pv ¼ a 1þ b

v
þ c

v2
þ d

v3
þ � � �

� �

where:

a = a(T)
b = b(T)
c = c(T) and so on

All sets of coefficients (a, b, c, d, . . .) are virial
coefficients and can be found from experimen-
tal data or statistical mechanics.
TheBerthelot equation of state is expressed as:

p ¼ RT

v� b
� a

Tv2

The constants a and b must be found from
experimental data for a particular fluid.
The Dieterici equation of state is expressed as:

p ¼ RT

v� b
e�a=RTv

The constants a and b must be found from
experimental data for a particular fluid.
The Clausius equation of state is expressed as:

pð �V � b0Þ ¼ mRT

where:

b0 ¼ 16

3
Npr3

r = one-half the center-to-center distance of two
colliding molecules

N = number of molecules in volume V

The Redlich-Kwong equation of state is
expressed as:

p ¼ RT

v� b
� a

T 1=2vðvþ bÞ

where:

a ¼ 0:4275
R2T 2:5

c

pc

b ¼ 0:0867 RTc

pc
¼ 0:26vc

Table 3 gives numerical values of Redlich-
Kwong constants for selected gases.
The Benedict-Webb-Rubin equation of state,

which is especially applicable to hydrocarbons,
is expressed as:

p ¼RT

v
B0RT �A0 � C0

T 2

� �
1

v2

þ bRT � a

v3
þ aa

v6
þ c

v3T 2
1þ g

v2

� �
eð�g=v

2Þ

Table 2 Critical properties and van der Waals constants, English engineering units

Substance Tc,
�R pc, atm vc , ft

3/(lbmol)
Zc ¼ pcvc

RTc

van der Waals

a, atm [ft
3/(lbmol)]2 b, ft3/(lbmol)

Acetylene (C2 H2) 556 62 1.80 0.274 1121 0.818
Air (equivalent) 239 37.2 1.33 0.284 345.2 0.585
Ammonia (NH3) 730 111.3 1.16 0.242 1076 0.598
Benzene (C6 H6) 1013 48.7 4.11 0.274 4736 1.896
n-Butane (C4 H10) 765 37.5 4.13 0.274 3508 1.919
Carbon dioxide (CO2) 548 72.9 1.51 0.276 926 0.686
Carbon monoxide (CO) 239 34.5 1.49 0.294 372 0.632
Refrgerant 12 (CCl2 F2) 693 39.6 3.43 0.270 2718 1.595
Ethane (C2 H6) 549 48.2 3.55 0.273 1410 1.041
Ethylene (C2 H4) 510 50.5 2.29 0.284 1158 0.922
Helium (He) 9.33 2.26 0.93 0.300 8.66 0.376
n-Heptane (C7 H16) 972 27 6.86 0.26 7866 3.298
Hydrogen (H2) 59.8 12.8 1.04 0.304 62.8 0.426
Methane (CH4) 344 45.8 1.59 0.290 581 0.685
Methyl chloride (CH3 Cl) 749 65.8 2.29 0.276 1917 1.040
Nitrogen (N2) 227 33.5 1.44 0.291 346 0.618
Nonane (C9 H20) 1071 22.86 8.86 0.250
n-Octane (C8 H18) 1025 24.6 7.82 0.258 9601 3.76
Oxygen (O2) 278 49.8 1.19 0.290 348 0.506
Propane (C3 H8) 666 42.1 3.13 0.276 2368 1.445
Sulfur dioxide (SO2) 775 77.7 1.99 0.268 1738 0.911
Water (H2 O) 1165 218.2 0.896 0.230 1400 0.488

Fig. 3 Generalized compressibility factor, Z

Table 3 Redlich-Kwong constants

Substance

Constants for p in bar(s), v in m
3/(kmol), and T in K Constants for p in atm, v in ft3/(lbmol), and T in �R

a b a b

Carbon dioxide, CO2 64.64 0.02969 21,970 0.4757
Carbon monoxide, CO 17.26 0.02743 5,870 0.4395
Methane, CH4 32.19 0.02969 10,930 0.4757
Nitrogen, N2 15.59 0.02681 5,300 0.4294
Oxygen, O2 17.38 0.02199 5,900 0.3522
Propane, C3 H8 183.07 0.06269 62,190 1.0040
Refrigerant 12, CCl2 F2 214.03 0.06913 72,710 1.1080
Sulfur dioxide, SO2 144.49 0.03939
Water, H2 O 142.64 0.02110 48,460 0.3381
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The constants in the equation are defined
in Table 4 for various gases.
Specific Internal Energy Change—Closed

System or Steady-State Control Volume.
The following equations are used to calculate the
internal energy change of a pure substance.
The term specific refers to the property per unit
mass or per unit mole. For a closed system,
1 represents the initial state and 2 the final state.
For a control volume, 1 represents the inlet and
2 the outlet.
For a reversible process:

u2 � u1 ¼
ð2
1

CvdT þ
ð2
1

T
@p

@T

� �
v

�p
� �

dv

For a constant-volume (isometric) reversible
process:

u2 � u1 ¼
ð2
1

CvdT

For a reversible process for an ideal gas:

u2 � u1 ¼
ð2
1

CudT

where Cv = Cv (T).
Specific Enthalpy Change—Closed System

or Steady-State Control Volume. The follow-
ing equations are used to calculate the enthalpy
change of a pure substance. The term specific
refers to the property per unit mass or per unit
mole. For a closed system, 1 represents the
initial state and 2 the final state. For a control
volume, 1 represents the inlet and 2 the outlet.
For a reversible process:

h2 � h1 ¼
ð2
1

CpdT þ v� T
@v

@T

� �
p

" #
dp

For a constant pressure (isobaric), reversible
process:

h2 � h1 ¼
ð2
1

CpdT

For a reversible process for an ideal gas:

h2 � h1 ¼
ð2
1

CpdT

where Cp = Cp (T).

Second Law of Thermodynamics

The second law states that it is not possible
to construct a device whose sole effect is the
extraction of heat from a heat source and the
conversion of this heat completely into
mechanical work. The second law means that
some energy is always “lost”; no heat engine
is 100% efficient. The following equations
give the cycle thermodynamic efficiency for
various devices operating under steady-state
conditions.
Cycle Thermodynamic Efficiency and

Coefficient of Performance. The efficiency,
Z, of a Carnot heat engine, shown schemati-
cally in Fig. 4, is given by:

Z ¼ W

QH

¼ 1� TL

TH

QL

QH

¼ TL

TH

The coefficient of performance (COP) of a Car-
not refrigerator, shown schematically in Fig. 5,
is given by:

ðCOPÞHeating ¼
QH

W
¼ TH

TH � TL

ðCOPÞCooling ¼
QL

W
¼ TL

TH � TL

QL

QH

¼ TL

TH

where:

TH = absolute temperature of high-temperature
reservoir

QH = heat transfer from high-temperature
reservoir

W = work done by engine
QL = heat transfer to low-temperature reservoir
TL = absolute temperature of low-temperature

reservoir

The efficiency, Z, of an air standard Carnot
cycle (Fig. 6) is given by:

Z ¼ 1� 1

ðCRÞk�1 ¼ 1� T1

T3

¼ 1� T4

T2

where, for all air standard cycles:

CR = compression ratio
k = Cp/Cv, constant Cp and Cv

T = absolute temperature
p = absolute pressure

The efficiency, Z, of an air standard Otto
cycle (Fig. 7) is given by:

Z ¼ 1� 1

ðCRÞk�1 ¼ 1� T1

T2

The efficiency, Z, of an air standard Diesel
cycle (Fig. 8) is given by:

Z ¼ 1� ðT4 � T1Þ
kðT3 � T2Þ ¼ 1� 1

kðCRÞk�1
v3
v2

� �k
�1

v3
v2

� �
� 1

2
64

3
75

The efficiency, Z, of an air standard Stirling
cycle (Fig. 9) is given by:

Fig. 4 Carnot heat engine

Fig. 5 Carnot refrigeration

Table 4 Benedict-Webb-Rubin

Constants

p in bar(s), v in m3/(kmol), T in K

n-Butane, C4H10 Carbon dioxide, CO2 Carbon monoxide, CO Methane, CH4 Nitrogen, N2

a 1.9068 0.1386 0.0371 0.0500 0.0254
A0 10.216 2.7730 1.3587 1.8791 1.0673
b 0.039998 0.007210 0.002632 0.003380 0.002328
B0 0.12436 0.04991 0.05454 0.04260 0.04074
c 3.205 � 105 1.511 � 104 1.054 � 103 2.578 � 103 7.379 � 102

C0 1.006 � 106 1.404 � 105 8.673 � 103 2.286 � 104 8.164 � 103

a 1.101 � 10�3 8.470 � 10�5 1.350 � 10�4 1.244 � 10�4 1.272 � 10�4

g 0.0340 0.00539 0.0060 0.0060 0.0053

Constants

p in atm, v in ft3/(lb mol), T in �R

n-Butane, C4H10 Carbon dioxide, CO2 Carbon monoxide, CO Methane, CH4 Nitrogen, N2

a 7747 563.1 150.7 203.1 103.2
A0 2590 703.0 344.5 476.4 270.6
b 10.27 1.852 0.676 0.868 0.598
B0 1.993 0.7998 0.8740 0.6827 0.6529
c 4.219 � 109 1.989 � 108 1.387 � 107 3.393 � 107 9.713 � 106

C0 8.263 � 108 1.153 � 108 7.124 � 106 1.878 � 107 6.706 � 106

a 4.531 0.3486 0.5556 0.5120 0.5235
g 8.732 1.384 1.541 1.541 1.361
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Z ¼ 1� T2

T3

¼ 1� T1

T4

The efficiency, Z, of an air standard Ericsson
cycle (Fig. 10) is given by:

Z ¼ 1� T2

T3

¼ 1� T1

T4

The efficiency, Z, of an air standard Atkin-
son cycle (Fig. 11) is given by:

Z ¼ 1� k

ðCRÞk�1
p3
p2

� �1=k
�1

p3
p2

� �
� 1

2
64

3
75

The efficiency, Z, of an air standard closed
Brayton cycle (Fig. 12) is given by:

Z ¼ 1� 1

p2
p1

� �k�1
k

The efficiency, Z, of an air standard open
Brayton cycle (Fig. 13) is given by:

Z ¼ 1� T4 � T1

T3 � T2

The efficiency, Z, of an air standard open
Brayton cycle with regeneration (Fig. 14) is
given by:

Z ¼ ðT3 � T2Þ � ðT4 � T1Þ
T3 � T5

Process Efficiency. The following equations
give the efficiencies of various processes for
steady-state conditions. Nozzle efficiency, Z,
is given by:

Znozzle ¼
V 2

2

V 0 22

Fig. 6 Air standard Carnot cycle

Fig. 7 Air standard Otto cycle

Fig. 8 Air standard Diesel cycle

Fig. 9 Air standard Stirling cycle
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for a system shown in Fig. 15, where V02 is the
ideal outlet velocity for the condition where the
outlet entropy, s2, equals the inlet entropy, s1,
and the actual exit (or outlet) pressure is p2.
Turbine isentropic efficiency, Z, is given by:

Zturbine ¼
ðActual work per unit massÞ
Isentropic work per unit

mass for actual inlet

conditions and actual

exit pressure

0
BB@

1
CCA

Compressor isentropic efficiency, Z, is given
by:

Zcompressor ¼

Isentropic work per unit

mass for actual inlet con-

ditions and actual exit

pressure

0
BB@

1
CCA

ðActual work per unit massÞ

Compressor isothermal efficiency, Z, is
given by:

Zcompressor ¼

Isothermal work per unit

mass for actual inlet con-

ditions and actual exit

pressure

0
BB@

1
CCA

ðActual work per unit massÞ

Boiler or burner combustion efficiency, Z, is
given by:

Zboiler ¼
Rate of heat transferred

to working fluid(s)

� �
Fuel mass flow rate times

fuel heating value

� � (Eq 4)

In Eq 4, either the higher heating value or the
lower heating value could be used; by common
practice, the higher heating value is normally used.
Increase of Entropy Principle. Unlike

energy, entropy is not conserved. For example,
the entropy of an adiabatic, closed system, if left
to itself, could increase in time as the system
approached equilibrium. Mathematically, the
entropy of this system would attain its maximum
possible value when equilibrium is reached. One

interpretation of entropy is that it represents the
degree of “disorder” of the molecules of a
system. The system is in disorder if the various
molecules of a multicomponent system are
uniformly distributed throughout the system. The
system is most ordered if each type of molecule
is separated from the others. Another interpreta-
tion of entropy is that it is ameasure of the fraction
of the system energy that cannot be converted into
work. The larger entropymeans that lesswork can
be obtained from the energy of the system.
In the following equations, the inequality

(>0) applies to an irreversible process, while
the equality (=0) applies to a reversible process.
The subscript i refers to the initial state and f to
the final state. S represents the entropy of either
a system or its surroundings.
For a closed system and its surroundings:

dSSYSTEM þ dSSURR � 0

Sf;SYSTEM � Si;SYSTEM þ Sf;SURR � Si;SURR � 0

For an adiabatic, closed system:

dS � 0

Sf � Si � 0

For an isolated system:

dS > 0

Sf � Si � 0

For a control volume:

dScv

dt
þ
X
out

_ms�
X
in

_ms �
ð

A
control

surface

_q

T
dA

where:

T = absolute temperature
_q = heat-transfer rate per unit area of the control

surface and added to or lost from the con-
trol volume

cv = control volume

For a control volume and its surroundings:

dScv

dt
þ dSSURR

dt
� 0

Reversible Power, Irreversibility, and
Availability. Irreversibility is the difference
between the maximum power obtainable (revers-
ible power) and the actual power obtainable
from the control volume; availability is a mathe-
matical definition and represents the reversible
work per unit mass when a unit mass proceeds
from the state of interest to a state of zero veloc-
ity, ambient temperature and ambient pressure.
Point i represents the initial state, f the final

state, 1 the inlet state, and 2 the outlet state.
Uniform properties are assumed over each flow
area and throughout the control volume. Equa-
tions 5 through 10 apply to a control volume.
The corresponding equations applicable to a
closed system are obtained by setting each mass
flow rate equal to zero.

Fig. 10 Air standard Ericsson cycle

Fig. 11 Air standard Atkinson cycle
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Reversible power for a steady-state control
volume is given by:

_Wrev ¼
X
inlet

_m1 h1 � T0s1 þ V1
2

2
þ gz1

� �

�
X
outlet

_m2 h2 � T0s2 þ V2
2

2
þ gz2

� �

þmi ui � T0si þ V 2
i

2
þ gzi

� �

�mf uf � T0sf þ
V 2
f

2
þ gzf

 !

(Eq 5)

Irreversibility for a steady-state process is
given by:

_I ¼ _Wrev � _Wactual (Eq 6)

where _Wactual is obtained from the first law of
thermodynamics applied to the actual control
volume; also by:

_I ¼ T0

X
outlet

_m2s2 �
X
inlet

_m1s1 þmfsf �misi

 !
� _Qcv

(Eq 7)

where _Qcv is the rate of heat transfer into the
control volume of interest; also by:

_I ¼ T0

dScontrol volume

dt
þ dSsurroundings

dt

� �
(Eq 8)

and by:

_I ¼ T0

dScontrol volume

dt
þ
X

_m2s2 � � _m1s1 �Qcv

T0

� �
(Eq 9)

where T0 is the ambient absolute temperature.
Availability for a steady-state control volume

is given by:

c ¼ h� T0sþ V 2

2
þ gz

� �
� ðh0 � T0s0 þ gz0Þ

(Eq 10)

where the zero subscript represents the state in
which the fluid is in equilibrium with the sur-
roundings (at ambient temperature, T0, and
pressure, P0).

Mixtures and Solutions

The following equations apply to a system
consisting of several homogeneous phases.
Chemical Reactions. For chemical reactions

of ideal gas mixtures at temperature T and total
pressure p, the reaction equation is:

vAAþ vBBÐvCC þ vDD
ðReactantsÞ ðProductsÞ

The law of mass action is expressed as:

K ¼ pCvC pDvD

pAvA pBvB

¼ xCvC xDvD

xAvA xDvD

pvCþvD�vA�vB

¼ vA�g
0
A þ vB�g

0
B � vC�g

0
C � vD�g

0
D

�RT

where:

K = equilibrium constant
�g0i= Gibbs function per unit mole of component
i at absolute temperature T and 1.0 atm pressure
p = absolute pressure of mixture in atmospheres
xi = mole fraction of component i
vi = coefficient in reaction equation (i = A, B, C,

or D)
R = universal gas constant
T = absolute temperature

Table 5 gives equilibrium constants for vari-
ous simple reactions.
The van’t Hoff equation is given as:

dðlnKÞ
dð1=T Þ ¼

vA �h0
A þ vB �h0

B � vC �h0
C � vD �h0

D

�R

where �h0
i is the enthalpy per unit mole of com-

ponent i at temperature T, and superscript zero
means 1 atm pressure.
Equilibrium of a heterogeneous system is

expressed by the Gibbs-Duhem equation:

S dT þ �Vdp ¼
XN
i¼1

nid�mi

where:

�mi = chemical potential of component i at the
partial pressure pi of component i and
the temperature T of the mixture

S = entropy of mixture
T = absolute temperature
�V = volume of mixture
p = total pressure of mixture
ni = moles of component i
xi = mole fraction of component i
N = number of components

Ideal Gas Equations. For all equations:

N = number of components
xi = mole fraction of component i
ni = moles of component i
n = total moles of mixture
yi = mass fraction of component i
mi = mass of component i
m = mass of mixture
Mi = molecular weight of component i
M = mixture molecular weight
R = universal gas constant
R = average specific gas constant
Ri = specific gas constant of component i
�Vi = partial volume of component i
�V = volume of mixture

Fig. 12 Air standard closed Brayton cycle
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pi = partial pressure of component i
p = total pressure of mixture

Dalton’s law of partial pressures is expressed
as:

p ¼
XN
i¼1

pi

Amagat’s law of partial volumes is
expressed as:

�V ¼
XN
i¼1
�Vi

Mixture molecular weight is found by:

M ¼
PN
i¼1

mi

PN
i¼1

ni

¼
XN
i¼1

xiMi

Mixture average specific gas constant is found
by:

R ¼
XN
i¼1

yiRi

Mixture average specific heat (either CP or
Cv) is found by:

Cave ¼
XN
i¼1

yiCi Cave ¼
XN
i¼1

xiCi

where C has dimensions of energy/(mass �
temp), and C has dimensions of energy/(mole� temp) (Table 6).
Mixture average internal energy is found by:

uave ¼
XN
i¼1

yiui �uave ¼
XN
i¼1

xi �ui

and the mixture average enthalpy is found by:

have ¼
XN
i¼1

yihi
�have ¼

XN
i¼1

xi �hi

where u and h have dimensions of energy/mass,
and �u and �h have dimensions of energy/mole.
Mixture average entropy is found by:

save ¼
XN
i¼1

yiSi Save ¼
XN
i¼1

xiSi

where s has dimensions of energy/(mass �
temp), and s has dimensions of energy/(mole� temp).
The Clausius-Clapeyron equation applies

to a pure substance with one phase in equi-
librium with another. Absolute temperature
and pressure are denoted by T and p. The
general form for the Clausius-Clapeyron
equation is:

Fig. 14 Air standard open Brayton cycle

Fig. 13 Air standard Brayton cycle
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dp

dT

� �
sat

¼ s00 � s0

v00 � v0
¼ h00 � h0

T ðv00 � v0Þ

The integrated form for the solid-vapor
region, which assumes ideal gas vapor and hig
= constant, is:

ln
pB
pA
¼ hig

R

1

TA
� 1

TB

� �

The integrated form for the liquid-vapor
region, which assumes ideal gas vapor and hfg
= constant, is:

ln
pB
pA
¼ hfg

R

1

TA
� 1

TB

� �

The integrated form for the solid-vapor
region, which assumes constant hif and vif, is:

pB � pA ¼ hif

vif
ln
TB

TA

where:

p = absolute pressure
T = absolute temperature
h = enthalpy (per unit mass)
hif = hf � hi
hig = hg � hi
hfg = hg � hf
R = specific gas constant
v = specific volume
vif = vf � vi
s = entropy (per unit mass)
Subscripts: i = ice
f = liquid
g = vapor (gas)

Psychrometrics—Dry Air and Water
Vapor Considered Ideal Gases. Psychro-
metrics is the study of the thermodynamic prop-
erties of moist air and the analysis of conditions
and processes involving moist air.
Humidity ratio, W, is expressed as:

W ¼ Mass of water vapor in air sample

Mass of dry air in same air sample

¼ 0:622
pw

p� pw

where p is the total absolute pressure, and pw is
the partial absolute pressure of water vapor.
Relative humidity, f, is expressed as:

f ¼ Partial pressure of water vapor in air

Saturation pressure of water vapor

at dry bulb temperature

� �
¼ pw
ðpw;satÞdbt

where (pw,sat)dbt is the saturation pressure of
water vapor at the dry bulb temperature.
Specific humidity, q, is expressed as:

q ¼ Mass of water vapor in air sample

Total mass of same air sample
¼ W

1þW

Degree of saturation, m, is expressed as:

Fig. 15 Nozzle schematic

Table 5 Natural logarithms of the equilibrium constant K (for 1.0 atm pressure)

Temp, K H2 Ð 2H O2 Ð 2O N2 Ð 2N 2H2OÐ 2H2 þO2

298 �164.005 �186.975 �367.480 �184.416
500 �92.827 �105.630 �213.372 �105.382
1000 �39.803 �45.150 �99.127 �46.326
1200 �30.874 �35.005 �80.011 �36.364
1400 �24.463 �27.742 �66.329 �29.218
1600 �19.637 �22.285 �56.055 �23.842
1800 �15.866 �18.030 �48.051 �19.652
2000 �12.840 �14.622 �41.645 �16.290
2200 �10.353 �11.827 �36.391 �13.536
2400 �8.276 �9.497 �32.011 �11.238
2600 �6.517 �7.521 �28.304 �9.296
2800 �5.002 �5.826 �25.117 �7.624
3000 �3.685 �4.357 �22.359 �6.172
3200 �2.534 �3.072 �19.937 �4.902
3400 �1.516 �1.935 �17.800 �3.782
3600 �0.609 �0.926 �15.898 �2.784
3800 0.202 �0.019 �14.199 �1.890
4000 0.934 0.796 �12.660 �1.084
4500 2.486 2.513 �9.414 0.624
5000 3.725 3.895 �6.807 1.992
5500 4.743 5.023 �4.666 3.120
6000 5.590 5.963 �2.865 4.064

Temp, K 2H2OÐ H2 þ 2OH 2CO2 Ð 2COþO2 N2 þO2 Ð 2NO

298 �212.416 �207.524 �70.104
500 �120.562 �115.232 �40.590
1000 �52.068 �47.058 �18.776
1200 �40.566 �35.742 �15.138
1400 �32.198 �27.684 �12.540
1600 �26.132 �21.660 �10.588
1800 �21.314 �16.994 �9.072
2000 �17.456 �13.270 �7.862
2200 �14.296 �10.240 �6.866
2400 �11.664 �7.720 �6.038
2600 �9.438 �5.602 �5.342
2800 �7.526 �3.788 �4.742
3000 �5.874 �2.222 �4.228
3200 �4.424 �0.858 �3.776
3400 �3.152 0.338 �3.380
3600 �2.176 1.402 �3.026
3800 �1.002 2.352 �2.712
4000 �0.088 3.198 �2.432
4500 1.840 4.980 �1.842
5000 3.378 6.394 �1.372
5500 4.636 7.542 �0.994
6000 5.686 8.490 �0.682
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m ¼ Humidity ratio

Humidity ratio of saturated

air at the dry bulb temperature

� �
¼ pw

p� pw

� �
p� ðpw;satÞdbt
ðpw;satÞdbt

� �

Specific volume is expressed by:

v ¼ Volume of sample

Mass of dry air in sample

¼ RdaT

p
ð1þ 1:608W Þ

where Rda is the specific gas constant for dry
air.
Enthalpy is expressed as:

h ¼ hda þWhg

where:

W = humidity ratio (lbm water/lbm dry air)
hda = enthalpy of dry air per unit mass of dry air

hda = 0 at 0 �F
hda = 0.240T (Btu/lbm dry air with T in �F)
hg = enthalpy of saturated water vapor at the
dry bulb temperature (Btu/lbm water)
hg = 0 for liquid water at 32.0 �F and 14.696 psia
hg = 1061 + 0.444T (Btu/lbm water with T in �F)

The relationship of humidity ratio and dry bulb
temperature, T, and wet bulb temperature, T0:

W ¼ ð1093� 0:556T 0ÞW 0 � 0:240ðT � T 0Þ
1093þ 0:444T � T 0

with T and T0 in �F, W and W0 in lbm water/lbm
dry air, and W0 = humidity ratio of saturated air
at T0.
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Table 6 Constant pressure specific heats at zero pressure

Gas
Cp ;

kcal

kmol�K ;
Btu

lb mol��R Range, �R Max error, %

N2 9.3355 � 122.56 y�1.5 + 256.38 y�2 � 196.08 y�3 540–6300 0.43
O2 8.9465 + 4.8044 � 10�3 y1.5 � 42.679 y�1.5 + 56.615 y�2 540–6300 0.30
H2 13.505 �167.96 y�0.75 + 278.44 y�1 � 134.01 y�1.5 540–6300 0.60
CO 16.526 � 0.16841 y0.75 � 47.985 y�0.5 + 42.246 y�0.75 540–6300 0.42
OH 19.490 � 14.185 y0.25 + 4.1418 y0.75 � 1.0196 y 540–6300 0.43
NO 14.169 � 0.40861 y0.5 � 16.877 y�0.5 + 17.899 y�1.5 540–6300 0.34
H2O 34.190 � 43.868 y0.25 + 19.778 y0.5 � 0.88407 y 540–6300 0.43
CO2 �0.89286 + 7.2967 y0.5 � 0.98074 y + 5.7835 � 10�3 y2 540–6300 0.19
NO2 11.005 + 51.650 y�0.5 � 86.916 y�0.75 + 55.580 y�2 540–6300 0.26
CH4 �160.82 + 105.10 y0.25 � 5.9452 y0.75 + 77.408 y�0.5 540–3600 0.15
C2H4 �22.800 + 29.433 y0.5 � 8.5185 y0.75 + 43.683 y�3 540–3600 0.07
C2H6 1.648 + 4.124 y � 0.153 y2 + 1.74 � 10�3 y3 540–2700 0.83
C3H8 �0.966 + 7.279 y � 0.3755 y2 + 7.58 � 10�3 y3 540–2700 0.40
C4H10 0.945 + 8.873 y � 0.438 y2 + 8.36 � 10�3 y3 540–2700 0.54

y ¼ T ðKelvinÞ
100

¼ T ðRankineÞ
180

Cp ;
kJ

kmol�K Range, K Max error, %

39.060 � 512.79 y�1.5 + 1072.7 y�2 � 820.40 y�3 300–3500 0.43
37.432 + 0.020102 y1.5 � 178.57 y�1.5 + 236.88 y�2 300–3500 0.30
56.505 � 702.74 y�0.75 + 1165.0 y�1 � 560.70 y�1.5 300–3500 0.60
69.145 � 0.70463 y0.75 � 200.77 y�0.5 + 176.76 y�0.75 300–3500 0.42
81.546 � 59.350 y0.25 + 17.329 y0.75 � 4.2660 y 300–3500 0.43
59.283 � 1.7096 y0.5 � 70.613 y�0.5 + 74.889 y�1.5 300–3500 0.34
143.05 � 183.54 y0.25 + 82.751 y0.5 � 3.6989 y 300–3500 0.43
�3.7357 + 30.529 y0.5 � 4.1034 y + 0.024198 y2 300–3500 0.19
46.045 + 216.10 y�0.5 � 363.66 y�0.75 + 232.550 y�2 300–3500 0.26
�672.87 + 439.74 y0.25 � 24.875 y0.75 + 323.88 y�0.5 300–2000 0.15
�95.395 + 123.15 y0.5 � 35.641 y0.75 + 182.77 y�3 300–2000 0.07
6.895 + 17.26 y � 0.6402 y2 + 0.00728 y3 300–1500 0.83
�4.042 + 30.46 y � 1.571 y2 + 0.03171 y3 300–1500 0.40
3.954 + 37.12 y � 1.833 y2 + 0.03498 y3 300–1500 0.54

y ¼ T ðKelvinÞ
100

The equations in Table 6 are used to calculate the specific heats, Cp, of ideal gases. The specific heat at constant volume, Cv, is calculated by Cv ¼ Cp � R, where R is the universal gas constant.
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Heat-Transfer Equations*

HEAT TRANSFER is energy in transit as a
result of temperature difference. Whenever a
temperature difference exists in a medium or
between media, heat transfer must take place.
Mechanical engineers deal with problems of
heat transfer in the fields of internal combustion
engines, power generation, refrigeration, heat-
ing, and ventilation. Metallurgical and ceramic
engineers must control temperatures accurately
during the heat treatment of various metals
and ceramics to achieve the desired properties
of the heat treated material. In all fields of engi-
neering, problems are confronted concerning
the most effective transmission of heat or the
protection of a construction most effectively
against heat losses or gains.
Three recognized modes of heat transfer are

conduction, convection, and thermal radiation.
They differ entirely in physical mechanism
and governing laws. In conduction, heat flows
from a high-temperature region to a region of
lower temperature within a medium or between
different media in direct physical contact. Con-
duction is the only mechanism by which heat
can flow in opaque solids. Convective heat
transfer occurs when a fluid is mixed due to
gross movement of fluid mass. Energy transfer
from one fluid particle to another remains a pro-
cess of conduction, but the energy may be
transferred from one point in space to another
by the fluid displacement. Therefore, convec-
tion is the most important mechanism of energy
transfer between a solid and a liquid or a gas.
Thermal radiation is a process of heat transfer
from one body to another by electromagnetic
wave motion. The transmission of radiant
energy does not require a carrying medium.
The basic law of heat conduction, proposed

by Fourier, states that the rate of heat flow in
a material is proportional to the area perpendic-
ular to heat flow and the temperature gradient at
that section. The proportion constant is called
the thermal conductivity of the material. In gen-
eral, the thermal conductivity varies with tem-
perature. Some industrial problems involving
heat conduction are the annealing of castings,
the vulcanizing of rubber, and the heating or
cooling of the walls of buildings, furnaces,
and ovens.

The prediction of the rates at which heat is
transferred by convection from a solid surface
by an ambient fluid involves a thorough under-
standing of principles of heat conduction, fluid
dynamics, and boundary-layer theory. The
complexities involved in an analytical approach
may be combined in terms of a single parame-
ter by introduction of Newton’s law of cooling,
which states that the heat flux due to convection
is the product of film coefficient (or heat-trans-
fer coefficient) and the temperature difference
between the surface and ambient fluid. The
heat-transfer coefficient is not a material prop-
erty but a complex function of system geome-
try, fluid flow, and fluid properties. Heat
transfer by convection occurs on walls of
rooms, on the outside of cold and warm pipes,
and between surfaces and fluid of all types of
heat exchangers. Boiling and condensation are
also classified as convection heat transfer.
All bodies emit radiant energy. An ideal radi-

ator, called a black body, emits radiant energy
at a rate proportional to the fourth power of
the absolute temperature of the body. This is
known as Stefan-Boltzmann law of thermal
radiation. Other surfaces, such as a glossy
painted surface, do not radiate as much energy
as the black body. To describe the gray nature
of such a surface, the term emissivity is
introduced. Emissivity is the ratio of radiation
of the gray surface to an ideal black surface.
The importance of radiation becomes intensi-
fied at high temperature levels. Consequently,
radiation contributes substantially to heat
transfer in boilers, furnaces, combustion cham-
bers, nuclear power plants, and rocket nozzles.
Solar radiation plays an important part in
the design of heating and ventilating systems.
Radiation can also be of importance in
some instances when free convection is present,
even though the temperature levels are not
elevated.
Most industrial problems dealing with heat

exchange do not involve a single mechanism
of heat transfer but include a combination of
two or more. In a steam condenser, heat transfer
occurs through a series of conduction and con-
vection processes between the condensing
steam and the cooling water. In a furnace of

large steam generators, heat is transferred
simultaneously by radiation, convection, and
conduction.

Heat Conduction

Conduction heat transfer involves energy
transfer by physical interaction between adja-
cent molecules of substances at different tem-
peratures. Heat flow within a homogeneous
material is analogous to the flow of electricity
in a conductor. The quantity flowing per unit
of time is proportional to the:

� Conductivity of the material
� Area of the conductor perpendicular to the

path
� Potential temperature gradient

If the heat flowing into a body is exactly
equal to the heat flowing out, a steady-state
condition exists. This condition refers only to
cases where the temperature at any given point
within the body is independent of the time.
If the inflow and outflow of heat are not equal,
and the temperature at a given point and
the heat content of the body vary with time,
then heat is said to be flowing in an unsteady
state.

Fourier Law, Heat Conduction
Equations, and Boundary Conditions

The basic law of heat conduction was first
presented by a French physicist, Fourier,
and is referred to as Fourier’s law of heat con-
duction. Table 1 presents the general form
related to various coordinate systems. From
Fourier’s law and the first law of thermodynam-
ics, the differential equations for heat conduc-
tion in solids can be derived (Table 2). To
determine temperature distribution due to heat
conduction, boundary conditions must
be known. Frequently encountered boundary
conditions in conduction are summarized in
Table 3.

*Adapted from ASM Handbook of Engineering, Mathematics, American Society for Metals, 1983

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 625-658

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org
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Thermal Conductivity of Substances

Thermal conductivity is a thermophysical
property of the conducting medium that repre-
sents the rate of conduction heat transfer per
unit area for a unit temperature gradient. Table 4
lists thermal conductivity values for several
materials. In general, thermal conductivity is
strongly temperature dependent. Variations in
thermal conductivity are shown in Fig. 1 for

several representative substances. Values of
thermal conductivity, k, for a substance also
depend on chemical composition, on the physi-
cal state and texture, and on pressure.

One-Dimensional Steady-State Heat
Conduction

Neither the heat flow rate nor the temperature
distribution in a one-dimensional system varies

with time. Furthermore, heat flow is in one direc-
tion. Certain practical problems, such as heat con-
duction through a slabor through thewall of a pipe
or a spherical vessel, fall into this category. The
Fourier law and the differential equation of heat
conduction for this case are reduced to:

Q ¼ �kAdT

dx
or Q ¼ �kAdT

dr

and

1

rn
d

dr
rn

dT

dr

� �
¼ 0

with r replacing x for n = 0, and with n = 0,
1, 2 representing slab, cylinder, and sphere,
respectively. Table 5 presents temperature
distribution and heat-transfer rate for some
simple systems in one-dimensional steady-state
conduction.

One-Dimensional Composite
Structure at Steady State

Heat transfer in composite regions consisting
of several layers has practical applications, such
as rocket thrust chamber liners, fuel elements of
nuclear reactors, and space re-entry bodies.
Consider N layers of material having different
thicknesses and thermal conductivities
(Fig. 2). The contact resistance between layers
is negligible. To determine the heat flow rate,
Q, and temperature profile, T, of the structure,
assuming one-dimensional heat conduction,
the analogy between the diffusion and electric
current can be extended to obtain:

1

UiAi
¼ 1

U0A0

¼ Ri þ
XN
n¼1

Rn þR0 ¼ Ti � T0

Q

where Ri, R0, and Rn are the thermal resistances
at the internal surface, external surface, and the
nth layer, respectively; Ui and U0 are the over-
all heat-transfer coefficients at the internal and
external surfaces, respectively; and Ai and A0

are the cross-sectional areas perpendicular to
heat flow at the internal and the external sur-
faces. The explicit forms for the inverse of
overall heat-transfer coefficient at the external
surface, 1/U, for various geometries are pre-
sented in Table 6.
To obtain the temperature distribution in the

structure, Q is expressed in terms of the temper-
ature difference T � T0 and associated resis-
tances (from the series Rn, Rn + 1, Rn + 2, . . .,
RN). The result is:

Q ¼ ðT� T0Þ ð1=knÞ
ðsn þ 1

s

ds=AðsÞ
�

þ
X
ð1=kmÞ �

ðsm þ 1

sm

ds=AðsÞ þ 1=h0A

��1

where T represents the temperature of the loca-
tion s (Fig. 2). The dimensionless temperature
profile can be expressed in terms of U0 for

Table 2 Differential equations for heat conduction in solids

General form with variable thermal properties
rcp

@Tðr; yÞ
@y

¼ r � ½krT ðr; yÞ� þ gðr; yÞ
General form with constant thermal properties 1

a

@T ðr; yÞ
@y

¼ r2T ðr; yÞ þ gðr; yÞ
k

General form, constant properties, without heat
source

1

a

@T ðr; yÞ
@y

¼ r2T ðr; yÞ (Fourier equation)
General form, constant properties, steady state r2T ðrÞ þ gr

k
¼ 0 (Poisson equation)

General form, constant properties, steady
state without heat source

r2T ðrÞ ¼ 0 (Laplace equation)

Cartesian system, constant properties @2T

@x2
þ @2T

@y2
þ @2T

@z2
þ gðx; y; z; yÞ

k
¼ 1

a

@T

@y

Cylindrical system, constant properties 1

r

@

@r
r
@T

@r

� �
þ 1

r2
@2T

@f2
þ @2T

@z2
þ gðr;f; z; yÞ

k
¼ 1

a
@T

@y

Spherical system, constant properties 1

r2
@

@r
r2

@T

@r

� �
þ 1

r2 sinc
@

@c
sinc

@T

@c

� �
þ

1

r2 sin2 c

@2T

@f2
þ gðr;f;c; yÞ

k
¼ 1

a
@T

@y

Table 1 Fourier’s law of heat conduction

General form q(v, y) = �k r (r, y)

Cartesian system
qx ¼ �k @T

@x

qy ¼ �k @T
@y

qz ¼ �k @T
@z

Cylindrical system
qr ¼ �k @T

@rx = r cos f
y = r sin f

qf ¼ �k 1
r

@T

@f

z = z
qz ¼ �k @T

@z

Spherical system
x = r sin c sin f

qr ¼ �k @T
@r

y = r sin c cos f
qf ¼ �k 1

r

@T

@f

z = r cos c
qf ¼ �k 1

r sinf
@T

@c
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various geometric systems (Table 7). These for-
mulations are restricted to the steady-state one-
dimensional heat conduction. In practice,
the combination of series-and parallel-connected
structures is also important, especially in

Cartesian geometry. Figure 3(a) illustrates a par-
allel-series composite wall that is represented by
the thermal circuit shown in Fig. 3(b). The
corresponding overall heat-transfer coefficient
is given by:

U ¼ 1

ðb1 þ b2ÞðR1 þR2 þR3Þ

¼ 1

L1

k1
þ b1 þ b2
ðk1b2=L2Þ þ ðk2b1=L2Þ þ

L3

k3

Table 3 Boundary conditions of heat conduction in solids

Description of

system Schematic diagram Boundary condition

Prescribed
surface
temperature

T = Ts at n = s

Prescribed heat
flux at the
surface

(a) �k @T

@n

� �
¼ þq00 at n ¼ s

(b) �k @T

@n

� �
¼ �q00 at n ¼ s

Insulation at the
surface

@T

@n
¼ 0 at n ¼ s

Heat transfer to
the ambient
with
temperature
T1 by
convection

�k @T
@n
¼ hðT � T1Þ at n ¼ s

Heat transfer to
environment
at temperature
Te by radiation

�k @T
@n
¼ seðT 4 � Te

4Þ
at n ¼ s

Transfer heat to
the ambient
by convection
while
receiving heat
flux from a
distance

�k @T
@n
þ q00 ¼

hðT � T1Þ at n ¼ s

Description of

system Schematic diagram Boundary condition

Interface of two
continua of
different
conductivities
at perfect
contact

�k1 @T1

@n
¼

�k2 @T2

@n
at n ¼ s

T1 ¼ T2 at n ¼ s

Two solid
continua in
relative
motion with
pressure on
interface p,
the coefficient
of dry friction,
m, and the
relative
velocity, V

�k1 @T1

@n
þ mpV ¼

�k2 @T2

@n

� �
at n ¼ s

Ablation or
sublimation of
solid with
melted
material
removed upon
its formation

fðyÞ þ ks
@T

@n
¼ rL

dsðyÞ
dtheta

at n ¼ sðyÞ

Solid-liquid
interface for
one-
dimensional
solidification
and melting
problems

ks
@Ts

@n

� �
� kl

@Tl

@n

� �� �

¼ rL
ds

dy
at n ¼ sðyÞ

L = latent heat of fusion; s = melting, solidification, or surface recession distance, or interface; ds/dy = melting, solidification, or ablation rate; f(y) = time-dependent surface heat flux; subscript s = solid phase; subscript
l = liquid phase; r = density
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Critical Radius for Insulated Pipes
and Spheres

An application of one-dimensional composite
structure formulas having practical significance
involves insulationof small pipes, electricalwires,
and spheres. Given a pipe or sphere of fixed out-
side radius, as shown inFig. 4, the insulation thick-
ness that yields the optimum insulating effectmust
be determined. As insulation is added, the outer
surface temperature decreases, but the surface area
for convective heat dissipation increases. Some
optimum thickness of insulation may exist due to
these opposing effects. At a certain radius of insu-
lation, the heat loss is maximum instead of mini-
mum, which is known as critical radius, r*0.
Table 8 lists governing equations for determining
the critical radius of insulated pipe and sphere for
these cases of constant heat-transfer coefficients
and variable heat-transfer coefficients with and
without the effect of thermal radiation. When the
surface radiation is included, the determination
of the critical radius requires the solutions of non-
linear systems of equations, because both surface
temperature, T0, and critical radius, r*0, are
unknown under this condition.

Steady-State Heat Transfer from
Extended Surfaces

One of the important applications of heat
transfer is the thermal analysis of extended

surfaces or fins to increase the heat transfer
between the structure and an ambient fluid. Fins
on one side of a wall separating two heat-
exchanging fluids are most effective when made
part of the face on which the thermal surface
resistivity is greatest. Among considerations in
fin design and placement are maximum cooling
efficiency; minimum material for cost, weight,
and space; minimum resistance to the flow of
ambient cooling medium; adequate strength;
and ease of manufacture. Table 9 presents for-
mulas for temperature profiles, total heat-transfer
rate, and fin efficiencies for nine different fin
types. The results are based on the assumptions
that thermal properties are constant; radiation is
not considered; heat transfer at fin tip is negligi-
bly small, and heat conduction is one dimen-
sional. The fin efficiency is defined as the ratio
of the actual heat transfer to the maximum possi-
ble heat transfer from the fin. Figures 5 and 6 show
the comparisons of fin efficiencies of four
longitudinal fins and four spines or pin fins,
respectively. Table 10 gives optimum dimensions
of somecommon longitudinal andpinfins in terms
of fin profile area, or fin volume, heat-transfer
coefficient, and thermal conductivity.

Multidimensional Steady-State Heat
Conduction

The problems of steady-state heat conduction
in more than one dimension can be solved by
analytical, graphical, experimental-analogic, and
numerical means. The analytical approach is
recommended in dealing with systems that are
simple in geometry and boundary conditions.
Systems of complex geometry with isother-

mal and insulated boundaries are readily solved
by graphical or analogical methods. When the
boundary conditions involve heat transfer
through surface conductance, these methods
become less useful, and the numerical approach
is recommended. This method has sufficient
flexibility for problems with variable physical
properties and nonuniform boundary condi-
tions. Numerical solutions can be conveniently
obtained by a digital computer.
In a two-dimensional system where only

two temperature limits are involved, a conduction
shape factor, S, may be defined in such a way that
Q = kS D Toverall. The values of S for several geo-
metries are summarized in Table 11.

Unsteady-State Heat Conduction

If a solid body is rapidly subjected to a
change in environment, some time must elapse
before temperature equilibrium or steady state
prevails. Analyses must be modified to
account for the change in internal energy of
the body with time, and boundary conditions
must be adjusted to match the physical situa-
tion in the unsteady-state heat-transfer prob-
lem. Unsteady heat flow problems also
include periodic variations of temperature
and heat flow, such as found in internal com-
bustion engines, air conditioning, instrumenta-
tion, and process control.
System with Negligible Internal Thermal

Resistance. Although no materials possess an
infinite thermal conductivity, many transient
heat-flow problems may be solved with
acceptable accuracy by assuming that the
internal conductive resistance is so small that
the system temperature is substantially
uniform at any instant. This assumption is jus-
tified when the external thermal resistance
between the surface and the surrounding
medium is so large compared to the internal
thermal resistance that it controls the heat-
transfer process. Analysis based on this
assumption is called lumped heat-capacity
analysis. A measure of the thermal resistance
within a solid body is the ratio of the internal
to the external resistance. This ratio can be
written in dimensionless form as hL/k, the Biot
number, where h is the average unit-surface
conductance, L is a significant length dimen-
sion obtained by dividing the volume of the
body by its surface area, and k is the thermal
conductivity of the solid body. When the Biot
number is less than 0.1, the lumped capacity
type of analysis is expected to yield a

Table 4 Thermal conductivity of various
substances at room temperature

Substance
k

W=ðm�� CÞ Btu=ðh�ft�� FÞ
Metals

Silver 420 240
Copper 390 230
Gold 320 180
Aluminum 200 120
Silicon 150 87
Nickel 91 53
Chromium 90 52
Iron (pure) 80 46
Germanium 60 35
Carbon steel (1% C) 54 31
Alloy steel (18% Cr, 8% Ni) 16 9.2

Nonmetal solids

Diamond, type 2A 2300 1300
Diamond, type 1 900 520
Sapphire (Al2 O3) 46 27
Limestone 1.5 0.87
Glass (Pyrex 7740) 1.0 0.58
Teflon (Duroid 5600) 0.40 0.23
Brick (B & W K-28) 0.25 0.14
Plaster 0.13 0.075
Cork 0.040 0.023

Liquids

Mercury 8.7 5.0
Water 0.6 0.35
Freon F-12 0.08 0.046

Gases

Hydrogen 0.18 0.10
Air 0.026 0.015
Nitrogen 0.026 0.015
Steam 0.018 0.01
Freon F-12 0.0097 0.0056

Note: (1 W/(m � �C) = 0.5778 Btu/(h � ft � �F). Source: Ref 1

Fig. 1 Variation of thermal conductivity, k, with
temperature, T, for representative substances
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reasonable estimate. For a solid with a uniform
initial temperature, Ti, suddenly placed in an
environment with a uniform temperature, T1,
if the heat-transfer coefficient and specific heat
are constant, the lumped capacity analysis
leads to the following expression for tempera-
ture history of the solid:

T � T1
Ti � T1

¼ expð�kAy=r cV Þ
¼ expð�F0BiÞ

where Bi and F0 are the Biot number and Fourier
number, respectively (F0 = a y/L2). The instanta-
neous transfer rate at any time, y, is:

q ¼ r cV
dT

dy
¼ kAðT1 � TiÞ expð�Bi � F0Þ

The amount of heat transfer in time interval, y,
which equals the change of internal energy of
the lumped system, becomes:

Q ¼
ð0
0

q dy ¼ ðT1 � TiÞr cV ½1� expðBi � F0Þ�

A summary of temperature histories of some
simple systems on the basis of lumped capacity
analysis is presented in Table 12.
System with Negligible Surface Thermal

Resistance. When the internal thermal resis-
tance of a solid is substantially higher than the
surface resistance, the heat-transfer coefficient
may be considered infinite (h ! 1) so that
the initial body surface temperature, T0, is sud-
denly changed to and maintained at a constant
ambient temperature, T1 (i.e., T0 = T1).
For this case, the determination of temperature
distribution requires the solution of partial dif-
ferential equations. Analytical solutions are
available for simple geometries with constant
thermal properties k, r, and c (Table 13). The
corresponding graphical representations are
shown in Fig. 7 through 10.
System with Finite Surface and Internal

Thermal Resistance. In most practical con-
duction heat-transfer problems, both the ther-
mal conductivity of the solid and the surface
heat-transfer coefficient are finite. Therefore,
the convective boundary conditions must be
employed in the solution of Fourier differen-
tial equations. A large number of analytical
solutions are available in the literature.
Table 14 illustrates a few simple systems
encountered frequently in engineering prac-
tice, with corresponding temperature charts
presented in Fig. 11 through 20 (Heisler and
Gröber charts).
Two- and Three-Dimensional Transient

Systems. Many practical problems involve
two- and three-dimensional heat flow. The solu-
tion of such problems is often achieved from a
product solution. Several one- dimensional
transient solutions may be combined to obtain
the solution to a two- or three-dimensional tran-
sient problem. Figure 21 shows the required
product solution for the geometries indicated.
In such cases, the body is initially at a uniform
temperature equal to Ti and is instantaneously
placed in a convective environment at tempera-
ture T1. The following notations are employed
in Fig. 21:

Cðr; yÞ ¼ T ðr; yÞ � T1
Ti � T1

P ðx; yÞ ¼ T ðx; yÞ � T1
Ti � T1

Sðx; yÞ ¼ T ðx; yÞ � T1
Ti � T1

where C(r, y) represents a transient solution for
a cylindrical geometry, P (x, y) represents a
transient solution for a plane wall, and S (x, y)
represents a transient solution for a semi-infi-
nite body.

Convection Heat Transfer

Convection heat transfer occurs between
a fluid and a solid surface in contact with
the fluid. When fluids are everywhere at rest,

Table 5 Temperature distribution and heat-transfer rate through slab, hollow cylinder, and
hollow sphere

Conducting body Schematic diagram Temperature distribution, T�T2

T1�T2
Thermal conductance, Q

T1�T2

Slab 1þ x

d

� �
kA

L

Circular cylinder lnðr� r2Þ
lnðr1 � r2Þ

2pkl
lnðr2=r1Þ

Hollow sphere 1
r � 1

r2
1
r1
� 1

r2

 !
4pk
1
r1
� 1

r2

 !
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Table 6 Inverse of overall heat-transfer
coefficient on the external surface, 1/U0,
of one-dimensional composites

General
formula AðsNþ1Þ=Aðs1Þ

hi
þ AðsNþ1Þ

XN
n¼1

1

kn

ðsnþ1
sn

ds

AðsÞ þ
1

h0

Cartesian
system

1

hi
þ
XN
n¼1

Ln

kn
þ 1

h0

Cylindrical
system

ðrNþ1=r1Þ
hi

þ rNþ1
XN
n¼1

1

kn
ln

rnþ1
rn

� �
þ 1

h0

Spherical
system

ðrNþ1=r1Þ2
hi

þ r2Nþ1
XN
n¼1

1

kn

1

rn
� 1

rnþ1

� �
þ 1

h0

Note: A(sn) = cross-sectional area of nth layer composite at the location
sn; Ln = thickness of nth layer; see Fig. 2 for other notations.

Table 7 Dimensionless temperature profile
in one-dimensional composites, T�T0

Ti�T0

General formula
U0

AðsNþ1Þ
kn

ðsnþ1
s

ds

AðsÞ þ AðsNþ1Þ�
�

XN
m¼nþ1

1

km

ðsmþ1
sm

ds

AðsÞ þ
1

h0

#

Cartesian system
U0

xnþ1 � x

kn
þ
XN

m¼nþ1

xmþ1 � xm
km

þ 1

h0

" #

Cylindrical
system U0

rNþ1
kn

ln
rnþ1
r

� �
þ rNþ1�

�

XN
m¼nþ1

1

km
ln

rmþ1
rm

� �
þ 1

h0

#

Spherical system
U0

rNþ1
kn

rNþ1
r
� rNþ1

rnþ1

� �
þ r2Nþ1�

�

XN
m¼nþ1

1

km

1

rm
� 1

rmþ1

� �
þ 1

h0

#

Note: xn = distance of inner surface of nth composite layer; rn = inner
radius of nth composite layer; see Fig. 2 for other notations.

Fig. 3 Parallel-series composite and its equivalent thermal circuit

Fig. 4 Critical thickness of pipe or sphere insulation

Table 8 Equations for critical radius, r
0, in radial conduction

Boundary condition Cylindrical system Spherical system

Constant heat-transfer
coefficient without
radiation

r
0 ¼
k

h
r
0 ¼

2k

h

Variable heat-transfer
coefficient

with h ¼ ðT0 � T1Þn
rm0

and without radiation

r
0 ¼
kð1�mÞ
hð1þ nÞ r
0 ¼

kð2�mÞ
hð1þ nÞ

Constant heat-transfer
coefficient but with
radiation

r
0 ¼
k

hþ 4esT 3
0

r
0 ¼
2k

hþ 4seT 3
0

kðTi � T0Þ
ln

r

0

ri

¼ hr
0ðT0 � T1Þ þ r
0seðT0
4 � T14Þ kriðTi � T0Þ

r
0 � ri
¼ hr
0ðT0 � T1Þ þ ser
0ðT0

4 � T14Þ

Variable heat-transfer
coefficient
with

h ¼ ðT0 � T1Þn=rm0
and with radiation

r
0 ¼
k½hð1�mÞðT0 � T1Þ þ esðT0

4 � T14Þ�
½ð1þ nÞhþ 4esT0

3�½hðT0 � T1Þ þ seðT0
4 � T14Þ� r
0 ¼

k½ð2�mÞhðT0 � TmÞ þ 2seðT0
4 � T14Þ�

½ð1þ nÞhþ 4esT 3
0 �½hðT0 � T1Þ þ seðT0

4 � T14Þ�

and and

kðTi � T0Þ
ln

r

0

ri

¼ hr
0ðT0 � T1Þ þ r
0seðT0
4 � T14Þ kriðTi � T0Þ

r
0 � ri
¼ hr
0ðT0 � T1Þ þ ser
0ðT0

4 � T14Þ

Fig. 2 One-dimensional composite structure
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the problem becomes one of either simple heat
conduction or simple diffusion. If fluid motion
is induced by such means as a pump, blower,
wind, or vehicle motion, the process is gener-
ally called forced convection. If the fluid
motion arises from external force fields such

as gravity, acting on a density gradient induced
by the transport process itself, the process is
referred to as free convection. The rate of heat
transfer by convection between a solid and fluid
is evaluated by Newton’s law of cooling, Q =
hA (Ts � T1), where A is the surface area in

contact with the fluid, and h is the heat-transfer
coefficient. The heat-transfer coefficient is a
complicated function of the fluid flow, the ther-
mal properties of the fluid, and the geometry of
the system. Its numerical value, in general,
depends on the location where the fluid temper-
ature, T1, is measured. Four general methods
are used to evaluate convection-transfer
coefficients:

� Dimensional analysis combined with
experiments

� Exact mathematical solutions of the bound-
ary-layer equations

� Approximate analyses of the boundary layer
by integral methods

� The analogy between heat, mass, and
momentum transfer

In the most practical case, the heat-transfer
coefficients are evaluated from empirical equa-
tions. These equations are obtained by correlat-
ing experimental results coupling with
dimensional analysis. For most engineering
applications, average values are generally of
interest. Table 15 gives typical values of the
order of magnitude of average convection heat-
transfer coefficients encountered in engineering
practice. The heat-transfer coefficients are usu-
ally given by a relationship between one depen-
dent nondimensional group, the Nusselt number,
Nu, and three other nondimensional groups, the
Reynolds number, Re; the Prandtl number, Pr;
and the Grashof number, Gr, depending on
whether the case involves free convection or
forced convection. Table 16 gives some of
dimensionless groups relevant to convection pro-
blems along with their physical interpretations.
Exact mathematical analyses of convective

heat transfer require the simultaneous solution
of the equations describing the fluid motion
and the energy transfer in the moving fluid.
Hence, the knowledge of fluid flow is essential
to the fundamental study of the convective
heat-transfer processes.
Differential Equations of Fluid Flow.

Table 17 summarizes these equations for lami-
nar flow with constant thermal properties. The
important differential equations of fluid flow
are the:

� Continuity equation, based on the law of
conservation of mass

� Momentum equation, based on Newton’s
second law of motion

� Energy equations, based on the law of con-
servation of energy

Analogy between Heat Transfer and
Momentum Transfer

In hydrodynamic analysis of both forced and
free convection, it is important to establish
whether the flow is laminar or turbulent. Lami-
nar forced or natural convection flows exist
when individual elements of fluid follow a

Table 9(a) Heat-transfer characteristics of various types of fin

Type of fin Schematic diagram

Longitudinal fin of
rectangular profile

Longitudinal fin of
triangular profile

Longitudinal fin of
concave parabolic
profile

Longitudinal fin of
convex parabolic
profile

Radial fin of rectangular
profile

Type of fin Schematic diagram

Radial fin of hyperbolic
profile

Cylindrical spine

Conical spine

Spine of concave
parabolic profile

Spine of convex
parabolic profile

Source: Ref 2
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smooth, streamlined path. The flow is turbulent
when the movement of elements of fluid is
unsteady and random. The dimensionless group
known as Reynolds number is the criterion for
determining whether laminar or turbulent flow
is the stable form under given conditions. Com-
plete mathematical equations describing the
fluid flow and heat-transfer mechanism can be
written for laminar flow, although the equations

can be solved analytically only for a number of
simple systems, such as flow over a flat plate or
through a circular tube. Our knowledge of tur-
bulent exchange mechanism is not sufficient to
write equations describing the temperature dis-
tribution directly. A useful tool for analyzing
the turbulent heat-transfer process is the con-
cept of analogy between heat and momentum;
that is, the heat-transfer coefficient is expressed

in terms of friction coefficient, f, which is avail-
able from experiments. Table 18 presents a few
well-known analogy formulas for turbulent pipe
flow of gases and liquids. The Reynolds anal-
ogy is satisfactory for gases only (Pr � 1), but
the Colburn analogy can be used for a fluid
having Prandtl numbers ranging from 0.6 to 50.
To apply the analogy between heat and

momentum transfers, it is necessary to know the

Table 9(b) Heat-transfer characteristics of various types of fins

Type of fin Temperature profile, T�T1
Tb�T1 ¼ Q

Qb
Rate of total heat dissipation, Q

Longitudinal fin of rectangular profile coshmx

coshmb

kdomybtanh mb

Longitudinal fin of triangular profile I0ð2m
ffiffiffiffiffi
bx
p Þ

I0ð2mbÞ
2hYbI1ð2mbÞ
mI0ð2mbÞ

Longitudinal fin of concave parabolic
profile

x

b

� �P1 kdoYb

2b
½�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2mbÞ2

q
�

Longitudinal fin of convex parabolic
profile

x

b

� �1=4I�1=3 4
3
mb1=4x3=4

� 	
I�1=3 4

3
mb

� 	 kdoYbm
I2=3

4
3
mb

� 	
I�1=3 4

3
mb

� 	
Radial fin of
rectangular profile

½K1ðmreÞI0ðmrÞ þ I1ðmreÞK0ðmrÞ�
I0ðmroÞK1ðmreÞ þ I1ðmreÞK0ðmroÞ 2�rodokmYb

I1ðmreÞK1ðmroÞ �K1ðmreÞI1ðmroÞ
IoðmroÞK1ðmreÞ þ I1ðmreÞK0ðmroÞ
� �

Radial fin of hyperbolic profile r

ro

� �1=2 I2=3
2
3
Mre

3=2
� 	

I1=3
2
3
Mr3=2

� 	� I�2=3 2
3
Mre

3=2
� 	

I�1=3 2
3
Mr3=2

� 	
I2=3

2
3
Mre

3=2
� 	

I1=3
2
3
Mro

3=2
� 	� I�2=3 2

3
Mre

3=2
� 	

I�1=3 2
3
Mro

3=2
� 	

( )
2�krodoYbM

ffiffiffiffiffiffiffiffi
roc

p
Cylindrical spine coshmx

coshmb

�

4
kd2mYb tanhmb

Conical spine b

x

� �1=2I1ð2M
ffiffiffi
x
p Þ

I1ð2M
ffiffiffi
b
p Þ

�kdo
2YbM

4
ffiffiffi
b
p I2ð2M

ffiffiffi
b
p Þ

I1ð2M
ffiffiffi
b
p Þ

" #

Spine of concave parabolic profile x

b

� �P1 �kdo
2Yb½�3þ ð9þ 4M2Þ1=2�

8b

Spine of convex parabolic profile I0
4
3

ffiffiffi
2
p

mb1=4x3=4
� 	
I0

4
3

ffiffiffi
2
p

mb
� 	 ffiffiffi

2
p

4
kpdo

2Ybm
I1

4
3

ffiffiffi
2
p

mb
� 	

I0
4
3

ffiffiffi
2
p

mb
� 	

Longitudinal fin of rectangular profile tanhmb

mb

m = (2h/kdo)
1/2

Longitudinal fin of triangular profile I1ð2mbÞ
mbI0ð2mbÞ

m = (2h/kdo)
1/2

Longitudinal fin of concave parabolic
profile

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2mbÞ2

q P1 ¼ � 1

2
þ 1

2
ð1þ 4m2b2Þ1=2

Longitudinal fin of convex parabolic
profile

1

mb

I2=3
4
3
mb

� 	
I�1=3 4

3
mb

� 	 m ¼ 2h

kd0

� �1=2

Radial fin of rectangular profile 2ro

m r2e � r2o
� 	 I1ðmreÞK1ðmroÞ �K1ðmreÞI1ðmroÞ

I0ðmroÞK1ðmreÞ þ I1ðmreÞK0ðmroÞ
� �

m ¼ 2h

kdo

� �1=2

Radial fin of hyperbolic profile 2roc
mðre2 � ro2Þ c ¼ I2=3

2
3
Mre

3=2
� 	

I�2=3 2
3
Mro

3=2
� 	� I�2=3 2

3
Mre

3=2
� 	

I2=3
2
3
Mro

3=2
� 	
 �

I�2=3 2
3
Mre

3=2
� 	

I�1=3 2
3
Mro

3=2
� 	� I2=3

2
3
Mre

3=2
� 	

I1=3
2
3
Mro

3=2
� 	
 �

M2 ¼ m2=ro ¼ 2h

kdoro

Cylindrical spine tanhmb

mb

m = (4h/kd)1/2

Conical spine
ffiffiffi
2
p

I2ð2
ffiffiffi
2
p

mbÞ
ðmbÞI1ð2

ffiffiffi
2
p

mbÞ
M = (2m2b)1/2 and m = (2h/kdo)

1/2

Spine of concave parabolic profile 2

1þ ð1þ 8
9
m2b2Þ1=2

M ¼
ffiffiffi
2
p

mb and m = (2h/kdo)
1/2

P1 ¼ � 3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4M2

p
Spine of convex parabolic profile 1

ð2 ffiffiffi
2
p

=3Þmb

I1
4
3

ffiffiffi
2
p

mb
� 	

Io
4
3

ffiffiffi
2
p

mb
� 	 m = (2h/kdo)

1/2

Source: Ref 2
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friction factor. Table 19 summarizes the equations
available for the prediction of friction factors for
both laminar and turbulent flows in various geo-
metries. Nomenclature for flow across tube banks
is shown in Fig. 22. In addition, the friction factor
chart for pipe flow is shown in Fig. 23, which is
known as the Moody Chart.

Forced Convection of External Flow

External flow includes flow along a flat plate;
flow over a bluff body such as a sphere, wire, or
tube; and flow normal to tube bundles. The
important difference between flows over a plate
and over a bluff body lies in the behavior of the
boundary layer. On a streamlined body, the
flow separation, if it takes place at all, occurs
near the rear. On a bluff body, the point of

separation of the boundary layer often lies not
far from the leading edge.
The flat plate is the simplest geometry to

analyze. It has been thoroughly studied, and
the results are very useful. For several geome-
tries, Table 20 shows a summary of the dimen-
sionless mean heat-transfer coefficient, Nu, for
external flow. Heat transfer in flow across tube
banks is of particular importance in the design
of heat exchangers. The correlations for the aver-
age Nusselt numbers for this situation have the
following form:

Nu ¼ CRemaxPr
1=3

where Remax is the Reynolds number based on
the largest velocity. All fluid properties in the
various dimensionless groups are evaluated at
the film temperature. The values of C and n

are presented in Table 21 for tube banks of 10
rows or more. If the number of rows is less than
10, the Nu value obtained from Table 21 should
be multiplied by an appropriate factor from
Table 22.

Forced Convection of Internal Flow

The heating and cooling of fluids flowing in
conduits are important heat-transfer processes in
engineering. In convective heat-transfer problems
of pipe flow, two types of boundary conditions
encountered most frequently are uniform wall
temperature (UWT) and uniform wall heat flux
(UHF). In either case, the Nusselt number is
expressed in terms of the Reynolds number and
Prandtl number. Table 23 summarizes the correla-
tions for forced convection of internal flow under
fully developed conditions.
When the fluid enters the pipe, a certain dis-

tance, called entrance length, is required for the
velocity to be fully developed. After the
entrance length, the velocity is independent of
axial position. Similarly, the thermal entrance
length is the distance required for the tempera-
ture profile to become fully developed. The
heat-transfer coefficient decreases as fluid
moves farther from the entrance. Table 24 pro-
vides the values of local Nusselt numbers for
laminar flow through a circular tube subject to
constant wall temperature and constant wall
flux conditions. For the case of turbulent flow,
the local Nusselt numbers in the combined ther-
mal and hydrodynamic entry length of circular
tubes with UHF and UWT are shown in
Fig. 24 and 25, respectively.

Free Convection

Free convection currents transfer internal
energy stored in the fluid in essentially the same
manner as forced convection currents. How-
ever, the intensity of the mixing motion is gen-
erally less in free convection; consequently, the
heat-transfer coefficients are lower than that of
forced convection. Free convection is the dom-
inant heat-flow mechanism from steam radia-
tors, walls of a building, the human body,
transmission lines, transformers, and electri-
cally heated wires to a quiescent atmosphere.
The determination of heat load on air condition-
ing or refrigeration equipment requires a
knowledge of free convection heat-transfer
coefficients. Gravity is not the only body force
that can produce free convection. Centrifugal
forces and coriolis forces also influence free
convective heat transfer, particularly in rotating
systems. The Nusselt number associated with
free convection from an isothermal wall is
related to the Grashof number and Prandtl num-
ber by the expression Nu = C(GrPr)nR, in
which a correction function, R, is introduced
to account for counteracting effects and to
cover a wider range of parameters. Results of
free convective heat-transfer coefficients of

Fig. 5 Comparison of fin efficiencies of four
longitudinal fins

Fig. 6 Comparison of fin efficiencies of four spines

Table 10 Optimum dimensions of some longitudinal fins and spines

Fin width, d0 Fin height, b

Longitudinal fin of rectangular profile
0:791 Ap

2 2h

k

� �� �1=3
1:262

kAp

2h

� �1=3

Longitudinal fin of triangular profile
1:328 Ap

2 2h

k

� �� �1=3
1:506

Apk

2h

� �1=3

Longitudinal fin of concave parabolic profile
1:651 Ap

2 2h

k

� �� �1=3
1:817

Apk

2h

� �1=3

Longitudinal fin of convex parabolic profile
1:071 Ap

2 2h

k

� �� �1=3
1:401

kAp

2h

� �1=3

Cylindrical spine
1:308 V 2 2h

k

� �� �1=5
0:744 V

k

2h

� �2
" #1=5

Conical spine
1:701 V 2 2h

k

� �� �1=5
1:320 V

k

2h

� �2
" #1=5

Spine of concave parabolic profile
1:825 V 2 2h

k

� �� �1=5
1:911 V

k

2h

� �2
" #1=5

Spine of convex parabolic profile
1:564 V 2 2h

k

� �� �1=5
1:041 V

k

2h

� �2
" #1=5

Source: Ref 3, 4
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Fin profile
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Table 11 Shape factor, S, for various systems in steady-state heat conduction, S ¼ Q
kðT1�T2Þ

Schematic diagram Shape factor Restrictions

Isothermal cylinder of radius r buried in semi-infinite medium having isothermal surface
2pL

cosh�1ðD=rÞ
L� r

2pL
lnð2D=rÞ

L� r

2pL
lnL

r 1�lnL=ð2DÞ
lnðL=rÞ

n o D > 3r
D� r
L� D

Isothermal sphere of radius r buried in infinite medium

4pr

Isothermal sphere of radius r buried in semi-infinite medium

having isothermal surface
4pr

1� r=2D

Conduction between two isothermal cylinders buried in infinite medium
2�L

cosh�1 D2�r2
1
�r2

2

2r1r2

� � L� r
L� D

Isothermal cylinder of radius r placed in semi-infinite medium as shown
2�L

lnð2L=rÞ
L� 2r

Schematic diagram Shape factor Restrictions

Eccentric cylinders of length L
2pL

cosh�1 r12þr22�D2

2r1r2

� � L� r2

Cylinder centered in a square of length L
2pL

lnð0:54W=rÞ
L�W

Pipe in a triangular body
2pL

ln 0:327a
r

� 	

Square pipe
6:791L

ln a
b

� 	� 0:054

Pipe in a pentagonal body
2pL

ln 0:724a
r

� 	

(continued)

T1 and T2 are two isothermal surface temperatures of the body summarized from Ref 5 and 6.
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Table 11 (continued)

Schematic diagram Shape factor Restrictions

Isothermal rectangular parallelepiped buried in semi-infinite

medium having isothermal surface

1:685L log 1þ b

a

� �� ��0:59
b

c

� ��0:078

Thin horizontal disk buried in semi-infinite medium

with isothermal surface

4r D = 0
8r D� 2r

Hemisphere buried in semi-infinite medium

2 p r

Isothermal sphere buried in semi-infinite medium with insulated surface
4pr

1þ r=2D

Two isothermal spheres buried in infinite medium
4p

r2
r1

1� ðr1=DÞ4
1�ðr2=DÞ2

h i
� 2r2

D

D > 5r

Thin rectangular plate of length L buried in semi-infinite

medium having isothermal surface
pW

lnð4W=LÞ
D = 0

2pW
lnð4W=LÞ

D�W

Schematic diagram Shape factor Restrictions

Pipe in a hexagonal body
2pL

ln 0:898a
r

� 	

Confocal ellipses
2pL

ln cþD
aþD
� �

Strip in an elliptical body
2pL

ln Dþc
a

� 	

Rectangular duct buried in a solid

5:7þ 6
2a

� 	
L

ln 3:5D
b1=4a3=4

� �

Row of pipes buried in a solid (for any one pipe)
2pL

ln e
pr sinh

2pD
e

� 	
 �
Pipes in semi-infinite solid

2pL
ln e

pr sinh
pD
e

� 	
 �
Pipes in midplane of solid

Toroidal body buried in a soil

4p2R= ln 8
R

r

lnð4R=DÞ
lnð8R=rÞ

� �
þ 1

� �
r� D� R

4p2R= lnð8R=rÞ D� R

(continued)

T1 and T2 are two isothermal surface temperatures of the body summarized from Ref 5 and 6.
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various geometrical systems are presented in
Table 25. The rate of free convection heat
transfer between the solid surface and the sur-
rounding fluid, apart from other factors,
depends on whether the flow is laminar or tur-
bulent. For an isothermal wall, laminar free
convection occurs when 104 < PrGr < 109,
and turbulent free convection occurs when PrGr
> 109. The free convection effect can be
neglected when PrGr < 103.
Another interesting phenomenon of complex

systems involving free convection is heat trans-
fer inside an enclosed space, such as heat trans-
fer in two isothermal vertical plates with two
different temperatures. For this case, the heat
flux is conveniently expressed in terms of effec-
tive or apparent thermal conductivity, ke, that is:

Q

A
¼ ke

DTw

d

where DTw is the temperature difference of two
surfaces, and d is the distance between the two
isothermal surfaces. The apparent conductivity,
which takes into account the free convection
effect, is expressed in a general form:

ke
k
¼ CðGrd PrÞn L

d

� �m

Table 26 lists values of C, n, and m for a num-
ber of physical systems.

Mixed Convection and Convection
from Rotating Bodies

In some forced convection situations, veloci-
ties of forced flow are comparable with the
velocities of natural convective currents, for
example, when the air velocity is of the order
1 ft/s. Under such conditions, a super-position
of forced and natural convection, called mixed
convection, must be considered. If the forced
convection effects are very large, the influence
of natural convection current may be negligible,
and similarly when the natural convection
forces are very strong, the forced convection
effect may be neglected. The ratio of Gr/Re2

gives a qualitative indication of the influence
of buoyancy on forced convection. When 0.1
< Gr/Re2 < 10, mixed convection becomes sig-
nificant. Regimes of free, forced, and mixed
convection for flows through horizontal or ver-
tical tubes are graphically shown in Fig. 26
and 27, respectively.
Heat transfer in a rotating system provides

typical examples of mixed convection. When
the rotational speed is low or when the differ-
ence between the surface temperature and fluid
bulk temperature is large, free convection may
dominate. When rotational speed is sufficiently
large, the influence of free convection becomes
relatively small, and the predominant mode of
heat transfer is by forced convection. When
Gr is of the same order of magnitude as Re2,
the combined effects of free and forced convec-
tion must be taken into account. Table 27 gives
the formulas for determining the heat transfer
of various rotating systems.

Thermal Radiation

The emission of thermal radiation is gov-
erned by the temperature of the emitting body.
Although the physical mechanism of radiation
is not completely understood, radiant energy is
sometimes visualized as transported by electro-
magnetic waves or by photons. Neither view-
point completely describes the nature of all
observed phenomena.

Electromagnetic phenomena encompass
many types of radiation, from short-wavelength
cosmic and g rays to long-wavelength radio
waves (Fig. 28). Thermal radiation is the por-
tion of the spectrum between wave-lengths
10�7 and 10�4 m. The visible spectrum runs
from 3.9 � 10�7 to 7.8 � 10�7 m. The propa-
gation velocity for all types of electromagnetic
radiation in a vacuum is c = l v = 3 � 108 m/s,
where l is the wavelength and v is the frequency
of the radiation. Radiation heat transfer differs in
two important respects from the conductive and
convective modes: no transfer medium is
required, and the energy transferred is propor-
tional to the fourth or fifth power of the tempera-
tures of the emitting bodies.

Blackbody and the Basic Laws of
Thermal Radiation

When radiant energy falls on a body, part may
be absorbed, part reflected, and the remainder
transmitted through the body. In mathematical
form a + r + t = 1, where a, r, and t are absorp-
tance, reflectance, and transmittance, respectively.
They represent the fraction of total energy
absorbed, reflected, and transmitted, respectively.
For themajority of opaque solidmaterials encoun-
tered in engineering, except for extremely thin
layers, practically none of the radiant energy is
transmitted through the body. Under this condi-
tion, a + r = 1. An arrangement that absorbs all
radiant energy at all wavelengths and reflects none
is called a blackbody.Although nomaterialwitha
= 1 andr =0 exists, it is used as a standard of com-
parison for a real body absorbing and emitting
radiation.
For a blackbody, total emissive power is

described by Stefan-Boltzmann’s law, and its
directional distribution of radiation intensity is
described by Lambert’s cosine law. The spectral
distribution of radiation intensity is given by
Planck’s distribution law and the wavelength for
the maximum spectral radiation intensity by
Wien’s displacement law. Thermal radiation emit-
ted from a black surface flows uniformly into the
whole hemispherical space, as depicted in Fig. 29.
A blackbody of surface area A, with uniform

Table 11 (continued)

Schematic diagram Shape factor Restrictions

Parallel disks buried in infinite medium
4p

2 p
2
� tan�1ðr=DÞ
 � D > 5r

Schematic diagram Shape factor Restrictions

Strip buried in a solid

(I)
2:94L

ðD=bÞ0:32

(II)
2:38L

ðD=bÞ0:24

T1 and T2 are two isothermal surface temperatures of the body summarized from Ref 5 and 6.

Table 12 Temperature history of simple
systems of negligible internal thermal
resistance (k ! 1)

System Temperature history, T�T1
Ti�T1

Infinite plate of thickness L e�(2h/Lrc)y

Infinite cylinder of radius r0 e�(2h/r0rc)y

Sphere of radius r0 e�(3h/r0rc)y

Infinite square rod of side a e�(4h/arc)y

Cube of side a e�(6h/arc)y

A thin plate submerged in
a fluid with temperature
that varies linearly with
time,
i.e., T1 = a + by

y ¼ ðaþ byÞ � rcVb
hA
þ

Ti � aþ rcVb
hA

� �
e�ðhA=rcV Þy

Note: r = density; c = specific heat; V = volume of the body; A = sur-
face area
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temperature T1, loses heat to its surroundings
(assumed black) with uniform temperature T2, at a
rate given by the equationQ = A s (T1

4� T2
4).

The blackbody hemispherical emissive
power is p times the directional emissive
power, which is normal to the surface and
equal to the radiation intensity. A summary of
the blackbody thermal properties is given in
Table 28. Some basic laws of thermal radiation
are briefly presented as follows.

Kirchhoff’s Law. The ratio of the emissive
power of a body in thermal equilibrium to that
of a blackbody at the same temperature is equal
to its absorptivity, expressed as:

e

eb
¼ a or e ¼ a

At a given temperature, the amount of inci-
dent radiation a body can absorb equals the

amount it can emit. This law applies only to a
few types of surfaces bearing gray surface
characteristics.
Lambert’s Cosine Law. Radiation intensity

in a given direction is proportional to the cosine
of the angle formed with the normal of the sur-
face of emission:

iby ¼ ibn cos y

When the surface radiation intensity follows the
same cosine law of a black-body radiation, the
normal emissivity is independent of the angle y,
and it is identical with the hemispherical emis-
sivity, en = e.
Planck’s Distribution Law. Spectral distri-

bution of the radiation intensity of a blackbody
is given by the equation:

ilb ¼ 2C1

l5ðeC2=lT � 1Þ

which gives the magnitude of the emitted
energy at each wavelength in the radiation
spectrum. This equation can be rewritten as:

ilb
T 5
¼ 2C1

ðlT Þ5ðeC2=lT � 1Þ

which states that for a givenvalue of (lT), the ratio
of ilb/T

5 is the same at all temperatures, and their
relationship can be represented by a single curve.
Stefan-Boltzmann’s Law. Total emissive

power of a blackbody is proportional to
the fourth power of the absolute temperature
of the surface. The hemispherical total
emissive power is given by:

eb ¼
ð1
0

elbdl ¼
ð1
0

pilbdl ¼ sT 4

where s is the Stefan-Boltzmann constant.
Wien’s Displacement Law. As temperature

increases, the maximum blackbody radiation
intensity shifts in the direction of the shorter
wave-lengths. The wavelength for the maxi-
mum radiation intensity for temperature T can

Table 13 Temperature distribution and heat transfer in time interval u

Schematic diagram Temperature distribution, T�T0

Ti�T0

Initial energy

storage, Qi Heat transfer in time interval u, Q
Qi

Semi-infinite solid

erf
x

2
ffiffiffiffiffi
ay
p

� �
rcA(Ti � T0) � 2ffiffiffi

p
p

ffiffiffiffiffi
ay
p

Infinite cylinder of radius r0 X1
n¼1

1

bn
exp �bn2ay=r20
� 	 rcpr20ðTi � T0Þ X1

n¼1

�1
b2n

1� exp �b2nay=r20

 �� �

J0[bnr/r0]/J1(bn)

bn are the roots of

J0(b) = 0
Infinite plate of thickness 2L

2

p

X1
n¼0

exp � nþ 1

2

� �
p

� �2
ay
L2

( )
rcAL(Ti � T0) 2

p2
X1
n¼0

�1
nþ 1

2

� 	2
ð�1Þn
nþ 1

2

cos nþ 1

2

� �
px
L 1� exp � nþ 1

2

� �
p

� �2
ay
L2

( )" #

Sphere of radius r0
2r0
pr

X1
n¼1

ð�1Þnþ1
n

exp �n2p2ay
r20

� � 4

3
pr30 rcðTi � T0Þ 6

p2
X1
n¼1

�1
n2

1� exp �n2p2ay
r20

� �� �

sin
npr
r0

� �

Note: Ti = initial temperature, T0 = T1, surface temperature; J0 = Bessel function of the first kind with zero order; J1 = Bessel function of the first
kind with first order; erf = error function
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Fig. 7 Temperature response, temperature gradient,
and heating rate in a semi-infinite solid, x �

0, after sudden change in surface temperature from Ti
when y < 0 to T0 for y � 0, (T0 = T1)
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be calculated from the equation lmax T = C3.
The numerical values for the various radiation
constants mentioned previously are given in
Table 29.

Radiation Shape Factor

In most practical problems involving radia-
tion, the intensity of thermal radiation moving
between surfaces is not greatly affected by
intervening media. Unless the temperature is
sufficient to cause ionization or dissociation,
monatomic and most diatomic gases as well as
air are transparent. Most industrial surfaces
can be considered diffuse emitters and radiation
reflectors in a heat-transfer analysis. Thus, a
key problem in calculating radiation heat trans-
fer is to determine the fraction of the total dif-
fuse radiation leaving one surface and
intercepted by another. The fraction of diffusely
distributed radiation leaving a surface Ai and
reaching surface Aj is the radiation shape factor
Fi � j. The first subscript denotes the emitting
surface, while the second subscript denotes the
receiving surface.
For two black surfaces A1 and A2, as shown

in Fig. 30, the net rate of transfer between A1

and A2 can be written as:

Q1�2 ¼ sðT 4
1 � T 4

2 ÞA1F1�2
¼ sðT 4

1 � T 4
2 ÞA2F2�1

where:

F1�2 ¼ 1

pA1

ð
A1

ð
A2

cos y1 cos y2
S2

dA1dA2

F2�1 ¼ 1

pA2

ð
A1

ð
A2

cos y1 cos y2
S2

dA1dA2

The shape factor Fi � j for diffuse radiation is a
geometric property of two surfaces involved.
One of the important properties of the shape
factor is known as the reciprocal relationship,
A1F1 � 2 = A2F2 � 1. A summary of view-factor
and energy-exchange relationships is presented
in Table 30. Radiation view factors between
two differential areas are described in Fig. 31.
View factors for finite areas are given in Ref
6, 10–13, 50, 59, 66.

Radiation Exchange in Black Enclosure

Consider the energy transfer within an enclo-
sure composed of N black surfaces that are indi-
vidually isothermal (Fig. 32). The net energy
loss due to radiation at the kth surface or the
energy required from an external source
through conduction, convection, or internal
generation to maintain the kth surface at Tk is:

Qk ¼ sAk

XN
j¼1
ðT 4

k � T 4
j ÞFk�j

which is the net energy transferred from Ak to
each surface.

Fig. 8 Temperature distribution and heat flow in an infinite slab of thickness 2L at a temperature Ti that has its surface
temperature suddenly changed to T0. (x is measured from the surface.)

Fig. 9 Temperature response of a cylinder, 0 � r � r0, after sudden change in external surface temperature at r = r0
from Ti when y < 0 to T0 for y � 0

Fig. 10 Temperature response of a sphere, 0 � r � r0, after sudden change in external surface temperature at r = r0
from Ti when y < 0 to T0 for y � 0
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Radiation Exchange in Gray Enclosure

An enclosure with N discrete surface areas is
shown in Fig. 33. A complex radiative exchange
occurs inside the enclosure when radiation
leaves a surface, is partially reflected by other
surfaces, and is then re-reflected many times
within the enclosure, with partial absorption at
each surface contact. An analysis can be

formulated with the net-radiation method. Based
on this method, the relationships between energy
flux at temperature in diffuse gray enclosures are
obtained. They are summarized in Table 31
under various boundary conditions.
As can be seen from Table 31, the desired

quantities of the external heat input, Qk, the
radiosity, Jk, and the surface temperature, Tk,
at a particular surface k are obtained from the

solution of N systems of equations. Table 32
gives some formulas for diffuse radiant heat
exchange for systems commonly encountered
in engineering applications.

Radiation Shields

Radiation heat transfer can be substantially
reduced by means of radiation shields, usually
consisting of a surface opaque to radiant trans-
mission with high thermal conductivity and low
emissivity. Shielding effectiveness is increased
if the shields are placed between mutually
radiating surfaces or over a surface against radi-
ation heating. The configuration in Fig. 34 shows
two large parallel walls separated by N radiation
shields. The heat-flow rate by radiation per unit
area, q, at steady state is given by:

q ¼ sðT 4
1 � T 4

2 Þ
1=e1 þ 1=e2 � 1þ PN

n¼1
ð1=en1 þ 1=en2 � 1Þ

where en1 and en2 are the emissivities on both
sides of a typical shield, n. In most instances,
the e is the same on both sides of each shield,
and all the shields have the same e. If all the
shield emissivities are represented as es, then
q becomes:

q ¼ sðT 4
1 � T 4

2 Þ
1=e1 þ 1=e2 � 1þNð2=es � 1Þ

If wall emissivities are the same as the shield
emissivities, that is, e1 = e2 = es, then the previ-
ous expression reduces to:

q ¼ sðT1
4 � T2

4Þ
ðN þ 1Þð2=es � 1Þ

where q decreases as 1/(N + 1) as the number of
shields increases. The expression for heat flow
through a series of concentric cylindrical or
spherical radiation shields is similar to that for
flat plates, as shown in Fig. 35. Thus:

Q ¼ A1sðT1
4 � T2

4Þ
1=e1 þ ðA1=A2Þð1=e2 � 1Þ þ PN

n¼1
ðA1=AsnÞð1=en1 þ 1=en2 � 1Þ

where the walls A1 and A2 and all the shields
Asn are diffuse. If all the shield emissivities
are the same and equal to es, then:

Q ¼ A1sðT1
4 � T2

4Þ
1=e1 þ 1=es � 1þ PN�1

n¼1
ðA1=AsnÞð2=es � 1Þ þ ðA1=AsN Þð1=es þ 1=e2 � 1Þ
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� �
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� �
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p� �� �
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Table 15 Order of magnitude of convective heat-transfer coefficients, h

Means of heat transfer Btu/h�ft2� �F W/m2�K
Air, free convection 1–5 6–30
Superheated steam or air, forced convection 5–50 30–300
Oil, forced convection 10–300 60–1800
Water, forced convection 50–2000 300–6000
Water, boiling 500–10000 3000–60000
Steam, condensing 1000–20000 6000–120,000

Table 16 Physical interpretation of some dimensionless groups

Name of the dimensionless group Group Physical interpretation

Biot (Bi) hLc

k

Internal resistance to heat conduction

External resistance to heat conduction

Eckert (E) u2
1

cpðTw � T1Þ
Kinetic energy

Thermal energy

Euler (Eu) p

ru21
Pressure forces

Inertia forces

Fourier (Fo) ky

rcpLc
2

Dimensionless time for transient

Conduction

Froude (Fr) u21
Lcg

Inertiaforces

Gravityforces

Grashof (Gr) gL3
cbðTw � T1Þ

v2
(Buoyancy forces) (Inertia forces)

ðViscous forcesÞ2

Lewis (Le) Drcp
k

Mass diffusivity

Thermal diffusivity

Mach (M) u1
uc

Velocity

Sonic velocity

Nusselt (Nu) hLc

k

Ratio of temperature gradients

Peclet (Pe) cpru1Lc

k

Convective heat transfer

Conductive heat transfer

Prandtl (Pr) mcp
k

Momentum diffusivity

Thermal diffusivity

Rayleigh (Ra) gL3
cbðTw � T1

nua

Forces due to buoyancy and inertia

Forces due to viscosity and thermal diffusion

Reynolds (Re) rm1Lc

m
Inertia forces

Viscous forces

Schmidt (Sc) m
rD

Momentum diffusivity

Mass diffusivity

Sherwood (Sh) hDLc

D

Ratio of concentration gradients

Stanton (St) h

cpru1

Heat transfer at wall

Convective heat transfer

Table 17 Key differential equations of fluid flow

Continuity equation r � V = 0

Equation of motion

Free convection
r
dV

dy
¼ mr2V� rgbðT � T1Þ

Forced convection
r
dV

dy
¼ �rp þ mr2Vþ rg

Energy equation
rcp

dT

dy
¼ kr2T þ mF

d

dy
¼ substantial time derivative;

d

dy
¼ @

@y
þ V � r

V = ui + vj + wk, velocity field

F ¼ dissipation function,

e.g., F ¼ 2
@u

@x

� �2

þ @v

@y

� �2

þ @w

@z

� �2
" #

þ @v

@x
þ @u

@y

� �2

þ @w

@y
þ @v

@z

� �2

þ @u

@z
þ @w

@x

� �2

� 2

3

@u

@x
þ @v

@y
þ @w

@z

� �2

for Cartesian

coordinates

m = dynamic viscosity; b = coefficient of volumetric thermal expansion
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Table 18 Analogy formula for Stanton number of tube flow

Type of analogy Stanton No., St ¼ Nu
RePr

Reynolds f

8

Prandtl f
8

1þ 5

ffiffi
f
8

q
ðPr�1Þ

Von Karman f
8

1þ 5

ffiffi
f
8

q
Pr�1þ ln 1þ 5

6
ðPr�1Þ
 �� �

Colburn’s f

8
Pr
�2=3

Deissler and Webb f
8

1:07þ 9

ffiffi
f
8

q
ðPr�1Þ Pr�1=4

Petukhov and Popov f
8

1:07þ 12:7
ffiffi
f
8

q
ðPr2=3 �1Þ

The friction factor here is defined as f ¼ tw=ð1=2r u2b Þ. Another form of friction factor, known as Faning friction factor, is encountered frequently in
engineering. It is one-quarter of the present value.

Table 19 Equations for friction coefficient at various flow and geometric conditions

Flow and geometry Friction coefficient equation

Restriction and

remarks

Laminar flow in either smooth or rough pipe
f ¼ 64

Re

Re < 2,000

Turbulent flow in smooth pipe and parallel
planes

1ffiffi
f
4

q ¼ 4:0 log Re

ffiffiffi
f

4

r !
� 0:4

Re > 3,000

Turbulent flow in rectangular, triangular, and
trapezoidal conduit

f

4
¼ 0:079 Re�0:25

Re < 100,000

Fully turbalent flow in rough pipe 1ffiffi
f
4

q ¼ 4 log
D

e
þ 2:28

D=e

Re

ffiffi
f
4

q > 0:01

Transition flow in rough pipe 1ffiffi
f
4

q ¼ 4 log
D

e
þ 2:28� 4 log

1þ 4:67
D=e

Re

ffiffi
f
4

q
0
B@

1
CA

Laminar flow over flat plate fx ¼ 0:664 Rex
�0:5 Rex < 5 � 105

Turbulent flow over flat plate fx ¼ 0:0592 Rex
�0:2 5 � 105 < Rex <

107

Flow across tube banks in line arrangement
f ¼ 4 0:044þ 0:08ðSl=DÞ

½ðSt �DÞ=D�½10:43þð1:13D=SlÞ�

" #
Remax

�0:15 2,000 < Re <
40,000(a)

Flow across tube bank in staggered arrangement
f ¼ 4 0:25þ 0:1175

St�D
D

� 	1:08
" #

Remax
�0:16 2,000 < Re <

40,000(a)

Note: Remax = maximum Reynolds number ¼ rumaxD

m
. (a) See Fig. 22 for notations.

Fig. 22 Nomenclature for flow across tube banks
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Fig. 23 Friction factor

Table 20 Correlations for forced convection from external flow

Geometry Correlation for Nu Restrictions

Laminar
Flow over flat plate 0.664 ReL

1/2 Pr1/3 Re < 5 � 105

(0.036 ReL
4/5 � 836)Pr1/3 Re > 5 � 105

0.036 (ReL
0.8 Pr0.43 � 17,400) + 297 Pr1/3 105 < ReL < 5.5 � 106 0.7 < Pr < 380

0.036 Pr0.42 (ReL
0.8 � 9,200)(m1/mw)

0.14 0.26 < m1/mw < 3.5

Inclined plate 0.86 Re1/2 Pr1/3

Flow across cylinder [0.8327 � 0.4 ln (RePr)]�1 RePr < 0.2

0.3 + 0.62f [1 + 3.92 � 10�4 Re5/8]4/5

f = Re1/2 Pr1/3 [1 + (0.4/Pr)2/3]�1/4 0.2 < RePr

0.989 Re0.33 Pr1/3 0.4 < Re < 4

0.911 Re0.385 Pr1/3 4 < Re < 40

0.683 Re0.466 Pr1/3 40 < Re < 4000

0.193 Re0.618 Pr1/3 4000 < Re < 40,000

0.0266 Re0.805 Pr1/3 40,000 < Re < 400,000

(0.35 + 0.56 Re0.62) Pr0.3 0.1 < Re < 100,000

(0.4 Re1/2 + 0.06 Re2/3) Pr0.4 (mb/mw)
1/4 10 < Re < 100,000

Flow across square tube 0.246 Re0.58 Pr1/3 5000 < Re < 100,000

0.102 Re0.675 Pr1/3 5000 < Re < 100,000

Note: All fluid properties are evaluated at the film temperature, Tf = (Tw + T1)/2. The Reynolds number and the Prandtl number are evaluated at film
temperature. Source: Ref 7
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Table 21 Values of C and n in the correlation for heat transfer in flow across tube banks of
10 rows or more
Nu = C RenPr1/3 (2000 < Remax < 40,000)

St/D

St/D

1.25 1.5 2.0 3.0

C n C n C n C n

In-line: 1.250 0.348 0.592 0.275 0.608 0.100 0.704 0.0633 0.752
1.500 0.367 0.586 0.250 0.620 0.101 0.702 0.0678 0.744
2.000 0.418 0.570 0.299 0.602 0.229 0.632 0.198 0.648
3.000 0.290 0.601 0.357 0.584 0.374 0.581 0.286 0.608

Staggered: 0.600 . . . . . . . . . . . . . . . . . . 0.213 0.636
0.900 . . . . . . . . . . . . 0.446 0.571 0.401 0.581
1.000 . . . . . . 0.497 0.558 . . . . . . . . . . . .
1.125 . . . . . . . . . . . . 0.478 0.565 0.518 0.560
1.250 0.518 0.556 0.505 0.554 0.519 0.556 0.522 0.562
1.500 0.451 0.568 0.460 0.562 0.452 0.568 0.488 0.568
2.000 0.404 0.572 0.416 0.568 0.482 0.556 0.449 0.570
3.000 0.310 0.592 0.356 0.580 0.440 0.562 0.421 0.574

Note: See Fig. 22 for geometry and notations.

Table 22 Ratio of (Nu) for N rows deep to (Nu) for 10 rows deep

N 1 2 3 4 5 6 7 8 9 10

Ratio for in-line tubes 0.64 0.80 0.87 0.90 0.92 0.94 0.96 0.98 0.99 1.0
Ratio for staggered tubes 0.68 0.75 0.83 0.89 0.92 0.95 0.97 0.98 0.99 1.0

Table 23 Correlations for forced convection from internal flow

Flow geometry Correlation for Nu Restrictions

Flow through a smooth circular tube UWT: 1.86(RePr)1/3 (D/C)1/3 (m/mw)
0.14 Laminar flow RePr(D/L) > 10

Recr = 2300
UWT : 3:66þ 0:0668ðD=LÞRePr

1þ 0:04½ðD=LÞRePr�2=3
Laminar flow

Fully developed Laminar flow

UWT: Nu = 3.658 UHF: Nu = 4.364 Turbulent flow 0.5 < Pr < 1.0

UWT: 0.021Re0.8Pr0.6 UHF: 0.022Re0.8Pr0.e

UHF :
f
8

� 	
RePrðm=mwÞn

1:07þ 12:7
ffiffi
f
8

q
ðPr2=3 � 1Þ

Turbulent flow 2 < Pr < 140

f = [1.82 log10Re � 1.64]�2 5 � 103 < Re < 1.25 � 105 0.08 <
(m/mw) < 40

n = 0.11 for heating; 0.25 for cooling

UWT: 5.0 + 0.025(RePr)0.8 UHF: 4.82 + 0.0185 (RePr)0.827 Liquid metal 1000 < RePr
Liquid metal 102 < RePr < 104 3.6 � 103 < Re < 9.05 � 105

Flow through a rough circular tube UWT:

f
8

� 	
RePr

1þ 1:5Re�1=8 Pr�1=6½ðf=fsÞ Pr�1�
Pr < 1
500 < Re < 8 � 104

UHF :
f

8

� �
RePr 1þ 5:19 Pr

0:44ðe
Þ0:2 � 8:48

� � ffiffiffi
f

8

r( #
1.2 < Pr < 5.9

e
 ¼ Re

ffiffiffi
f

8

r
� e
D

6 � 104 < Re < 5 � 105

0:0024<
e
D
<0:049

Flow between plates UWT: 12 + 0.03RemPrn

m ¼ 0:88� 0:24

3:6þ Pr

0.1 < Pr < 104

n = 0.33 + 0.5e�0.6Pr 104 < Re < 106

8.3 + 0.02Re0.82Prn 0.004 < Pr < 0.1

n ¼ 0:52þ 0:0096

0:02þ Pr

104 < Re < 106

Helically coiled tube; coil dia., D; tube dia., d
UWT :

0:32þ 3ðd=DÞ
0:86� 0:8ðd=DÞ

Laminar flow

20 < Re (d/D)1/2 < 830
Re0.5Pr0.33(d/L)(0.14 + 0.8(d/D) 30 < Pr < 450
UHF: 1.268Re0.26Pr1/6 0.01 < (d/D) < 0.08

Note: UHF = uniform heat flux at the boundary; UWT = uniform wall temperature; thermal properties are evaluated at bulk temperature except mw, which is evaluated at the wall temperature; f = friction factor for a smooth
tube; e/D = relative roughness of wall. Source Ref 7
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Table 24 Local laminar Nusselt number,
for circular tube with uniform wall heat
flux (UHF) and wall temperature (UWT)

x
 ¼ x
r

1
RePr

Nux
 for UHF Nux
 for UWT

0.001 . . . 12.86
0.002 12.0 . . .
0.004 9.93 7.91
0.010 7.49 5.99
0.020 6.14 . . .
0.040 5.19 4.18
0.080 . . . 3.79
0.100 4.51 3.71
0.200 . . . 3.66
1 4.36 3.66

Source: Ref 8
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Fig. 24 Nusselt number in the combined thermal and
hydrodynamic entry length of a circular tube

with uniform heat flux at wall

Fig. 25 Nusselt number in the combined thermal and hydrodynamic entry length of a circular tube with constant
wall temperature
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Table 25 Free convection heat-transfer coefficient for various systems, Nu = C(GrPr)nR

System Schematic diagram C n R Operating conditions

Exposed surfaces

Horizontal cylinder 0.53 1

4

1 Laminar flow

0.13 1

3

1 Turbulent flow

Vertical plate and vertical cylinder with large diameter 0.8 1

4 1þ 1þ 1ffiffiffiffiffi
Pr
p

� �2
" #�1=4 Laminar flow; to obtain local

Nu, use C = 0.6, X = x; formula
applicable
to vertical cylinder when
D

L
� 38ðGrÞ�1=4

0.0246 2

5

[Pr1/6/(1 +
0.494Pr2/3)]2/5

Turbulent flow; to obtain local
Nu use C = 0.0296 and X = x

Heated horizontal plate facing upward 0.54 1

4

1 Laminar flow; for circular
disc of diameter D, use X = 0.9D

0.14 1

3

1 Turbulent flow

Vertical cylinder with small diameter 0.686 1

4

[Pr/(1 + 1.05Pr)]1/4
Laminar flow; Nutotal ¼ Nuþ 0:52

L

D

Heated horizontal plate facing downward 0.27 1

4

1 Laminar flow only

Moderately inclined plate 0.8 1

4 cosf

1þ 1þ 1p
Pr

� �
2
4

3
51=4 Laminar flow (multiply Gr by cos f in

the formula for inclined plate)

Sphere 0.49 1

4

1 Laminar flow (air)

(continued)

Note: X = characteristic length of the system; DT = Tw � T1, Th = temperature of the hot surface, Tc = temperature of the cold surface; b = coefficient of volumetric thermal expansion for fluids; all properties are evaluated at
film temperature except b, which is computed from T1 or Tb. Source: 1, 6
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Table 25 (continued)

System Schematic diagram C n R Operating conditions

Enclosed spaces

Two horizontal parallel plates; cold plate uppermost 0.195 1

4

Pr�1/4 Laminar (air) 104 < Gr < 4 � 105

0.068 1

3

Pr�1/3 Turbulent (air) Gr > 4 � 105

Two vertical parallel plates at the same temperature 0.04 1 (d/L)3 Air layer

Hollow vertical cylinder with open ends 0.01 1 (d/L)3 Air column

Two vertical parallel plates at different temperatures (h for both
surfaces)

0.18 1

4

(L/d)�1/9(Pr)�1/4 Laminar (air) 2 � 104 < Gr < 2 � 105

0.065 1

3

(L/d)�1/9(Pr)�1/3 Turbulent (air) 2 � 105 < Gr < 107

Two inclined parallel plates

Nu ¼ 1

2
½Nuvert cosfþ Nuhoriz sinf�

Two horizontal parallel plates; hot plate uppermost . . . . . . . . . Pure conduction q ¼ k
ðTh � TcÞ

d0.27 1

4

1 Laminar (air) 3 � 105 < Gr � Pr < 3 �
1010

(continued)

Note: X = characteristic length of the system; DT = Tw � T1, Th = temperature of the hot surface, Tc = temperature of the cold surface; b = coefficient of volumetric thermal expansion for fluids; all properties are evaluated at
film temperature except b, which is computed from T1 or Tb. Source: 1, 6
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Table 25 (continued)

System Schematic diagram C n R Operating conditions

Rectangular solid with uniform temperature 0.55 1

4

1
Laminar flow

1

X
¼ 1

c
þ 1

ðaþ bÞ=2

Note: X = characteristic length of the system; DT = Tw � T1, Th = temperature of the hot surface, Tc = temperature of the cold surface; b = coefficient of volumetric thermal expansion for fluids; all properties are evaluated at
film temperature except b, which is computed from T1 or Tb. Source: 1, 6

Table 26 Summary of empirical relations for free convection in enclosures in the form
e/k = C(Grd Pr)n(L/d)m

Fluid Geometry GrdPr Pr L/d C n m

Gas Vertical plate, isothermal <2000 ke / k = 1.0
6000–200,000 0.5–2 11–42 0.197 1

4
� 1

9
200,000–1.1 � 107 0.5–2 11–42 0.073 1

3
� 1

9
Horizontal plate, isothermal, heated
from below

<1700 ke/k = 1.0
1700–7000 0.5–2 . . . 0.059 0.4 0
7000–3.2 � 105 0.5–2 . . . 0.212 1

4

0

>3.2 � 105 0.5–2 . . . 0.061 1

3

0

Liquid Vertical plate, constant heat flux or
isothermal

104–107 1–20,000 10–40 0.42(Pr0.012) 1

4

�0.3

106–109 1–20 1–40 0.046 1

3

0

Horizontal plate, isothermal, heated
from below

<1700 ke/kp1.0 . . .
1700–6000 1–5000 . . . 0.012 0.6 0
6000–37,000 1–5000 . . . 0.375 0.2 0
37,000–108 1–20 . . . 0.13 0.3 0
>108 1–20 0.057 1

3

0

Gas or
liquid

Vertical annulus Same as vertical
plates

Horizontal annulus, isothermal 6000–106 1–5000 . . . 0.11 0.29 0
106–108 1–5000 . . . 0.40 0.20 0

Spherical annulus 120–1.1 � 109 0.7–4000 . . . 0.228 0.226 0

Source: Ref 9
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Fig. 26 Regimes of free, forced, and mixed convection for flow through horizontal tubes
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Fig. 27 Regimes of free, forced, and mixed convection for flow through vertical tubes
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Table 27 Heat-transfer coefficient of rotating bodies

Formula Conditions

Rotating disc

Nu = (0.277 + 0.105 Pr)Re0.5 Laminar flow, Re < 2.5 � 105, 0.7 < Pr < 5.0
Nu = 1.1 Re0.5 Laminar flow, Re < 2.5 � 105, Pr = 10
Nu = 0.015 Re0.8 Turbulent flow, Re > 2.5 � 105, Pr = 0.72

Nu ¼ 0:015 Re0:8 � 100
rc
R

� �2 Laminar flow between r = 0 and r = rc,
turbulent flow between r = rc and r = R
where rc = (2.5 � 105 v/o)1/2, Pr = 0.72

Nu = 0.4(Re2 + Gr)0.25

where

Nu ¼ hR

k
, Re ¼ oR2

v
,

Gr ¼ bgR3p3=2DT
v2

Combined effects of free convection and
rotation in laminar flow (axis horizontal)

Rotating cone

Nu = 0.515 (Gr)0.25 Laminar free convection, Pr = 0.72, Gr/Re2 >
2.0

Nu = 0.33 Re0.5 Forced convection, Pr = 0.72, Gr/Re2 < 0.05
Nu = Re0.5[0.331 + 0.412 (Gr/Re2) + . . .] Combined free and forced convection, Pr =

0.72, 0.2 < Gr/Re2 < 1.0
where

Nu ¼ hL

k
, Re ¼ oL2 sin a

v
,

Gr ¼ bgL3 cos aDT
v2

Formula Conditions

Rotating cylinder

Nu = 0.456 (GrPr)0.26 Free convection, Re < (Gr/Pr)0.5

Nu = 0.18[(0.5 Re2 + Gr)Pr]0.315 Combined free and forced convection, Re � 5
� 104

Nu ¼ Re � Pr ffiffiffiffiffiffiffiffiffiffiffiffi
CD=2

p
5 Prþ5 lnð3 Prþ1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2=CD

p
� 12

Forced convection, Re > 105

CD from:
Re

B
¼ �1:828þ 1:77 ln B

for B > 950
Re

B
¼ �3:68þ 2:04 ln B

for B < 950
where B ¼ Re

ffiffiffiffiffiffiffi
CD

p
Nu ¼ 0:135½ð0:5Re2 þ Re2f þ GrÞ Pr�0:33 Combined effects of rotation, free convection,

and crossflow, Ref < 1.5 � 104, 0.6 < Pr <
15, 103 < Re < 5 � 104, value in square
bracket [ ] < 109

Nu ¼ hD

k
;Re ¼ oD2

v
,

Ref ¼ y1D
v

;Gr ¼ bgD3DT
v2

Rotating sphere

Nu = 0.43 Re0.5 Pr0.4 Laminar flow, Gr/Re2 < 0.1, Re < 5 � 104,
0.7 < Pr < 217

Nu = 0.066 Re0.67 Pr0.4 Turbulent flow, Gr/Re2 0.1, 5 � 104 < Re < 7
� 105, 0.7 < Pr < 7

Nu = 2(Re2 + Gr)0.164 Combined free and forced convection, Gr/Re2

> 0.1, 103 < Re < 2 � 104, 4 � 106 < Gr <
2 � 107

where

Nu ¼ hD

k
;Re ¼ oD2

v

Gr ¼ bgD3DT
v2

Note: The fluid properties are taken at the film temperature; o = angular velocity of rotation; X = characteristic length; DT = Tw � T1 CD = surface drag coefficient Source: Ref 6
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Fig. 28 Radiation spectrum

Fig. 29 Diffuse radiation

Table 28 Blackbody thermal properties

Symbol Name Definition Geometry Formula

i0lbðl; T Þ Spectral intensity Emission in any direction
per unit of projected area
normal to that direction,
and per unit time,
wavelength interval about l,
and solid angle

2C1

l5ðeC2=lT � 1Þ
Planck’s law

i0bðT Þ Total intensity Emission, including all wavelengths,
in any direction per unit of projected
area normal to that direction,
and per unit time and solid angle

sT 4

p

e0lbðl; y; T Þ Directional spectral emissive power Emission per unit solid angle
in direction y per unit surface area,
wavelength interval, and time

i0lb cos y
Lambert’s cosine law

e0bðy; T Þ Directional total emissive power Emission, including all wavelengths,
in direction y per unit surface area,
solid angle, and time

sT 4

p
cos y

Lambert’s cosine law

elb (l, y1 � y2,
j1 � j2, T)

Finite solid-angle spectral emissive
power

Emission in solid angle
y1 � y � y2, j1 � j � j2

per unit surface area,
wavelength interval, and time

i0lb
sin2 y2 � sin2 y1

2
ðj2 � j1Þ

(continued)

Note: Spectral denotes dependence on wavelength for any radiation quantity; superscript prime (0) implies the directional quantity; F0 � l represents fraction of total blackbody intensity or emissive power lying in spectral

region 0 � l, that is, F0�l ¼
Ð l
0

elbðlÞdl
sT 4 . 1
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Table 28 (continued)

Symbol Name Definition Geometry Formula

e (y1 � y2, j1 � j2, T) Finite solid-angle total emissive power Emission, including all wave-lengths,
in solid angle
y1 � y � y2, j1 � j � j2 per unit
surface area, and time

sT 4

p
ðj2 � j1Þ

sin2 y2 � sin2 y1
2

elb (l1 � l2, y1 � y2, j1 � j2, T) Finite solid-angle band emissive power Emission in solid angle
y1 � y � y2, j1 � j � j2,
and wavelength band l1 � l2
per unit surface area and time

sT 4

p
ðj2 � j1Þ

sin2 y2 � sin2 y1
2

�ðF0�l2 � F0�l1 Þ

elb (l, T) Hemispherical spectral emissive power Emission into hemispherical
solid angle per unit surface area,
wavelength interval, and time

pi0lb

elb (l1 � l2, T) Hemispherical band emissive power Emission in wavelength band
l1 � l2 into hemispherical solid angle
per unit surface area and time

ðF0�l2 � F0�l1 ÞsT 4

e,(T) Hemispherical total emissive power Emission, including all wavelengths,
into hemispherical solid angle
per unit surface area and time

sT4

Stefan-Boltzmann’s law

Note: Spectral denotes dependence on wavelength for any radiation quantity; superscript prime (0) implies the directional quantity; F0 � l represents fraction of total blackbody intensity or emissive power lying in spectral

region 0 � l, that is, F0�l ¼
ðl
0

elbðlÞdl
sT 4

. Source: Ref 10

Table 29 Radiation constants in Planck’s,
Stefan-Boltzmann’s, and Wien’s equations

Constant Definition Value

C1 Planck’s spectral energy
distribution first constant

0.595 � 10�8

W�m2

C2 Planck’s spectral energy
distribution second constant

1.438 � 10�2

m�K
C3 Wien’s displacement law 0.289 � 10�2

m.K
s Stefan-Boltzmann’s constant 5.669 � 10�8

W/m2�K4

Fig. 30 Geometrical shape-factor notation
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Fig. 31 (a) Area dA1 of differential width and any length, to infinitely long strip dA2 of differential width and with
parallel generating line to dA1. (b) Strip of infinite length b and of differential width, to differential strip of

same length on parallel generating line. (c) Two ring elements on the interior of a right circular cylinder.

Fig. 32 Enclosure composed of N black isothermal
surfaces

Fig. 33 Enclosure composed of N discrete gray
surface areas with typical surfaces j and k

Table 30 Summary of configuration-factor and energy-exchange relations

Net energy transfer Configuration factor Reciprocity

Elemental area to elemental area

d2Qd1$d2 ¼ s T1
4 � T2

4
� 	

dA1dFd1�d2 dFd1�d2 ¼ cos y1 cos y2
pS2

dA2
dA1dFd1�d2 ¼ dA2dFd2�d1

Elemental area to finite area

dQd1$2 ¼ s T1
4 � T2

4
� 	

dA1Fd1�2 Fd1�2 ¼
ð
A2

cos y1 cos y2
�S2

dA2
dA1Fd1�2 ¼ A2dF2�d1

Finite area to finite area

Q1$2 ¼ s T1
4 � T2

4
� 	

A1F1�2 F1�2 ¼ 1

A1

ð
A1

ð
A2

cos y1 cos y2
�S2

dA2dA1
A1F1�2 ¼ A2F2�1

Table 31 Relationship between energy flux and temperature in diffuse gray enclosures

Known boundary conditions Desired quantities Relationship

Tk on all surfaces Qk XN
j¼1

dkj
ej
� Fk�j

1� ej
ej

� �
Qj

Aj
¼
XN
j¼1
ðdkj � Fk�jÞsTj

4

1 � k � N Jk dkj ¼ 1&when k ¼ j
0&when k 6¼ j


XN
j¼1

dkj � ð1� ekÞFk�j

 �

Jj ¼ eksTk
4

k = 1, 2, . . . N
Qk on all surfaces Tk XN

j¼1
dkj � Fk�j
� 	

sTj
4 ¼

XN
j¼1

dkj
ej
� Fk�j

1� ej
ej

� �
Qj

Aj

1 � k � N Jk
Jk �

XN
j¼1

Fk�jJj

 !
¼ Qk

Ak

Tk for 1 � k � m Qk for 1 � k � m XN
j¼1
½dkj � ð1� ekÞFk�j�Jj ¼ eksTk

41 � k � m

Qk for m + 1 � k � N Tk for m + 1 � k � N XN
j¼1
ðdkj � Fk�jÞJj ¼ Qk

Ak
mþ 1 � k � N

Jk for 1 � k � N Solve for Jj from above N system equations first, then:

Qk ¼ Akek
1� ek

ð�Tk
4 � JkÞ1 � k � m

Tk ¼ Qkð1� ekÞ
Aek

þ Jk

� �
1

s

� �1=4
mþ 1 � k � N

Note: Qk equals external heat input to kth surface; Jk is radiosity, or energy leaving kth surface per unit area and unit time.
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Table 32 Rate of radiant energy exchange between diffuse surfaces

Schematic diagram Radiation heat-exchange rate

Gray surface to blackbody surroundings

Q1�2 ¼ e1sðT1
4 � T2

4ÞA1

Two arbitrary surfaces

Q1�2 ¼ se1e2A1F1�2ðT1
4 � T2

4Þ
e1e2 þ e2F1�2ð1� e1Þ þ e1F2�1ð1� e2Þ

Two infinitely large parallel planes

Q1�2 ¼ 1
1
e1
þ 1

e2
� 1

s T1
4 � T2

4
� 	

A1

A small enclosed body and the enclosure

Q1�2 ¼ e1A1sðT1
4 � T2

4Þ

Infinitely long concentric cylinders, concentric spheres, or an

arbitrary enclosed body and its enclosure

Q1�2 ¼ 1

1
e1
þ A1

A2

1
e2
� 1

� �s T1
4 � T2

4
� 	

A1

Two black surfaces in the presence of reradiating surfaces

Q1�2
r
¼ rðT1

4 � T2
4ÞA1F1r2

where

F1�2
r
¼ F1�2 þ 1

1
F1�r
þ A1

A2F2�r

Schematic diagram Radiation heat-exchange rate

Two black surfaces that do not “see” themselves in the presence of reradiating surfaces

Q1�2 ¼ s T1
4 � T2

4
� 	

A1F1�2
where

F1�2 ¼ A2 �A1F
2
1�2

A1 þ A2 � 2A1F1�2

Two arbitrary gray surfaces in the presence of reradiating surfaces

Q1�2
r
¼ sA1F1�2 T1

4 � T2
4

� 	
where

F1�2 ¼ 1

1
F1r2
þ 1

e1
� 1þ A1

A2

1
e2
� 1

� �
and

F1�2
r
¼ F1�2 þ 1

1
F1�r
þ A1

A2F2�r
A gas and a black bounding surface

QA�g ¼ sA1ðegTg
4 � agTw

4Þ

A gas and a black bounding surface in the presence of a reradiating bounding surface

QA�g
r
¼ egA1 Tg

4 � Tw
4

� 	
where

eg ¼ 1þ Ar=A1

1þ eg
ð1�egÞFr�1

" #
eg ¼ equivalent emissivity

A gas and a gray bounding surface in the presence of a reradiating bounding surface

QA�c
r
¼ sA1 Tg

4 � Tw
4

� 	
1
eg
þ 1

e1
� 1

where

eg ¼ 1þ Ar=A1

1þ eg
ð1�egÞFr�1

" #
eg
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Fig. 34 Parallel walls separated by N radiation shields

Fig. 35 Radiation shields between concentric cylinders or spheres
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Fluid Dynamic Equations*

A FLUID cannot resist shear stress by static
deformation in the manner of a solid. Any shear
stress applied to a fluid results in motion of that
fluid, which continues as long as the shear
stress is applied. A fluid at rest must be in a
state of zero shear stress, a state known as the
hydrostatic stress condition. A liquid, which is
composed of relatively close-packed molecules
with strong cohesive forces, retains its volume
and forms a free surface in a gravitational field
if the upper surface is not confined. Gases, with
widely spaced molecules and negligible cohe-
sive forces, are free to expand until encounter-
ing confining walls.

Properties of Fluids

The Continuum

Certain properties are defined on the basis of
fluid particles being considered as a continuous
medium. A fluid particle is composed of many
finite-sized molecules with finite distance
between the molecules. For air under standard
conditions, there are 2 � 1019 molecules in
1 cm3, with a mean distance travelled between
each molecular collision of 6.35 � 10�6 cm.
Therefore, the overall motion of the fluid is of
interest, not the motion of individual molecules,
and the fluid can be treated as a continuous
medium, also called a continuum.

Pressure

Pressure is defined at a point in a continuum
as:

p ¼ lim
A!A0

F

A
(Eq 1)

where F is the force normal to the surface A,
and A0 is the smallest area surrounding the point
that is consistent with continuum approach. The
mean pressure over a plane area in a fluid is the
ratio of the normal force acting on an area to
the area. The pressure at a point is the limit
approached by the mean pressure as the area
is reduced to a very small size around the point.
When pressure is measured relative to zero

pressure, it is called absolute pressure. When
pressure is measured relative to surrounding
atmospheric pressure, it is called gage pressure.

Density

Density at a point in a continuum is defined as:

r ¼ lim
V!V 0

M

V
(Eq 2)

where M is the mass in volume, V, and V0 is the
smallest volume surrounding the point that is
consistent with the continuum approach. Mean
density is the ratio of the fluid mass to the vol-
ume. Density at a point is the limit approached
by the mean density as the volume is reduced to
a very small size around the point.

Coefficient of Compressibility

This property describes the change of volume
with applied pressure at a given temperature:

b ¼ � 1

V

@V

@p

� �
T

(Eq 3)

Its reciprocal, the isothermal bulk modulus k,
is defined as:

k ¼ �V @p

@V

� �
T

(Eq 4)

Viscosity

In a solid, shear stress is generally propor-
tional to shear strain, and the material ceases
to deform when equilibrium is reached. In a
viscous fluid, however, shear stress is propor-
tional to the time rate of strain. The proportion-
ality factor for the viscous fluid is the dynamic,
or absolute, viscosity:

t ¼ m
du

dy
(Eq 5)

where t is the shear stress, m is the dynamic
viscosity, u is the velocity and du/dy is the
time rate of strain or velocity gradient
(Fig. 1). This linear variation of shear stress

with rate of strain describes the behavior of
a large class of fluids called Newtonian
fluids. The velocity gradient at the boundary
must be finite, because the shear stress cannot
be infinite. When the velocity profile is such
that the gradient becomes smaller farther
away from the boundary, the shear stress will
reach a maximum at the boundary and will
decrease with distance from the wall.
Another form of the coefficient of viscosity
is the kinematic viscosity, defined as:

n ¼ m
r

Variation of Viscosity with Temperature.
Temperature has a strong effect on viscosity,
while pressure exerts a moderate effect. The
viscosity of gases and most liquids increases
slowly with increases in pressure. Gas viscosity
increases with temperature, the functional
relationship being approximated by the two
common equations listed as follows:

Fig. 1 Velocity gradient

*Adapted from ASM Handbook of Engineering Mathematics, American Society for Metals, 1983

ASM Handbook, Volume 22A: Fundamentals of Modeling for Metals Processing
D.U. Furrer and S.L. Semiatin, editors, p 659-672

Copyright © 2009 ASM International®
All rights reserved.

www.asminternational.org
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m
m0
� T=T0ð Þn Power law

½ðT=T0Þ3=2ðT0 þ SÞ�=T þ S Sutherland law


(Eq 6)

where m0 is a known viscosity at a known abso-
lute temperature, T0, and n and S are constants.
For air, n � 0.67 and S � 110 K.
Liquid viscosity decreases with temperature

in a manner roughly described by the exponen-
tial function, m � ae�bT. Preferred, however, is
the empirical result:

ln
m
m0
� aþ b

T0

T

� �
þ c

T0

T

� �2

(Eq 7)

For water, with T0 = 273.16 K and m0 =
0.001792 kg/(m � s), acceptable values are a =
�1.94, b = �4.80, and c = 6.74, with accuracy
of approximately þ�1%.
Non-Newtonian Fluids. Fluids that do not

follow the linear law of Eq 5 are called
non-Newtonian and are analyzed as problems
in rheology. Figure 2 shows how the shear
stress varies with respect to the strain rate for
some different types of fluids as compared to
Newtonian fluids.

Surface Tension

Liquid surfaces exert a tension on portions of
surfaces and objects that are in contact with the
liquid, even in the absence of motion. This ten-
sion acts in the plane of the surface, and the
magnitude of the force per unit length is defined
as the surface tension, s.

Vapor Pressure

Molecules escape from a liquid surface until
the pressure of the space in contact with the
surface reaches a value such that there is no

net exchange of molecules between the liquid
and vapor. This pressure is called the saturated
vapor pressure, pv. The vapor pressure is a
function of the temperature of the liquid.

Fluid Statics

Pressure

The pressure intensity, or pressure, is a scalar
quantity and was previously defined in Eq 1.
Figure 3 shows a free-body diagram of forces on
a fluid element in a static fluid. Analysis of these
forces shows that pressure at a point in a static fluid
acts with the same magnitude in all directions:

pn ¼ px ¼ py ¼ pz (Eq 8)

Variation of Pressure with Elevation

Considering the forces on the element in
Fig. 4, it can be shown that by applying the
equations of equilibrium, the pressure variation
becomes:

dp

dl
¼ �g sina

Noting that sin a = dz/dl:

dp

dl
¼ �g dz

dl
(Eq 9)

or:

dp

dz
¼ �g (Eq 10)

where g = pg (specific weight). This is the basic
equation for the variation of hydrostatic pres-
sure with elevation. For a fluid with a uniform
density, this pressure variation becomes:

p1
g
þ z1 ¼ p2

g
þ z2 (Eq 11)

or:

�p ¼ �g�z (Eq 12)

The sum shown in Eq 11, p/g + z, is called the
piezometric head.
The static pressure variation in a compress-

ible fluid can be determined using the ideal
gas equation of state:

r ¼ p

RT
¼ 1

�
(Eq 13)

where v � specific volume. This can be
expressed in the form:

g ¼ pg

RT
(Eq 14)

where R = gas constant, T = absolute tempera-
ture, and p = absolute pressure. The tempera-
ture variation in the troposphere is given by:

Fig. 3 Pressure forces on a fluid element

Fig. 2 Rheological behavior of viscous materials.
Stress versus strain rate Fig. 4 Pressure variation with elevation
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T ¼ T0 � aðz� z0Þ (Eq 15)

where T0 is the temperature at a reference level
where the pressure is known, and a is the lapse
rate. Using Eq 14, the pressure relation becomes:

dp

dz
¼ � pg

RT
(Eq 16)

For the stratosphere, the temperature is
assumed to be constant. Therefore:

ln p ¼ � zg

RT
þ C (Eq 17)

At z = z0, p = p0 and:

p ¼ p0e
�ðz�z0Þg=RT (Eq 18)

Manometers

The basic law governing manometers is
Pascal’s law: Any two points at the same eleva-
tion in a continuous mass of the same static fluid
will be at the same pressure. For an open
manometer (Fig. 5), the pressures are related by:

pA ¼ pa � r1gðzA � z1Þ � r2gðz1 � z2Þ (Eq 19)

where pa is the atmospheric pressure.
For differential manometers, with a gas flow-

ing, the pressure difference between points 1
and 2 is given by Dp = gmDh, where gm is the
specific weight of the manometer liquid, and
Dh is the deflection of this liquid (Fig. 6). For
a more dense fluid in the pipe:

�p ¼ ðgm � gf Þ�h (Eq 20)

where gf = specific weight of fluid in the pipe
and gm = specific weight of manometer fluid.

Forces on Submerged Surfaces

Plane (Flat) Surfaces. For the flat plate
shown in Fig. 7, the differential force on the
differential area, dA, is:

dF ¼ p dA or dF ¼ gy sinadA

Total force on the area becomes:

F ¼
ð
A

p dA ¼
ð
A

gy sina dA (Eq 21)

For constant g and sin a, Eq 21 is integrated to
give:

F ¼ ðgy sinaÞA (Eq 22)

Therefore, the resultant hydrostatic force on a
plane surface is the product of the pressure at
the centroid of the surface and the area of the
surface:

F ¼ pA (Eq 23)

The position of the center of pressure (Fig. 7)
is given by:

ycp ¼ yþ I

yA
(Eq 24)

where �y is the centroid of the flat area and �I =
moment of inertia about the axis through the
centroid and parallel to the surface of the fluid.
The location of the x-coordinate of the center

of pressure is:

xcp ¼ Ixy
�yA
þ �x (Eq 25)

where Ixy = product of inertia of the plate about
the centroidal axes and xcp ¼ �x if the plate is
symmetric about one of the centroidal axes.

Fig. 5 Open manometer for measuring pA relative to atmospheric pressure

Fig. 6 Differential manometer

Fig. 7 Hydrostatic pressure distribution on a plane surface
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Curved Surfaces. Vertical forces on a fluid
volume in contact with a curved surface
(Fig. 8) are given by:

FRy ¼ FV þ FW (Eq 26)

where FV is due to the pressure of the fluid
along OB, FW is due to the weight of the fluid
in the volume AOB, and FRy is the vertical reac-
tion of surface AB. The reaction FRx serves to

balance the pressure force caused by the fluid
along OA. Forces on the curved surface can
therefore be analyzed by applying the equations
of equilibrium to the fluid volume (AOB) sup-
ported by the surface.
Buoyancy. The two basic laws concerning

buoyancy are:

� A body immersed in a fluid experiences a
vertical buoyant force equal to the weight
of the fluid it displaces. The net vertical
force on a submerged body is:

FB ¼ ðrgÞ ðbody volumeÞ (Eq 27)

� A floating body displaces its own weight in
the fluid in which it floats. The net vertical
force on a floating body is given by:

FB ¼ ðrgÞ ðdisplaced volumeÞ (Eq 28)

Fluid Motion

Kinematic Relationships—Velocity
and Acceleration

Velocity is a vector function of position and
time with three components, u, v, and w, each
of which is a scalar field in itself:

Vðx; y; z; tÞ ¼ uðx; y; z; tÞiþ vðx; y; z; tÞj
þ wðx; y; z; tÞk (Eq 29)

By mathematically mainpulating the veloc-
ity-field function, kinematic properties such as
the acceleration vector, the local angular-veloc-
ity vector, and the volume flux through a sur-
face can be derived.

The acceleration vector is found from the
time derivative of the velocity vector, that is:

a ¼ dV

dt
¼ @V

@t
þ @V

@x

dx

dt
þ @V

@y

dy

dt
þ @V

@z

dz

dt
(Eq 30)

where dx = u dt dy = v dt and dz = w dt.
Therefore:

dV

dt
¼ @V

@t
þ u

@V

@x
þ v

@V

@y
þ w

@V

@z

� �
(Eq 31)

where the first term on the right side is called
the local acceleration, and the three terms in
the parentheses are called the convective accel-
eration. The total acceleration (Eq 31) of a par-
ticle can also be written:

a ¼ dV

dt
¼ @V

@t
þ ðV�rÞV (Eq 32)

where:

r ¼ i
@

@x
þ j

@

@y
þ k

@

@z

The operator, d=dt ¼ @=@tþ ðV�rÞ, may be
applied to any fluid property, either scalar or
vector, and is given the name substantial or
material derivative.

Rotation of Fluid and Vorticity

Considering rotation about the z-axis in
Fig. 9, the angular velocity is given by:

oz ¼ oAB þ oAC

2
(Eq 33)

where:

oAB ¼ @v

@x
;oAC ¼ � @u

@y

Therefore:

oz ¼ 1

2

@v

@x
� @u

@y

� �
(Eq 34)

The rates of rotation about the x- and y-axes are:

ox ¼ 1

2

@w

@y
� @v

@z

� �
(Eq 35)

oy ¼ 1

2

@u

@z
� @w

@x

� �
(Eq 36)

The vorticity vector for Cartesian coordinates
is:

V ¼ @w

@y
� @v

@z

� �
iþ @u

@z
� @w

@x

� �
jþ @v

@x
� @u

@y

� �
k

¼ 2�o ¼ 2ðr � VÞ
(Eq 37)

For incompressible flow:

r�V ¼ 0 (Eq 38)

Fig. 8 Analysis of hydrostatic force on a curved surface

Fig. 9 Deformation of fluid element
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Flow with negligible local angular velocity
or vorticity is called irrotational, and:

r� V ¼
i j k
@
@x

@
@y

@
@z

u v w

������
������ ¼ 0 (Eq 39)

Equation 39 implies that for irrotational flow:

@w

@y
¼ @v

@z

@u

@z
¼ @w

@x

@v

@x
¼ @u

@y

Flow Rate Through a Surface

As shown in Fig. 10, the volume that leaves
through area dA in time dt is:

dV ¼ V dt dA cos y ¼ ðV�nÞdA dt (Eq 40)

The total volume rate of flow Q through the
surface S is given by:

Q ¼
ð
S

ðV�nÞdA ¼ ð
S

VndA (Eq 41)

where Vn is the component of V normal to dA,
and n is the outward normal unit vector. The
mass flow is expressed as:

_m ¼
ð
S

rðV�nÞdA ¼ ð
S

rVndA (Eq 42)

For constant density, it becomes:

_m ¼ rQ (Eq 43)

The average velocity passing through the sur-
face can be computed from Q by:

Vavg ¼ Q

A
¼
Ð
S VndAÐ
S dA

(Eq 44)

Streamlines

Streamlines are used to visualize the flow pat-
terns in a fluid. For any given instant, they repre-
sent lines in the flow field across which no fluid
passes. The velocity of every fluid particle on
the streamline is in the direction tangent to the
line, and when a sufficient number of such
streamlines in the flow field are known, the flow
pattern is determined, as shown in Fig. 11.
Mathematically, this means that every vector

are length dr along a streamline must be tan-
gent to V, and their respective components
must be in exact proportion. Therefore:

dx

u
¼ dy

v
¼ dz

w
¼ dr

V
(Eq 45)

and:

dx

ds
¼ u

dy

ds
¼ v

dz

ds
¼ w (Eq 46)

where ds is a parameter equal to the ratios in
Eq 45. These equations can be integrated to find
streamline equations.

Variation of Pressure due to Rigid
Body Motion

For a tank (Fig. 12) undergoing uniform
acceleration, the angle of the liquid surface is:

tan a ¼ ax

g
(Eq 47)

Pressure can be easily determined using this
angle to find the fluid depth.
For a tank (Fig. 13) undergoing rotation, the

pressure variation becomes:

d

dr
ðpþ gzÞ ¼ rro2 (Eq 48)

Integration produces:

pþ gz ¼ rr2o2

2
þ constant

or:

p

g
þ z� V 2

2g
¼ constant (Eq 49)

Concept of the Control Volume

Eulerian and Lagrangian Views

In analyzing problems in mechanics, two
approaches have evolved. In the Lagrangian
method, equations of motion are written for a
moving particle. Variations in a fluid property
are monitored for each individual particle as it
moves through the flow field, and the property,
say pressure, is considered a function of time,
p = p(t).
The Eulerian approach requires analysis of

the fluid particles as they pass given locations
in the flow field. The fluid property is consid-
ered a function of the spatial coordinates as
well as time and p = p(x, y, z, t). This is often
called the control-volume viewpoint and is the
one most often used in fluid mechanics.

Control-Volume Transport Equation

The symbol B is used to represent a general
extensive property, and b is used for the
corresponding intensive property. The volume
rate of flow past a given area A can be written
as Q = V � A if the velocity vector V is consid-
ered uniform over the vector area A. For the
control volume (cv) of Fig. 14, the net volumet-
ric flow rate out of the control volume is:

Qout �Qin ¼ V2�A2 þ V1�A1 (Eq 50)

Fig. 10 Volume rate of flow through an arbitrary surface. (a) An elemental area dA on the surface. (b) The
incremental volume moving through dA equals VdtdA cos y Fig. 11 Streamlines describing a flow pattern
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The net mass flow rate then becomes:

_m ¼
X
cs

rV�A (Eq 51)

where the summation indicates that several
inflow and outflow areas can be considered.
This is similar to Eq 42.
For the rate of flow of an extensive property,

B, out of the control volume, the mass rate is
multiplied by the intensive property, b:

_B ¼
X
cs

brV�A (Eq 52)

Generally, this equation is used in integral
form:

_B ¼
ð
cs

brV�dA (Eq 53)

The transport equation relates the rate of
change of property B for a fixed amount of
mass (system) to the change in the property as
it relates to the control volume. The equation is:

dBsys

dt
¼ @

@t

ð
cv

brdV þ
ð
cs

brV�dA (Eq 54)

where the left side is the rate of change of
the extensive property of the system. The right
side refers to accumulation of the property in
the control volume and flow of the property
across the control surface (cs). For steady flow,
the equation becomes:

dBsys

dt
¼
ð
cs

brV�dA (Eq 55)

Note that B can be either a scalar or vector
quantity.
For a control volume moving at constant

velocity with respect to an inertial frame:

Vr ¼ V� Vs (Eq 56)

and:

d

dt
ðBsysÞ ¼

ð
cv

@

@t
ðbrÞdV þ

ð
cs

brðVr�nÞdA
(Eq 57)

where Vr = fluid velocity relative to the control
surface, Vs = velocity of the control volume,
and V = absolute fluid velocity.

For the most general situation, the control
volume is both moving and deforming arbi-
trarily. The control surface has a deformation,
its velocity Vs = Vs(r, t), so that the relative
velocity becomes Vr = V(r, t) � Vs(r, t). This
may be a complicated function. The volume
integral in Eq 57 must allow the volume ele-
ments to distort with time, and therefore, the
time derivative must be applied after integra-
tion. The transport theorem becomes:

d

dt
ðBsysÞ ¼ @

@t

ð
cv

brdV
� �

þ
ð
cs

brðVr�nÞdA
(Eq 58)

Laws to which the Control-Volume
Concept is Applied

The time rate of change of total mass, M, of a
system of particles (conservation of mass) is:

dM

dt
¼ 0 (Eq 59)

The time rate of change of momentum of a
system of particles is equal to the sum of the
externally applied forces (Newton’s second
law):

X
F ¼ dðMVÞ

dt
(Eq 60)

The rate of change of total energy (E) of a
system of particles is equal to the rate of addi-
tion of heat ( ~Q) less the rate of work (W) done
by the system (conservation of energy):

dE

dt
¼ d ~Q

dt
� dW

dt
(Eq 61)

These laws express the time rate of change of
fluid quantities for a system of particles and
must now be applied to the control volume.

Continuity Equation

Integral Formulation

The general form of the continuity equation
(conservation of mass) is:

ð
cs

rV�dA ¼ � @

@t

ð
cv

rdV (Eq 62)

This states that the net rate of mass outflow
from the control volume equals the rate of
decrease of mass within the control volume.
For steady flow:

ð
cs

rV�dA ¼ 0 (Eq 63)

If the flow is steady and the velocity is con-
stant across several inflow and outflow sections:

X
rV�A ¼ 0

For one inflow and one outflow, such as seen in
Fig. 14:

Fig. 13 Rigid body rotation of a liquid in a tank

Fig. 12 Uniform acceleration of a tank of liquid

Fig. 14 Control-volume example
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r1V1A1 ¼ r2V2A2 (Eq 64)

If r is constant, then:

V1A1 ¼ V2A2 (Eq 65)

Differential Formulation

The differential formulation may be derived
by applying the transport equation to a differen-
tial control volume. For Cartesian coordinates,
the continuity equation is:

@

@x
ðruÞ þ @

@y
ðrvÞ þ @

@z
ðrwÞ ¼ � @r

@t
(Eq 66)

If the flow is steady, this becomes:

@

@x
ðruÞ þ @

@y
ðruÞ þ @

@z
ðrwÞ ¼ 0 (Eq 67)

For an incompressible fluid, then:

@u

@x
þ @u

@y
þ @w

@z
¼ 0 (Eq 68)

for both steady and unsteady flow. In vector
notation, Eq 68 becomes:

r�V ¼ 0 (Eq 69)

Momentum Equation

Integral Form—Linear Momentum

FromNewton’s second law, it can be shown that
the summation of all external forces on a system
equals the net rate at which momentum crosses
the control surface plus the rate at which momen-
tum is accumulated inside the control volume:

�F ¼
ð
cs

VrV�dAþ @

@t

ð
cv

Vr dV (Eq 70)

The two types of forces usually considered are
surface forces and body forces:

X
F ¼

X
FS þ �FB (Eq 71)

In Cartesian coordinates, the momentum equa-
tion for each direction is given as follows:
x-direction:

X
Fx ¼

X
cs

uðrV�AÞ þ @

@t

ð
cv

ur dV (Eq 72)

y-direction:

X
Fy ¼

X
cs

vðrV�AÞ þ @

@t

ð
cv

vr dV (Eq 73)

z-direction:

X
Fz ¼

X
cs

wðrV�AÞ þ @

@t

ð
cv

wr dV (Eq 74)

The term
P
cs
:

used in Eq 72 through 74 indicates that the veloci-
ties are uniformly distributed across the areas.
The use of an average (uniform) velocity

across a surface results in an error. The simple
one-dimensional momentum flux calculation:

ð
cs

VðrV�nÞdA ¼ ð rV 2dA ¼ rA �V 2

where �V represents the average velocity, should
be modified using the term arA �V 2. The factor
a is the dimensionless momentum flux correc-
tion factor, a � 1, defined as:

a ¼
ð

V
�V

� �2

dA (Eq 75)

where V is the actual velocity (spatially
varying).

Integral Form—Angular Momentum
(Moment of Momentum)

The extensive property describing angular
momentum for the system is:

Bsys ¼
ð
ðr� VÞr dV

¼ angular momentum of the system (Eq 76)

The general form of the angular momentum
equation becomes:

X
M ¼

ð
cs

ðr� VÞrV�dAþ @

@t

ð
cv

ðr� VÞr dV
(Eq 77)

For uniform velocity across the inlet and outlet
areas:X

M ¼
X
cs

ðr� VÞrV�Aþ @

@t

ð
cv

ðr� VÞr dV

(Eq 78)

Differential Form—Linear Momentum

As previously stated, the forces in a linear
momentum system are of two types: body
forces and surface forces. Body forces are due
to external fields (gravity, magnetism, electric
potential) that act on the entire mass within
the element. The only body force considered
here is gravity. The surface forces are caused
by stresses on a fluid element, the general state
of stress for an element being shown in Fig. 15.
The stress tensor is defined as:

tij ¼
�pþ t0xx tyx tzx
txy �pþ t0yy tzy
txz tyz �pþ t0zz

������
������ (Eq 79)

The basic differential momentum equation
for an infinitesimal element now becomes:

rg�rpþr�t0ij ¼ r
dV

dt
(Eq 80)

Fig. 15 Notation for stresses on a fluid element
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where:

dV

dt
¼ @V

@t
þ u

@V

@x
þ v

@V

@y
þ w

@V

@z

and:

t0ij ¼
t0xx tyx tzx
txy t0yy tzy
txz tyz tzz

������
������

This last tensor is called the viscous stress ten-
sor and results from removing the thermody-
namic pressure from Eq 79. The third term
in Eq 80 represents the viscous force per unit
volume exerted on the fluid element.
In Cartesian coordinates, the three compo-

nents of the momentum equation are:

rgx � @p

@x
þ @t0xx

@x
þ @tyx

@y
þ @tzx

@z

¼ r
@u

@t
þ u

@u

@x
þ v

@u

@y
þ w

@u

@z

� �

rgy � @p

@y
þ @txy

@x
þ @t0yy

@y
þ @tzy

@z

¼ r
@v

@t
þ u

@v

@x
þ v

@v

@y
þ w

@v

@z

� �

rgz � @p

@z
þ @txz

@x
þ @tyz

@y
þ @t0zz

@z

¼ r
@w

@t
þ u

@w

@x
þ v

@w

@y
þ w

@w

@z

� �
ðEq 81Þ

For frictionless flow, t0ij ¼ 0, and the equation
becomes:

rg�rp ¼ r
dV

dt
(Eq 82)

This is Euler’s equation for inviscid flow. It can
be integrated along a streamline to get the
Bernoulli equation.
For a Newtonian fluid, the viscous stresses are

proportional to the strain rates of the fluid ele-
ment and the coefficient of viscosity. If the fluid
is considered to be both isotropic and incom-
pressible, the terms of the stress tensor become:

t0xx ¼ 2m
@u

@x
t0yy ¼ 2m

@v

@y
t0zz ¼ 2m

@w

@z

txy ¼ tyx ¼ m
@u

@y
þ @v

@x

� �
txz ¼ tzx ¼ m

@w

@x
þ @u

@z

� �

tyz ¼ tzy ¼ m
@v

@z
þ @w

@y

� �
(Eq 83)

where m is the viscosity coefficient. The momen-
tum equation for a Newtonian fluid with constant
density and viscosity is now written as:

rgx � @p

@x
þ m

@2u

@x2
þ @2u

@y2
þ @2u

@z2

� �
¼ r

du

dt

rgy � @p

@y
þ m

@2v

@x2
þ @2v

@y2
þ @2v

@z2

� �
¼ r

dv

dt

rgz � @p

@z
þ m

@2w

@x2
þ @2w

@y2
þ @2w

@z2

� �
¼ r

dw

dt

(Eq 84)

These are referred to as the Navier-Stokes
equations. In vector form, this set has the form:

r
dV

dt
¼ rg�rpþ mr2V (Eq 85)

The d=dt terms in Eq 80, 84, and 85 refer to the
substantial derivative.

Energy Equation

Integral Form

The symbol E refers to the total energy of
the system, and e is the energy per unit mass.
From the first law of thermodynamics,

dE=dt ¼ _~Q� _W and the energy equation
becomes:

_~Q� _W ¼ @

@t

ð
cv

er dV þ
X
cs

erV�A (Eq 86)

where the velocity and the energy crossing the
control surface are considered constant over a
flow area. The

_~Q and _W indicate rates for heat
transfer and work, respectively.
The term e can be replaced by its equivalent:

e ¼ ûþ V 2

2
þ zg

These terms represent the internal energy,
kinetic energy, and potential energy per unit
mass. The energy equation becomes:

_~Q� _W ¼ @

@t

ð
cv

V 2

2
þ gzþ û

� �
r dV

þ
X
cs

V 2

2
þ gzþ û

� �
rV�A (Eq 87)

Work is the sum of the shaft work and the flow
work.
Flow work is the work done by pressure

forces as the system moves through space. This
is expressed for all streams passing through the
control surface as:

_Wf ¼
X
cs

pV�A (Eq 88)

where area vector A is considered to be directed
outward. Shaft work is defined as any work
other than flow work.
Using flow work and shaft work, the energy

equation takes the form:

_~Q� _Ws ¼ @

@t

ð
cv

V 2

2
þ gzþ û

� �
r dVþ

X
cs

p

r
þ V 2

2
þ gzþ û

� �
rV�A (Eq 89)

If the velocity or the other properties are not
uniform across the section, then:

_~Q� _Ws ¼ @

@t

ð
cv

V 2

2
þ gzþ û

� �
r dVþð

cs

p

r
þ V 2

2
þ gzþ û

� �
rV�dA

(Eq 90)

For steady flow:

_~Q� _Ws ¼
X
cs

V 2

2
þ gzþ h

� �
rV�A (Eq 91)

where the property of enthalpy, h ¼ p=rþ û,
has been employed. With a single inflow and
outflow, this equation reduces to:

1

_m
ð _~Q� _WsÞ þ gz1 þ h1 þ V1

2

2
¼ gz2 þ h2 þ V2

2

2

(Eq 92)

The kinetic energy terms in Eq 92 are not
exact, because V1 and V2 are assumed to be con-
stant across the input and output areas. If we
consider for the moment that �V1 and �V2 represent
these average (uniform) velocities, then the
proper kinetic energy terms are:

�1

�V1
2

2
and �2

�V2
2

2

where l1 and l2 are the kinetic energy correc-
tion factors. The term l is defined by:

� ¼ 1

A

ð
V
�V

� �3

dA (Eq 93)

where V is the actual velocity (spatially vary-
ing) at the control surface. Some common
values for l are 1.0, constant velocity over the
section; 2.0, parabolic laminar flow; and 1.05,
turbulent flow. The momentum correction fac-
tors of Eq 75 do not vary from 1.0 as much as
the values of l. The use of the correction factors
do not account for the rather remote possibility
that enthalpy varies across the section.
Equation 92 may be rewritten in the follow-

ing form:

p1
g
þ V1

2

2g
þ z1 ¼ p2

g
þ V2

2

2g
þ z2 þ

_W

_mg
þ hL (Eq 94)

This arrangement assigns units of length (feet,
meters) to each term. The symbol hL represents
losses between points 1 and 2 (head loss) and
includes heat transfer from the control volume
resulting from viscous dissipation and any loss
of mechanical energy in general.
For a stream tube (a filament of fluid of

infinitesimal cross section bounded by stream-
lines) containing an inviscid fluid and without
any shaft work, Eq 94 leads to Bernoulli’s
equation:

p1
g
þ V1

2

2g
þ z1 ¼ p2

g
þ V2

2

2g
þ z2 (Eq 95)

Equation 95 can be derived either from the
energy equation, as given previously, by inte-
grating Euler’s equation (Eq 82) along a stream-
line. It is thus considered valid if applied along a
streamline in a frictionless, incompressible,
steady flow with no shaft work, and also may
be shown to apply between any two points in
an incompressible, irrotational, steady flow field.
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Differential Formulation

The heat transfer across the control surface is
considered here to be by conduction only.
Expressed in vector form, Fourier’s law shows
that:

_~Q ¼ r�ðkr T Þdx dy dz (Eq 96)

where k is the thermal conductivity. The net
viscous-work rate can be shown to be:

_Wv ¼� @

@x
ut0xx þ vtxy þ wtxz
� 	�

þ @

@y
utyx þ vt0yy þ wtyz
� �

þ @

@z
utzx þ vtzy þ wt0zz
� 	�

dx dy dz

¼�r� V�t0ij� �
dx dy dz ðEq 97Þ

The resulting form of the differential energy
equation is:

r
de

dt
þ V�rp ¼ r�ðk r T Þ þ r� V�t0ij� �

(Eq 98)

where e ¼ ûþ 1=2V 2 þ gz. The viscous-work
term can be separated as follows:

r� V�t0ij� �
� V� r�t0ij� �

þ � (Eq 99)

where F is the viscous dissipation function.
For an incompressible Newtonian fluid:

� ¼ m 2
@u

@x

� �2

þ 2
@v

@y

� �2

þ 2
@w

@z

� �2

þ @v

@x
þ @u

@y

� �2
"

þ @w

@y
þ @v

@z

� �2

þ @u

@z
þ @w

@x

� �2
#

(Eq 100)

The viscous dissipation is always positive.
The usual vector form of the general differ-

ential energy equation that can be obtained
using Eq 98, 99, and 100 is:

r
@û

@t
þ pðr�VÞ ¼ r�ðkrT Þ þ � (Eq 101)

This form neglects radiation and internal
energy generation. Using the approximation:

dû � cvdT

where cv (constant volume specific heat), m, k,
and r are constants, the energy equation takes
the form:

rcv
dT

dt
¼ kr2T þ � (Eq 102)

where:

dT

dt
¼ @T

@T
þ u

@T

@x
þ v

@T

@y
þ w

@T

@z

Boundary Conditions for the
Differential Equations

Typical boundary conditions are shown in
Fig. 16 and described subsequently.
Initial Condition. For unsteady flow, there

must be an initial condition or a known initial
spatial distribution for each variable: r, V, p,
û, and T.
Solid Wall. For a solid, impermeable wall,

there is no velocity slip and no temperature
jump in a viscous heat-conducting fluid:

Vfluid ¼ Vwall Tfluid ¼ Twall (Eq 103)

An exception to Eq 103 exists in an extremely
rarefied gas flow, where slippage can occur.
Inlet or Outlet of Control Volume. At any

inlet or outlet section of the flow, complete dis-
tribution of velocity, pressure, and temperature
must be known for all times.
Liquid/Gas Interface. The interface is

denoted by z = Z(x, y, t). There is equality of
vertical velocity across the interface, so that
no holes appear between liquid and gas and:

wliq ¼ wgas ¼ dZ
dt
¼ @Z

@t
þ u

@Z
@x
þ v

@Z
@y

(Eq 104)

This is the kinematic boundary condition. The
viscous-shear stresses must also balance:

ðtzyÞliq ¼ ðtzyÞgas ðtzxÞliq ¼ ðtzxÞgas (Eq 105)

The pressures must balance at the interface
except for surface-tension effects:

pliq ¼ pgas � �ðR�1x þR�1y Þ (Eq 106)

where:

R�1x þ R�1y ¼
@2Z=@x2 þ @2Z=@y2

½1þ ð@Z=@xÞ2 þ ð@Z=@yÞ2�3=2

and G is the surface tension coefficient.
The heat transfer must be the same on both

sides of the interface:

ð ~QzÞliq ¼ ð ~QÞgas (Eq 107a)

or:

k
@T

@z

� �
liq

¼ k
@T

@z

� �
gas

(Eq 107b)

Equation 107(b) accounts for only conduction
at the surface.
Simplified Free Surface. It is assumed that

the upper fluid only exerts pressure on the
lower surface, and shear, heat transfer, and non-
linear slope terms are neglected. The conditions
become:

pliq � pgas � �
@2Z
@x2
þ @2Z

@y2

� �
(Eq 108)

Fig. 16 Typical boundary conditions in viscous heat-conducting fluid flow. Source: Ref 1 with permission
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where:

wliq � @Z
@t

;
@V

@z

� �
liq

� 0;
@T

@z

� �
liq

� 0

For open-channel flow, surface tension is
also neglected and:

pliq � patm (Eq 109)

Inviscid Flow. Only the normal velocities
must match at any solid surface:

ðVnÞfluid ¼ ðVnÞwall (Eq 110)

Dimensional Analysis

Dimensional analysis enables the formulation
of functional relationships in a set of nondimen-
sional groups composed of physical variables,
with the groups numbering less than the vari-
ables. For dimensional analysis, physical vari-
ables must be known or assumed. An equation
expressing a relationship between flow quanti-
ties must be dimensionally homogeneous. Phys-
ical quantities used in fluid-flow problems can
be expressed in terms of the fundamental units
of mass (M), length (L), and time (T). Temper-
ature is not required in basic fluid problems.
The dimensions of various physical quantities

used in fluid mechanics are presented in Table 1.
This table is based on the M, L, T primary
system.

The Pi Theorem

This theorem is critical to all applications of
dimensional analysis and can be stated as fol-
lows: if a dimensional quantity u, an unknown,

is expressed in terms of n other dimensional
quantities x1, . . ., xn by:

u ¼ fðx1; . . . ; xnÞ (Eq 111)

and if the first m variables x1, . . ., xm have
independent dimensions, then Eq 111 can be
written as:

� ¼ fð1; 1; . . . ;�1; . . . ;�n�mÞ (Eq 112)

The terms P, P1, P2, . . ., Pn � m are forms
of u, xm + 1, . . ., xn, respectively, made dimen-
sionless by forming combinations with x1,
. . ., xm.
Any dimensional relationship that expresses

one physical variable, the unknown, in terms
of n other physical variables, of which m have
independent dimensions, can be arranged as a
relationship between the unknown in dimen-
sionless form and n � m dimensionless combi-
nations of the remaining variables. The pi
theorem is valid only if the relationship in
Eq 111 is true regardless of what system of
units is being used.

Power Product Method

This method is a practical application of the
pi theorem, and it is best described using an
example taken from Ref 2 and used by permis-
sion. To determine the frictional force exerted
by a flowing fluid on a smooth pipe, assume
that the significant physical quantities are the
fluid density, r, the average fluid velocity, V,
the interior surface area of pipe, S, the dynamic
viscosity, m, the internal diameter of pipe, D,
and the frictional force, F, exerted on the pipe
by the fluid. This relationship takes the form:

F ¼ F ðr; V; S;m; DÞ (Eq 113)

This type of expression can generally be
expanded into a power series in the form:

F ¼ c1ra1V a2Sa3ma4Da5 þ c2rb1V b2Sb3mb4Db5 þ . . .

(Eq 114)

where the a and b terms represent numerical
exponents that depend on the nature of the
function F, and the c’s represent dimensionless
numerical coefficients. The terms on the right
side of Eq 114 are added, so every term must
have the same dimensions.
Substituting the physical dimensions from

Table 1 into Eq 114 produces:

ML

T 2
¼ M

L3

� �a1 L

T

� �a2

ðL2Þa3 M

LT

� �a4

La5þ

M

L3

� �b1 L

T

� �b2
ðL2Þb3 M

LT

� �b4
Lb5 þ . . .

For each term, like exponents for the primary
dimensions M, L, and T are collected to obtain
three algebraic equations with five unknowns.
For the first term, we obtain:

For M : 1 ¼ a1 þ a4
For L : 1 ¼ �3a1 þ a2 þ 2a3 � a4 þ a5
For T : �2 ¼ �a2 � a4

For the second term we obtain:

For M : 1 ¼ b1 þ b4
For L : 1 ¼ �3b1 þ b2 þ 2b3 � b4 þ b5
For T : � 2 ¼ �b2 � b4

and so on. Solving these equations in terms of two
of the unknowns, say, a4, a5 and b4, b5, we obtain:

a1 ¼ 1� a4
a2 ¼ 2� a4

a3 ¼ 1� a4
2
� a5

2

and

b1 ¼ 1� b4
b2 ¼ 2� b4

b3 ¼ 1� b4
2
� b5

2

Substituting these values into Eq 114 yields:

F ¼rV 2S c1
m

rDV

� �a4 D2

S

� �ða4þa5Þ=2
þ

"

c2
m

rDV

� �b4 D2

S

� �ðb4þb5Þ=2
þ . . .

#

(Eq 115a)

The right-hand series is a function of m/rDV
and D2/S, and F can be written symbolically as:

F ¼ rV 2Sf
m

rDV
;
D2

S

� �
(Eq 115b)

Only one term need be considered in Eq 115
(a) to obtain the functional relationship between
the physical quantities. In addition, the func-
tional relationship between F, r, V, S, m, and
D is equivalent to a relationship between the
three nondimensional products, expressed as:

F

1=2rV 2S
¼ f

rVD
m

;
D2

S

� �
(Eq 116)

where the product F/rV2S is multiplied by 2.
Therefore, in an experimental investigation of
the relationship between the force F and the
other physical parameters, only the relation
between the following nondimensional
parameters needs to be determined:

F

1=2rV 2S
ðcalled the force coefficientÞ

rVD
m

ðcalled the Reynolds numberÞ
D2

S
ða ratio of cross-sectional area and surface areaÞ

Table 2 gives important dimensionless groups
used in fluid mechanics.

Nondimensionalization of the Basic
Equations

A very powerful technique for finding
dimensionless parameters involves the basic

Table 1 Dimensions of various physical
quantities

Quantity Symbol Dimensions (M, L, T)

Length l L
Time t T
Mass m M
Force F ML/T2

Velocity (linear) V L/T
Acceleration (linear) a L/T2

Area A L2

Volume V L3

Pressure p M/LT2

Density r M/L3

Acceleration due to gravity g L/T2

Dynamic viscosity m M/LT
Kinematic viscosity v L2/T
Surface tension s M/T2

Angle (radians) y No dimensions
Velocity (angular) o 1/T
Acceleration (angular) a 1/T2

Torque or moment To ML2/T2

Work, energy W ML2/T2

Momentum (linear) mV ML/T
Volume flow rate Q L3/T
Mass flow rate _m M/T
Power P ML2/T3

Moment of inertia I ML2

Momentum (angular) Io ML2/T

Source: Ref 2 with permission
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equations of flow. A brief example concerns the
incompressible flow equations with constant
viscosity. Rewriting the continuity and momen-
tum equations previously presented:

r�V ¼ 0 (Eq 69)

r
dV

dt
¼ rg�rpþ mr2V (Eq 85)

Equations 69 and 85 contain the three basic
dimensions MLT. Variables p, V, x, y, z, and
t can be made nondimensional using the density
and two reference constants that may be
characteristic of the particular fluid flow:

Reference velocity ¼ U Reference length ¼ L

The inlet or freestream velocity could be used
for U, and L could be the diameter of a body
immersed in the stream. Relevant dimension-
less variables can be defined as:

V0 ¼ V

U
x0 ¼ x

L
y0 ¼ y

L
z0 ¼ z

L

t0 ¼ tU

L
p0 ¼ pþ rgz

rU2

All these are fairly obvious except for p0, where
the gravity effect is included.
Because r, U, and L are all constants, the

derivatives in Eq 69 and 85 can be handled in
dimensionless form with dimensional coeffi-
cients. The resulting dimensionless equations
of motion are as follows:

Continuity:

r0�V0 ¼ 0 (Eq 117)

Momentum:

dV0

dt0
¼ �r0p0 þ m

rUL
r02ðV0Þ (Eq 118)

The Reynolds number is introduced by the
process:

Re ¼ rUL
m

Boundary-Layer Flow

High Reynolds-number flow, which describes
most flow situations for common low-viscosity
fluids such as air and water, implies that inertial
forces in the fluid are predominant over viscous
forces. The effect of viscosity is small over most
of the flow field. The layer of fluid at the wall,
however, has zero velocity relative to the sur-
face, and the resulting large velocity gradients
occurring near a surface, indicate that viscous
effects cannot be neglected in this region. Away
from the wall, the velocity gradients are small,
and the viscous forces are negligible in compari-
son with the inertial forces.
The effects of viscosity can therefore be con-

fined to a thin layer in the vicinity of the sur-
face, called the boundary layer. Outside the
boundary layer, the flow can be treated as non-
viscous (Fig. 17). Although the boundary layer
is thin, it gives rise to viscous drag caused by
the shear stresses and dominates the transfer
of heat from the surface.

Laminar and Turbulent Boundary
Layers

Near the leading edge of the flat plate shown
in Fig. 18, the boundary layer is laminar.
Farther along the plate, transition occurs to a tur-
bulent boundary layer where mixing results in a
more uniform velocity profile. The previously
mentioned viscous or laminar sublayer also
develops somewhere downstream of the transi-
tion region. Shear stress in the laminar region
of the boundary layer is given by the familiar:

t ¼ m
du

dy
(Eq 119)

Table 2 Dimensionless groups in fluid mechanics

Parameter Definition Qualitative ratio of effects Importance

Reynolds number
Re ¼ rVL

m
Inertia

Viscosity

General flow

Mach number M ¼ V

a
Flow speed

Sound speed

Compressible flow

Froude number Fr ¼ V 2

gL
Inertia

Gravity

Free-surface flow

Weber number We ¼ rV 2L

�
Inertia

Surface tension

Free-surface flow

Cavitation number
(Euler number)

Ca ¼ p� pv
rV 2

Pressure

Inertia

Cavitation

Prandtl number Pr ¼ mcp
k

Dissipation

Conduction

Heat convection

Eckert number Ec ¼ V 2

cpT0

Kinetic energy

Enthalpy

Dissipation

Specific heat ratio � ¼ cp
cv

Enthalpy

Internal energy

Compressible flow

Strouhal number St ¼ oL
V

Oscillation

Mean speed

Oscillating flow

Roughness ratio
e
L

Wall roughness

Body length

Turbulent, rough walls

Grashof number Gr ¼ b�TgL3r2

m2
Buoyancy

Viscosity

Natural convection

(b = coeff. of
volumetric expansion)

Temperature ratio
Tw

To

Wall temperature

Stream temperature

Heat transfer

Source: Ref 1 with permission

Fig. 17 Boundarv layer on flat plate
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In the turbulent portion of the boundary layer, a
turbulent kinematic viscosity, or eddy viscosity,
e, is defined, so the turbulent shear stress
becomes:

tt ¼ re
du

dy
(Eq 120)

Equations of Motion—Laminar
Boundary Layer

The boundary-layer flow is assumed to be
steady, two-dimensional, incompressible, and
with no variation of m. Gravitational forces are
neglected. The radius of curvature of the sur-
face is assumed large, and the pressure does
not vary in the y-direction (Fig. 19). The bound-
ary-layer thickness, d, is normally defined as
the distance from the surface where the veloc-
ity, u, is 99% of the free stream velocity, u1.
The continuity equation for this system is:

@u

@x
þ @u

@y
¼ 0 (Eq 121)

and the momentum equation reduces to the
form:

� @p

@x
þ m

@2u

@y2
¼ r u

@u

@x
þ v

@u

@y

� �
(Eq 122)

where the boundary conditions are:

u ¼ v ¼ 0 at y ¼ 0

u ¼ u1 at y ¼ d

The free stream velocity, u1, is given by the
potential flow solution about the body. The
pressure gradient is also available from the
potential flow solution by applying Bernoulli’s
equation. For a flat plate, the free stream veloc-
ity is constant along the plate, and the Bernoulli
equation shows there is no pressure variation
outside the boundary layer. Thus, for a flat plate
boundary layer, the momentum equation is:

u
@u

@x
þ v

@u

@y
¼ n

@2u

@y2
(Eq 123)

Laminar Flow Solutions

Blasius Solution (Flat Plate Aligned with
Flow). Blasius (1908) arrived at a solution to the
flat plate equations by assuming that the shape of
a nondimensional velocity distribution did not
vary from section to section along the plate (simi-
larity assumption). The velocity ratio (u/u1) was
considered to be a function of y/d, which did not
change with x. The solution, obtained using infi-
nite series or numerical means, is shown in Fig.
20. The dimensionless velocity is plotted against
a dimensionless distance from the wall.
From the Blasius curve in Fig. 20, the bound-

ary-layer thickness (where u = 0.99u1) is
computed to be:

d ¼ 5:0xffiffiffiffiffiffiffiffi
Rex
p (Eq 124)

where:

Rex ¼ ru1x
m

and x is the distance from the leading edge of
the plate. Other methods have been used to
define a boundary-layer thickness, one being
the displacement thickness, d*, which repre-
sents the displacement of the external flow
due to the boundary layer. The displacement
thickness is defined as:

d
 ¼
ð1
0

1� u

u1

� �
dy (Eq 125)

Using the Blasius solution, this becomes:

d
 ¼ 1:73xffiffiffiffiffiffiffiffi
Rex
p (Eq 126)

Fig. 18 Development of laminar and turbulent boundary layers on a flat plate. Source: Ref 2 with permission

Fig. 19 Laminar boundary layer Fig. 20 Velocity distribution in laminar boundary
layer—Blasius profile
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The wall shear stress on the flat plate is
obtained by:

tw ¼ 0:332m
u1
x

ffiffiffiffiffiffiffiffi
Rex

p
(Eq 127)

The local skin friction coefficient, Cfx, then
becomes:

Cfx ¼ tw
1/2ru21

¼ 0:664ffiffiffiffiffiffiffiffi
Rex
p (Eq 128)

and total drag on the plate is found to be:

D ¼ 0:664bru21Lffiffiffiffiffiffiffiffi
ReL
p (Eq 129)

where:

ReL ¼ ru1L
m

and L is the total length of the plate. The
dimensionless skin friction drag coefficient,
CDf

, is:

CDf
¼ 1:328ffiffiffiffiffiffiffiffi

ReL
p (Eq 130)

Relative Movement of Parallel Plates. For
the steady-state, incompressible flow between
two plates that occurs when one plate moves
with a velocity u0, the resulting velocity profile
(Fig. 21) is:

u ¼ u0
h
y� h2

2m
dp

dy

y

h
ð1� y=hÞ (Eq 131)

For no pressure gradient, this becomes:

u ¼ u0
h
y (Eq 132)

which is defined as Couette flow.

Turbulent Boundary Layer

Momentum Integral Method. The Karman
momentum integral method requires writing
the continuity and momentum equations for a
control volume extending from the wall surface
to the outer edge of the boundary layer (Fig.
22). Analyzing this control volume gives the
momentum integral equation for two-dimen-
sional, incompressible steady flow:

r
d

dx

ðd
0

u2dy

� �
� ru1

d

dx

ðd
0

udy

� �
¼ �d dp

dx
� tw

(Eq 133)

This is valid for both laminar and turbulent
boundary-layer flows but does not yield any
information about the details of the flow at a
particular point. A functional relationship of u
and y must be assumed so wall shear stress
can be computed. A rough assumption can pro-
vide relatively good results. The pressure gradi-
ent is dealt with knowing that:

dp

dx
¼ � u1

r
du1
dx

a relationship obtainable from the Bernoulli
equation.
Assuming a linear profile on a flat plate, as

shown in Fig. 23, and using the integral equa-
tion gives the following results. For the
assumed profile, shear stress at the wall is:

tw ¼ m
u1
d

(Eq 134)

The boundary-layer thickness becomes:

d ¼ 3:46xffiffiffiffiffiffiffiffi
Rex
p (Eq 135)

and the displacement thickness is:

d
 ¼ 1:73xffiffiffiffiffiffiffiffi
Rex
p (Eq 136)

The skin friction coefficient is given by:

Cfx ¼ 0:578ffiffiffiffiffiffiffiffi
Rex
p (Eq 137)

In Eq 137, the result can be seen to be reason-
ably close to that for the Blasius solution.
A profile based on the power-law equation:

u

u1
¼ y

d

� �1=7
(Eq 138)

gives a very good correlation with experimental
data over a wide range of turbulent Reynolds
numbers on a flat plate. This profile is not valid
in the immediate vicinity of the wall, and

experimental data must be used to obtain an
expression for tw. For the Reynolds number
range 5 � 105 < Rex < 107, the following for-
mula correlates well with data:

tw
rux2

¼ 0:0225
v

u1d

� �1=4

(Eq 139)

The boundary-layer thickness becomes:

d ¼ 0:37x
u1x
v

� ��1=5
(Eq 140)

with the displacement thickness being:

d
 ¼ 0:046xðRexÞ�1=5 (Eq 141)

The local skin friction coefficient is computed
by:

Cfx ¼ 0:058

Re1=5x

(Eq 142)

The total drag caused by the turbulent boundary
layer over a flat plate of length L and width b is:

D ¼ 0:036ru12 bL

Re
1=5
L

(Eq 143)

and the dimensionless skin friction drag coeffi-
cient becomes:

CDf
¼ 0:072

Re1=5
(Eq 144)

Experiments have shown that a constant of
0.074 fits the data better. This expression is
valid over the Reynolds number range 5 �
105 < ReL < 107.
For a flat plate with a laminar boundary layer

starting at the leading edge and a turbulent
layer that begins some distance beyond the
leading edge, the drag can be computed as
follows:

D ¼ Turbulent drag ðfrom x ¼ 0 to x ¼ LÞ
� Turbulent dragðfrom x ¼ 0 to x ¼ xcritÞ
þ Laminar dragðfrom x ¼ 0 to x ¼ xcritÞ

where xcrit is the location of the transition from
laminar to turbulent. The total drag coefficient,
CD, is:

Fig. 21 Flow between fixed plate and moving plate Fig. 22 Control volume for integral analysis Fig. 23 Linear profile on flat plate
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CD ¼ CDt
� 1700

ReL
(Eq 145)

where CDt
is the turbulent drag coefficient.

This equation is valid up to ReL ¼ 1� 107.
An expression for CDf

that seems to fit experi-
mental data over a wider range of Reynolds
numbers is:

CDf
¼ 0:455

ðlogReLÞ2:58
� 1700

ReL
(Eq 146)

This equation is valid for turbulent Reynolds
numbers up to 109.
The analysis of flat-plate boundary layers

seems rather specialized, but many thin, nonflat
shapes can be considered in the same way
because the basic differential equation
(Eq 122) and integral equation (Eq 133) do

not change. The variation of free stream veloc-
ity along the body must be known to arrive at a
solution, because this allows determination of
the pressure gradient. The pressence of an
adverse pressure gradient that accompanies
decelerating flow can lead to separation of the
boundary layer. This compounds the problems
in analyzing the flow. More detail on bound-
ary-layer solutions is given in Ref 3 and 4.
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Differential Calculus and Equations*

MODELS OF PHYSICAL PHENOMENA
involve solution of differential equations, which
include either ordinary or partial differential
equations, as described in this article. The basic
concepts of differential calculus also are
reviewed in this article, with a table of power
series for common analytical functions.

Basic Concepts of Differential
Calculus

Whenvariables x and y are related in such away
that for each value of x in a given domain there is a
corresponding value of y, then y is a function of x.
That is, x is the independent variable and y the
dependent variable. Such symbols as F(x), f(x),
and f (x) denote functions of x, and the symbol
f(a) denotes the value of f(x) for x = a.

Differentiation formulas for various algebraic
and transcendental functions are listed in Table 1.
Limits. The function f(x) approaches the

limit 1 as x approaches a if, within a sufficiently
small interval with a as midpoint, the difference
|f(x) - 1| can be made arbitrarily small for
all values of x except a. Symbolically, this
limitation is expressed as:

lim
x!a

fðxÞ ¼ 1

The symbols:

lim
x!a

fðxÞ ¼ 1 or lim
x!a

fðxÞ ¼ �1

mean that f(x) can be made arbitrarily large
positively or negatively, respectively, for all
values of x except a within a small interval with
a as midpoint.

The symbols:

lim
x!1 fðxÞ ¼ 1 or lim

x!�1 fðxÞ ¼ 1

mean that the difference | f(x) - 1| can be made
arbitrarily small for all sufficiently large values
of x, positively or negatively, respectively.
Changes in x are called increments of x and are

denoted byDx, and the corresponding changes in y
are denoted by Dy. If the relationship:

lim
Dx!0

fðxþ DxÞ � fðxÞ
Dx

exists, it is called the derivative of y with
respect to x and is denoted by:

dy=dx; f 0ðxÞ; or Dxy

*Adapted from ASM Handbook of Engineering Mathematics, American Society for Metals, 1983

Table 1 Differentiation Formulas

Algebraic functions (a)(b)

d

dx
a ¼ 0

d

dx
au ¼ a

du

dx
d

dx
ðuþ vþ wþ � � �Þ ¼ du

dx
þ dv

dx
þ dw

dx
þ � � �

d

dx
uv ¼ u

dv

dx
þ v

du

dx
d

dx
ðuvw � � �Þ ¼ 1

u

du

dx
þ 1

v

dv

dx
þ 1

w

dw

dx
þ � � �

� �
ðuvw � � �Þ

d

dx

u

v

� �
¼ v du

dx� u dv
dx

v2

d

dx
un ¼ nun�1

du

dx

Transcendental functions (a)(b)(c)

d

dx
loge u ¼

1

u

du

dx
d

dx
log10 u ¼

1

u

du

dx
log10 e ¼ ð0:4343Þ

1

u

du

dx
d

dx
eu ¼ eu

du

dx
d

dx
uv ¼ vuv�1

du

dx
þ uv dv

dx
loge u

d

dx
fðuÞ ¼ dfðuÞ

du
� du
dx

Transcendental functions (a)(b)(c)

d2fðuÞ
dx2

¼ dfðuÞ
du
� d

2u

dx2
þ d2fðuÞ

du2

du

dx

� �2

d

dx
sinu ¼ cosu

du

dx
d

dx
cosu ¼ � sinu

du

dx
d

dx
tan u ¼ sec2 u

du

dx
d

dx
cot u ¼ � csc2 u

du

dx
d

dx
secu ¼ secu tan u

du

dx
d

dx
cscu ¼ � cscu cot u

du

dx
d

dx
� sin�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
� �

2
¼< sin�1 u¼< �

2

� �
d

dx
cos�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
ð0¼< cos�1 u¼<�Þ

d

dx
tan�1 u ¼ 1

1þ u2
du

dx
d

dx
cot�1 u ¼ � 1

1þ u2

du

dx
d

dx
sec�1 u ¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1
p du

dx
ðdÞ

d

dx
csc�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1
p du

dx
ðdÞ

Transcendental functions (a)(b)(c)

d

dx
sinh u ¼ cosh u

du

dx
d

dx
cosh u ¼ sinh u

du

dx
d

dx
tanh u ¼ sech2u

du

dx
d

dx
coth u ¼ �csch2u du

dx
d

dx
sech u ¼ �sech u tanh u

du

dx
d

dx
csch u ¼ �csch u coth u

du

dx
d

dx
sinh�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p du

dx
d

dx
cosh�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx
d

dx
tanh�1 u ¼ 1

1� u2
du

dx
d

dx
coth�1 u ¼ 1

1� u2
du

dx
d

dx
sech�1u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p du

dx
d

dx
csch�1u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1
p du

dx

(a) Functions of x are represented by u, v, and w. (b) a and n are constants. (c) e is the base of the natural or Napierian logarithms; e = 2.7183 (d) For angles in the first and third quadrants. Use the opposite sign in the second and
fourth quadrants.
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Geometric Interpretation of the Deriva-
tive. If y = f(x) is represented by a graph in
Cartesian co-ordinates, as shown in Fig. 1, then
f 0 (x) = tan a, where a lies between the x-axis
and the line tangent to the curve in the given point,
with the angle measured counterclockwise.
The derivative f 0(x) exists for these values of

x for which the function f(x) is defined and con-
tinuous, and the considered ratio has a finite
limit. If, for a value x1, the derivative does not
exist, no definite tangent line exists at the
corresponding point of the graph of the function,
or the tangent is perpendicular to the x-axis.
In the latter case, the limit is infinite and is
expressed as f 0ðx1Þ ¼ 1; that is, the derivative
becomes infinite. For example, the derivative
does not exist at x = 0 for the function:

fðxÞ ¼ ffiffiffi
x3
p

because the derivative becomes infinite at the
point 0 (Fig. 2).
Derivative of a Function of a Function.

If y is a function of a variable u, and if u is a
function of another variable x, then:

dy

dx
¼ dy

du

du

dx

Derivative of an Inverse Function. If y =
f1(x) is solved for x, then the solution of x = f2(y)
is termed its inverse. For example, the expression
x = sin�1y is the inverse of y = sin x and x ¼ 	 ffiffiffi

y
p

is the inverse of y = x2. Symbolically:

dy

dx
¼ 1

dx
dy

or f 02ðyÞ ¼
1

f 01ðxÞ

Derivatives of Second and Higher Order.
The derivative of the first derivative of y with
respect to x is termed the second derivative of
y with respect to x. If y = f(x), the second deriv-
ative with respect to x is denoted variously by:

d2y

dx2
Dx2y

dy0

dx
f 00ðxÞ y00 €y

Similarly, the derivative with respect to x
of the second derivative is called the third
derivative and may be denoted by:

d3y

dx3
Dx3y f ð3ÞðxÞ yð3Þ

For example, to find the mth derivative of xn,
note the following sequence of derivatives:

y0 ¼ nxn�1

y00 ¼ nðn� 1Þxn�2
yð3Þ ¼ nðn� 1Þðn� 2Þxn�3

It can be seen that:

yðmÞ ¼ nðn� 1Þðn� 2Þ � � � ðn�mþ 1Þxn�m

Differentials. If the curve AB in Fig. 3 is
defined by y = f(x), and P(x, y) and Q(x + Dx, y
+ Dy) are nearby points, then as Q is moved
toward P,Dx and Dy approach zero. The limiting
position of the line PQ is the tangent at P. The
slope of the tangent is dy=dx, which is the limit
of the ratio Dy/Dx as Dx! 0. That is, dy repre-
sents the increment of the ordinate of the tangent
at P for a given increment dx at P, whereas Dy is
the increment of the ordinate to the curve AB.
The increments dx and dy are termed differ-

entials. For a function y = f(x), the differential
equals its derivative multiplied by the differen-
tial of the independent variable, dy = f 0(x)dx.
The length of the line PQ in Fig. 3 is given
by (Ds)2 = (Dx)2 + (Dy)2. Similarly, the differen-
tial length of curve is given as:

ds2 ¼ dx2 þ dy2

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p
dy

In polar coordinates:

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr2 þ r2dy

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ dr

dy

� �2
s

dy

Implicit Functions. The expression F(x,y)
= 0 defines y as an implicit function of x, and
x as an implicit function of y. When an equation
is solved for y in terms of x, y = f(x), then y
becomes an explicit function of x. For example,
as an implicit function, F(x, y) = x2 + y2 � r2

= 0, and as an explicit function:

y ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p

To find dy=dx, differentiate y = f(x) or use as an
alternative method:

dy

dx
¼ �

@F
@x
@F
@y

@F

@y
6¼ 0

� �

and:

d2y

dx2
¼�

@2F
@x2

@F
@y

� �2
�2 @2F

@x@y
@F
@x

@F
@y þ @2F

@y2
@F
@x

� 	2
@F
@y

� �3
@F

y
6¼ 0

� �

Differentiation of Parametric Functions.
If a function is given in parametric form, to find
the derivatives of y with respect to x if y = y(t)
and x = x(t) use:

y0 ¼ dy

dx
¼

dy
dt
dx
dt

y00 ¼ d2y

dx2
¼

dy0
dt
dx
dt

yðnÞ ¼ dny

dxn
¼

dyðn�1Þ
dt
dx
dt

To find the derivatives of y with respect to
x for the ellipse x = a cos t, y = b sin t, use
the following relationships:

y0 ¼ dy

dx
¼ b cos t

�a sin t ¼
b

a
cot t

y00 ¼ dy0

dx
¼

b
a csc

2 t

�a sin t ¼ �
b

a2
csc3 t

y000 ¼ dy00

dx
¼

3b
a2
csc3 t cot t

�a sin t ¼ � 3b

a3
csc4 t cot t

Logarithmic Differentiation for Products
and Quotients. If:

y ¼ ulvm

wn

express both sides of the equation in terms of
logarithms before differentiating:

ln y ¼ l lnuþm ln v� n lnw

1

y

dy

dx
¼ l

u

du

dx
þm

v

dv

dx
� n

w

dw

dx

dy

dx
¼ y

l

u

du

dx
þm

v

dv

dx
� n

w

dw

dx

� �

Fig. 1 Geometric interpretation of a derivative (dy/dx)
as the tangent of the angle a Fig. 2 Function without a derivative at x = 0 Fig. 3 Differential length (ds) of a curve
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For example, to find
dy

dx
if:

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 25
p

ðx� 1Þ3ðxþ 5Þ2

use the following relationships:

ln y ¼ 1/2 lnðx2 � 25Þ � 3 lnðx� 1Þ � 2 lnðxþ 5Þ
1

y

dy

dx
¼ 2x

2ðx2 � 25Þ �
3

x� 1
� 2

xþ 5

dy

dx
¼ yð�4x2 þ 11xþ 65Þ
ðx2 � 25Þðx� 1Þ

Partial Derivatives

If three variables f(x, y), x, y are related
in such a way that for each set of values of x
and y in a given domain there exists a
corresponding value of f(x, y), then f(x, y) is a
function of x and y. If x is the only variable
and y is a constant, then the derivative of
f(x, y) with respect to x becomes the partial
derivative of f with respect to x and is given as:

@f

@x
¼ fx ¼ lim

Dx!0

fðxþ Dx; yÞ � fðx; yÞ
Dx

Similarly, the partial derivative of f with respect
to y is obtained when y varies and x is constant:

@f

@y
¼ fy ¼ lim

Dy!0

fðx; yþ DyÞ � fðx; yÞ
Dy

Partial Derivatives of Second or Higher
Order. If @f=@x and @f=@y are again differen-
tiable, the partial derivatives of the second
order may be found:

@

@x

@f

@x

� �
¼ @2f

@x2
¼ fxx

@

@y

@f

@y

� �
¼ @2f

@y2
¼ fyy

@

@x

@f

@y

� �
¼ @2f

@x@y
¼ fyx

@

@y

@f

@x

� �
¼ @2f

@y@x
¼ fxy

When the derivatives are continuous, the order
of differentiation is immaterial, that is:

@2f

@y@x
¼ @2f

@x@y

The third and higher partial derivatives of
f(x, y) may be determined in a similar manner.
If continuous, the third partial derivatives are
the following four:

@

@x

@2f

@x2

� �
¼ @3f

@x3
@

@x

@2f

@y2

� �
¼ @

@y

@2f

@x@y

� �

¼ @2

@y2
@f

@x

� �
¼ @3f

@x@y2

@

@y

@2f

@y2

� �
¼ @3f

@y3
@

@y

@2f

@x2

� �
¼ @

@x

@2f

@x@y

� �

¼ @2

@x2
@f

@y

� �
¼ @3f

@x2@y

Functions of N Variables. The partial deriv-
ative formulas may be generalized to the form

that has f as a function of more than two vari-
ables; that is, there corresponds a value of
fðx; y; z; � � �Þ to every set of values of
x; y; z; � � �.
If the increments Dx;Dy;Dz; � � � are assigned

to the variables x; y; z; � � � in the function
fðx; y; z; � � �Þ, the total increment of f is:

Df ¼ fðxþ Dx; yþ Dy; zþ Dz; � � �Þ � fðx; y; z; � � �Þ

The total differential of f becomes:

df ¼ @f

@x
dxþ @f

@y
dyþ @f

@z
dzþ � � �

The second total differential of f becomes:

d2f ¼ @2f

@x2
ðdxÞ2 þ @2f

@y2
ðdyÞ2 þ @2f

@z2
ðdzÞ2 þ � � �

þ 2
@2f

@x@y
dxdyþ � � �

The general form is:

dnf ¼ @

@x
dxþ @

@y
dyþ @

@z
dzþ � � �

� �n

fðx; y; z; � � �Þ

Exact Differential. For the expression
P(x, y) dx + Q(x, y) dy to be the exact or com-
plete differential of a function of two variables,
the following condition is necessary:

@Q

@x
¼ @P

@y

For three variables, P dx + Q dy + R dz, the
required conditions are:

@Q

@z
¼ @R

@y

@R

@x
¼ @P

@z
@P

@y
¼ @Q

@x

Composite Functions. If u¼ fðx;y;z; � � �wÞ,
and x;y;z; � � �w are functions of a single
variable t, then:

du

dt
¼ @u

@x

dx

dt
þ @u

@y

dy

dt
þ � � � þ @u

@w

dw

dt

This expression represents the total derivative
of u with respect to t.

Infinite Series

If a1, a2, . . ., an, . . . is a number sequence
formed according to some rule, the indicated
sum is an infinite series:

X1
n¼1

an ¼ a1 þ a2 þ � � � þ an þ � � �

If the partial sums, sn, in the expression
sn ¼ a1 þ a2 þ � � � þ an approach a limit S as
n ! 1, the series is convergent; S is the sum

of the series, or its value. A series that does
not converge is divergent.
If the series of absolute values ja1j þ ja2jþ
� � � þ janj þ � � � is convergent, then the afore-
mentioned infinite series is absolutely conver-
gent. If the series converges, but not
absolutely, it is conditionally convergent. An
absolutely convergent series does not charge is
sum by rearrangement of its terms. The conver-
gence of a series can be verified by testing.
Comparison Test. For a series of positive

terms, such as c1 þ c2 þ � � � þ cn þ � � �, for which
an ¼< cn for every n from some term onward, the
infinite series converges. If there is a divergent
series of positive terms d1 þ d2 þ � � � þ dnþ
� � �, forwhich an ¼> dn for every n from some term
onward, then the infinite series diverges. A useful
comparison series is the geometric series

aþ arþ ar2 þ � � � þ arn�1 þ � � �, which con-

verges for jrj < 1 and diverges for jrj¼>1.
Ratio Test. In the expression:

L ¼ lim
n!1

an þ 1

an

����
����

if L < 1, the infinite series converges abso-
lutely; if L does not exist or if L > 1, the series
diverges; if L = 1, the test fails.
Root Test. For the expression:

L ¼ lim
n!1janj

1=n

if L < 1, the infinite series converges; if L > 1,
the series diverges; if L = 1, the test fails.
Integral Test. For the function f(n) = an, if

f(x) is positive and non-increasing for x > k,
then the infinite series converges or diverges
with the improper integral:ð1

k

fðxÞdx

Raabe’s Test. For the expression:

L ¼ lim
n!1n

an
an þ 1

� 1

� �

if L > 1, the infinite series converges; if L < 1,
the infinite series diverges; if L = 1, the test fails.
Convergence of an Alternating Series.

In an alternating series:

a1 � a2 þ a3 �þ � � � þ ð�1Þnþ1an þ � � �

the terms are alternately positive and nega-
tive. The series converges if, from some
term onward, janþ1j¼< janj and an ! 0 as n
! 1. The sum of the first n terms differs
numerically from the sum of the series by
less than janþ1j.

Expansion of a Function into a
Power Series

Table 2 gives the power series of various
functions. A power series takes the form:
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X1
n¼0

anx
n ¼ a0 þ a1xþ a2x

2 þ � � � þ anx
n þ � � �

If:

lim
n!1

an�1
an

����
���� ¼ r

the series converges absolutely for all values of x
in the interval �r < x < r. For jxj ¼ r, one of
the convergence tests for a series of numerical
terms must be used. For example, for a series in
the form:

1� x

1 � 2þ
x2

2 � 22 �
x3

3 � 23 þ � � � þ ð�1Þ
n xn

n � 2n þ � � �

Because:

lim
n!1

n � 2n
ðn� 1Þ2n�1 ¼ 2

the interval of convergence is �2 < x < 2. For
x = 2, the series is a convergent alternating
series. For x = �2, it is a divergent p-series.

Table 2 Expansion of functions into power series

Function Series expansion Domain of convergence

(log = loge)

(a + x)n
an þ nan�1xþ nðn� 1Þ

2!
an�2x2

þnðn� 1Þðn� 2Þ
3!

an�3x3 þ � � �
(x2 < a2)

ex 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � � (�1 < x < 1)

ax 1þ x log aþ ðx log aÞ
2

2!
þ ðx log aÞ

3

3!
þ � � � (�1 < x < 1)

e�x
2

1� x2 þ x4

2!
� x6

3!
þ x8

4!
� � � � (�1 < x < 1)

esin x
1þ xþ x2

2!
� 3x4

4!
� 8x5

5!

� 3x6

6!
� 56x7

7!
þ � � �

(�1 < x < 1)

ecos x e 1� x2

2!
þ 4x4

4!
� 31x6

6!
þ � � �

� �
(�1 < x < 1)

etan x 1þ xþ x2

2!
þ 3x3

3!
þ 9x4

4!
þ 37x5

5!
þ � � � ��

2
< x <

�

2

� �

log x
x� 1

x
þ 1

2

x� 1

x

� �2

þ 1

3

x� 1

x

� �3

þ � � � x >
1

2

� �

log x 2
x� 1

xþ 1
þ 1

3

x� 1

xþ 1

� �3

þ 1

5

x� 1

xþ 1

� �5

þ � � �
" #

(x > 0)

log(1 + x) x� x2

2
þ x3

3
� x4

4
þ � � � (�1 < x < 1)

log
1þ x

1� x

� �
2 xþ x3

3
þ x5

5
þ x7

7
þ � � �

� �
(�1 < x < 1)

log
xþ 1

x� 1

� �
2

1

x
þ 1

3x3
þ 1

5x5
þ � � �

� �
(x2 > 1)

log sin x log x� x2

6
� x4

180
� x6

2835
� � � � (�p < x < p)

log cos x � x2

2
� x4

12
� x6

45
� 17x8

2520
� � � � ��

2
< x <

�

2

� �

log tan x log xþ x2

3
þ 7x4

90
þ 62x6

2835
þ � � � ��

2
< x <

�

2

� �

sin x x� x3

3!
þ x5

5!
� x7

7!
þ � � � (�1 < x < 1)

cos x 1� x2

2!
þ x4

4!
� x6

6!
þ � � � (� 1 < x < 1)

tan x xþ x3

3
þ 2x5

15
þ 17x7

315
þ 62x9

2835
þ � � � ��

2
< x <

�

2

� �

cot x
1

x
� x

3
� x3

45
� 2x5

945
� x7

4275
� � � � (�p < x < p)

sec x 1þ x2

2!
þ 5x4

4!
þ 61x6

6!
þ � � � ��

2
< x <

�

2

� �

csc x
1

x
þ x

3!
þ 7x3

3 � 5!þ
31x5

3 � 7!þ � � � (�p < x < p)

Function Series expansion Domain of convergence

sin�1 xþ x3

2 � 3þ
3x5

2 � 4 � 5þ
3 � 5x7

2 � 4 � 6 � 7þ � � � ð�1 ¼< x ¼< 1Þ

cos�1 x
�

2
� sin�1 x

tan�1 x
�

2
� 1

x
þ 1

3x3
� 1

5x5
þ � � � ðx2 ¼> 1Þ

x� x3

3
þ x5

5
� x7

7
þ � � � ð�1 ¼< x ¼< 1Þ

cot�1 x
�

2
� tan�1 x

sec�1 x

�

2
� 1

x
� 1

2 � 3x3 �
3

2 � 4 � 5x5
� 3 � 5
2 � 4 � 6 � 7x7 � � � �

(x2 > 1)

csc�1 x
�

2
� sec�1 x

sinh x xþ x3

3!
þ x5

5!
þ x7

7!
þ � � � (�1 < x < 1)

cosh x 1þ x2

2!
þ x4

4!
þ x6

6!
þ x8

8!
þ � � � (�1 < x < 1)

tanh x x� x3

3
þ 2x5

15
� 17x7

315
þ � � � ��

2
< x <

�

2

� �

coth x
1

x
þ x

3
� x3

45
þ 2x5

945
� x7

4725
þ � � � (�p < x < p)

sech x 1� x2

2!
þ 5x4

4!
� 61x6

6!
þ 1385x8

8!
� � � � ��

2
< x <

�

2

� �

csch x
1

x
� x

6
þ 7x3

360
� 31x5

15; 120
þ � � � (�p < x < p)

sinh�1 x x� x3

2 � 3þ
3x5

2 � 4 � 5�
3 � 5x7

2 � 4 � 6 � 7þ � � � (�1 < x < 1)

sinh�1 x
log 2xþ 1

2 � 2x2 �
3

2 � 4 � 4x4
þ 3 � 5
2 � 4 � 6 � 6 � x6 þ � � �

(x2 >1)

cosh�1 x
	 log 2x� 1

2 � 2x2 �
1 � 3

2 � 4 � 4x4

�

� 1 � 3 � 5
2 � 4 � 6 � 6x6 � � � �

� (x > 1)

tanh�1 x xþ x3

3
þ x5

5
þ x7

7
þ � � � (�1 < x < 1)

coth�1 x
1

x
þ 1

3x3
þ 1

5x5
þ 1

7x7
þ � � � (x2 > 1)

sech�1 x
	 log

2

x
� 1

2 � 2 x
2 � 1 � 3

2 � 4 � 4
�

� 1 � 3 � 5
2 � 4 � 6 � 6x

6 � � � �Þ
(0 < x < 1)

csch�1 x

1

x
� 1

2 � 3x3 þ
3

2 � 4 � 5x5
� 3 � 5
2 � 4 � 6 � 7x7 þ � � �

(x2 > 1)
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Taylor’s Series. A function y = f(x), continu-
ous and with all derivatives at x = a, can be
expressed as:

fðxÞ ¼ fðaÞ þ f 0ðaÞ
1!
ðx� aÞ þ f 00ðaÞ

2!
ðx� aÞ2 þ � � �

þ f ðn�1ÞðaÞ
ðn� 1Þ! ðx� aÞn�1 þ � � �

The expression for the remainder after n terms is:

Rn ¼ f ðnÞðxÞ
n!

ðx� aÞn x ¼ aþ yðx� aÞ
0 < y < 1

Another form of Taylor’s series is:

fðxþ hÞ ¼ fðxÞ þ h

1!
f 0ðxÞ þ h2

2!
f 00ðxÞ þ � � �

þ hn�1

ðn� 1Þ! f
ðn�1ÞðxÞ þ � � �

where the remainder after n terms is:

Rn ¼ hn

n!
f ðnÞðxÞ x ¼ xþ yh 0 < y < 1

Maclaurin’s Series. The formula for expan-
sion of a function f(x) in powers of x, obtained
from Taylor’s series for a = 0, is:

fðxÞ ¼ fð0Þ þ f 0ð0Þ
1!

xþ f 00ð0Þ
2!

x2 þ � � �

þ f ðn�1Þð0Þ
ðn� 1Þ! x

n�1 þ � � �

where the remainder after n terms is:

Rn ¼ f ðnÞðxÞ
n!

xn x ¼ yx 0 < y < 1

A Taylor’s or Maclaurin’s series represents a
function in an interval only when Rn! 0 as n!
1. For example, to expand eax in powers of x, let:

fðxÞ ¼ eax f 0ðxÞ ¼ aeax f 00ðxÞ ¼ a2eax

f 000ðxÞ ¼ a3eax; � � �
fð0Þ ¼ 1 f 0ð0Þ ¼ a f 00ð0Þ ¼ a2

f 000ð0Þ ¼ a3; � � �

fðxÞ ¼ eax ¼ 1þ a

1!
xþ a2

2!
x2 þ a3

3!
x3 þ � � �

Because:

lim
n!1

an�1
ðn�1Þ!
an

n!

¼ lim
n!1

n

a
¼ 1

the series converges for all values of x.
Taylor’s series for a function of two

variables is expressed in the following:

fðxþ h; yþ kÞ ¼ fðx; yÞ 1

1!
h
@

@x
þ k

@

@y

� �

fðx; yÞ þ 1

2!
h
@

@x
þ k

@

@y

� �2

fðx; yÞ þ � � � þ

1

ðn� 1Þ! h
@

@x
þ k

@

@y

� �n�1
fðx; yÞ þ � � �

where the remainder is:

Rn ¼ 1

n!
h
@

@x
þ k

@

@y

� �n

fðxþ yh; yþ ykÞ
0 < y < 1

Fourier Series. If a function f(x) varies over
an interval of length 2l and can be expressed
as the difference of two nondecreasing or
nonincreasing bounded functions, then:

fðxÞ ¼ a0
2
þ
X1
n¼1

an cos
npx
l
þ bn sin

npx
l

� �

¼ a0
2
þ a1 cos

px
l
þ aa cos

2px
l
þ � � �þ

b1 sin
px
l
þ b2 sin

2px
l
þ � � �

�

for which:

an ¼ 1

l

ðkþ2l
k

fðxÞ cosnpx
l

dx

bn ¼ 1

l

ðkþ2l
k

fðxÞ sinnpx
l

dx

n ¼ 0; 1; 2; � � �

In exponential form, the function is:

fðxÞ ¼
X1

n¼�1
cne

inpx
l

cn ¼ 1

2l

ðkþ 2l

k

fðxÞe�inpx
l

dx

n ¼ � � � ;�2;�1; 0; 1; 2; � � �

At a point of discontinuity, a Fourier series pro-
duces the value at the midpoint of the jump. For
example, when ex is expanded in the interval
0 to 2p:

a0 ¼ 1

p

ð2p
0

exdx ¼ 1

p
ðe2p � 1Þ

an ¼ 1

p

ð2p
0

ex cosnx dx ¼ e2p � 1

pðn2 þ 1Þ

bn ¼ �nðe2p � 1Þ
pðn2 þ 1Þ

Thus:

ex ¼ 1

p
ðe2p � 1Þ 1

2
þ 1

12 þ 1
cosxþ 1

22 þ 1
cos 2x

�

þ 1

32 þ 1
cos 3xþ � � �

�
� 1

p
ðe2p � 1Þ 1

12 þ 1

�

sinxþ 2

22 þ 1
sin 2xþ 3

32 þ 1
sin 3xþ � � �

�

Only in the interval from 0 to 2p does the
expansion have validity; beyond that interval,
the series repeats itself, as a result of the peri-
odic behavior of sin nx and cos nx. In a Fourier
series, if f(�x) = f(x), it is an even function.
Then:

an ¼ 2

l

ðl
0

fðxÞ cosnpx
l

dx n ¼ 0; 1; 2; � � �

and:

bn ¼ 0

If f(�x) = �f(x), it is an odd function, an = 0,
and:

bn ¼ 2

l

ðl
0

fðxÞ sinnpx
l

dx; n ¼ 0; 1; 2; � � �

For example, if the function f(x) = x is expanded
in a cosine series in the interval (0, p):

1

2
a0 ¼ 1

p

ðp
0

x dx ¼ p
2

and:

an ¼ 2

p

ðp
0

x cosnxdx ¼ 2

p
x sinnx

n

� �p
0

�
ðp
0

sinnx

n
dx

 �

¼ 2

p
1

n2
cosnx

� �p
0

¼ 2

pn2
ðcosnp� 1Þ

Thus:

x ¼ p
2
� 4

p
cos xþ cos 3x

32
þ cos 5x

52
þ � � �

� �
ð0 < x < pÞ

For x = 0, the sum of the series is 0, and for
x = p, the sum of the series is p.

Ordinary Differential Equations

An equation involving derivatives or differ-
entials is a differential equation. A differential
equation is of order n if the equation involves
a derivative of order n and contains no higher-
order derivative.
If the equation has derivatives with respect to

one variable only, it is an ordinary differential
equation; otherwise, it is a partial differential
equation. For example, the equations:

d2y

dx2
þ k2y ¼ 0 (Eq 1)

d2y

dx2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2 þ dy

dx

r
(Eq 2)

y� x
dy

dx
þ 3

dx

dy
¼ 0 (Eq 3)

are ordinary differential equations. The equation:

y
@2z

@x2
þ zx

@2z

@x@y
� @z

@y
¼ xyz (Eq 4)

is a partial differential equation. The degree of
a differential equation refers to the greatest
power to which the highest-order derivative
occurs in an equation that has been made ratio-
nal and integral in its derivatives. For the ordi-
nary differential equation of order n:

F ðx; y; y0; y00; . . . ; yðnÞÞ ¼ 0 (Eq 5)
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a solution, or integral, is a function y = f (x) for
which F is transformed into a function iden-
tically zero for all values of x, when f (x), f 0
(x), . . ., f(n) (x) are substituted for y, y 0, . . .,
y(n), respectively. The general solution of Eq 5
has the form:

y ¼ Fðx; c1; c2; . . . ; cnÞ (Eq 6)

where c1, c2, . . ., cn are arbitrary constants. If
Eq 6 is differentiated n times with respect to
x, and if the n constants ci that appear in the
resulting n equations and Eq 6 are eliminated,
the resulting differential equation is Eq 5.
Equation 6 is the primitive of Eq 5.
A particular solution is a solution obtained

by giving specific values to the constants in
Eq 6. Singular solutions to Eq 5 are solutions
that may exist but cannot be obtained by giving
the constants ci special values.
A differential equation is considered solved

when the solution has been reduced to quadra-
tures or if y has been obtained merely as
an implicit function of x by c (x, y, c1, . . .,
cn) = 0.

First-Order Equations

A first-order differential equation in the
form:

dy

dx
¼ fðx; yÞ (Eq 7)

has a solution y = y(x) through every point (x =
x0, y = y0) having a neighborhood in which
f (x, y) is continuous. For example, if D is a
region of points (x, y), (x, Z) where f (x, y) is
continuous. For example, if D is a region of
points (x, y), (x, Z) where f (x, y) is single-val-
ued, bounded, and continuous, and the condition
|f(x, y) � f(x, Z)| � M|y � Z| holds for some real
M independent of y and Z, then Eq 7 has a
unique solution y = y(x) through every point
(x = x0, y = y0) of D. The solution y(x) is a con-
tinuous function of the given value y0 = y(x0).
Each solution extends to the boundary of D.
Methods of Solution. The following special

types of first-order equations can be solved with
relative ease:

� Equations with variables that are separable:
y 0 = f1(x)/f2(y). The solution can be obtained
from

Ð
f2ðyÞdy ¼

Ð
f1ðxÞdxþ C.

� Homogeneous first-order equations: y 0 =
f(y/x). Introduce y ¼ y=x to reduce the equa-
tion to one inwhich variables can be separated.

Separation of Variables. For the differential
equation:

M dxþN dy ¼ 0 (Eq 8)

where M(x, y) and N(x, y) are functions of x and
y. If M and N are products of factors, each
being a function either of x alone or of y alone,
then Eq 8 takes the form:

AðxÞP ðyÞdxþBðxÞQðyÞdy ¼ 0 (Eq 9)

where A and B are functions of x alone, and P
and Q are functions of y alone. The general
solution of Eq 9 is:

ð
AðxÞ
BðxÞ dxþ

ð
QðyÞ
P ðyÞ dy ¼ c (Eq 10)

with c a constant.
The expression dy=dx ¼ �x=y can be writ-

ten as xdx + ydy = 0. It has the solutionÐ
xdxþ Ð ydy ¼ x2=2þ y2=2 ¼ c. If c ¼ r2

2
,

then x2 + y2 = r2, is a set of concentric circles.
An infinite number of solutions exists, depend-
ing on the value of r, and through each point
in the plane there passes only one circle.
Homogeneous Equations. If f (kx, ky) = kn

f(x, y), a function f(x, y) is homogeneous of
the nth degree in x and y. An equation:

P ðx; yÞdxþQðx; yÞdy ¼ 0 (Eq 11)

is homogeneous when functions P(x, y) and Q
(x, y) are homogeneous in x and y. The vari-
ables can be separated by substituting y = vx.
For example, to solve (x2 + y2)dx � 2 xydy

= 0, which is of the form P(x, y) dx + Q (x, y)
dy = 0, where P and Q are homogeneous func-
tions of the second degree, substitute y = vx.
The equation becomes (1 + v2) dx � 2v(x dv
+ v dx) = 0. Separating variables produces:

dx

x
� 2v

1� v2
dv ¼ 0

By integrating, loge x(1 � v2) = loge c; by
replacing v ¼ y=x; log 1� y2=x2

� 	
x ¼ loge c;

and by taking exponentials, x2 � y2 = cx.
Exact Differential Equation. The equation:

P ðx; yÞdxþQðx; yÞdy ¼ 0 (Eq 12)

is an exact differential equation when the expres-
sion on the left side is an exact differential,
df @P=@y ¼ @Q=@xð Þ. The solution is obtained
from:

fðx; yÞ ¼
ð
P ðx; yÞdxþ

ð

Qðx; yÞ � @

@y

ð
P ðx; yÞdy

� �
dy ¼ C ðEq 13Þ

If the expression on the left of Eq 12 is not
an exact differential @P=@y 6¼ @Q=@xð Þ, an
integrating factor m = m(x, y) may be found to
permit multiplication of Eq 12 by m(x, y) to
yield an exact differential equation. The partial
differential equation:

�
@P

@y
� @Q

@x

� �
¼ Q

@�

@x
� P

@�

@y
(Eq 14)

is satisfied by the integrating factor m(x, y).
Linear Differential Equation. The linear

first-order equation y 0 + a(x)y = f(x) can be modi-
fied by the integrating factor m ¼ mðxÞ ¼ expÐ
aðxÞdx. The complete primitive becomes:

y ¼ 1

mðxÞ
ð
fðxÞmðxÞdxþ C

� �
(Eq 15)

Many first-order equations can be reduced by
transformation of variables. In particular:

� y 0 = f(ax + ay) is reduced to an equation
with variables that are separable by introdu-
cing y ¼ axþ by.

� y0 ¼ a1xþ b1yþ g1=a2xþ b2yþ g2 is
reduced to a homogeneous first-order
equation by a coordinate translation if a1
b2 � a2 b1 6¼ 0; or by introducing
y ¼ a2xþ b2yþ g2 to separate the
variables.

Bernoulli’s Differential Equation. The Ber-
noulli equation is:

dy=dxþ P ðxÞy ¼ QðxÞyn (Eq 16)

in which n 6¼ 1, is reduced to a linear equation
by substituting z = y1�n. The general solution
is:

y ¼ e�
Ð
P ðxÞdx ð1� nÞ

ð
eð1�nÞ

Ð
P ðxÞdxQðxÞdxþ c

� � 1
1�n

(Eq 17)

For example, the equation dy=dx� xy ¼ xy2

can be solved by substituting z = y�1 to obtain
dy=dxþ xz ¼ �x. The general integral is:

z ¼ ce�x
2=2 � 1 or y ¼ 1

ce�x2=2�1
Riccati Equations. The general Riccati dif-

ferential equation:

y0 ¼ aðxÞy2 þ bðxÞyþ cðxÞ (Eq 18)

can be simplified by the transformation
y ¼ 1=y. The transformations:

x ¼ x y ¼ �y
0

aðxÞy

lead to a homogeneous second-order equation
for y ¼ yðxÞ:

y00 � a0ðxÞ
aðxÞ þ bðxÞ
� �

y0 þ aðxÞcðxÞy ¼ 0 (Eq 19)

If a particular integral y1(x) of Eq 18 is known,
the transformation:

y ¼ y1ðxÞ þ 1=y

produces a linear differential equation. If two
particular integrals y1, y2 or three particular
integrals y1, y2, y3 are known, then:

y ¼ y1 þ y2 � y1
1þ C exp

Ð
aðxÞðy2 � y1Þdx

y ¼ y1ðy2 � y3Þ þ Cy2ðy1 � y3Þ
y2 � y3 þ Cðy1 � y3Þ ðEq 20Þ
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Second-Order Equations

The equation:

F x; y;
dy

dx
;
d2y

dx2

� �
¼ 0 (Eq 21)

is a second-order differential equation. The
method of solution is straightforward if some
of these variables are missing. With y and dy

dx
missing, for example, the equation:

d2y

dx2
¼ fðxÞ (Eq 22)

has the solution y ¼ Ð dx Ð fðxÞdxþ cxþ c1.
For the equation:

d2y

dx2
¼ fðyÞ (Eq 23)

with x and dy=dx missing, both sides can be
multiplied by 2dy=dx to obtain:

x ¼
ð

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ 2

Ð
fðyÞdyp þ c1 (Eq 24)

In the equation:

d2y

dx2
¼ f

dy

dx

� �
(Eq 25)

with x and y missing, using the transformations:

dy

dx
¼ p

d2y

dx2
¼ dp

dx
(Eq 26)

produces

x ¼
ð

dp

fðpÞ þ c

This equation can be solved for p; p can be
replaced by dy=dx; the resulting first-order
equation can then be solved.
Homogeneous linear second-order equa-

tions in the form:

Lw � d2w

dz2
þ a1ðzÞ dw

dz
þ a2ðzÞw ¼ 0 (Eq 27)

are equivalent to:

d

dz
pðzÞ dw

dz

� �
þ qðzÞw ¼ 0 (Eq 28)

with:

pðzÞ ¼ exp

ð
a1ðzÞdz qðzÞ ¼ a2ðzÞpðzÞ

When a solution w1 (z) of Eq 27 or 28 is known,
the complete primitive is:

wðzÞ ¼ w1ðzÞ C1 þ C2

ð
dz

w2
1ðzÞpðzÞ

� �
(Eq 29)

Homogeneous Differential Equation with
Constant Coefficients. A solution of the
equation:

dny

dxn
þ a1

dn�1y
dxn�1 þ � � � þ an�1

dy

dx
þ any ¼ 0 (Eq 30)

becomes:

yk ¼ cerkx (Eq 31)

if rk is a root of the algebraic equation:

rn þ a1r
n�1 þ � � � þ an�1rþ an ¼ 0 (Eq 32)

If n roots r1, r2, . . ., rn of Eq 32 differ, then:

y ¼ c1e
r1x þ c2e

r2x þ � � � þ cne
rnx (Eq 33)

becomes a general solution of Eq 30. If k roots
are equal, r1 ¼ r2 ¼ � � � ¼ rk while rk + 1, . . .,
rn differ, then:

y ¼ ðc1 þ c2xþ � � � þ ckx
k�1Þer1x þ ckþ1erkþ1x þ � � �

þ cne
rnx

(Eq 34)

becomes a general solution. If r1 = p + iq, r2 =
p � iq are conjugate complex roots of Eq 32,
then:

c1e
r1x þ c2e

r2x ¼ epxðC1 cos qxþ C2 sin qxÞ
(Eq 35)

Nonhomogeneous Differential Equations
with Constant Coefficients. The general solu-
tion of nonhomogeneous differential equations
with constant coefficients is:

Ly � a0
dry

dtr
þ a1

dr�1

dtr�1
þ � � � þ ary ¼ fðtÞ (Eq 36)

If f(t) = 0 for t � 0, the particular integral
y = yN (t) of Eq 36 with yN ¼ y0N ¼ y00

N ¼ � � � ¼ yN
ðr�1Þ ¼ 0 for t � 0 is the normal

response to the given forcing function f(t).
Each function yk = yk(t) of a system of linear

differential equations with constant coefficients:

fj1

d

dt

� �
y1 þ fj2

d

dt

� �
y2 þ � � � þ fjn

d

dt

� �
yn ¼ fjðtÞ

ðj ¼ 1; 2; . . . ; nÞ
(Eq 37)

is the sum of the corresponding solution func-
tion of a complementary homogeneous system
and a particular solution function.
Euler’s Homogeneous Equation. For the

equation:

xn
dny

dxn
þ axn�1

dn�1y
dxn�1

þ � � � þ an�1x
dy

dx
þ any ¼ 0

(Eq 38)

place x = et because:

x
dy

dx
¼ dy

dt
x2

d2y

dx2
¼ d

dt

d

dt
� 1

� �� �
y

x3 d
3y

dx3
¼ d

dt

d

dt
� 1

� �
d

dt
� 2

� �� �
y; . . . ðEq 39Þ

then Eq 38 becomes a linear homogeneous dif-
ferential equation with constant coefficients.
Depression of Order. When, for a linear

homogeneous differential equation, a particular
integral is known, the order of the equation can
be lowered. If y1 is a particular integral of:

dny

dxn
þ P1ðxÞ d

n�1y
dxn�1

þ � � � þ Pn�1ðxÞ dy
dx
þ PnðxÞ ¼ 0

(Eq 40)

y = y1 z can be substituted. The coefficient of z
is zero. Placing dz=dx ¼ u reduces the equa-
tion to the (n � 1) st order. For example, for
the equation:

d2y

dx2
þ pðxÞ dy

dx
þ qðxÞy ¼ 0

let y = y1z. Then:

dy

dx
¼ y1

dz

dx
þ z

dy1
dx

d2y

dx2
¼ y1

d2z

dx2
þ 2

dy1
dx

dz

dx
þ z

d2y1
dx2

Substituting in the original equation
produces:

y1
d2z

dx2
þ 2

dy1
dx

dz

dx
þ z

d2y1
dx2
þ p y1

dz

dx
þ z

dy1
dx

� �
þ qy1z ¼ 0

Because the coefficient of z is zero, this expres-
sion reduces to:

y1
d2z

dx2
þ 2

dy1
dx
þ py1

� �
dz

dx
¼ 0

By writing:

dz

dx
¼ u;

du

u
þ 2

dy1
dx
þ py1

� �
dx

y1
¼ 0

Integrating produces:

loge uþ
ð
p dxþ loge y

2
1 ¼ loge c or

u ¼ c

jy21
e�
Ð
p dx

Integrating again gives z, and:

y ¼ y1

ð
c

y21
e�
Ð
p dxdxþ c1

Pfaffian Differential Equations

A Pfaffian differential equation, or first-order
linear total differential equation:

P ðx; y; zÞdxþQðx; y; zÞdyþ Rðx; y; zÞdx ¼ 0

(Eq 41)

with continuously differentiable coefficientsP,Q,
R, can be interpreted geometrically as a condition
P � dr=0 on the tangent vector dr� (dx, dy, dz) of
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an integral curve. The curve is described by two
equations f(x, y, z) = 0, g(x, y, z, C) = 0, with C a
constant of integration. To determine the integral
curves on an arbitrary regular surface:

fðx; y; zÞ ¼ 0 (Eq 42)

solve the ordinary differential equation
obtained by eliminating z and dz from Eq 41
and solve the equation df (x, y, z) = 0.

Equation 41 is integrable if there exists an
integrating factor m = m(x, y, z) for which m(P
dx + Q dy + R dz) is an exact differential df
(x, y, z); that is, if:

P
@Q

@z
� @R

@y

� �
þQ

@R

@x
� @P

@z

� �
þR

@P

@y
� @Q

@x

� �
¼ 0

(Eq 43)

In such a case, each curve on an integral sur-
face, f(x, y, z) = C, orthogonal to a series of
curves described by dx=P ¼ dy=Q¼ dz=R is
a solution.

Linear Differential Equations with
Constant Coefficients

For n linear equations with constant coeffi-
cients and n dependent variables and one
independent variable t, a solution may be
reached with the symbolic algebraic method.
If n = 2:

ðDn þ a1D
n�1 þ � � � þ anÞ

xþ ðDm þ b1D
m�1 þ � � � þ bmÞy ¼ RðtÞ

ðDp þ c1D
p�1 þ � � � þ cpÞ

xþ ðDq þ d1D
q�1 þ � � � þ dqÞy ¼ SðtÞ

9>>>>=
>>>>;
(Eq 44)

where D ¼ d=dt. The equations may be
expressed as:

P1ðDÞxþQ1ðDÞy ¼ R P2ðDÞxþ q2ðDÞy ¼ S

Either x or y can be eliminated to solve the
equation obtained by treating these as algebraic
equations. For example, the system of
equations:

dx

dt
þ dy

dt
þ 2xþ y ¼ 0 (Eq 45a)

dy

dt
þ 5xþ 3y ¼ 0 (Eq 45b)

can be written:

ðDþ 2Þxþ ðDþ 1Þy ¼ 0 5xþ ðDþ 3Þy ¼ 0

by using the symbol D. Eliminating x, (D2 + 1)y
= 0. Using Eq 35, Eq 45(a) has the solution
y = c1 cot t + c2 sin t. Substituting this result
in Eq 45(b):

x ¼ � 3c1 þ c2
5

cos tþ c1 � 3c2
5

sin t

Simultaneous Total Differential
Equations

The system:

P1dxþQ1dyþ R1dz ¼ 0

P2dxþQ2dyþ R2dz ¼ 0


(Eq 46)

where P1, Q1, R1, P1, are functions of x, y, and
z, may be written:

dx

P
¼ dy

Q
¼ dz

R
(Eq 47)

where:

P ¼ Q1 R1

Q2 R2

����
���� Q ¼ R1 P1

R2 P2

����
���� R ¼ P1 Q1

P2 Q2

����
����

(Eq 48)

The general solution of Eq 46 consists of rela-
tionships involving two arbitrary constants:

f1ðx; y; z; c1Þ ¼ 0 f2ðx; y; z; c2Þ ¼ 0 (Eq 49)

Partial Differential Equations

Partial differential equations involve partial
derivatives, and common types of linear partial
differential equations are listed in Table 3.
Explicit solutions can be reached in only a rel-
atively few cases and usually involve arbitrary
functions, in a manner similar to the solutions
of ordinary differential equations, which
involve arbitrary constants. In practice, a prob-
lem usually involves determining a function
that satisfies the differential equation and meets
specific initial or boundary conditions.

First-Order Partial Differential
Equations

Interpreted geometrically for a first-order
partial differential equation:

F ðx; y; z; p; qÞ ¼ 0

p � @z

@x
; q � @z

@y
;Fp2 þ Fq2 ¼ 0

� �
(Eq 50)

with an unknown function z = z(x, y), assume
the given function F is single-valued and twice

continuously differentiable and x, y, z as rectan-
gular Cartesian coordinates. Every solution
z = z(x,y) of Eq 50 represents a surface with a
normal having the direction numbers p, q, �1
at every surface point (x, y, z). The solution
surface is defined by:

dx : dy : dz ¼ Fp : Fq : ðpFp þ qFqÞ

at every point (x, y, z). A set of values (x, y, z,
p, q) describes a planar element associating
the direction numbers p, q, �1 with a point
(x, y, z).

Characteristic Equations. A set of differen-
tiable functions:

x ¼ xðtÞ y ¼ yðtÞ z ¼ zðtÞ p ¼ pðtÞ q ¼ qðtÞ
(Eq 51)

represents the points and tangent planes along a
strip of a regular surface if the functions
(Eq 51) satisfy the strip condition:

dz

dt
¼ p

dx

dt
¼ q

dy

dt

Every set of functions (Eq 51) that satisfies
the characteristic ordinary differential equations
associated with Eq 50, that is:

dz

dt
¼ p

dx

dt
þ q

dy

dt

dx

dt
¼ Fp

dy

dt
¼ Fq

dp

dt
¼ �ðpFz þ FxÞ dq

dt
¼ �ðqFz þ FyÞ

9>=
>; (Eq 52)

together with Eq 50 describe a characteristic
strip.
Linear First-Order Partial Equation. The

equation:

Apþ Bq ¼ C (Eq 53)

for which A, B, and C are functions of x, y, and
z and:

p ¼ @z

@x
¼ zx q ¼ @z

@y
¼ zy

has the general solution F(u, v) = 0. In this gen-
eral solution, F is an arbitrary function, u(x, y, z)
= c1 and v(x, y, z) = c2. These elements form the
general solution of the differential equations:

Table 3 Linear partial differential equations

Physical background One-dimensional Multidimensional

Parabolic(a)

Heat conduction, diffusion

@2F
@x2 � 1

g2
@F
@t ¼ fðx; tÞ r2F� 1

g2
@F
@t ¼ fðr; tÞ

Hyperbolic(b)

Waves (strings, membranes, fluids,
electromagnetic)

@2F
@x2 � 1

c2
@2F
@t2 ¼ fðx; tÞ r2F� 1

c2
@2F
@t2 ¼ fðr; tÞ

Damped waves, transmission lines @2F
@x2 � a0

@2F
@t2 � a1

@F
@t � a2F ¼ fðx; tÞ r2F� a0

@2F
@t � a1

@F
@t � a2F ¼ fðr; tÞ

Elliptic(c)

Static case

@2F
@x2 ¼ fðxÞ r2 F = f(r)

4th order(b)

Elastic vibrations

@4F
@x4 þ 1

c2
@2F
@t2 ¼ fðx; tÞ r2r2Fþ 1

c2
@2F
@t2 ¼ fðr; tÞ

4th order(c)

Static case

@4F
@x4 ¼ fðxÞ r2 r2 F = f(r)

(a) Boundary conditions; initial conditions on F. (b) Boundary conditions; initial conditions on F and @F/@t. (c) Boundary conditions only
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dx

A
¼ dy

B
¼ dz

C
(Eq 54)

The normal to the surface F(u, v) = 0 is per-
pendicular to the curves of Eq 54. The charac-
teristic curves of Eq 53 are u = c1 and v = c2.
General Solution. For the partial differential

equation F(x, y, z, p, q) = 0, because z is a func-
tion of x and y, then dz = p dx + q dy. If another
relationship can be found among x, y, z, p, q, so
as to produce f(x, y, z, p, q) = 0, then p and q
can be eliminated. The solution of the resulting
ordinary differential equation involving x, y, z
satisfies the given equation, F(x, y, z, p, q)
= 0. The following linear partial differential
equation must be satisfied by the unknown
function f:

@F

@p

@f

@x
þ @F

@q

df

@y
þ p

@F

@p
þ q

@F

@q

� �
@f

@z

� @F

@x
þ p

@F

@z

� �
@f

@p
� @F

@y
þ q

@F

@z

� �
@F

@q
¼ 0

(Eq 55)

This equation is satisfied by any of the solu-
tions of the system:

@x
@F
@p

¼ @y
@F
@q

¼ dz
@F
@p þ q@F

@q

¼ �dp
@F
@x þ p@F

@z

¼ �dq
@F
@y þ q@F

@z

(Eq 56)

Second-Order Partial Differential
Equations

A linear second-order partial differential
equation with two independent variables has
the form:

L ¼ Arþ 2Bsþ CtþDpþ Eq þ Fz ¼ fðx; yÞ
(Eq 57)

for which:

r ¼ @2z

@x2
s ¼ @2z

@x@y
t ¼ @2z

@y2
p ¼ @z

@x
q ¼ @z

@y

Coefficients A, . . ., F are real continuous func-
tions of the real variables x and y. For the fol-
lowing homogeneous partial differential
equation of the first order:

Ap2 þ 2Bpq þ Cq2 ¼ 0 (Eq 58)

assume that two solutions are x = x (x, y), Z = Z
(x, y).

The homogeneous form of Eq 57, L = 0, is
the parabolic type, if B2 � AC = 0, and has
the normal form:

@2z

@x2
þ a

@z

@x
þ b

@z

@Z
þ cz ¼ 0 (Eq 59)

where a, b, c are functions of x and Z.
If B2 � AC > 0 in Eq 58, the homogeneous

form of Eq 57 is hyperbolic, which has two
normal forms:

@2z

@x@Z
þ a

@z

@x
þ b

@z

@Z
þ cz ¼ 0 (Eq 60)

@2z

@x2
� @2z

@Z2
þ a

@z

@x
þ b

@z

@Z
þ cz ¼ 0 (Eq 61)

The equation is an elliptic type that has the nor-
mal form:

@2z

@x2
þ @2z

@z2
þ a

@z

@x
þ b

@z

@Z
þ cz ¼ 0 (Eq 62)

when B2 � AC < 0.
Laplace’s Equation. The general solution of

the equation:

@2f
@x2
þ @2f

@y2
¼ 0 (Eq 63)

is of the form:

f ¼ f1ðxþ iyÞ þ f2ðx� iyÞ i2 ¼ �1 (Eq 64)

with f1 and f2 being arbitrary functions. In prac-
tice, this solution is too general, because deter-
mining this function so as to satisfy given
boundary conditions is difficult. A function that
satisfies Eq 63 is a harmonic function.
A useful method depends on the assumption

that a particular solution is a product of func-
tions each containing only one of the variables.
Combining a number of such solutions often
results in a sufficiently general solution. For
example, assuming:

f ¼ XðxÞ�Y ðyÞ (Eq 65)

is a solution of Eq 63, then (X00/X) + (Y00/Y) = 0.
From this:

1

X

d2X

dx2
¼ �o2 1

Y

d2Y

dy2
¼ o2 (Eq 66)

where o is a constant. Solutions to Eq 66 are:

X ¼ c1 cos oxþ c2 sin ox Y ¼ c3e
oy þ c4e

�oy

in which c1, c2, c3, c4 are arbitrary constants.
Equation 65 becomes:

f ¼ fðoÞ
¼ eoyðAo cos oxþBo sin oxÞ
þ e�oyðCo cos oxþDo sin oxÞ

in which Ao, Bo, Co, Do are arbitrary constants.
Generally:

f ¼
X1
o ¼ 0

fðoÞ (Eq 67)

may be assumed to be a solution to Eq 63, with
the constants determined so that Eq 67 will sat-
isfy initial or boundary conditions of a particu-
lar problem.
Equations Linear in the Second Deriva-

tives. The general second-order equation linear
in the second derivative may be expressed as:

ArþBsþ Ct ¼ V (Eq 68)

for which A, B, C, V are functions of x, y, z,
p, q. From the equations:

A dy2 �B dx dyþ C dx2 ¼ 0 (Eq 69)

A dp dyþ C dq dx� V dx dy ¼ 0 (Eq 70)

p dxþ q dy ¼ dz (Eq 71)

one or two relationships may be derived
between x, y, z, p, q. These are intermediary
integrals. From these, the solution of Eq 68
may be deduced. To obtain an intermediary
integral, resolve Eq 69, assuming that the left
member is not a perfect square, into the equa-
tions dy � n1 dx = 0 and dy � n2 dx = 0. From
the first and from Eq 70, combined with Eq 71,
if necessary, obtain the two integrals u1 (x, y, z,
p, q) = a and v1 (x, y, z, p, q) = b. Then u1 =
f1(v1), with f1 an arbitrary function, becomes
an intermediary integral. In the same way, from
dy � n2dx = 0, another pair of integrals u2 = a1,
v2 = b1 is obtained. Then u2 = f2 (v2) is an inter-
mediary integral. If n1 = n2, the intermediary
integral may be integrated to determine the final
integral. If n1 6¼ n2, the two intermediary inte-
grals are solved for p and q and substituted in
p dx + q dy = dz. The result is integrated.
Homogeneous Equation with Constant

Coefficients. The equation:

@2z

@x2
þA1

@2z

@x@y
þA2

@2z

@y2
¼ 0 (Eq 72)

is equivalent to:

@

@x
�m1

@

@y

� �
@

@x
�m2

@

@y

� �
z ¼ 0 (Eq 73)

where m1 and m2 are roots of the auxiliary
equation X2 + A1 X + A2 = 0. The general solu-
tion of Eq 73 is:

z ¼ f1ðyþm1zÞ þ f2ðyþm2xÞ (Eq 74)

Euler’s Equation. The general Euler’s
equation:

a
@2z

@x2
þ 2b

@2z

@x@y
þ c

@2z

@y2
¼ 0 (Eq 75)

for which a, b, and c are constants, has the gen-
eral solutions:

z ¼ fðxþ l1yÞ þ cðxþ l2yÞ if b2 6¼ ac (Eq 76)

z ¼ fðxþ l1yÞ þ ðgxþ �yÞcðxþ l1yÞ if b2 ¼ ac

(Eq 77)

where l1 and l2 are the roots of a + 2bl + cl2

= 0. f and c are arbitrary functions, and g and
d are arbitrary constants. The general solution
of @2 x/@ x @ y = 0 is z = f (x) + c (y); f
and c are arbitrary functions. The general solu-
tion of @2 u/@ t2 = a2 @2 u/@x2 is u = f (x + at) +
c (x � at); f and c are arbitrary functions.
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Separation of Variables

In many important applications, a solution of
the form:

F ¼ Fðx1; x2; . . . ; xnÞ ¼ f1ðx1Þf0ðx2; x3; . . . ; xnÞ
(Eq 78)

can be reached by rewriting a partial differen-
tial equation in the separated form:

F1 x1;f1;
df1

dx1

;
d2f1

dx1
2
; . . .

� �
¼ F0 x2; x3; . . . ; xn;f0;

@f0

@x2
;
@f0

@x3
; . . .

� �

The unknown functions f1 (x1) and f0 (x2, x3,
. . ., xn) must satisfy the differential equations:

F1 x1;f1;
df1

dx1

;
d2f1

dx1
2
; . . .

� �
¼ C (Eq 79)

F2 x2; x3; . . . ; xn;f0;
@f0

@x2
;
@f0

@x3
; . . .

� �
¼ C

(Eq 80)

where C is a constant of integration, or separa-
tion constant, to be determined according to
boundary or other conditions. Equation 79 is
an ordinary differential equation for the

unknown function f1(x1). With Eq 80, the
separation process may be repeated.
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Integral Calculus*

THE BASIC CONCEPT OF INTEGRA-
TION is the continuous summing of differen-
tials, and the symbol for the process of
integration (

Ð
) is analogous to the symbol S

for the summation of discrete elements. For
example, for any function u of variable x with
the differential of du, then:ð

du ¼ uþ Cð
du

dx
dx ¼ uþ C

d

dx

ð
u dx ¼ uþ C

where C is an arbitrary constant for a family of
curves (Fig. 1). Each of the curves is equally
valid when the function u is determined from
the integration of the differential du. Likewise,
a constant factor (k) can be moved from the inte-
grand to outside the integral sign, as follows:ð

k du ¼ k

ð
du

The integral of the algebraic sum of a finite
number of functions is the algebraic sum of the
integrals of the functions. If u, v, and w are
functions of a single variable, for example:ð

ðduþ dv� dwÞ ¼
ð
duþ

ð
dv�

ð
dw

Integration Methods

Table 1 lists some standard elementary inte-
grals. The first step in integration is to simplify
the integral, if necessary. If the integrand is a
sum of functions, it may be rewritten as the
sum of the integrals of the functions. When the
integrand is a rational fraction with numerator
of degree equal to or greater than that of the
denominator, it may be transformed until the
remainder is of lower degree than the denomina-
tor. The remainder may be broken into partial
fractions for further simplification. Substitution
of another variable for part of the integrand
may simplify integration.
The original or simplified integrand can be

compared with the standard elementary forms
or with solutions in more elaborate tables of
integrals, such as presented later in this article.
If the solution does not appear with inspection,

algebraic or trigonometric manipulation may be
used to put the integral in a recognizable form
for solution with a table. Substitution of another
variable may also be tried.

If an integral contains: Try substituting:

fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2
p

Þ u = a sin y
fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2 þ u2
p Þ u = a tan y

fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2
p

Þ u = a sec y
f(xp/q) x = zn

where n is the least common denominator of the
fractional exponents of x.

If an integral contains: Try substituting:

f[x, (a + bx)p/q] a + bx = zn

where n represents the least common denomi-
nator of the fractional exponents of a + bx.
For integrals in the form:

xmðaþ bxnÞp=q

where q > 0, n 6¼ 0, and m, n, p, q are integers,
try:

zq ¼ aþ bxn if
mþ 1

n
is zero or an integer

or:

zqxn ¼ aþ bxn if
mþ 1

n
þ p

q
is zero or an integer:

Thus, the fundamental rules of integration
are those properties of indefinite integrals that

enable transformation of the integral of a
given function to the integrals of other
functions.

Fig. 1 Function (u) with different integration constants
(C1, C2, C3) from integration of the differential du

*Adapted from ASM Handbook of Engineering Mathematics, American Society for Metals, 1983

Table 1 Standard elementary indefinite
integralsð
dx ¼ xþ Cð
undu ¼ unþ1

nþ 1
þ C n 6¼ �1ð

du

u
¼ loge uþ C ¼ loge cuð

eu du ¼ eu þ Cð
au du ¼ au

loge a
þ Cð

sinu du ¼ � cos uþ Cð
cos u du ¼ sinuþ Cð
tan u du ¼ loge secuþ Cð
cot u du ¼ loge sinuþ Cð
secu du ¼ logeðsecuþ tan uÞCð
cscu du ¼ logeðcscu� cot uÞCð
sec2 u du ¼ tan uþ Cð
csc2 u du ¼ � cot uþ Cð
secu tan u du ¼ sec uþ Cð
cscu cot u du ¼ � cscuþ Cð

du

u2 þ a2
¼ 1

a
arctan

u

a
þ Cð

du

u2 � a2
¼ 1

2a
loge

a� u

aþ u
Cð

du

a2 � u2
¼ 1

2a
loge

aþ u

a� u
Cð

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 	 a2
p ¼ logeðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 	 a2
p

ÞCð
auffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p ¼ arcsin

u

a
þ Cð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

du ¼ u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2
p

þ a2

2
arcsin

u

a
þ Cð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 	 a2
p

du ¼ u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 	 a2
p

	 a2

2
logeðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 	 a2
p

ÞCð
sinh u du ¼ coshuþ Cð
coshu du ¼ sinh uþ Cð
tanhu du ¼ loge cosh uþ Cð
cothu du ¼ loge j sinh uj þ C
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Integration by Parts. If u and v are functions
of a single variable:ð

u dv ¼ uv�
ð
v du

Hence, u dv can be integrated if v du can be
integrated.
Integration by Series. If the integrand can be

expressed as a uniformly convergent series of
powers of x, within its interval of convergence,
and if term-by-term integration of this series also
produces a uniformly convergent series, the sum
of this series is also the value of the integral.
Integration of Trigonometric Functions.

A trigonometric integrand may be reduced to
a standard form in several ways.
If an integral contains f(sin y, cos y), substi-

tution of 0 = 2 arctan x may be used, so that x
= tan (y/2), sin y = 2x/(1 + x2), cos y =
(1 � x2)/(1 + x2) and dy = 2dx/(1 + x2).
If an integral has the form:ð

sin2mþ1 y cosn y dy

where m is any integer or zero, the integrand
may be rewritten in the form:

sin2m y cosn y sin y ¼ ð1� cos2 yÞm cosn y sin y

After multiplication, the integrand becomes a
sum of powers of cos y multiplied by sin y; it
then can be integrated term by term.
For an integral in the form:ð

sinp y cos2rþ1 y dy

where r is any integer or zero, the integrand can
be rewritten as:

sinp y cos2r y cos y ¼ sinp yð1� sin2 yÞr cos y

After multiplication, the integrand becomes a
sum of powers of sin y multiplied by cos y; it
then can be integrated term by term.
For an integral in the form:ð

sin2m y cos2n ydy

where m and n are integers or zero, use the
identities:

sin2 y ¼ 1=2ð1� cos 2yÞ
cos2 y ¼ 1=2ð1þ cos 2yÞ

sin y cos y ¼ sin 2y
2

For an integral in the form:

ð
tanm y secn ydy or

ð
cotm y cscn ydy

the identities sec2 y = 1 + tan2y or csc2y = 1 +
cot2y may be tried. The form:

ð
sinm y cosn ydy

also may be integrated by the use of reduction
formulas, which contain an integral of lower

degree in sin y or cos y. Successive reduction
may produce the required integral.
Integration of Rational Fractions. If the

quotient of two polynomials:

RðxÞ ¼ PnðxÞ
PdðxÞ

is not a proper fraction, R(x) can be changed,
by dividing, to the sum of integrable polyno-
mial and a proper fraction. If the proper fraction
cannot be integrated by reference to a table
of integrals, resolve it, if possible, into
partial fractions. These can be integrated from
a table.
Integration of Irrational Functions. Irratio-

nal functions are not always integrable in terms
of elementary functions. In simplest cases, inte-
grals of irrational functions can be reduced to
those of rational functions by means of the sub-
stitutions in Table 2.
Elliptic Integrals. Integrals such as:

ð
R x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax3 þ bx2 þ cxþ @

p� �
dx

and:

ð
R x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax4 þ bx3 þ cx2 þ @xþ e

p� �
dx

cannot, in general, be expressed in terms of ele-
mentary functions. In such cases, they are
called elliptic integrals.
Integrals of this type, which are not expres-

sable in terms of elementary functions, can
be reduced by transformation to elementary
functions and to the following types of
integrals:

ð
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp

ð
t2dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� t2Þð1� k2tÞ2
q
ð

dt

ð1þ ht2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp

where 0 < k < 1. By substituting t = sin j (0 <
j < ½p), these transformed integrals
can be reduced to the following form of
Legendre:

ð
djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 j
p ðelliptic integral of the 1st kindÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 j

q
dj ðelliptic integral of the 2nd kindÞð

dj

ð1þ h sin2 jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 j

p
ðelliptic integral of the 3rd kindÞ

The corresponding definite integrals with the
lower limit of integration equal to zero are
denoted as follows:

ðIÞ
ðj
0

dcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 c

p ¼ F ðk;jÞ

ðIIÞ
ðj
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 c

q
dc ¼ Eðk;jÞ

ðIIIÞ
ðj
0

dc

ð1þ h sin2 cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 c

p ¼ Pðh; k;jÞ

where k < 1.
These are incomplete elliptic integrals of the

first, second, and third kind, respectively.
When j = ½p, (I) and (II) are called complete
elliptic integrals and denoted by:

K ¼ F k;
p
2

� �
¼
ðp=2
0

dcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 c

p
E ¼ E k;

p
2

� �
¼
ð�=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 c

q
dc

Definite Integrals

If f(x) is continuous in the closed interval [a,
b] and this interval is divided into n equal parts
by the points a, x1, x2,. . .,xn�1, b in such a way
that Dx = (b � a)/n, then the definite integral of
f(x) with respect to x between the limits x = a to
x = b, is expressed as:ðb

a

fðxÞdx ¼ lim
n!1

Xn
1

fðXiÞ�x

¼
ð
fðxÞdx

� �b
a

¼ ½F ðxÞ�ba ¼ F ðbÞ � F ðaÞ

where F(x) is a function and f(x) is the deriva-
tive of the function with respect to x. The num-
bers a and b are called, respectively, the lower
and upper limits of integration, and [a, b] is
called the range of integration. Geometrically,
the definite integral of f(x) with respect to x,
between limits x = a to x = b, is the area
bounded by f(x), the X-axis, and the verticals
through the end points of a and b.

Table 2 Substitutions for integration of irrational functions

Form Substitution

f ½ðaxþ bÞp=q �dx let axþ b ¼ yq

f ½ðaxþ bÞp=qðaxþ bÞr=s �dx let axþ b ¼ yn, where n is the least common multiple of q, s

f ½x;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 þ axþ b

p
�dx let

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ axþ b

p
¼ y� x

f ½x;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ axþ b

p
�dx let

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ axþ b

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� xÞðbþ xÞ

p
¼ ða� xÞy or ¼ ðbþ xÞy

f ½sinx; cos x�dx let tan
x

2
¼ y

f ½x;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

�dx let x ¼ a sin y

f ½x;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2
p

�dx let x ¼ a sec y or x ¼ a cosh y

f ½x;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
�dx let x ¼ a tan y or x ¼ a sinh y
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Figure 2 shows the division of intervals and
the area boundaries of a generalized definite
integral. General rules of limits are:ðb

a

¼ �
ða
bðb

a

þ
ðc
b

¼
ðc
aðc

a

�
ðc
b

¼
ðb
aða

a

¼ 0

Fundamental Properties

The integral of an algebraic sum of several
functions is equal to the sum of the integrals of
these functions:ðb

a

ðfðxÞ þ jðxÞ � cðxÞÞdx

¼
ðb
a

fðxÞdxþ
ðb
a

jðxÞdx�
ðb
a

cðxÞdx

A constant factor can be brought out from
under the integral sign:ðb

a

cfðxÞdx ¼ c

ðb
a

fðxÞdx

Mean Value Theorem. If the function f(x) is
continuous in the interval [a, b], then there
exists at least one point x inside the interval
[a, b], such that:ðb

a

fðxÞdx ¼ ðb� aÞfðxÞ

The geometric significance of this theorem is
shown in Fig. 3; a point x exists between a and
b that defines the area of ABCD equal to the
area of the rectangle AB0 C0 D.
For the integral of a product of two functions f

(x) and j(x), where f(x) is continuous and j(x)
has a constant sign in the interval [a, b], there
exists inside the interval [a, b] at least one
number x for which:ðb

a

fðxÞjðxÞdx ¼ fðxÞ
ðb
a

jðxÞdx

Estimation of the Integral. The value of a
definite integral is contained between the pro-
ducts of the least and the greatest value of the
integrand multiplied by the length of the inter-
val of integration:

mðb� aÞ �
ðb
a

fðxÞdx �Mðb� aÞ

where m is the least and M is the greatest value
of f(x) in the interval [a, b]. The significance of
this theorem is illustrated in Fig. 4.

Evaluation of Definite Integrals

The fundamental method of evaluating defi-
nite integrals is based on replacing the definite
integral by an indefinite integral:ðb

a

fðxÞdx ¼
ð
fðxÞdx

� �b
a

In this case, to evaluate the definite integral, a
primitive function of f(x) should be found. Def-
inite and indefinite integrals can be transformed
one into another by the following rules.

Substitution. By introducing an auxiliary
function x = j(t), where the new variable t is
a single-valued function t = c(x) of x in the
interval [a, b], the integral can be transformed
into the form:ðb

a

fðxÞdx ¼
ðcðbÞ
cðaÞ

fðjðtÞÞj0ðtÞdt

Using this formula, the inverse substitution
in evaluating the indefinite integral can be
avoided. For example:

ða
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

dx ¼
ðarcsin 1
arcsin 0

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 t

p
d sin t

¼ a2
ðp=2
0

cos2 t dt

¼ a2
ðp=2
0

1

2
ð1þ cos 2tÞdt

¼ a2

2
½t�p=20 þ a2

4

ðp
0

cos z dz

¼ pa2

4
þ a2

4
½sin z�p0 ¼

pa2

4

Integration by Parts. The expression f(x)dx
can be written in an arbitrary way, in the form
u dv; du can be found by differentiation and v
by integration. The definite integral this way
can be transformed into the form:

ðb
a

fðxÞdx ¼
ðb
a

u dv ¼ ½uv�ba �
ðb
a

v du

For example:

ð1
0

xexdx ¼ ½xex�10 �
ð1
0

exdx ¼ e� ðe� 1Þ ¼ 1

Integration by Expansion into a Series. If
f(x) is represented in the interval of integration
by a uniformly convergent series of functions:

fðxÞ ¼ j1ðxÞ þ j2ðxÞ þ � � � þ jnðxÞ þ � � �

then the following relationship holds:ð
fðxÞdx ¼

ð
j1ðxÞdxþ

ð
j2ðxÞdxþ � � �

þ
ð
jnðxÞdxþ � � �

Thus, the definite integral can be represented as

a convergent series of numbers:

ðb
a

fðxÞdx ¼
ðb
a

j1ðxÞdxþ
ðb
a

j2ðxÞdxþ � � �

þ
ðb
a

jnðxÞdxþ � � �

If the functions j1(x) can be easily
integrated, as with an expansion of f(x) into a
power series uniformly convergent in the inter-

val [a, b], then the integral
Ð b
a fðxÞdx can be

evaluated with an arbitrary accuracy.
Improper Integrals. If one limit is infinite,

then: ð1
a

fðxÞdx ¼ lim
b!1

ðb
a

fðxÞdx

The integral exists, or converges, if there exist
numbers k> 1 andM independent of x in a rela-
tionship xk |f(x)| < M for arbitrarily large
values of x. If x|f(x)| > m, an arbitrary positive
number, for sufficiently large values of x, the
interval diverges. For example, the integral:ð1

0

xdx

ðxþ x2Þ1=2

exists because, for k = 2 and M = 1:

x2
x

ðxþ x2Þ1=2
�����

����� ¼ x2

xþ x2

� �1=2

< 1

regardless of how large x becomes. If the inte-
grand is infinite at the upper limit, then:

Fig. 2 Area interval of summation of a definite integral Fig. 3 Mean value theorem Fig. 4 Method of estimation
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ðb
a

fðxÞdx ¼ lim
e!0

ðb�e
a

fðxÞdx; with 0 < e < ðb� aÞ

The integral exists if numbers k < 1 and M
independent of x exist in the relationship (b �
x)k |f(x)| < M for a � x < b. If there is a number
k¼>1 and a number m such that (b � x)k |f(x)| >
m for a � x < b, the integral diverges. For
example, the integral:ð1

0

dx

1� x

diverges, because for k = 1 and m = ½

1� x

1� x
¼ 1 > 1/2

The tests are analogous if the integrand is
infinite at the lower limit. If the integrand is
infinite at an intermediate point, the point is
used to divide the interval into two subinter-
vals, and the aforementioned tests are
applied.
Multiple Integrals. Let f(x, y) be defined in

the region R of the xy plane. Divide R into sub-
regions DR1, DR2, . . ., DRn of areas DA1, DA2,
. . ., DAn. Let (xi, Zi) be any point in DRi. If
the sum:

Xn
i¼1

fðxi;ZiÞDAi

has a limit as n > 1 and the maximum
diameter of the subregions DRi approaches
0, then:

ð
R

fðx; yÞdA ¼ lim
n!1

Xn
i¼1

fðxi;ZiÞDAi

The double integral is evaluated by two
successive single integrations. It is first
evaluated with respect to y holding x con-
stant, between variable limits of integration,
and then with respect to x between constant
limits, as shown in Fig. 5. If f(x, y) is contin-
uous, the order of integration can be
reversed:

ð
R

fðx; yÞdA ¼
ðb
a

ðy2ðxÞ
y1ðxÞ

fðx; yÞdy dx

¼
ðd
c

ðx2ðyÞ
x1ðyÞ

fðx; yÞdx dy

In polar coordinates:

ð
R

F ðr; yÞdA ¼
ðb
a

ðr2ðyÞ
r1ðyÞ

F ðr; yÞr dr dy

¼
ðl
k

ðy2ðrÞ
y1ðrÞ

F ðr; yÞr dy dr

Similarly, triple integrals are evaluated by
three single integrations. In rectangular
coordinates:

ð
R

fðx; y; zÞdV ¼
ð ð ð

fðx; y; zÞdx dy dz

In spherical coordinates:

ð
R

F ðr; y;fÞdV ¼
ð ð ð

F ðr; y;fÞr2 sin ydr dy df

In cylindrical coordinates:

ð
R

Gðr;f; zÞdv ¼
ð ð ð

Gðr;f; zÞr dr df dz

Integrals Depending on a Parameter. The
definite integral:

ðb
a

fðx; yÞdx ¼ F ðyÞ

is a function of the variable y called a
parameter.
The function F(y) often is not an elementary

function. The integral may be an ordinary inte-
gral, an improper integral, or an integral of a
discontinuous function f(x, y). For example:

GðyÞ ¼
ð1
0

xy�1e�xdx

with the integral convergent for y > 0. This is
the Gamma function or Euler’s integral of the
second kind.
Differentiation Under the Integral Sign. If

the function:

ðb
a

fðx; yÞdx ¼ F ðyÞ

is defined in the interval c � y � e and the
function f(x, y) is continuous in the rectangle
a � x � b, c � y � e with a continuous partial
derivative @f

@yin this domain, then, for every y in
the interval [c, e], there is:

d

dy

ðb
a

fðx; yÞdx ¼
ðb
a

@fðx; yÞ
@y

dx

For example, in an arbitrary interval, for y > 0:

d

dy

ð1
0

arc tan
x

y
dx ¼

ð1
0

@

@y
arc tan

x

y

� �
dx ¼

�
ð1
0

x

x2 þ y2
dx ¼ 1/2 ln

y2

1þ y2

Expressed another way:

ð1
0

arc tan
x

y
dx ¼ arc tan

1

y
þ 1

2
y ln

y2

1þ y2

d

dy
arc tan

1

y
þ 1

2
y ln

1

1þ y2

� �
¼ 1

2
ln

y2

1þ y2

Integration Under the Integral Sign. If the
function:

ðb
a

fðx; yÞdx ¼ F ðyÞ

is defined in the interval [c, e] and the function
f(x, y) is continuous in the rectangle a � x � b,
c � y � e, then:

ðe
c

ðb
a

fðx; yÞdx
� �

dy ¼
ðb
a

ðe
c

fðx; yÞdy
� �

dx

Line, Surface, and Volume Integrals

Line Integrals. The functions P(x, y) and
Q(x, y) are continuous at all points of a continu-
ous curve C joining the points A and B in the xy
plane, as shown in Fig. 6. The curveC is divided
into n arbitrary parts Dsv by the points (xv, yv),
and (xv, Zv) is an arbitrary point on Dsv. The
increments Dxv and Dyv are projections of DSv
on the x- and the y-axes. The line integral is:

Fig. 5 Limits for double integration of example in text Fig. 6 Elements of a curve for a line integral
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ðB
A

½P ðx; yÞdxþQðx; yÞdy� ¼

lim
n!1

maxDxn ;Dyn!0

Xu
n�1
½P ðxn;ZnÞDxn þQðxn;ZnÞDyn�

If the equation of the curve C is y = f(x), x =
f(y), or the parametric equations x = x(t), y = y
(t), the line integral may be evaluated as a defi-
nite integral in variable x, y, or t, respectively.
A line integral in xyz:ðB

A

½P ðx; y; zÞdxþQðx; y; zÞdyþ Rðx; y; zÞdz�

is similarly defined. The work done by a con-
stant force F, acting on a particle moving a dis-
tance s along a straight line inclined at angle y
to the force, is W = Fs cos y. If the path is
defined as a curve C and the force is variable,
the differential of work is dW = F cos y ds,
where ds is the differential of path. Then:

W ¼
ð
dW ¼

ð
C

F cos y ds ¼
ð
C

ðX dxþ Y dyÞ

where X and Y are the x and y components of F,
as shown in Fig. 7.
Surface Areas by Integration. If a plane

curve is rotated about an axis in its plane, the
area of the surface of revolution is given by:

S ¼ 2p
ðb
a

y ds

where y is the distance from axis to curve, and
ds is the differential of length of arc.
For example, the surface area generated by

rotating the hypocycloid x2/3 + y2/3 = a2/3 about
the x-axis is found by computing the area from
x = 0 to x = a and multiplying by 2:

y ¼ ða2=3 � x2=3Þ3=2 y0 ¼ � y1=3

x1=3

1þ y02 ¼ 1þ y2=3

x2=3
¼ a2=3

x2=3

ds ¼ ð1þ y02Þ1=2 dx ¼ a1=3

x1=3
dx

S ¼ 4p
ða
0

ða2=3 � x2=3Þ3=2 a1=3

x1=3

� �
dx

To integrate, let z2 = a2/3 � x2/3. Then 2z dz =
�2/3x�1/3 dx and dx = �3zx1/3 dz. When x =
0, z = a1/3; when x = a, z = 0:

S ¼ 4pa1=3
ð0
a1=3

z3x�1=3ð�3zx1=3dzÞ

¼ 12pa1=3
ða1=3
0

z4dz

¼ 12pa1=3½1=5z5�a1=30

¼ 12pa2

5

The area of any curved surface in rectangular
coordinates is given by:

A ¼
ð ð
S

1þ @z

@x

� �2

þ @z

@y

� �2
" #1=2

dy dx

¼
ð ð
S

1þ @y

@x

� �2

þ @y

@z

� �2
" #1=2

dz dx

¼
ð ð
S

1þ @x

@y

� �2

þ @x

@z

� �2
" #1=2

dz dy

For example, the area of the surface of the
sphere x2 + y2 + z2 = r2 is formed by computing
the area in the first octant, then multiplying by 8:

@z

@z
¼� x

z
@z

@y
¼� y

z

1þ @z

@x

� �2

þ @z

@y

� �2

¼ 1þ x2

z2
þ y2

z2

¼ z2 þ x2 þ y2

z2
¼ r2

r2 � x2 � y2

Integrate first with respect to y, holding x con-
stant, to find the area of an increment dx wide
and extending from the xz plane to the xy plane.
Then integrate with respect to x, to add the
increments from x = 0 to x = r:

A ¼ 8

ðr
0

ð ffiffiffiffiffiffiffiffiffir2�x2
p

0

r2

r2 � x2 � y2

� �1=2
dy dx

¼ 8r

ðr
0

arcsin
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p

� � ffiffiffiffiffiffiffiffiffir2�x2
p

0

dx

¼ 8r

ðr
0

p
2
dx ¼ 4pr½x�r0 ¼ 4pr2

Volumes by Integration. When a plane
curve is rotated about an axis in its plane, the
volume of the solid generated is:

V ¼ p
ðb
a

y2 dx

where y is the distance from axis to curve, and
dx is the differential length along the axis.
The integration is equivalent to adding circular
cross sections of thickness dx.
A volume of revolution also is given by:

V ¼ 2p
ðr
r1

rh dr

where r is the distance from axis to curve, and
h is the length of element of volume normal

to r. The integration is equivalent to adding
cylinders of thickness dr.
In polar coordinates, a volume of revolution

is given by:

V ¼ 2p
ðb
a

ðd
c

r2 sin y dr dy

The volume of a solid in rectangular coordi-
nates generally is given by:

V ¼
ðb
a

ðn
m

fðx; yÞdy dx ¼
ðd
c

ðq
p

fðx; yÞdx dy

where m and n denote functions of x, and p and
q denote functions of y.
In cylindrical coordinates, volume is given by:

V ¼
ðb
a

ðb
a

fðr; yÞr dr dy ¼
ðd
c

ðd
g
fðr; yÞr dy dr

where a and b denote functions of r, and g and
d denote functions of y.
Volume can also be calculated by triple

integration:

V ¼
ð ð ð
V

dV ¼
ðb
a

ðn
m

ðv
u

dz dy dx

where u and v denote functions of y, and m and
n denote functions of x.
Green’s Theorem. If P(x,y) and Q(x,y) are

continuous functions with continuous partial
derivatives @P=@y and @Q=@z in a simply
connected region R bounded by a simple closed
curve C, then:ð ð

R

@Q

@x
� @P

@y

� �
dx dy ¼

ð
C

ðP dxþQ dyÞ

A simply connected region is defined as one in
whichanyclosedcurve in the regioncanbe reduced
to a point without passing outside the region.
Stokes’ Theorem. If P(x, y, z), Q(x, y, z),

R (x, y, z) are continuous functions having contin-
uous first partial derivatives, and if S is a region
that is bounded by a simple closed curve C
and part of a surface z = f(x, y), continuous with
continuous first partial derivatives, then:

ð ð
S

@R

@y
� @Q

@z

� �
dy dzþ @P

@z
� @R

@x

� �
dz dx

�

þ @Q

@x
� @P

@y

� �
dx dy

�
¼
ð
C

ðP dxþQ dyþ R dzÞ

The signs are determined by a viewpoint in the
direction of the normal resulting in the integra-
tion around C taken in the positive direction.

Applications of Integration

Typical applications of single integration
are given in this section. Applications of double
and triple integration are summarized in Tables
3 and 4.

Fig. 7 Components of a force acting on a body moving
along curve C
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Length of Arc. For an arc of a plane curve
y = f(x), the length s from the point (a, b) to
the point (c, d) is expressed as:

s ¼
ðc
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx ¼
ðd
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dx

dy

� �2
s

dy

In polar coordinates, with r = f(y), the length
of the arc from the point (r1, y1) to the point
(r2, y2) becomes:

s ¼
ðy2
y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ dr

dy

� �2
s

dy ¼
ðr2
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

dy
dr

� �2
s

dr

In three dimensions, with the curve represented
by the equations y = f1(x) and z = f2(x), the
length of arc from x1 = a to x2 = b is:

s ¼
ðb
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2

þ dz

dx

� �2
s

dx

Areas of Plane Figures. For the curve y =
f(x), the area bounded by f(x), the x-axis, and
the ordinates x = a and x = b is given by:

A ¼
ðb
a

y dx

The area above the x-axis is represented as
positive, that below the x-axis is negative.
In polar coordinates, the area under a curve
is:

A ¼ 1/2

ðb
a
r2dy

In rectangular coordinates, the area under a
curve is also determined by the double integral:

A ¼
ð
A

ð
dA ¼

ð ð
dxdy

In polar coordinates, the double integral
becomes:

A ¼
ð ð

r dr dy

The area bounded by a closed curve C also
can be determined by the line integral:

A ¼ 1/2

ð
C

ð�y dxþ x dyÞ

Area of a Surface. The formula for area of a
surface formed by revolution of a curve y = f(x)
about the x-axis, as shown in Fig. 8(a), is deter-
mined by:

Table 3 Applications of double integrals

Notation Formula In Cartesian coordinates In polar coordinates

Area of a plane figure

S
ð
s

dS

ð ð
dydx

ð ð
r drdj

Area of a surface

S
ð
s

dS

cos g

ð ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@z

@x
Þ2 þ ð@z

@y
Þ2

s
dydx

ð ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2ð@z

@r
Þ2 þ ð@z

@j
Þ2

s
drdj

Volume of a cylinder

V
ð
s

zdS

ð ð
z dydx

ð ð
zr drdj

Moment of inertia(a)

Ix
ð
s

y2dS

ð ð
y2dydx

ð ð
r3 sin2 jdrd’

Moment of inertia(b)

Io
ð
s

r3dS
ð ð
ðx2 þ y2Þdydx

ð ð
r3drdj

Mass of a plane figure(c)

M
ð
s

ddS
ð ð

d dydx

ð ð
dr drdj

xc
Ð
s x dS

S

Ð Ð
x dydxÐ Ð
dydx

Ð Ð
r2 cosj drdjÐ Ð

r drdj
Coordinates of the center of gravity(d)

yc
Ð
s y dS

S

Ð Ð
y dydxÐ Ð
dydx

Ð Ð
r2 sinj drdjÐ Ð

r drdj

(a) Of a plane figure with respect to the x-axis. (b) Of a plane figure with respect to a pole O. (c) With surface density d given as a function of a point.
(d) Of a plane homogeneous figure

Table 4 Applications of triple integrals

Notation Formula In Cartesian coordinates

In cylindrical

coordinates In spherical coordinates

Volume of a solid

V
ð
n
dV

ð ð ð
dzdydx

ð ð ð
rdzdrdj

ð ð ð
r3siny drdy dj

Moment of inertia(a)

Iz
ð
n
r2dV

ð ð ð
ðx2 þ y2Þdzdydx

ð ð ð
r3dzdrdj

ð ð ð
r4 sin3 y drdy dj

Mass of a solid(b)

M
ð
n
d dV

ð ð ð
d dzdydx

ð ð ð
dr dzdrdj

ð ð ð
dr3 sin y drdy dj

xC
Ð
n y dV

V

Ð Ð Ð
y dzdydxÐ Ð Ð
dzdydx

Coordinates of the center of gravity(c)

yC
Ð
n y dV

V

Ð Ð Ð
y dzdydxÐ Ð Ð
dzdydx

zC
Ð
n z dV

V

Ð Ð Ð
z dzdydxÐ Ð Ð
dzdydx

(a) Of a solid with respect to the z-axis. (b) With density d given as a function of a point. (c) Of a homogeneous solid

Fig. 8 Integration of surfaces formed by revolution of a
curve. (a) Revolution about the x-axis.

(b) Revolution about the y-axis
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S ¼ 2p
ðb
a

y dl ¼ 2p
ðb
a

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx

The area of a surface formed by revolution of
a curve x = g(y) about the y-axis, as shown in
Fig. 8(b), is determined by:

S ¼ 2p
ðb
a
x dl ¼ 2p

ðb
a
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dy

� �2

þ1
s

dy

Volume. The formula for the interior volume
of a surface of revolution, about the x-axis, as
shown in Fig. 8(a), is determined by:

V ¼ p
ðb
a

y2dx

The volume of a surface of revolution about the
y-axis, as shown in Fig. 8(b) is given by:

V ¼ p
ðb
a
x2dy

For the volume of a solid, when the area of
its plane section perpendicular to the x-axis is
given as a function S = f(x), as shown in
Fig. 9, the formula is:

V ¼
ðb
a

fðxÞdx

Work. The work represented by the force
F acting from the point x = a to x = b of the
x-axis, when the force is a function F = f(x),
is given by the formula:

A ¼
ðb
a

F dx

Fluid Pressure. For a fluid with specific
gravity g, the pressure on one side of a vertical
plate immersed in the fluid can be determined
by the following formula, when the distance x
of the points of the plate from the level of the
fluid varies from a to b, and where y is the
length of a horizontal section of the plate (y =
f(x)), as shown in Fig. 10:

Fig. 12 Integration examples for center of gravity. (a) Curve. (b) Closed curve. (c) Curvilinear trapezoid. (d) Arbitrary
plane figure

Fig. 10 Integration example for calculation of fluid
pressure (see text)

Fig. 9 Function for the surface area (S) perpendicular
to the x-axis

Fig. 11 Plane figure illustrating integration of moment
of inertia
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P ¼
ðb
a

	xy dx

Center of Pressure. The depth �y of the cen-
ter of pressure against a surface vertical to the
liquid surface between the depths a and b is:

y ¼
Ð y ¼ b

y ¼ a gy
2dAÐ y ¼ b

y ¼ a gydA

Moment of Inertia. The moment of inertia
of an arc of a homogeneous curve y = f(x), with
a � x � b, with respect to the y-axis is given by
the formula:

Iy ¼ d
ðb
a

x2dl ¼ d
ðb
a

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðy0Þ2

q
dx

where d is the linear density of the arc.
The moment of inertia of a plane figure, as

shown in Fig. 11, with respect to the y-axis is
given by:

Iy ¼
ðb
a

x2y dx

where y is the length of a section parallel to the
y-axis, and d is the surface density of the figure.

Center of Gravity. The center of gravity C
of an arc of a homogeneous plane curve y =
f(x), with a � x � b, as shown in Fig. 12(a),
has the coordinates:

xC ¼
Ð b
a x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx

L

yC ¼
Ð b
a y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx

L

where L is the length of the arc. The center of
gravity of a closed curve, as shown in Fig. 12
(b), has coordinates:

xC ¼
Ð b
a x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jy01j2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jy02j2

q� �
dx

L

yC ¼
Ð b
a y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jy01j2

q
þ y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jy02j2

q� �
dx

L

where y1 = f1 (x) and y2 = f2 (x) are the equations
of the upper and lower part of the bounding
curve, and L is the length of the entire curve.

For a homogeneous curvilinear trapezoid, as
shown in Fig. 12(c) the center of gravity C
has the coordinates:

xC ¼
Ð b
a xy dx

S

yC ¼
1/2
Ð b
a y

2 dx

S

where S is the area of the trapezoid, and y = f(x)
is the equation of the curve AB. For an arbitrary
plane figure, as shown in Fig. 12(d), the center
of gravity has the coordinates:

xC ¼
Ð b
a xðy1 � y2Þdx

S

yC ¼
1/2
Ð b
a ðy21 � y22Þdx

S

where y1 = f1 (x) and y2 = f2(x) are the equations
of the upper and lower portions of the bounding
curve, and S is the area.
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Laplace Transformations

THE METHODS OF LAPLACE AND
FOURIER TRANSFORMATION and the
Heaviside operational calculus are essentially
aspects of the same method. This method simpli-
fies solutions of such problems as ordinary differ-
ential equations with constant coefficients, linear
differential equations with variable coefficients,
integral equations of the convolution, or Faltung,
type, and partial differential equations. Several
Laplace transforms are listed in Table 1.

Fundamental Transformation Rules

Direct Laplace Transformation. The
Laplace transform LðF Þ of a function F(t)
may be expressed as:

LðF Þ ¼ fðsÞ ¼
ð1
0

e�stF ðtÞdt (Eq 1)

with t a real variable; s a complex variable; F(t)
a real function of t, which equals zero for t < 0;
f(s) a function of s; and e the base of the natural
logarithms. If the function F(t) is known and
the integral:

fðsÞ ¼
ð1
0

e�stF ðtÞdt (Eq 2)

can be computed, the function f(s) may be
determined and the direct Laplace transform:

fðsÞ ¼ LF ðtÞ (Eq 3)

obtained. If the function f(s) is known, the
integral:

F ðtÞ ¼ 1

2pj

ðcþ j1

c� j1
estfðsÞds (Eq 4)

must be used to determine the function F(t). If
this integral can be evaluated, the inverse
transform:

F ðtÞ ¼ L�1fðsÞ (Eq 5)

may be obtained. The computation of several
direct transforms may be evaluated by the inte-
gration of Eq 2.

Inverse Transformation. The inverse trans-
form of a function f(s) is computed by the use
of the equation:

F ðtÞ ¼ 1

2pj

ðcþ j1

c� j1
fðsÞestds (Eq 6)

The line integral for F(t) can be evaluated by
transforming it into a closed contour (Fig. 1).
Defining the closed contour G as the straight
line parallel to the axis of imaginaries at a dis-
tance c to the right of the axis and the large
semicircle s0 with center at (c, 0), then:

�
ð

G
estfðsÞds ¼

ðc� jR

cþ jR

estfðsÞdsþ
ð
s0

estfðsÞds

(Eq 7)

The evaluation of the contour integral along
G is simplified by designating f(s) as an inte-
grable function of the complex variable s:

lim
jsj!1

jfðsÞj ¼ 0 (Eq 8)

Then:

lim
R!1

ð
s0

estfðsÞds
����

���� ¼ 0 t > 0 Re s¼< 0 (Eq 9)

The function f(s) = f(s) frequently has such
properties that the integral around the large
semicircle defined by Eq 7 vanishes as R!1.
Thus:

F ðtÞ ¼ 1

2pj

ðcþ j1

c� j1
fðsÞestds

¼ lim
R!1

1

2pj
�
ð

s

estfðsÞds (Eq 10)

and:

�
ð

G
estfðsÞds ¼ 2pj

X
Res estfðsÞ inside G

(Eq 11)

Hence, from Eq 10:

F ðtÞ ¼
X

Res estfðsÞ inside G (Eq 12)

if R is sufficiently large to include all
singularities.

Transformation of nth Derivative. If
L½F ðtÞ� ¼ fðsÞ, then:

L dnF ðtÞ
dtn

� �
¼ snfðsÞ �

Xn�1
k¼ 0

F ðkÞð0þÞ�sn�1�k
(Eq 13)

where F (2)(0+) means
d2F ðtÞ
dt2

evaluated for
t * 0, and F(0)(0+) means F(0+), and
n ¼ 1; 2; 3; � � �n.

Transformation of nth Integral. If
L½F ðtÞ� ¼ fðsÞ, then:

L
ð ð
� � �
ð
F ðtÞdt

� �
¼ s�nfðsÞ þ

X�n
k¼�1

F ðkÞð0þÞ

�s�n�1�k
(Eq 14)

where F (�2)(0+) means
Ð Ð

F ðtÞ dt dt evalu-
ated for t * 0, and n ¼ 1; 2; 3; � � �n.

Inverse Transformation of Product. If:

L�1½f1ðsÞ� ¼ F1ðtÞ L�1½f2ðsÞ� ¼ F2ðtÞ (Eq 15)

then:

L�1½f1ðsÞ�f2ðsÞ� ¼ ðt
0

F1ðt� lÞ�F2ðlÞdl (Eq 16)

Fig. 1 Line integral transformed into a closed contour
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Linear Transformations L and L�1. Desig-
nating k1, k2 as real constants, then:

L½k1F1ðtÞ þ k2F2ðtÞ� ¼ k1L½F1ðtÞ� þ k2L½F2ðtÞ�
(Eq 17)

and:

L�1½k1f1ðsÞ þ k2f2ðsÞ� ¼ k1L�1½f1ðsÞ�
þ k2L�1½f2ðsÞ� (Eq 18)

Theorems

Some general theorems concerning opera-
tions on transforms are given as follows.
Theorem 1. The Laplace transform of a

constant k is that constant divided by s:

LðkÞ ¼ k

s
(Eq 19)

From the fundamental definition of the direct
Laplace transform:

LðkÞ ¼
ð1
0

e�stk dt ¼ k � e�st

s

� �1
0

¼ k

s
(Eq 20)

and the integral vanishes at the upper limit.
Theorem 2. The equation:

LkfðtÞ ¼ kLfðtÞ (Eq 21)

where k is a constant, may be proved in the
following manner:

LkfðtÞ ¼
ð1
0

e�stkfðtÞdt ¼ k

ð1
0

e�stfðtÞdt
¼ kLfðtÞ

(Eq 22)

Theorem 3. If F is a continuous differentia-
ble function and if F and dF/dt can be trans-
formed, then:

L dF
dt
¼ sLF ðtÞ � F ð0Þ (Eq 23)

which is a useful equation for solving differen-
tial equations with constant coefficients. The
equation is developed by:

L dF
dt
¼
ð1
0

e�st
dF

dt
dt ¼ Fe�st

����1
0

þs
ð1
0

e�stF dt

¼ sLF � F ð0Þ
(Eq 24)

with integration performed by parts.
Theorem 4. If F is continuous with deriva-

tives of orders 1; 2; � � � ; n which can be trans-
formed, then:

L d
nF

dtn
¼ snLF �

Xn�1
k ¼ 0

F ðkÞð0Þsn�k�1 (Eq 25)

where:

F ðkÞð0Þ ¼ dkF

dtk

is evaluated at t = 0. As an extension of theo-
rem 3:

L d
nF

dtn
¼ sL d

n�1F
dtn�1

� dn�1F
dtn�1

� �
t ¼ 0

(Eq 26)

By repeated applications, Eq 25 is obtained.
Further, if:

Fr ¼ drF

dtr
(Eq 27)

is evaluated at t = 0, the transforms of the first
four derivatives are:

L dF
dt
¼ sLF � F0 (Eq 28)

L d
2F

dt2
¼ s2LF � sF0 � F1 (Eq 29)

L d
3F

dt3
¼ s3LF � s2F0 � sF1 � F2 (Eq 30)

or:

L d
4F

dt4
¼ s4LF � s3F0 � s2F1 � sF2 � F3 (Eq 31)

which are useful in transforming differential
equations.
Theorem 5. The Faltung or convolution the-

orem is developed as follows. It is sometimes
called the superposition theorem. Let:

LF1ðtÞ ¼ f1ðsÞ (Eq 32)

and:

LF2ðtÞ ¼ f2ðsÞ (Eq 33)

Then, according to the theorem:

L
ðt
0

F1ðyÞF2ðt� yÞdy ¼ L
ðt
0

F2ðyÞF1ðt� yÞdy
¼ f1f2

(Eq 34)

In developing this theorem, let:

LF3ðtÞ ¼ f1ðsÞf2ðsÞ (Eq 35)

then:

F3ðtÞ ¼ 1

2pj

ðcþj1
c�j1

f1ðsÞf2ðsÞestds (Eq 36)

However:

f2ðsÞ ¼
ð1
0

e�syF2ðyÞdy (Eq 37)

therefore:

F3ðtÞ ¼ 1

2pj

ð1
0

F2ðyÞdy
ðcþj1
c�j1

f1ðsÞesðt�yÞds

(Eq 38)

if the order of integration is reversed. However:

1

2pj

ðcþj1
c�j1

f1ðsÞe2ðt�yÞds ¼ F1ðt� yÞ (Eq 39)

hence:

F3ðtÞ ¼
ð1
0

F2ðyÞF1ðt� yÞdy (Eq 40)

Now, F1 (t) = 0, if t is less than 0, and:

F1ðt� yÞ ¼ 0; for y > t (Eq 41)

Because the infinite limit of integration may
be replaced by the limit t, Eq 40 may be written
as:

F3ðtÞ ¼
ðt
0

F2ðyÞF1ðt� yÞdy (Eq 42)

F3ðtÞ ¼
ðt
0

F1ðyÞF2ðt� yÞdy (Eq 43)

Applications of Laplace Transforms

Real Indefinite Integration. If L F ðtÞ ¼ fðsÞ
and

Ð
F ðtÞdt can be transformed, then:

L
ð
F ðtÞdt ¼ 1

s
fðsÞ þ 1

s

ð0
F ðtÞdt (Eq 44)

By the definition of the Laplace transform:

L
ð
F ðtÞdt ¼

ð1
0

e�st
ð
F ðtÞdt

� �
dt (Eq 45)

Integrating by parts produces:

L
ð
F ðtÞdt ¼ � 1

s
e�st

ð
F ðtÞdt

����1
0

þ 1

s

ð1
0

e�stF ðtÞdt

(Eq 46)

Evaluating the limits and using L F ðtÞ ¼ fðsÞ
gives:

L
ð
F ðtÞdt ¼ 1

s
fðsÞ þ 1

s

ð0
F ðtÞdt (Eq 47)

for which
Ð 0

F ðtÞdt indicates the initial value
of the integral.
Real Definite Integration. If L F ðtÞ ¼ fðsÞ

and the expression
Ð t
0
F ðt0Þdt0 can be trans-

formed, then:

L
ðt
0

F ðt0Þdt0 ¼ 1

s
fðsÞ (Eq 48)

Integrating by parts yields:

L
ðt
0

F ðt0Þdt0 ¼ � 1

s
e�st

ðt
0

F ðt0Þdt0
����1
0

þ 1

s
fðsÞ

(Eq 49)

The first term vanishes at the upper limit
because it contains an exponential function
and at the lower limit because of the definite
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integral. Hence, only the second term remains,
as expressed in Eq 48. Following the same steps
produces:

L
ðt
0

ðt
0

F ðt00Þdt00dt0 ¼ 1

s2
fðsÞ (Eq 50)

where L F ðtÞ ¼ fðsÞ.
Complex Differentiation. If L F ðtÞ ¼ fðsÞ,

then:

L tF ðtÞ ¼ � dfðsÞ
ds

(Eq 51)

According to the definition of f(s) as indicated
by LF ðtÞ ¼ fðsÞ:

fðsÞ ¼
ðt
0

e�stF ðtÞdt (Eq 52)

By differentiating both sides of Eq 52 with
respect to s:

dfðsÞ
ds
¼ d

ds

ðt
0

e�stF ðtÞdt (Eq 53)

Because the integration involves t only, the
order of integration and differentiation may be
interchanged for Eq 53. Thus:

dfðsÞ
ds
¼ �

ðt
0

e�sttF ðtÞdt ¼ �LtF ðtÞ (Eq 54)

Differentiation with a Second Independent
Variable. For a function of two independent
variables F = F (x, t) if LF ðx; tÞ ¼ fðx; sÞ,
then:

L @F ðx; tÞ
@x

¼ @fðx; sÞ
@x

(Eq 55)

From the definition of Laplace transformation:

L @F ðx; tÞ
@x

¼
ð1
0

e�st
@F ðx; tÞ

@x
dt (Eq 56)

Because x is not a variable of integration, the
order of differentiation and integration may be
interchanged. Thus:

L @F ðx; tÞ
@x

¼ @

@x

ðt
0

e�stF ðx; tÞdt

¼ @fðx; sÞ
@x

(Eq 57)

Integration with a Second Independent
Variable. For a function of two independent
variables F = F(x, t) if LF ðx; tÞ ¼ fðx; sÞ,
then:

L
ðx2
x1

F ðx0; tÞdx0 ¼
ðx2
x1

fðx0; sÞdx0 (Eq 58)

The method for developing Eq 58 is identical
to the development of Eq 55 by using Eq 56
and 57.
Periodic Functions. If F(t) is a periodic func-

tion with fundamental period T, F(t + T) = F(t)

where t > 0, and if F(t) is sectionally continu-
ous over a period 0 < t < T, then its direct
transformation is expressed as:

LF ðtÞ ¼
ð1
0

e�stF ðtÞdt

¼
X1
n¼0

ððnþ1ÞT
nT

e�stF ðtÞdt ðEq 59Þ

Further, if

u ¼ t� nT (Eq 60)

and, as a result of the periodicity of the function
F(t):

F ðuþ nT Þ ¼ F ðuÞ (Eq 61)

then Eq 59 may be written:

L F ðtÞ ¼
X1
n ¼ 0

e�nTs
ðT
0

e�suF ðuÞdu (Eq 62)

Additionally, using:

Xn ¼ x

n ¼ 0

e�nTs ¼ 1

1� e�Ts
(Eq 63)

Equation 62 may be written in the form:

L F ðtÞ ¼ 1

1� e�Ts

ðT
0

e�stF ðtÞdt (Eq 64)

This equation can be used to obtain the trans-
form of the function represented in Fig. 2. Sub-
stituting the expression:ðT
0

F ðtÞe�stdt ¼
ða
0

e�stdt�
ð2a
a

e�stdt

¼ 1� e�sa � e�sa þ e�2sa

s

¼ 1� 2e�sa þ e�2sa

s
¼ ð1� e�saÞ2

s
(Eq 65)

into Eq 64 yields

L F ðtÞ ¼ ð1� e�saÞ2
sð1� e�2saÞ ¼

1� e�sa

sð1þ e�saÞ

¼ esa=2 � e�sa=2

sðesa=2 þ e�sa=2Þ ¼
sinhðsa=2Þ

s cosh ðsa=2Þ
¼ tanhðas=2Þ

s
(Eq 66)

Operational Method. The operational
method for solving differential equations is
essentially the same as that known as Heavisi-
de’s operational calculus. The relationship
between a function f(s) and another function h
(t) may be expressed in the form:

fðsÞ ¼
ð1
0

e�sthðtÞdt Re s > 0 (Eq 67)

where s is a complex number with its real part
greater than zero, and h(t) is a function for
which the infinite integral of Eq 67 converges
and is a function that satisfies the condition h

(t) = 0 for t < 0. The functional relationship
between f(s) and h(t) is written as:

fðsÞ ¼ L hðtÞ (Eq 68)

with the symbol L denoting the “Laplace trans-
form of.” The relationship is also written in the
form:

hðtÞ ¼ L�1fðsÞ (Eq 69)

with h(t) the inverse Laplace transform of f(s).
For example, the functional relationship:

yðsÞ ¼
ð1
0

e�stxðtÞdt (Eq 70)

is written symbolically as:

yðsÞ ¼ L xðtÞ (Eq 71)

To determineLðdx=dtÞ in terms of y(s), integrate:

L dx

dt

� �
¼
ð1
0

e�st
dx

dt

� �
dt (Eq 72)

by parts to obtain:ð1
0

e�st
dx

dt

� �
dt ¼ e�stx

����1
0

þs
ð1
0

e�stx dt (Eq 73)

Using the assumptions that:

lim
t!1 ðe

�stxÞ ¼ 0 and

ð1
0

e�stx dt

exists for s greater than some fixed positive
number, then Eq 73 becomes:

L dx

dt

� �
¼ �x0 þ sy (Eq 74)

where x0 = x(0). To compute the Laplace trans-
form of d2 x/dt2, let:

u ¼ dx

dt
(Eq 75)

From Eq 74:

L d2x

dt2

� �
¼ L du

dt

� �
¼ �u0 þ s L dx

dt

� �
¼ �x1 � sx0 þ s2y (Eq 76)

where x1 is the value of dx/dt at t = 0.
Continuing the process produces:

Fig. 2 Example function in transform of periodic
function (see text)

Laplace Transformations / 693

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



L d
3x

dt3
¼ s3y� s2x0 � sx1 � x2 (Eq 77)

L d
4x

dt4
¼ s4y� s3x0 � s2x1 � sx2 � x3 (Eq 78)

and:

L d
nx

dtn
¼ sny� ðsn�1x0 þ sn�2x1 þ sn�3x2

þ � � � þ xn�1Þ
(Eq 79)

where:

xn ¼ dnx

dtn
(Eq 80)

is evaluated at x = 0.

Table 1 Laplace transforms
Entries f(s) give values of the Laplace transform L½FðtÞ� � f ðsÞ of the function F(t). The entries in column F(t) define F(t) for t¼> 0; a, b, c, k are constants; f ðsÞ ¼ Ð10 e�stFðtÞdt

fðsÞ � L½FðtÞ� F(t)

1/s 1

1/s2 t

1/sn tn � 1/(n � 1)!

1/(s � a) eat

1/(s � a)2 teat

1/(s � a)n n = 1, 2, . . . tn�1 eat/(n � 1)!

a/(s2 + a2) sin at

s/(s2 + a2) cos at

a/(s2 � a2) sinh at

s/(s2 � a2) cosh at

(s sin b + a
cos b)/(s2 + a2)

sin (at + b)

(s cos b � a
sin b)/(s2 + a2)

cos (at + b)

2as/(s2 + a2)2 t sin at

(s2 � a2)/(s2 + a2)2 t cos at

1=
ffiffiffi
s
p

1=
ffiffiffiffiffi
pt
p

s�3/2 2
ffiffiffiffiffiffiffi
t=p

p
s�[n + (1/2)] n = 1, 2, . . . 2ntn�ð1=2Þ=½1 � 3 � 5 . . . ð2n� 1Þ ffiffiffipp �
G (k)/sk k > 0 tk � 1

G (k)/(s � a)k k > 0 tk � 1 eat

1/[(s � a) (s � b)(a) (eat � ebt)/(a � b)

s/[(s � a) (s � b)](a) (aeat � bebt)/(a � b)

1/[(s � a)(a � b)
(s � c)](a)

½ðb� cÞeat þ ðc� aÞebt þ ða� bÞect�=A
where A ¼ �ða� bÞðb� cÞðc� aÞ

(

fðsÞ � L½FðtÞ� F(t)

1/[s(s2 + a2)] (1 � cos at)/a2

1/[s2(s2 + a2)] (at � sin at)/a3

1/(s2 + a2)2 (sin at � at cos at)/[2a3]

s/(s2 + a2)2 (t sin at)/[2a]

s2/(s2 + a2)2 (sin at + at cos at)/[2a]

s/[(s2 + a2) (s2 + b2)] a2 6¼ b2 (cos at � cos bt)/(b2 � a2)

1/[(s � a)2 + b2] (eat sin bt)/b

(s � a)/[(s � a)2 + b2] eat cos bt

3a2/(s3 + a3) e�at � eat=2 �A
where A ¼ cosð

ffiffiffi
3
p

at=2Þ�ffiffiffi
3
p

sinð
ffiffiffi
3
p

at=2Þ

8>><
>>:

3as/(s3 + a3) e�at þ eat=2 �A
where A ¼ cosð

ffiffiffi
3
p

at=2Þþffiffiffi
3
p

sinð
ffiffiffi
3
p

at=2Þ

8>><
>>:

4a3/(s4 + 4a4) sin at cosh at � cos at sinh at

s/(s4 + 4a4) [1/(2a2)] sin at sinh at

1/(s4 � a4) (sinh at � sin at)/[2a3]

s/(s4 � a4) (cosh at � cos at)/[2a2]

8a3 s2/(s2 + a2)3 (1 + a2 t2) sin at � at cos at

(1/s) [(s � 1)/s]n(b) Ln(t) = (eL/n!)[dn (tn e�t)/dtn]

ffiffiffiffiffiffiffiffiffiffiffi
s� a
p � ffiffiffiffiffiffiffiffiffiffiffi

s� b
p

ðebt � eatÞ=ð2
ffiffiffiffiffiffiffi
pt3
p

Þ

s/(s � a)3/2 eatð1þ 2atÞ= ffiffiffiffiffi
pt
p

1=ð ffiffiffisp þ aÞ(c) ð1= ffiffiffiffiffi
pt
p Þ � aea

2 terfcða ffiffi
t
p Þ

ffiffiffi
s
p

=ðsþ a2Þ ð1= ffiffiffiffiffi
pt
p Þ � ð2ae�a2 t= ffiffiffi

p
p Þ Ð a ffiffitp

0
el

2

dl

(continued)
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fðsÞ � L½FðtÞ� F(t)

ffiffiffi
s
p

=ðs� a2Þ(c) ð1= ffiffiffiffiffi
pt
p Þ þ aea

2 terfða ffiffi
t
p Þ

1=½ ffiffiffisp ðsþ a2Þ� ½2=ða ffiffiffi
p
p Þ�e�a2 t Ð a ffiffitp

0
el

2

dl

1=½ ffiffiffisp ðs� a2Þ� ðea2t=aÞ erf ða ffiffi
t
p Þ

1=½ ffiffiffisp ð ffiffiffisp þ aÞ� ea
2 t erfc ða ffiffi

t
p Þ

ðb2 � a2Þ=½ðs� a2Þ
ð ffiffiffisp þ bÞ�

ea
2 t½b� a erf ða ffiffi

t
p Þ� � beb

2terfcðb ffiffi
t
p Þ

ðb2 � a2Þ=½ ffiffiffisp ðs� a2Þ
ð ffiffiffisp þ bÞ�

ea
2 t½ðb=aÞ erf ða ffiffi

t
p Þ � 1� þ eb

2 terfcðb ffiffi
t
p Þ

1=½ðsþ aÞ ffiffiffiffiffiffiffiffiffiffiffisþ b
p � ð1= ffiffiffiffiffiffiffiffiffiffiffi

b� a
p Þc�at erf ð ffiffiffiffiffiffiffiffiffiffiffib� a

p ffiffi
t
p Þ

1=½ ffiffiffiffiffiffiffiffiffiffiffisþ a
p ffiffiffiffiffiffiffiffiffiffiffi

sþ b
p �(d) e�(a + b)t/2 I0 [(a � b)t/2]

1/[(s + a)1/2 (s + b)3/2] te�ða þ bÞt=2�B
where B � I0½ða� bÞt=2�þ
I1½ða� bÞt=2�

8><
>:

G(k)/[(s + a)k (s + b)k] k > 0 ffiffiffi
p
p

C½t=ða� bÞ�k�ð1=2Þe�ða þ bÞt=2

where C � Ik�1=2½ða� bÞt=2�

(

ð ffiffiffiffiffiffiffiffiffiffiffiffiffisþ 2a
p � ffiffiffi

s
p Þ=

ð ffiffiffiffiffiffiffiffiffiffiffiffiffisþ 2a
p þ ffiffiffi

s
p Þ

(1/t) e�at I1 (at)

(1 � s)n/s[n + (1/2)](e) n!H2n þ 1ð
ffiffi
t
p Þ=½ð2nÞ! ffiffiffiffiffiptp �

(1 � s)n/s[n + (3/2)] � n!H2n þ 1ð
ffiffi
t
p Þ=½ ffiffiffipp ð2nþ 1Þ!�

ð ffiffiffiffiffiffiffiffiffiffiffiffiffisþ 2a
p

=
ffiffiffi
s
p Þ � 1 ae�at [I1 (at) + I0 (at)]

ð ffiffiffisp þ aþ ffiffiffi
s
p Þ�2v=

ð ffiffiffisp ffiffiffiffiffiffiffiffiffiffiffi
sþ a
p Þ

v > �1 (1/av) e�at/2 Iv (at/2)

ða� bÞk=ð ffiffiffiffiffiffiffiffiffiffiffisþ a
p

þ ffiffiffiffiffiffiffiffiffiffiffi
sþ b
p Þ2k

k > 0 (k/t) e�(a+b)t/2 Ik[(a � b)t/2]

(s2 + a2)�1/2 J0 (at)

(s2 + a2)�k k > 0 ½ ffiffiffipp =GðkÞ�½t=2a�k�ð1=2ÞJk�1=2ðatÞ

(s2 � a2)�k k> 0 ½ ffiffiffipp =GðkÞ�½t=2a�k�ð1=2ÞIk�1=2ðatÞ

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis2 þ a2
p � sÞv=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p v > �1 av Jv (at)

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis2 þ a2
p � sÞk k > 0 (kak/t)Jk (at)

ðs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

Þv=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p v > �1 av Iv(at)

s�1 e�k/s J0ð2
ffiffiffiffiffi
kt
p Þ

s�1/2 e�k/s ð1= ffiffiffiffiffi
pt
p Þ cos ð2 ffiffiffiffiffi

kt
p Þ

s�1/2 ek/s ð1= ffiffiffiffiffi
pt
p Þ cosh ð2 ffiffiffiffiffi

kt
p Þ

fðsÞ � L½FðtÞ� F(t)

s�3/2 e�k/s ð1= ffiffiffiffiffiffi
pk
p Þ sin ð2 ffiffiffiffiffi

kt
p Þ

s�3/2 ek/s ð1= ffiffiffiffiffiffi
pk
p Þ sinh ð2 ffiffiffiffiffi

kt
p Þ

s�m e�k/s m > 0 ðt=kÞðm�1Þ=2Jm�1ð2
ffiffiffiffiffi
kt
p Þ

s�m ek/s m > 0 ðt=kÞðm�1Þ=2Im�Jð2
ffiffiffiffiffi
kt
p Þ

e�k
ffiffi
s
p

k > 0 ½k=2
ffiffiffiffiffiffiffi
pt3
p

Þ� exp½�k2=ð4tÞ�

ð1= ffiffiffi
s
p Þe�k

ffiffi
s
p

k ¼> 0 ð1= ffiffiffiffiffi
pt
p Þ exp½�k2=ð4tÞ�

s�1e�k
ffiffi
s
p

k ¼> 0 erfc½k=ð2 ffiffi
t
p Þ�

s�3=2e�k
ffiffi
s
p

k ¼> 0 2
ffiffiffiffiffiffiffi
t=p

p
exp½�k2=ð4tÞ��

k erfc ½k=ð2 ffiffi
t
p Þ�

(

ae�k
ffiffi
s
p
=½sðaþ ffiffiffi

s
p Þ� k ¼> 0 � eakea

2t erfc Aþ erfc ½k=ð2 ffiffi
t
p Þ�

where A ¼ a
ffiffi
t
p þ k=ð2 ffiffi

t
p Þ

(

e�k
ffiffi
s
p
=½ ffiffiffisp ðaþ ffiffiffi

s
p Þ� k ¼> 0 eakea

2t erfc A

e�k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs þ aÞ
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ aÞp 0 when 0 < t < k

e�at=2I0 1
2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � k2
p� �

when t > k



e�k
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

0 when 0 < t < k
J0ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � k2Þp

when t > k



e�k
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

0 when 0 < t < k
I0ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � k2
p

Þ when t > k



e�kð
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p �sÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

k¼>0 J0ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2kt
p Þ

e�ks � e�k
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

0 when 0<t<k
ðak=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�k2
p

ÞJ1ða
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�k2
p

Þ when t> k



e�k
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p

� e�ks 0 when 0<t<k
ðak=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�k2
p

Þ=I1ða
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�k2
p

Þ when t>k



½av expð�k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p
Þ�=

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

p
þ sÞv�

v > � 1 0 when 0<t<k
½ðt�kÞ=tþkÞ�v=2Jvða

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�k2
p

Þ t>k



(1/s) log s(f) G0(1) � log t, G0(1) = �0.5772157

s�k log s(f) k > 0 tk�1 [G0 (k) � G(k) log t][G(k)]�2

(s � a)�1 log s (f) a > 0 eat[log a � Ei (� at)]

(s2 + 1)�1 log s(f) cos t Si t � sin t Ci t � H(t)

s(s2 + 1)�1 log s(f) �sin t Si t � cos t Ci t

s�1 log (1 + ks)(f) k > 0 � Ei (�t/k)

log[(s � a)/(s � b)] t�1 (ebt � eat)

log[(s + a)/(s � a)] 2t�1 sinh at Re s > Re a

s�1 log(1 + k2 s2) �2 Ci (t/k)

Table 1 (continued)

(continued)
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fðsÞ � L½FðtÞ� F(t)

s�1 log (s2 + a2) a > 0 2 log a � 2 Ci (at)

s�2 log (s2 + a2) a > 0 2a�1 [at log a + sin at � at Ci at]

log[(s2 + a2) s2] 2t�1 (1 � cos at)

log[(s2 � a2)/s2] 2t�1 (1 � cosh at)

cot�1 [(s � b)/a] t�1 ebt sin at

cot�1(s/k) t�1 sin kt

(1/s) cot�1 (s/k) Si kt

ek
2s2 erfc ðksÞ k > 0 ½1=ðk ffiffiffi

p
p Þ� exp½�t2=ð4k2Þ�

s�1ek
2s2 erfc ðksÞ k > 0 erf[t/(2k)]

eks erfc
ffiffiffiffiffi
ks
p

k > 0
ffiffiffi
k
p

=½p ffiffi
t
p ðtþ kÞ�

s�1=2 erfc
ffiffiffiffiffi
ks
p

0 when 0 < t < k
ðptÞ�1=2 when t > k



s�1=2ek
2=s erfc ðk= ffiffiffi

s
p Þ k > 0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðtþ kÞp

s�1=2 erfc
ffiffiffiffiffi
ks
p ð1 ffiffiffi

p
p

tÞ e�2k ffiffi
t
p

erf ðk= ffiffiffi
s
p Þ ½1=ðptÞ� sin ð2k ffiffi

t
p Þ

K0(ks)(g) 0 when 0 < t < k
ðt2 � k2Þ�1=2 whent > k



K0ðk
ffiffiffi
s
p Þ [1/(2t)] exp [�k2/(4t)]

s�1 eks K1 (ks) ð1=kÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþ 2kÞp

s�1=2K1ðk
ffiffiffi
s
p Þ (1/k) exp [�k2/(4t)]

s�1/2 ek/s K0(k/s) ð2= ffiffiffiffiffi
pt
p ÞK0ð2

ffiffiffiffiffiffiffi
2kt
p Þ

pe�ks I0(ks) ½tð2k� tÞ��1=2 when 0 < t < 2k
0 when t > 2k



e�ks I1(ks) ðk� tÞ=½pk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2k� tÞp � when 0 < t < 2k

0 when t > 2k



�eas Ei (�as) (t + a)�1 a > 0

a�1 + seas Ei (�as) (t + a)�2 a > 0

[(p/2) � Si s] cos s (t2 + 1)�1

+ Ci s sin s s > 0

Step functions

s�1 UðtÞ ¼ 0 when t < 0

1 when t ¼> 0

n
Heaviside unit function

s�1 e�ks Uðt� kÞ ¼ 0 when t < k
1 when t ¼> k

n

e�as a¼>0 d(t � a)

fðsÞ � L½FðtÞ� F(t)

sk e�as a¼>0 d(k) (t � a) k = 1, 2, . . .

s�2 e�ks SkðtÞ ¼ 0 when t < k
t� k when t ¼> k

n

2s�3 e�ks 0 when t < k
ðt� kÞ2 when t ¼> k



G(m) � s�m e�ks m > 0 0 when t < k
ðt� kÞ��1 when t ¼> k



s�1 (1 � e�ks) 1 when 0 < t < k
0 when t > k

n

s�1ð1� eksÞ�1 ¼ ð2sÞ�1

1þ coth
1

2
ks

� �
ðhÞ

1þ ½t=k� ¼ n

when ðn� 1Þk < t < nk;

n ¼ 1; 2; . . .

8><
>:

s�1 tanh ks Mð2k; tÞ ¼ ð�1Þn�1
when 2kðn� 1Þ < t < 2kn;

n ¼ 1; 2; . . .

8><
>:

Square-wave function

s�1 (1 + e�ks)�1 ½Mðk; tÞ þ 1�=2 ¼ ½1� ð�1Þn�=2
when ðn� 1Þk < t < nk;

n ¼ 1; 2; . . . t > 0

8><
>:

(s sinh ks)�1 F ðtÞ ¼ 2ðn� 1Þ
when ð2n� 3Þk < t < ð2n� 1Þk

n ¼ 1; 2; . . . t > 0

8><
>:

s�1 coth ks F ðtÞ ¼ 2n� 1

when 2kðn� 1Þ < t < 2kn;

n ¼ 1; 2; . . .

8><
>:

(s cosh ks)�1 Mð2k; tþ 3kÞ þ 1 ¼ 1þ ð�1Þn
when ð2n� 3Þk < t < ð2n� 1Þk;
n ¼ 1; 2; . . . t > 0

8><
>:

s�1 (e�as � e�bs)
F ðtÞ ¼

0 for 0 < t < a

1 for a < t < b

0 for t > b

(

(m/s2) � (ma/2s)
[coth (as/2) � 1]

F ðtÞ ¼ mðt� naÞ
when na < t < ðnþ 1Þa;

n ¼ 0; 1; 2; . . .

8><
>:

s�2 tanh (cs/2)
Hðc; tÞ ¼ t when 0 < t < c

2c� t when c < t < 2c


Hðc; tþ 2ncÞ ¼ Hðc; tÞ

n ¼ 1; 2; . . .

8>>><
>>>:

Triangular wave

k(s2 + k2)�1 coth [p s/(2k)] jsin kij
Full-wave rectification of sin kt

[(s2 + 1)(1 � e�ps)]�1 sin t when ð2n� 2Þp < t < ð2n� 1Þp
0 when ð2n� 1Þp < t < 2np

n ¼ 1; 2; . . .

8><
>:

(continued)
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fðsÞ � L½FðtÞ� F(t)

Half-wave rectification of sin t

[(E/s) + (m/s2)]e�as
F ðtÞ ¼ 0 for 0 < t < a

E þmðt� aÞ for t > a



(m/s2)(1 � e�as) F ðtÞ ¼ mt for 0 < t < a
ma for t > a

n

fðsÞ � L½FðtÞ� F(t)

(m/s2)(1 � 2e�as + e�2as)
= (m/s2) (1 � e�as)2 F ðtÞ ¼

mt for 0 < t < a
�mðt� 2aÞ for a < t < 2a
0 for t > 2a

(

(m/s2) [1 � (1 + as) e�as] F ðtÞ ¼ mt for 0 < t < a
0 for t > a

n

(a) a, b, and c are distinct constants.
(b) Ln (t) is the Laguerre polynomial of degree n.

(c)
erf y ¼ 2ffiffiffi

p
p
ðv
0

e�u
2

du

erfc y ¼ 1� erf y:

(d) In (x) � i�n Jn (ix), where Jn is Bessel’s function of the first kind.

(e) HnðxÞ � ex
2 ½dnðe�x2 Þ=dxn� is the Hermite polynomial.

(f) log s � loge s � ln s.

Eit ¼
ðt
�x

r�1erdr t < 0 ðthe exponential-integral functionÞ

� Ei ð�tÞ ¼
ðx
1

x�1e�txdx t > 0

Ci t ¼ �
ð1
t

r�1 cos rdr ¼ �
ð1
1

x�1 cos tx dx t > 0 ðthe cosine-integral functionÞ

Si t ¼
ðt
0

r�1 sin rdr t > 0 ðthe sine-integral functionÞ
HðtÞ ¼ cos t Si t� sin t Ci t t > 0:

(g) Kn(x) is Bessel’s function of the second kind for the imaginary argument.
(h) When t>0, [t] denotes the greatest integer (0, 1, 2, . . .) that does not exceed the number t.

Table 1 (continued)
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Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has
adopted the practice of publishing data in both metric and customary
U.S. units of measure. In preparing this Handbook, the editors have
attempted to present data in metric units based primarily on Système
International d’Unités (SI), with secondary mention of the corresponding
values in customary U.S. units. The decision to use SI as the primary sys-
tem of units was based on the aforementioned resolution of the Board of
Trustees and the widespread use of metric units throughout the world.
For the most part, numerical engineering data in the text and in tables

are presented in SI-based units with the customary U.S. equivalents in
parentheses (text) or adjoining columns (tables). For example, pressure,
stress, and strength are shown both in SI units, which are pascals (Pa)
with a suitable prefix, and in customary U.S. units, which are pounds
per square inch (psi). To save space, large values of psi have been con-
verted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric
tonne (kg � 103) has sometimes been shown in megagrams (Mg). Some
strictly scientific data are presented in SI units only.
To clarify some illustrations, only one set of units is presented on art-

work. References in the accompanying text to data in the illustrations are
presented in both SI-based and customary U.S. units. On graphs and
charts, grids corresponding to SI-based units usually appear along the left
and bottom edges. Where appropriate, corresponding customary U.S.
units appear along the top and right edges.
Data pertaining to a specification published by a specification-writing

group may be given in only the units used in that specification or in dual
units, depending on the nature of the data. For example, the typical yield
strength of steel sheet made to a specification written in customary U.S.

units would be presented in dual units, but the sheet thickness specified
in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the
standard recommends a particular system of units are presented in the
units of that system. Wherever feasible, equivalent units are also pre-
sented. Some statistical data may also be presented in only the original
units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/
ASTM SI-10, with attention given to the number of significant digits in
the original data. For example, an annealing temperature of 1570 �F con-
tains three significant digits. In this case, the equivalent temperature
would be given as 855 �C; the exact conversion to 854.44 �C would
not be appropriate. For an invariant physical phenomenon that occurs at
a precise temperature (such as the melting of pure silver), it would be
appropriate to report the temperature as 961.93 �C or 1763.5 �F. In some
instances (especially in tables and data compilations), temperature values
in �C and �F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several
exceptions to strict conformance to IEEE/ASTM SI-10; in each instance,
the exception has been made in an effort to improve the clarity of the
Handbook. The most notable exception is the use of g/cm3 rather than
kg/m3 as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units
formed by combination of several basic units. Therefore, all of the units
preceding the virgule are in the numerator and all units following the vir-
gule are in the denominator of the expression; no parentheses are required
to prevent ambiguity.
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Glossary of Terms

A

ab initio. From the beginning (Latin); often
used to refer to first-principles modeling
approaches.

abnormal grain growth. Rapid, nonuniform,
and usually undesirable growth of one or a
small fraction of grains in a polycrystalline
material during annealing. The phenomenon
is most frequent in fine-grained materials in
which a larger-than-average grain (or grains)
consumes surrounding small grains whose
growth is limited by particle pinning. Also
known as secondary recrystallization.

acicular alpha. A product of nucleation and
growth from b to the lower-temperature
allotrope a-phase. It may have a needlelike
appearance in a micrograph and may have
needle, lenticular, or flattened bar morphol-
ogy in three dimensions. This definition
applies specifically to titanium alloys.

aging. A change in material property or
properties with time. See also quench aging
and strain aging.

alligatoring. The longitudinal splitting of
flat slabs in a plane parallel to the rolled
surface.

allotriomorphic crystal. A crystal having a
normal lattice structure but an outward shape
that is imperfect, because it is determined to
someextent by the surroundings.Thegrains ina
metallic aggregate are allotriomorphic crystals.

allotropy. The property by which certain
elements may exist in more than one crystal
structure.

allotropic transformation. The ability of a
material to transform from one crystal
structure to another. Closely synonymous
with polymorphism.

alloying element. An element added to and
remaining in a metal that changes structure
and properties.

amorphous material. A material that lacks the
long-range three-dimensional atomic periodi-
city that is characteristic of a crystalline
solid.

angle of bite. In the rolling of metals, the
location where all of the force is transmitted
through the rolls; the maximum attainable
angle between the roll radius at the first
contact and the line of roll centers. Operating
angles less than the angle of bite are termed
contact angles or rolling angles.

angstrom (Å). A unit of linear measure equal to
10�10 m, or 0.1 nm. Although not an accepted
SI unit, it is occasionally used for small
distances, such as interatomic distances, and
some wavelengths.

angularity. The conformity to, or deviation
from, specified angular dimensions in the
cross section of a shape or bar.

anion. A negatively charged ion that migrates
toward the anode (positive electrode) under
the influence of a potential gradient.

anisotropy. Variations in one or more physical
or mechanical properties with direction with
respect to a fixed reference system in the
material.

annealing. A generic term denoting a treat-
ment—heating to and holding at a suitable
temperature followed by cooling at a suitable
rate—used primarily to soften metallic ma-
terials but also to produce desired changes
simultaneously in other properties or in
microstructure. When applied only for the
relief of stress, the process is called stress
relieving or stress-relief annealing. In ferrous
alloys, annealing is carried out above the
upper critical temperature, but the time-
temperature cycles vary widely in maximum
temperature attained and cooling rate used,
depending on composition, material condi-
tion, and desired results. In nonferrous alloys,
annealing cycles are designed to remove part
or all of the effects of cold working
(recrystallization may or may be involved),
cause complete coalescence of precipitates
from the solid solution in relatively coarse
from, or both, depending on composition and
material condition.

asperities. Protrusions rising above the general
surface contours that constitute the actual
contact areas between touching surfaces.

austempering. A heat treatment for ferrous
alloys in which a part is quenched from the
austenitizing temperature at a rate fast enough
to avoid formation of ferrite or pearlite and
then held at a temperature just above the
martensite start temperature until transforma-
tion to bainite is complete. Although desig-
nated as bainite in both austempered steel and
austempered ductile iron, austempered steel
consists of two-phase mixtures containing
ferrite and carbide, while austempered ductile
iron consists of two-phasemixtures containing
ferrite and austenite.

austenite. A high-temperature form of iron.
In steel heat treating, the steel is heated into
the austenite region before rapidly cooling
(quenching).

austenite stabilizer. An alloying element that,
when added to iron, increases the region of
the phase diagram in which austenite (face-
centered cubic iron) is stable. Strong auste-
nite stabilizers are carbon, nickel, and
manganese.

average grain diameter. The mean diameter of
an equiaxed grain section whose size repre-
sents all the grain sections in the aggregate
being measured. See also grain size.

Avrami plot/(Avrami equation). Plot describ-
ing the kinetics of phase transformations in
terms of the dependence of fraction X of
microstructure that has transformed (e.g.,
recrystallized, decomposed, etc.) as a func-
tion of time (t) or strain (e). Avrami plots
usually consist of a graph of log [ln(1/(1 �
X))] versus log t (or log e) and are used to
determine the so-called Avrami exponent n in
the relation X = 1 � exp(� Btn).

axial ratio. The ratio of the length of one axis
to that of another, for example, c/a, or the
continued ratio of three axes, such as a:b:c.

axis (crystal). The edge of the unit cell of a
space lattice. Any one axis of any one lattice
is defined in length and direction relative to
other axes of that lattice.

B

bar. A section hot rolled from a billet to a form,
such as round, hexagonal, octagonal, square,
or rectangular, with sharp or rounded corners
or edges and a cross-sectional area of less
than 105 cm2 (16 in.2). A solid section that is
long in relationship to its cross-sectional
dimensions, having a completely symmetri-
cal cross section and a width or greatest
distance between parallel faces of 9.5 mm
(3/8 in.) or more.

barreling. Convexity of the surfaces of cylind-
rical or conical bodies, often produced
unintentionally during upsetting or as a
natural consequence during compression
testing.

basal plane. That plane of a hexagonal or
tetragonal crystal perpendicular to the axis of
highest symmetry. Its Miller indices are
(0001).
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Bauschinger effect. A reduction in yield
strength on straining a material in the
opposite direction to the initial testing.

bendability. The ability of a material to be bent
around a specified radius without fracture.

bending. The straining of material, usually flat
sheet or strip metal, by moving it around a
straight axis lying in the neutral plane. Metal
flow takes place within the plastic range of
the metal, so that the bent part retains a
permanent set after removal of the applied
stress. The cross section of the bend inward
from the neutral plane is in compression; the
rest of the bend is in tension.

bending and forming. The processes of bend-
ing, flanging, folding, twisting, offsetting, or
otherwise shaping a portion of a blank or a
whole blank, usually without materially
changing the thickness of the metal.

bending moment. The moments (force times
distance) that tend to bend a beam in the
plane of the loads.

bending stress. A stress involving tensile and
compressive forces, which are not uniformly
distributed. Its maximum value depends on
the amount of flexure that a given application
can accommodate. Resistance to bending can
be termed stiffness.

bending under tension. A forming operation in
which a sheet is bent with the simultaneous
application of a tensile stress perpendicular to
the bend axis.

bend (longitudinal). A forming operation in
which the axis is perpendicular to the rolling
direction of the sheet.

bend or twist (defect). Distortion similar to
warpage generally caused during forging or
trimming operations. When the distortion is
along the length of the part, it is termed bend;
when across the width, it is termed twist.
When bend or twist exceeds tolerances, it is
considered a defect. Corrective action con-
sists of hand straightening, machine straigh-
tening, or cold restriking.

bend radius. The radius measured on the inside
of a bend that corresponds to the curvature of
a bent specimen or the bent area in a formed
part.

bend test. Evaluation of a sheet metal response
to a bending operation, such as around a fixed
radius tool.

bend (transverse). A forming operation in
which the bend axis is parallel to the rolling
direction of the sheet.

beta structure. Structurally analogous body-
centered cubic phases (similar to b-brass) or
electron compounds that have ratios of three
valence electrons to two atoms.

beta transus. The minimum temperature above
which equilibrium a does not exist. For b eute-
ctoid additions, the b transus ordinarily is app-
lied to hypoeutectoid compositions or those
that lie to the left of the eutectoid composition.
This definition applies to titanium alloys.

biaxial stretchability. The ability of sheet
material to undergo deformation by loading

in tension in two directions in the plane of the
sheet.

billet. A semifinished section that is hot rolled
from a metal ingot, with a rectangular cross
section usually ranging from 105 to 230 cm2

(16 to 36 in.2), the width being less than
twice the thickness. Where the cross section
exceeds 230 cm2 (36 in.2), the term bloom
is properly but not universally used. Sizes
smaller than105cm2(16in.2)areusuallytermed
bars. A solid semifinished round or square
product that has been hot worked by forging,
rolling, or extrusion. See also bar.

bite. Advance of material normal to the plane of
deformation and relative to the dies prior to
each deformation step.

blank. In forming, a piece of sheet material,
produced in cutting dies, that is usually
subjected to further press operations. A piece
of stock from which a forging is made.

blanking. The operation of punching, cutting,
or shearing a piece out of stock to a
predetermined shape.

blister. A local protuberance in the surface of
the sheet, often elongated, resulting from an
internal separation due to the expansion of
entrapped gas. The gas may be entrapped
during casting, pickling, annealing, or elec-
troplating in a previously existing subsurface
defect.

block and finish. The forging operation in
which a part to be forged is blocked and
finished in one heat through the use of
tooling having both a block impression and
a finish impression in the same die block.

blocking. A forging operation often used to
impart an intermediate shape to a forging,
preparatory to forging of the final shape in
the finishing impression of the dies. Blocking
can ensure proper working of the material
and can increase die life.

bloom. A semifinished hot rolled product,
rectangular in cross section, produced on a
blooming mill. See also billet. For steel, the
width of a bloom is not more than twice the
thickness, and the cross-sectional area is usually
not less than approximately 230 cm2 (36 in.2).
Steel blooms are sometimes made by forging.

board hammer. A type of forging hammer in
which the upper die and ram are attached to
“boards” that are raised to the striking
position by power-driven rollers and let fall
by gravity. See also drop hammer.

boss. A relatively short, often cylindrical
protrusion or projection on the surface of a
forging.

bottom draft. Slope or taper in the bottom of a
forge depression that tends to assist metal
flow toward the sides of depressed areas.

boundary condition. A requirement to be met
by a solution to a set of differential equations
on a specified set of values of the indepen-
dent variables.

bow. The tendency of material to curl down-
ward during shearing, particularly when
shearing long, narrow strips.

Bravais lattices. The 14 possible three-dimen-
sional arrays of atoms in crystals (see space
lattice).

brick element. The element for three-dimen-
sional finite-element modeling that is brick
shaped (six faces) and has eight nodes.

Bridgman correction. Factor used to obtain the
flow stress from the measured axial stress
during tension testing of metals in which
necking has occurred.

Brillouin zones. Energy states for the free
electrons in a metal, as described by the use
of the band theory (zone theory) of electron
structure. Also called electron bands.

brittle fracture. A fracture that occurs without
appreciable plastic deformation.

brittleness. A tendency to fracture without
appreciable plastic deformation.

buckling. A bulge, bend, kink, or other wavy
condition of the workpiece caused by compres-
sive stresses.

bulge test. A test wherein the blank is clamped
securely around the periphery and, by means
of hydrostatic pressure, the blank is ex-
panded. The blank is usually gridded so that
the resulting strains can be measured. This
test is usually performed on large blanks of
20 to 30 cm (8 to 12 in.) in diameter.

bulging. The process of increasing the diameter
of a cylindrical shell (usually to a spherical
shape) or of expanding the outer walls of any
shell or box shape whose walls were
previously straight.

bulk forming. Forming processes, such as
extrusion, forging, rolling, and drawing, in
which the input material is in billet, rod, or
slab form and a considerable increase in
surface-to-volume ratio in the formed part
occurs under the action of largely compres-
sive loading. Compare with sheet forming.

Burgers vector. The crystallographic direction
along which a dislocation moves and the unit
displacement of dislocations; the magnitude
of the Burgers vector is the smallest unit
distance of slip in the direction of shear due
to the movement of one dislocation.

burnishing. The smoothing of one surface
through frictional contactwith another surface.

burr. A thin ridge or roughness left on forgings
or sheet metal blanks by cutting operations
such as slitting, shearing, trimming, blanking,
or sawing.

C

CAD/CAM. An abbreviation for computer-
aided design/computer-aided manufacturing.

camber. The tendency of material being
sheared from sheet to bend away from the
sheet in the same plane.

canned extrusion. A coextrusion process in
which the billet consists of a clad material, or
can, that is relatively ductile and nonreactive,
and the core is a reactive, brittle powder or
other material.
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canning. A dished distortion in a flat or nearly
flat sheet metal surface, sometimes referred
to as oil canning. Distortion of a flat or nearly
flat metal surface that can be deflected by
finger pressure but will return to its original
position when the pressure is removed.
Enclosing a highly reactive metal within a
relatively inert material for the purpose of hot
working without undue oxidation of the
active metal.

casting. (1) Metal object cast to the required
shape by pouring of injecting liquid metal
into a mold, as distinct from one shaped by a
mechanical process. (2) Pouring molten
metal into a mold to produce an object of
desired shape. (3) Ceramic forming process
in which a body slip is introduced into a
porous mold, which absorbs sufficient water
from the slip to produce a semirigid circle.

casting modulus. A simplified approach to
determining solidification time. The time is
proportional to the square of the section
modulus (the ratio of volume to surface area),
known as Chvorinov’s rule.

cation. A positively charged ion that migrates
through the electrolyte toward a cathode
(negative electrode) under the influence of a
potential gradient.

cavitation. The formation of microscopic
cavities during the cold or hot deformation
of metals, generally involving a component
of tensile stress. Cavities may nucleate at
second-phase particles lying within grains or
at grain boundaries (with or without parti-
cles) as a result of slip intersection or grain-
boundary sliding. Under severe conditions,
cavities may grow and coalesce to give rise to
fracture. In liquids, cavitation is the forma-
tion and instantaneous collapse of cavities or
bubbles caused by rapid and intense pressure
changes. Cavitation caused by untrasonic
radiation is sometimes used to effect violent
local agitation. Cavitation caused by severe
turbulent flow often leads to damage of
adjacent material surfaces.

cell. Micron-sized volume bounded by low-
misorientation walls comprised of dislocation
tangles.

center bursting. Internal cracking due to
tensile stresses along the central axis of
products being extruded or drawn.

chamfer. A beveled surface to eliminate an
otherwise sharp corner. A relieved angular
cutting edge at a tooth corner.

check. A crack in a die impression corner,
generally due to forging strains or pressure,
localized at some relatively sharp corner.
Die blocks too hard for the depth of the die
impression have a tendency to check or
develop cracks in impression corners. One
of a series of small cracks resulting from
thermal fatigue of hot forging dies (often
called a heat check or heat checking).

chord modulus. The slope of the chord drawn
between any two specific points on a stress-
strain curve. See also modulus of elasticity.

circle grid. A regular pattern of circles, often
2.5 mm (0.1 in.) in diameter, marked on a
sheet metal blank.

circle-grid analysis. The analysis of deformed
circles to determine the severity with which a
sheet metal blank has been deformed.

clad. Outer layer of a coextruded or codrawn
product. See also sleeve.

clamping pressure. Pressure applied to a
limited area of the sheet surface, usually at
the periphery, to control or limit metal flow
during forming.

clearance. In punching and shearing dies, the
gap between the die and the punch. In
forming and drawing dies, the difference
between this gap and metal thickness.

closed-die forging. The shaping of hot metal
completely within the walls or cavities of two
dies that come together to enclose the
workpiece on all sides. The impression for
the forging can be entirely in either die or
divided between the top and bottom dies.
Impression die forging, often used inter-
changeably with the term closed-die forging,
refers to a closed-die operation in which the
dies contain a provision for controlling the
flow of excess material, or flash, that is
generated. By contrast, in flashless forging,
the material is deformed in a cavity that
allows little or no escape of excess material.

closed dies. Forging or forming impression dies
designed to restrict the flow of metal to the
cavity within the die set, as opposed to open
dies, in which there is little or no restriction
to lateral flow.

closed pass. A pass of metal through rolls
where the bottom roll has a groove deeper
than the bar being rolled and the top roll has a
collar fitting into the groove, thus producing
the desired shape free from flash or fin.

close-tolerance forging. A forging held to
unusually close dimensional tolerances so
that little or no machining is required after
forging. See also precision forging.

cluster mill. A rolling mill in which each of
two small-diameter work rolls is supported
by two or more backup rolls.

coarsening. The increase in the average size of
second-phase particles, accompanied by the
reduction in their number, during annealing,
deformation, or high-temperature service
exposure. Coarsening thus leads to a decrease
in the total surface energy associated with the
matrix-particle interfaces.

codrawing. The simultaneous drawing of two
or more materials to form an integral product.

coefficient of friction. A measure of the ease
with which one body will slide over another.
It is obtained by dividing the tangential force
resisting motion between the two bodies by
the normal force pressing the two bodies
together.

coefficient of thermal expansion (CTE).Change
in unit of length (or volume) accompanying
a unit change of temperature, at a specified
temperature or temperature range.

coextrusion. The simultaneous extrusion of two
or more materials to form an integral product.

cogging. The reducing operation in working an
ingot into a billet with a forging hammer or a
forging press.

coil breaks. Creases or ridges that appear as
parallel lines transverse to the direction of
rolling and extend across the width of the
sheet. Coil breaks are caused by the deforma-
tion of local areas during coiling or uncoiling
of annealed or insufficiently temper-rolled
steel sheets.

coining. A closed-die squeezing operation in
which all surfaces of a workpiece are
confined or restrained, resulting in a well-
defined imprint of the die on the work.
A restriking operation used to sharpen or
change an existing radius or profile. Coining
can be done while forgings are hot or cold
and is usually performed on surfaces parallel
to the parting line of the forging.

cold forming. See cold working.
cold heading. Working metal at room tempera-
ture such that the cross-sectional area of a
portion or all of the stock is increased. See
also heading and upsetting.

cold lap. A flaw that results when a workpiece
fails to fill the die cavity during the
first forging. A seam is formed as subsequent
dies force metal over this gap to leave a
seam on the workpiece surface. See also cold
shut.

cold rolled sheet. A mill product produced
from a hot rolled pickled coil that has been
given substantial cold reduction at room
temperature. After annealing, the usual end
product is characterized by improved surface,
greater uniformity in thickness, increased
tensile strength, and improved mechanical
properties as compared with hot rolled sheet.

cold shut. A fissure or lap on a forging surface
that has been closed without fusion during
the forging operation. A folding back of
metal onto its own surface during flow in the
die cavity; a forging defect.

cold trimming. The removal of flash or excess
metal from a forging at room temperature in a
trimming press.

cold-worked structure. A microstructure res-
ulting from plastic deformation of a metal or
alloy below its recrystallization temperature.

cold working. The plastic deformation of metal
under conditions of temperature and strain
rate that induce strain hardening. Usually,
but not necessarily, conducted at room
temperature. Also referred to as cold forming
or cold forging. Contrast with hot working.

columnar structure. A coarse structure of
parallel, elongated grains formed by unidir-
ectional growth that is most often observed in
castings but sometimes seen in structures.
This results from diffusional growth accom-
panied by a solid-state transformation.

compact (noun). The object produced by the
compression of metal powder, generally
while confined in a die.
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compact (verb). The operation or process of
producing a compact; sometimes called
pressing.

compression test. A method for assessing the
ability of a material to withstand compressive
loads.

compressive strength. The maximum com-
pressive stress a material is capable of
developing. With a brittle material that fails
in compression by fracturing, the compres-
sive strength has a definite value. In the case
of ductile, malleable, or semiviscous materi-
als (which do not fail in compression by a
shattering fracture), the value obtained for
compressive strength is an arbitrary value
dependent on the degree of distortion that is
regarded as effective failure of the material.

compressive stress. A stress that causes an
elastic or plastic body to deform (shorten) in
the direction of the applied load. Contrast
with tensile stress.

computational fluid dynamics (CFD). An area
of computer-aided engineering devoted to the
numerical solution and visualization of fluid-
flow problems.

computer-aided design (CAD). Any design
activity that involves the effective use of the
computer to create or modify an engineering
design. Often used synonymously with the
more general term computer-aided engineer-
ing (CAE).

computer-aided materials selection system. A
computerized database of materials proper-
ties operated on by an appropriate knowledge
base of decision rules through an expert
system to select the most appropriate materi-
als for an application.

concurrent engineering. A style of product
design and development that is done by
concurrently using all of the relevant infor-
mation in making each decision. It replaces a
sequential approach to product development
in which one type of information was
predominant in making each sequential
decision. Concurrent engineering is carried
out by a multifunctional team that integrates
the specialties or functions needed to solve
the problem. Sometimes called simultaneous
engineering.

constitutive equation. Equation expressing the
relation between stress, strain, strain rate, and
microstructural features (e.g., grain size).
Constitutive equations are generally phenom-
enological (curve fits based on measured
data) or mechanism-based (based on mechan-
istic model of deformation and appropriate
measurements). Phenomenological constitu-
tive equations are usually valid only within
the processing regime in which they were
measured, while mechanism-based relations
can be extrapolated outside the regime of
measurement, provided the deformation
mechanism is unchanged. A mathematical
relationship that describes the flow stress of
a material in terms of the plastic strain, the
strain rate, and temperature.

constraint modeling. A form of computer
modeling in which constraints are used to
create a set of rules that control how changes
are made to a group of geometric elements
(lines, arcs, form features, etc.). These rules
are typically embodied in a set of equations.
Constraint models are defined as either
parametric or variational.

continuum mechanics. The science of mathe-
matically describing the behavior of contin-
uous media. The same basic approach can
apply to descriptions of stress, heat, mass,
and momentum transfer.

controlled rolling. Multistand plate or bar
rolling process, typically for ferrous alloys,
in which the reduction per pass, rolling
speed, time between passes, and so on are
carefully chosen to control recrystallization,
precipitation, and phase transformation in
order to develop a desired microstructure and
set of properties.

conventional forging. Forging process in
which the work material is hot and the dies
are at room temperature or slightly elevated
temperature. To minimize the effects of die
chilling on metal flow and microstructure,
conventional forging usually involves strain
rates of the order of 0.05 s�1 or greater.
Also known as nonisothermal forging.

core. (1) Inner material in a coextruded or
codrawn product. (2) In casting, a specially
formed material inserted in a mold to shape
the interior part of the casting that cannot be
shaped as easily by the pattern. (3) In ferrous
alloys prepared for case hardening, that
portion of the alloy that is not part of the
case.

coring. (1) A central cavity at the butt end of a
rod extrusion; sometimes called extrusion
pipe. (2) A condition of variable composition
between the center and surface of a unit of
microstructure (such as a dendrite, grain, or
carbide particle); results from nonequilibrium
solidification, which occurs over a range of
temperature.

corrugating. The forming of sheet metal into a
series of straight, parallel alternate ridges and
grooves with a rolling mill equipped with
matched roller dies or a press brake equipped
with specially shaped punch and die.

corrugations. Transverse ripples caused by a
variation in strip shape during hot or cold
reduction.

Coulomb friction. Interface friction condition
for which the interface shear stress is
proportional to the pressure normal to the
interface. The proportionality constant is
called the Coulomb coefficient of friction,
m, and takes on values between 0 (perfect
lubrication) and 1=

ffiffiffi
3
p

(sticking friction)
during metalworking. See also friction shear
factor.

cracked edge. A series of tears at the edge of
the sheet resulting from prior processing.

crank. Forging shape generally in the form of a
“U” with projections at more or less right

angles to the upper terminals. Crank shapes
are designated by the number of throws (for
example, two-throw crank).

creep. Time-dependent strain occurring under
stress.

creep forming. Forming, usually at elevated
temperatures, where the material is deformed
over time with a preload, usually weights
placed on the parts during a stress-relief
cycle.

crimping. The forming of relatively small
corrugations in order to set down and lock
a seam, to create an arc in a strip of metal, or
to reduce an existing arc or diameter. See
also corrugating.

cross breaks. Visually apparent line-type dis-
continuities more or less transverse to the coil
rolling direction, resulting from bending the
coil over too sharp a radius and thus kinking
the metal.

crystal. A solid composed of atoms, ions, or
molecules arranged in a pattern that is
periodic in three dimensions.

crystal lattice. A regular array of points about
which the atoms or ions of a crystal are
centered.

crystalline. That form of a substance comprised
predominantly of (one or more) crystals, as
opposed to glassy or amphorous.

crystalline defects. The deviations from a
perfect three-dimensional atomic packing
that are responsible for much of the struc-
ture-sensitive properties of materials. Crystal
defects can be point defects (vacancies), line
defects (dislocations), or surface defects
(grain boundaries).

crystal-plasticity modeling. Physics-based
modeling techniques that treat the phenom-
ena of deformation by way of slip and
twinning in order to predict strength and the
evolution of crystallographic texture during
the deformation processing of polycrystalline
materials. See also deformation texture, slip,
Schmid’s law, Taylor factor, and twinning.

crystal system. One of seven groups into which
all crystals may be divided: triclinic, mono-
clinic, orthorhombic, hexagonal, rhombohe-
dral, tetragonal, and cubic.

cube texture. A texture found in wrought
metals in the cubic system in which nearly
all the crystal grains have a plane of the type
(100) parallel or nearly parallel to the plane
of working and a direction of the type [001]
parallel or nearly parallel to the direction of
elongation.

cumulative distribution function (CDF).
A frequency distribution arranged to give
the number of observations that are less than
given values. 100% of the observations will
be less than the largest class interval of the
observations.

cup. (1) A sheet metal part; the product of the
first drawing operation. (2) Any cylindrical
part or shell closed at one end.

cup fracture (cup-and-cone fracture). Amix-
edmode fracture, often seen in tensile test
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specimens of a ductile material, in which the
central portion undergoes plane-strain frac-
ture and the surrounding region undergoes
plane-stress fracture. One of the mating
fracture surfaces looks like a miniature cup;
it has a central depressed flat-face region
surrounded by a shear lip. The other fracture
surface looks like a miniature truncated cone.

cupping. (1) The first step in deep drawing.
(2) Fracture of severely worked rods or wire
in which one end looks like a cup and the
other a cone.

cupping test. A mechanical test used to
determine the ductility and stretching proper-
ties of sheet metal. It consists of measuring
the maximum part depth that can be formed
before fracture. The test is typically carried
out by stretching the testpiece clamped at its
edges into a circular die using a punch with a
hemispherical end. See also cup fracture,
Erichsen test, and Olsen ductility test.

curling. Forming of an edge of circular cross
section along a sheet or along the end of a
shell or tube, either to the inside or outside,
for example, the pinholes in sheet metal
hinges and the curled edges on cans, pots,
and pans.

D

damage. General term used to describe the
development of defects such as cavities,
cracks, shear bands, and so on that may
culminate in gross fracture in severe cases.
The evolution of damage is strongly depen-
dent on material, microstructure, and proces-
sing conditions (strain, strain rate,
temperature, and stress state).

DBTT. See ductile-to-brittle transition tem-
perature (DBTT).

dead-metal zone. Region of metal undergoing
limitedornodeformationduringbulkformingof
aworkpiece,generallydevelopedadjacent to the
workpiece-tooling interface as a result of fric-
tion,diechilling,ordeformation-zonegeometry.

deep drawing. Forming operation character-
ized by the production of a parallel-wall cup
from a flat blank of sheet metal. The blank
may be circular, rectangular, or a more
complex shape. The blank is drawn into the
die cavity by the action of a punch.
Deformation is restricted to the flange areas
of the blank. No deformation occurs under
the bottom of the punch—the area of the
blank that was originally within the die
opening. As the punch forms the cup, the
amount of material in the flange decreases.
Also called cup drawing or radial drawing.

deflection. The amount of deviation from a
straight line or plane when a force is applied
to a press member. Generally used to specify
the allowable bending of the bed, slide, or
frame at rated capacity with a load of
predetermined distribution.

deformation (adiabatic) heating. Temperature
increase that occurs in a workpiece due to the

conversion of strain energy, imparted during
metalworking, into heat.

deformation energy method. A metalforming
analysis technique that takes into account
only the energy required to deform the
workpiece.

deformation limit. In drawing, the limit of
deformation is reached when the load re-
quired to deform the flange becomes greater
than the load-carrying capacity of the cup
wall. The deformation limit (limiting drawing
ratio) is defined as the ratio of the maximum
blank diameter that can be drawn into a cup
without failure, to the diameter of the punch.

deformation-mechanism map. Strain rate/
temperature map that describes forming or
service regimes under which deformation is
controlled by micromechanical processes
such as dislocation glide, dislocation climb,
and diffusional flow limited by bulk or
boundary diffusion.

deformation processing. A class of manufac-
turing operation that involves changing the
shape of a workpiece by plastic deformation
through the application of a compressive
force. Often carried out at elevated tempera-
ture.

deformation texture. Preferred orientation of
the crystals/grains comprising a polycrystal-
line aggregate that is developed during
deformation processing as a result of slip
and rotation within each crystal that com-
prises the aggregate.

Demarest process. A fluid forming process in
which cylindrical and conical sheet metal
parts are formed by a modified rubber
bulging punch. The punch, equipped with a
hydraulic cell, is placed inside the workpiece,
which in turn is placed inside the die.
Hydraulic pressure expands the punch.

density. Mass per unit volume. Weight per unit
volume.

design of experiments. Methodology for
choosing a small number of screening
experiments to establish the important mate-
rial and process variables in a complex
manufacturing process.

developed blank. A sheet metal blank that
yields a finished part without trimming or
with the least amount of trimming.

deviatoric. The nonhydrostatic component of
the state of stress on a body. It is the
deviatoric component that causes shape
change (plastic deformation).

die. (1) A tool, usually containing a cavity, that
imparts shape to solid, molten, or powdered
metal primarily because of the shape of the
tool itself. Used in many press operations
(including blanking, drawing, forging, and
forming), in die casting, and in forming green
powder metallurgy compacts. Die-casting
and powder metallurgy dies are sometimes
referred to as molds. See also forging dies.
(2) A complete tool used in a press for any
operation or series of operations, such as
forming, impressing, piercing, and cutting.

The upper member or members are attached
to the slide (or slides) of the press, and the
lower member is clamped or bolted to the bed
or bolster, with the die members being so
shaped as to cut or form the material placed
between them when the press makes a stroke.
(3) The female part of a complete die
assembly as described previously.

die assembly. The parts of a die stamp or press
that hold the die and locate it for the punches.

die block. A block, often made of heat treated
steel, into which desired impressions are
machined or sunk and from which closed-die
forgings or sheet metal stampings are pro-
duced using hammers or presses. In forging,
die blocks are usually used in pairs, with part
of the impression in one of the blocks and the
rest of the impression in the other. In sheet
metal forming, the female die is used in
conjunction with a male punch. See also
closed-die forging.

die button. An insert in a die that matches the
punch and is used for punching and piercing
operations. The die button is readily remo-
vable for sharpening or replacement as an
individual part of a die.

die cavity. The machined recess that gives a
forging or stamping its shape.

die check. A crack in a die impression due to
forging and thermal strains at relatively sharp
corners. Upon forging, these cracks become
filled with metal, producing sharp, ragged
edges on the part. Usual die wear is the
gradual enlarging of the die impression due
to erosion of the die material, generally
occurring in areas subject to repeated high
pressures during forging.

die chill. The temperature loss experienced by a
billet or preform when it contacts dies that
are maintained at a lower temperature.

die clearance. Clearance between a mated
punch and die; commonly expressed as
clearance per side. Also called clearance or
punch-to-die clearance.

die coating. Hard metal incorporated into the
working surface of a die to protect the
working surface or to separate the sheet
metal surface from direct contact with the
basic die material. Hard-chromium plating is
an example.

die forging. A forging that is formed to the
required shape and size through working in
machined impressions in specially prepared
dies.

die forming. The shaping of solid or powdered
metal by forcing it into or through the die
cavity.

die impression. The portion of the die surface
that shapes a forging or sheet metal part.

die insert. A relatively small die that contains
part or all of the impression of a forging or
sheet metal part and is fastened to the master
die block.

die line. A line or scratch resulting from the use
of a roughened tool or the drag of a foreign
particle between tool and product.
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die lock. A phenomenon in which the deforma-
tion is limited in a forging near the die face
due to chilling of the workpiece and/or
friction at the workpiece-die interface.

die lubricant. In forging or forming, a
compound that is sprayed, swabbed, or
otherwise applied on die surfaces or the
workpiece during the forging or forming
process to reduce friction. Lubricants also
facilitate release of the part from the dies and
provide thermal insulation. See also lubri-
cant.

die match. The alignment of the upper (moving)
and lower (stationary) dies in a hammer or
press. An allowance for misalignment (or
mismatch) is included in forging tolerances.

die radius. The radius on the exposed edge of a
deep-drawing die, over which the sheet flows
in forming drawn shells.

die section. A section of a cutting, forming, or
flanging die that is fastened to other sections
to make up the complete working surface.
Also referred to as cutting section.

die set. (1) The assembly of the upper and lower
die shoes (punch and die holders), usually
including the guide pins, guide pin bushings,
and heel blocks. This assembly takes many
forms, shapes, and sizes and is frequently
purchased as a commercially available unit.
(2) Two (or, for a mechanical upsetter, three)
machined dies used together during the
production of a die forging.

die shift. The condition that occurs after the
dies have been set up in a forging unit in
which a portion of the impression of one die
is not in perfect alignment with the corre-
sponding portion of the other die. This results
in a mismatch in the forging, a condition that
must be held within the specified tolerance.

die stamping. The general term for a sheet
metal part that is formed, shaped, or cut by a
die in a press in one or more operations.

dimpling. (1) The stretching of a relatively
small, shallow indentation into sheet metal.
(2) In aircraft, the stretching of metal into a
conical flange for a countersunk head rivet.

direct (forward) extrusion. See extrusion.
directional solidification. Controlled solidifi-
cation of molten metal in a casting so as to
provide feed metal to the solidifying front of
the casting. Usually, this results in the metal
solidifying in a preferred direction. In the
limit, the solidification can be controlled to
grow as a single grain (single-crystal casting).

discontinuous yielding. The nonuniform plas-
tic flow of a metal exhibiting a yield point in
which plastic deformation is inhomogen-
eously distributed along the gage length.
Under some circumstances, it may occur in
metals not exhibiting a distinct yield point,
either at the onset of or during plastic flow.

dishing. The formation of a shallow concave
surface in which the projected area is very
large compared with the depth of the
impression.

dislocation. A linear imperfection in a crystal-
line array of atoms. Two basic types include:
(1) an edge dislocation corresponds to the
row of mismatched atoms along the edge
formed by an extra, partial plane of atoms
within the body of a crystal; and (2) a screw
dislocation corresponds to the axis of a spiral
structure in a crystal, characterized by a
distortion that joins normally parallel planes
together to form a continuous helical ramp
(with a pitch of one interplanar distance)
winding about the dislocation. Most preva-
lent is the so-called mixed dislocation, which
is any combination of an edge dislocation and
a screw dislocation.

dislocation density. The total length of dis-
location lines per unit volume, or the number
of dislocation lines that cut through a unit
cross-sectional area.

dispersion strengthening. The strengthening of
a metal or alloy by incorporating chemically
stable submicron-sized particles of a non-
metallic phase that impede dislocation move-
ment at elevated temperature.

double-cone test. Simulative bulk forming test
consisting of the compression of a sample
shaped like a flying saucer between flat dies.
The variation of strain and stress state
developed across the sample is used to obtain
a large quantity of data on microstructure
evolution and failure in a single experiment.

draft. The amount of taper on the sides of the
forging and on projections to facilitate
removal from the dies; also, the correspond-
ing taper on the sidewalls of the die
impressions. In open-die forging, draft is
the amount of relative movement of the dies
toward each other through the metal in one
application of power.

drawability. A measure of the formability of a
sheet metal subject to a drawing process. The
term is usually used to indicate the ability of
a metal to be deep drawn. See also drawing
and deep drawing.

draw bead. An insert or riblike projection on
the draw ring or hold-down surfaces that aids
in controlling the rate of metal flow during
deep-drawing operations. Draw beads are
especially useful in controlling the rate of
metal flow in irregularly shaped stampings.

draw forming. A method of curving bars,
tubes, or rolled or extruded sections in which
the stock is bent around a rotating form
block. Stock is bent by clamping it to the
form block, then rotating the form block
while the stock is pressed between the form
block and a pressure die held against the
periphery of the form block.

drawing. A term used for a variety of forming
operations, such as deep drawing a sheet
metal blank; redrawing a tubular part; and
drawing rod, wire, and tube. The usual
drawing process with regard to sheet metal
working in a press is a method for producing
a cuplike form from a sheet metal disk by

holding it firmly between blankholding
surfaces to prevent the formation of wrinkles
while the punch travel produces the required
shape.

drawing die. A type of die designed to produce
nonflat parts such as boxes, pans, and so on.
Whenever practical, the die should be
designed and built to finish the part in one
stroke of the press, but if the part is deep in
proportion to its diameter, redrawing opera-
tions are necessary.

drawing ratio. The ratio of the blank diameter
to the punch diameter.

draw radius. The radius at the edge of a die or
punch over which sheet metal is drawn.

draw stock. The forging operation in which the
length of a metal mass (stock) is increased at
the expense of its cross section; no upset is
involved. The operation includes converting
ingot to pressed bar using “V,” round, or flat
dies.

drop forging. The forging obtained by ham-
mering metal in a pair of closed dies to
produce the form in the finishing impression
under a drop hammer; forging method
requiring special dies for each shape.

drop hammer. A term generally applied to
forging hammers in which energy for forging
is provided by gravity, steam, or compressed
air.

drop hammer forming. A process for produ-
cing shapes by the progressive deformation of
sheet metal in matched dies under the repeti-
tive blows of a gravity-drop or power-drop
hammer. The process is restricted to relatively
shallow parts and thin sheet from approxi-
mately 0.6 to 1.6 mm (0.024 to 0.064 in.).

drop through. The type of ejection where the
part or scrap drops through an opening in the
die.

dry-film lubricant. A type of lubricant applied
by spraying or painting on coils or sheets
prior to blanking, drawing, or stamping. The
lubricant can have a wax base and be sprayed
hot onto the sheet surface and solidify on
cooling, or be a water-based polymer and be
roll coated onto the surface (one or both
sides) and be heated to cure and dry. Such
lubricants have uniform thickness, low coef-
ficients of friction, and offer protection from
corrosion in transit and storage.

ductile fracture. Failure of metals as a result of
cavity nucleation, growth, and coalescence.
Ductile fracture may occur during metal
forming at both cold and hot working
temperatures.

ductile-to-brittle transition temperature
(DBTT). A temperature or range of tempera-
tures over which a material reaction to impact
(high strain rate) loads changes from ductile,
high-energy-absorbing to brittle, low-energy-
absorbing behavior. The DBTT determina-
tions are often done with Charpy or Izod test
specimens measuring absorbed energy at
various temperatures.
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ductility. A measure of the amount of deforma-
tion that a material can withstand without
breaking.

dynamic friction. The friction forces between
two surfaces in relative motion. See also
static friction.

dynamic material modeling. A methodology
by which macroscopic measurements of flow
stress as a function of temperature and strain
rate are used with continuum criteria of
instability to identify regions of temperature
and strain rate in which voids, cracks, shear
bands, and flow localization are likely to occur.

dynamic recovery. Recovery process that
occurs during cold or hot working of metals,
typically resulting in the formation of low-
energy dislocation substructures/subgrains
within the deformed original grains. Dynamic
recovery reduces the observed level of strain
hardening due to dislocation multiplication
during deformation.

dynamic recrystallization. The formation of
strain-free recrystallized grains during hot
working. It results in a decrease in flow stress
and formation of equiaxed grains, as opposed
to dynamic recovery in which the elongated
grains remain.

dynamic strain aging. A behavior in metals in
which solute atoms are sufficiently mobile to
move toward and interact with dislocations
during deformation. This results in strength-
ening over a specific range of elevated
temperature and strain rate.

E

earing. The formation of ears or scalloped edges
around the top of a drawn shell, resulting from
directional differences in the plastic-working
properties of rolled metal with, across, and at
angles to the direction of rolling.

edge dislocation. A line imperfection that
corresponds to the row of mismatched atoms
along the edge formed by an extra, partial
plane of atoms within the body of a crystal.

edger (edging impression). The portion of a
die impression that distributes metal during
forging into areas where it is most needed in
order to facilitate filling the cavities of
subsequent impressions to be used in the
forging sequence.

edge strain. Repetitive areas of local deforma-
tion extending inwardly from the edge of
temper-rolled sheet.

edging. (1) In sheet metal forming, reducing the
flange radius by retracting the forming punch
a small amount after the stroke but before
release of the pressure. (2) In rolling, the
working of metal in which the axis of the roll
is parallel to the thickness dimension. Also
called edge rolling. The result is changing a
rounded edge to a square edge. (3) The forging
operation of working a bar between contoured
dies while turning it 90� between blows to
produce a varying rectangular cross section.

effective draw. The maximum limits of form-
ing depth that can be achieved with a
multiple-action press; sometimes called max-
imum draw or maximum depth of draw.

effective strain. The (scalar) strain conjugate to
effective stress defined in such a manner that
the product of the effective stress and the
effective strain increment is equal to the
increment in imposed work during a defor-
mation process.

effective stress. A mathematical way to express
a two- or three-dimensional stress state by a
single number.

elastic deformation. A change in dimensions
that is directly proportional to and in phase
with an increase or decrease in applied force;
deformation that is recoverable when the
applied force is removed.

elasticity. The property of a material by which
the deformation caused by stress disappears
upon removal of the stress. A perfectly elastic
body completely recovers its original shape
and dimensions after the release of stress.

elastic limit. The maximum stress a material
can sustain without any permanent strain
(deformation) remaining upon complete
release of the stress.

elastic modulus. See Young’s modulus.
elastohydrodynamic lubrication. A condition
of lubrication in which the friction and film
thickness between two bodies in relative
motion is determined by the elastic properties
of the bodies in combination with the viscous
properties of the lubricant.

electrical resistivity. The electrical resistance
offered by a material to the flow of current,
times the cross-sectional area of current flow
and per unit length of current path; the
reciprocal of the conductivity. Also called
resistivity or specific resistance.

electric-discharge machining (EDM). Metal-
removal (machining) process based on the
electric discharge/spark erosion resulting from
current flowing between an electrode and
workpiece placed in close proximity to each
other in a dielectric fluid. The electrodemay be
a wire (as in wire EDM) or a contoured shape
(so-called plungeEDM); the latter technique is
used for making metalworking dies.

electromagnetic forming. A process for form-
ing metal by the direct application of an
intense, transient magnetic field. The work-
piece is formed without mechanical contact
by the passage of a pulse of electric current
through a forming coil. Also known as
magnetic pulse forming.

electron backscatter diffraction (EBSD).
Materials characterization technique con-
ducted in a scanning electron microscope
(and sometimes a transmission electron
microscope) used to establish the crystal-
lographic orientation of individual (micron-
sized) regions of material through analysis of
Kikuchi patterns formed by backscattered
electrons. Automated EBSD systems can

thus be used to determine the texture over
small-to-moderate-sized total volumes of
material.

elongation. (1) A term used in mechanical
testing to describe the amount of extension of
a testpiece when stressed. (2) In tensile
testing, the increase in the gage length,
measured after fracture of the specimen
within the gage length, usually expressed as
a percentage of the original gage length.

elongation, percent. The extension of a
uniform section of a specimen expressed as
a percentage of the original gage length:

Elongation;% ¼ðLx � L0Þ
L0

� 100

where L0 is the original gage length, and Lx is
the final gage length.
embossing. A process for producing raised or
sunken designs in sheet material by means of
male and female dies, theoretically with
minimal change in metal thickness. Examples
are letters, ornamental pictures, and ribs for
stiffening. Heavy embossing and coining are
similar operations.

engineering strain. A term sometimes used for
average linear strain or nominal strain in
order to distinguish it from true strain. In
tensile testing, it is calculated by dividing the
change in the gage length by the original
gage length.

engineering stress. A term sometimes used for
average linear stress or nominal stress in
order to differentiate it from true stess.
In tension testing, it is calculated by dividing
the load applied to the specimen by its
original cross-sectional area.

Erichsen test. A cupping test used to assess the
ductility of sheet metal. The method consists
of forcing a conical or hemispherical-ended
plunger into the specimen and measuring the
depth of the impression at fracture.

error function. The function that often results
as a solution to a partial differential equation.
The error function is defined as:

erfðxÞ ¼ 2

�

ðx
0

e�x
2

dx

The error function is also called the probabil-
ity integral.

erosion resistance. The ability of a die material
to resist sliding wear and thus maintain its
original dimension.

etching. Production of designs, including grids,
on a metal surface by a corrosive reagent or
electrolytic action.

Euler angles. Set of three angular rotations
used to specify unambiguously the spatial
orientation of crystallites relative to a fixed
reference frame.

expert system. A computer-based system that
captures the knowledge of experts through
the integration of databases and knowledge
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bases using search and logic deduction
algorithms.

extruded hole. A hole formed by a punch that
first cleanly cuts a hole and then is pushed
farther through to form a flange with an
enlargement of the original hole. This may be
a two-step operation.

extrusion. The conversion of an ingot or billet
into lengths of uniform cross section by
forcing metal to flow plastically through a die
orifice. In forward (direct) extrusion, the die
and ram are at opposite ends of the extrusion
stock, and the product and ram travel in the
same direction. Also, there is relative motion
between the extrusion stock and the die.
In backward (indirect) extrusion, the die is at
the ram end of the stock, and the product
travels in the direction opposite that of the
ram, either around the ram (as in the impact
extrusion of cylinders, such as cases for dry
cell batteries) or up through the center of a
hollow ram.

extrusion billet. A metal slug used as extrusion
stock.

extrusion forging. Forcing metal into or
through a die opening by restricting flow in
other directions. A part made by the opera-
tion.

extrusion pipe. A central oxide-lined disconti-
nuity that occasionally occurs in the last 10 to
20% of an extruded bar. It is caused by the
oxidized outer surface of the billet flowing
around the end of the billet and into the
center of the bar during the final stages of
extrusion. Also called coring.

extrusion stock. A rod, bar, or other section
used to make extrusions.

eyeleting. The displacing of material about an
opening in sheet or plate so that a lip
protruding above the surface is formed.

F

fatigue. The phenomenon leading to fracture
under repeated or fluctuating stresses having
a maximum value less than the ultimate
tensile strength of the material. Fatigue
failure generally occurs at loads that, applied
statically, would produce little perceptible
effect. Fatigue fractures are progressive,
beginning as minute cracks that grow under
the action of the fluctuating stress.

fatigue limit. The maximum cyclic stress that a
material can withstand for an infinitely large
number of stress cycles. Also called endur-
ance limit.

fatigue-strength reduction factor. The ratio of
the fatigue strength of a member or specimen
with no stress concentration to the fatigue
strength with stress concentration. This factor
has no meaning unless the stress range and
the shape, size, and material of the member
or specimen are stated.

fiber texture. Crystallographic texture in which
all or a large fraction of the crystals in a
polycrystalline aggregate are oriented such

that a specific direction in each crystal is
parallel to a specific sample direction, such
as the axis of symmetry of a cylindrical
object. Often found in wrought products such
as wire and round extrusions that have been
subjected to large axisymmetric deformation.

fillet. The concave intersection of two surfaces. In
forging, the desired radius at the concave
intersection of two surfaces is usually specified.

film strength. The ability of a surface film to
resist rupture by the penetration of asperities
during sliding or rolling of two surfaces over
each other.

fin. The thin projection formed on a forging by
trimming or when metal is forced under
pressure into hairline cracks or die interfaces.

finishing dies. The die set used in the last
forging step.

finish trim. Flash removal from a forging;
usually performed by trimming but some-
times by band sawing or similar techniques.

finite-element analysis (FEA). A computer-
based technique used to solve simultaneous
equations that is used to predict the response
of structures to applied loads and tempera-
ture. The FEA is a tool used to model
deformation and heat treating processes.

finite-element modeling (FEM). A numerical
technique in which the analysis of a complex
part is represented by a mesh of elements
interconnected at node points. The coordi-
nates of the nodes are combined with the
elastic properties of the material to produce a
stiffness matrix, and this matrix is combined
with the applied loads to determine the
deflections at the nodes and hence the
stresses. All of the aforementioned is done
with special FEM software. The FEM
approach also may be used to solve other
field problems in heat transfer, fluid flow,
acoustics, and so on. Also known as finite-
element analysis (FEA).

fixture. A tool or device for holding and
accurately positioning a piece or part on a
machine tool or other processing machine.

flame hardening. A heat treating method for
surface hardening steel of the proper speci-
fications in which an oxyacetylene flame
heats the surface to a temperature at
which subsequent cooling, usually with
water or air, will give the required surface
hardness.

flame straightening. The correction of distor-
tion in metal structures by localized heating
with a gas flame.

flange. A projecting rim or edge of a part;
usually narrow and of approximately constant
width for stiffening or fastening.

flanging. A bending operation in which a
narrow strip at the edge of a sheet is bent
down (up) along a straight or curved line. It is
used for edge strengthening, appearance,
rigidity, and the removal of sheared edges.
A flange is often used as a fastening surface.

flaring. The forming of an outward acute-angle
flange on a tubular part.

flash. Metal in excess of that required to
completely fill the blocking or finishing
forging impression of a set of dies. Flash
extends out from the body of the forging as a
thin plate at the line where the dies meet and
is subsequently removed by trimming. Be-
cause it cools faster than the body of the
component during forging, flash can serve to
restrict metal flow at the line where dies
meet, thus ensuring complete filling of the
impression.

flash extension. That portion of flash remaining
on a forged part after trimming; usually
included in the normal forging tolerances.

flash line. The line left on a forging after the
flash has been trimmed off.

flash pan. The machined-out portion of a
forging die that permits the flow through of
excess metal.

flattening. (1) A preliminary operation per-
formed on forging stock to position the metal
for a subsequent forging operation. (2) The
removal of irregularities or distortion in
sheets or plates by a method such as roller
leveling or stretcher leveling. (3) For wire,
rolling round wire to a flattened condition.

flattening dies. Dies used to flatten sheet metal
hems; that is, dies that can flatten a bend by
closing it. These dies consist of a top and
bottom die with a flat surface that can close
one section (flange) to another (hem, seam).

fleck scale. A fine pattern of scale marks on the
sheet surface that can be either dark or light.
The dark pattern originates from scale and
other impurities embedded in the strip during
hot rolling that are not removed during
pickling. The light pattern originates from a
scale pattern imprinted on the work rolls in
the finishing stands in the hot mill being
printed onto the strip.

flex roll. A movable roll designed to push up
against a sheet as it passes through a roller
leveler. The flex roll can be adjusted to
deflect the sheet any amount up to the roll
diameter.

flex rolling. Passing sheets through a flex roll
unit to minimize yield point elongation in
order to reduce the tendency for stretcher
strains to appear during forming.

flexural strength. A property of solid material
that indicates its ability to withstand a
flexural or transverse load.

flow curve. A curve of true stress versus true
strain that shows the stress required to produce
plastic deformation. A graphical representa-
tion of the relationship between load and
deformation during plastic deformation.

flow lines. (1) Texture showing the direction
of metal flow during hot or cold working.
Flow lines can often be revealed by etching
the surface or a section of a metal part. (2) In
mechanical metallurgy, paths followed by
minute volumes of metal during deformation.

flow localization. A situation where material
deformation is localized to a narrow zone.
Such zones often are sites of failure. Flow
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localization results from poor lubrication,
temperature gradients, or flow softening
resulting from adiabatic heating, generation
of softer crystallographic texture, grain
coarsening, or spheroidization of second
phases.

flow softening. Stress-strain behavior observed
under constant strain-rate conditions charac-
terized by decreasing flow stress with
increasing strain. Flow softening may result
from deformation heating as well as a
number of microstructural sources, such as
the generation of a softer crystallographic
texture and the spheroidization of a lamellar
phase.

flow stress. The uniaxial true stress required to
cause plastic deformation at a particular
value of strain, strain rate, and temperature.

flow through. A forging defect caused by metal
flow past the base of a rib with resulting
rupture of the grain structure.

fluid-cell process. A modification of the Guerin
process for forming sheet metal, the fluid-cell
process uses higher pressure and is primarily
designed for forming slightly deeper parts,
using a rubber pad as either the die or punch.
A flexible hydraulic fluid cell forces an
auxiliary rubber pad to follow the contour
of the form block and exert a nearly uniform
pressure at all points on the workpiece. See
also fluid forming and rubber-pad forming.

fluid forming. A modification of the Guerin
process, fluid forming differs from the fluid-
cell process in that the die cavity, called a
pressure dome, is not completely filled with
rubber but with hydraulic fluid retained by a
cup-shaped rubber diaphragm.

fluting. A series of sharp parallel kinks or
creases that can occur when sheet steel is
formed clylindrically. Fluting is caused by
inhomogeneous yielding of these sheets.

foil. Metal in sheet form less than 0.15 mm
(0.006 in.) thick.

fold. A forging defect caused by folding metal
back onto its own surface during its flow in
the die cavity.

forgeability. Term used to describe the relative
ability of material to deform without fracture.
Also describes the resistance to flow from
deformation.

forging. The process of working metal to a
desired shape by impact or pressure in
hammers, forging machines (upsetters),
presses, rolls, and related forming equipment.
Forging hammers, counterblow equipment,
and high-energy-rate forging machines apply
impact to the workpiece, while most other
types of forging equipment apply squeeze
pressure in shaping the stock. Some metals
can be forged at room temperature, but most
are made more plastic for forging by heating.

forging dies. Forms for making forgings; they
generally consist of a top and bottom die. The
simplest will form a completed forging in a
single impression; the most complex, con-
sisting of several die inserts, may have a

number of impressions for the progressive
working of complicated shapes. Forging dies
are usually in pairs, with part of the
impression in one of the blocks and the rest
of the impression in the other block.

forging plane. In forging, the plane that
includes the principal die face and is
perpendicular to the direction of ram travel.
When the parting surfaces of the dies are flat,
the forging plane coincides with the parting
line. Contrast with parting plane.

forging quality. Term used to describe stock of
sufficient quality to make it suitable for
commercially satisfactory forgings.

forging stock. A wrought rod, bar, or other
section suitable for subsequent change in
cross section by forging.

formability. The ease with which a metal can
be shaped through plastic deformation. Eva-
luation of the formability of a metal involves
measurement of strength, ductility, and the
amount of deformation required to cause
fracture. The term workability is used inter-
changeably with formability; however, form-
ability refers to the shaping of sheet metal,
while workability refers to shaping materials
by bulk forming. See also forgeability.

formability-limit diagram. An empirical curve
showing the biaxial strain levels beyondwhich
failure may occur in sheet metal forming.
The strains are given in terms of major and
minor strainsmeasured fromdeformed circles,
previously printed onto the sheet.

formability parameters. Material parameters
that can be used to predict the ability of sheet
metal to be formed into a useful shape.

forming. The plastic deformation of a billet or a
blanked sheet between tools (dies) to obtain
the final configuration. Metalforming pro-
cesses are typically classified as bulk forming
and sheet forming. Also referred to as
metalworking.

forming-limit diagram (FLD) or forming-
limit curve (FLC). An empirical curve in
which the major strains at the onset of
necking in sheet metal are plotted vertically
and the corresponding minor strains are
plotted horizontally. The onset-of-failure line
divides all possible strain combinations into
two zones: the safe zone (in which failure
during forming is not expected) and the
failure zone (in which failure during forming
is expected).

form rolling. Hot rolling to produce bars
having contoured cross sections; not to be
confused with the roll forming of sheet metal
or with roll forging.

forward extrusion. Same as direct extrusion.
See also extrusion.

fracture. The irregular surface produced when
a piece of metal is broken.

fracture criterion. A mathematical relationship
among stresses, strains, or a combination of
stresses and strains that predicts the occur-
rence of ductile fracture. Should not be
confused with fracture mechanics equations,

which deal with more brittle types of fracture.
fracture-limit line. An experimental method
for predicting surface fracture in plastically
deformed solids. Is related to the forming-
limit diagram used to predict failures in sheet
forming.

fracture load. The load at which splitting
occurs.

fracture-mechanism map. Strain rate/tempera-
ture map that describes regimes under which
different damage and failure mechanisms are
operative under either forming or service
conditions.

fracture strain («f). The true strain at fracture
defined by the relationship:

ef¼ ln
Initial cross� sectional area

Final cross� sectional area

� �

fracture strength. The engineering stress at
fracture, defined as the load at fracture
divided by the original cross-sectional area.
The fracture strength is synonymous with the
breaking strength.

fracture stress. The true stress at fracture,
which is the load for fracture divided by the
final cross-sectional area.

fracture toughness. A generic term for mea-
sures of resistance to extension of a crack.
The term is sometimes restricted to results of
fracture mechanics tests, which are directly
applicable in fracture control. However, the
term commonly includes results from simple
tests of notched or precracked specimens not
based on fracture mechanics analysis. Results
from tests of the latter type are often useful
for fracture control, based on either service
experience or empirical correlations with
fracture mechanics tests. See also stress-
intensity factor.

free bending. A bending operation in which the
sheet metal is clamped at one end and
wrapped around a radius pin. No tensile
force is exerted on the ends of the sheet.

friction. The resisting force tangential to the
common boundary between two bodies when,
under the action of an external force, one
body moves or tends to move relative to the
surface of the other.

friction coextrusion. A solid core along with a
tube made of a cladding material is friction
extruded.

friction extrusion. A rotating round bar is
pressed against a die to produce sufficient
frictional heating to allow softened material
to extrude through the die.

friction hill. Shape of the normal pressure-
position plot that pertains to the axisym-
metric and plane-strain forging of simple and
complex shapes. The pressure is approxi-
mately equal to the flow stress at the edge of
the forging and increases toward the center,
thus producing the characteristic hilllike
shape. The exact magnitude of the increase
in pressure is a function of interface friction
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and the diameter-to-thickness or width-to-
thickness ratio of the forging.

friction shear factor. Interface friction coeffi-
cient for which the interface shear stress is
taken to be proportional to the flow stress
divided by

ffiffiffi
3
p

. The proportionality constant
is called the friction shear factor (or interface
friction factor) and is usually denoted as m.
The friction shear factor takes on values
between 0 (perfect lubrication) and 1 (stick-
ing friction) during metalworking. See also
Coulomb friction.

Fukui cup test. A cupping test combining
stretchability and drawability in which a
round-nosed punch draws a circular blank
into a conical-shaped die until fracture occurs
at the nose. Various parameters from the test
are used as the criterion of formability.

fuzzy logic. The use of fuzzy sets in the
representation and manipulation of vague
information for the purpose of making
decisions or taking actions. Fuzzy logic
enables computers to make decisions based
on information that is not clearly defined.

G

gage. (1) The thickness of sheet or the diameter
of wire. The various standards are arbitrary
and differ with regard to ferrous and
nonferrous products as well as sheet and
wire. (2) An aid for visual inspection that
enables an inspector to determine more
reliably whether the size or contour of a
formed part meets dimensional requirements.

gage length. The original length of that part of
a test specimen over which strain or other
characteristics are measured.

galling. A condition whereby excessive friction
between high spots results in localized
welding with subsequent spalling and further
roughening of the rubbing surface(s) of one
or both of two mating parts.

grain. An individual crystal in a polycrystalline
metal or alloy.

grain boundary. A narrow zone in a metal or
ceramic corresponding to the transition from
one crystallographic orientation to another,
thus separating one grain from another; the
atoms in each grain are arranged in an orderly
pattern.

grain-boundary sliding. The sliding of grains
past each other that occurs at high tempera-
ture. Grain-boundary sliding is common
under creep conditions in service, thus
leading to internal damage (e.g., cavities) or
total failure, and during superplastic forming,
in which undesirable cavitation may also
occur if diffusional or deformation processes
cannot accommodate the sliding at a suffi-
cient rate.

grain growth. The increase in the average size of
grains in a crystalline aggregate during anneal-
ing (static conditions) or deformation (dyna-
mic conditions). The driving force for grain
growth is the reduction in total grain-boundary

area and its associated surface energy.
grain size. A measure of the area or volume of
grains in a polycrystalline material, usually
expressed as an average when the individual
sizes are fairly uniform.

gridding. Imprinting an array of repetitive
geometrical patterns on a sheet prior to
forming for subsequent determination of
deformation. Imprinting techniques include:
(1) Electrochemical marking (also called
electrochemical or electrolytic etching)—a
grid-imprinting technique using electrical
current, an electrolyte, and an electrical
stencil to etch the grid pattern into the blank
surface. A contrasting oxide usually is
redeposited simultaneously into the grid.
(2) Photoprint—a technique in which a
photosensitive emulsion is applied to the
blank surface, a negative of the grid pattern is
placed in contact with the blank, and the
pattern is transferred to the sheet by a
standard photographic printing practice.
(3) Ink stamping. (4) Lithographing.

gripper dies. The lateral or clamping dies used
in a forging machine or mechanical upsetter.

Guinier-Preston (G-P) zone. A small precipi-
tation domain in a supersaturated metallic
solid solution. A G-P zone has no well-
defined crystalline structure of its own and
contains an abnormally high concentration of
solute atoms. The formation of G-P zones
constitutes the first stage of precipitation and
is usually accompanied by a change in
properties of the solid solution in which they
occur.

H

Hall-Petch dependence. A reflection of the
effect of grain size on the yield strength of a
metal. It states that the yield strength is
inversely proportional to the square root of
the grain size.

Hall-Petch relationship. A general relationship
for metals that shows that the yield strength is
linearly related to the reciprocal of the square
root of the grain diameter.

hammering. The working of metal sheet into a
desired shape over a form or on a high-speed
hammer and a similar anvil to produce the
required dishing or thinning.

hand forge (smith forge). A forging operation
in which forming is accomplished on dies
that are generally flat. The piece is shaped
roughly to the required contour with little
or no lateral confinement; operations invol-
ving mandrels are included. The term hand
forge refers to the operation performed, while
hand forging applies to the part produced.

hardness test. A test to measure the resistance
to indentation of a material. Tests for sheet
metal include Rockwell, Rockwell Super-
ficial, Tukon, and Vickers.

Hartmann lines. See Lüders lines.
heading. The upsetting of wire, rod, or bar
stock in dies to form parts that usually

contain portions that are greater in cross-
sectional area than the original wire, rod, or
bar.

healed-over scratch. A scratch that occurred
during previous processing and was partially
obliterated in subsequent rolling.

hemming. A bend of 180� made in two steps.
First, a sharp-angle bend is made; next, the
bend is closed using a flat punch and a die.

high-angle boundary. Boundary separating
adjacent grains whose misorientation is at
least 15�.

high-energy-rate forging. The production of
forgings at extremely high ram velocities
resulting from the sudden release of a
compressed gas against a free piston. Forging
is usually completed in one blow. Also
known as HERF processing, high-velocity
forging, and high-speed forging.

high-energy-rate forming. A group of forming
processes that applies a high rate of strain to
the material being formed through the
application of high rates of energy transfer.
See also high-energy-rate forging and elec-
tromagnetic forming.

hodograph. A curve traced in the course of
time by the tip of a vector representing some
physical quantity. In particular, the path
traced by the velocity vector of a given
particle.

hole expansion test. A formability test in which
a tapered punch is forced through a punched
or a drilled and reamed hole, forcing
the metal in the periphery of the hole to
expand in a stretching mode until fracture
occurs.

hole flanging. The forming of an integral collar
around the periphery of a previously formed
hole in a sheet metal part.

homogenization. Heat treatment used to reduce
or eliminate nonuniform chemical composi-
tion that develops on a microscopic scale
(microsegregation) during the solidification
processing of ingots and castings. Homoge-
nization is commonly used for aluminum
alloys and nickel-base superalloys.

Hooke’s law. A generalization applicable to all
solid material, which states that stress is
directly proportional to strain and is ex-
pressed as:

Stress=strain ¼�=e¼ Constant ¼E

where E is the modulus of elasticity
(Young’s modulus). The constant relation-
ship between stress and strain applies only
below the proportional limit.

hot forming. See hot working. Similar to hot
sizing, however, the forming is done at
temperatures above the annealing tempera-
ture, and deformation is usually larger.

hot isostatic pressing (HIP). A process for
simultaneously heating and forming a powder
metallurgy compact in which metal powder,
contained in a sealed flexible mold, is
subjected to equal pressure from all direc-
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tions at a temperature high enough for full
consolidation to take place. Hot isostatic
pressing is also frequently used to seal
residual porosity in castings and to consoli-
date metal-matrix composites. A process that
subjects a component (casting, powder for-
gings, etc.) to both elevated temperature and
isostatic gas pressure in an autoclave. The
most widely used pressurizing gas is argon.
When castings are hot isostatically pressed,
the simultaneous application of heat and
pressure virtually eliminates internal voids
and microporosity through a combination of
plastic deformation, creep, and diffusion.

hot rolled sheet. Steel sheet reduced to required
thickness at a temperature above the point of
scaling and therefore carrying hot mill oxide.
The sheet may be flattened by cold rolling
without appreciable reduction in thickness or
by roller leveling, or both. Depending on the
requirements, hot rolled sheet can be pickled
to remove hot mill oxide and is so produced
when specified.

hot shortness. A tendency for some alloys to
separate along grain boundaries when
stressed or deformed at temperatures near
the melting point. Hot shortness is caused by
a low-melting constituent, often present only
in minute amounts, that is segregated at grain
boundaries.

hot size. A process where a preformed part is
placed into a hot die above the annealing
temperature to set the shape and remove
springback tendencies.

hot strip or pickle line scratch. Scratches that
are superficially similar to slivers or skin
laminations but originate from mechanical
scoring of the strip in the hot mill, pickle line,
or slitter.

hot upset forging. A bulk forming process for
enlarging and reshaping some of the cross-
sectional area of a bar, tube, or other product
form of uniform (usually round) section. It is
accomplished by holding the heated forging
stock between grooved dies and applying
pressure to the end of the stock, in the
direction of its axis, by the use of a heading
tool, which spreads (upsets) the end by metal
displacement. Also called hot heading or hot
upsetting. See also heading and upsetting.

hot working. The plastic deformation of metal
at such a temperature and strain rate that
recrystallization or a high degree of recovery
takes place simultaneously with the deforma-
tion, thus avoiding any strain hardening.
Also referred to as hot forging and hot
forming. Contrast with cold working.

hub. A boss that is in the center of a forging and
forms a part of the body of the forging.

hubbing. The production of die cavities by
pressing a male master plug, known as a hub,
into a block of metal.

hydrodynamic lubrication. A system of lubri-
cation in which the shape and relative motion
of the sliding surfaces causes the formation
of a liquid film having sufficient pressure to

separate the surfaces. See also elastohydro-
dynamic lubrication.

hydrostatic extrusion. A method of extruding
a billet through a die by pressurized fluid
instead of the ram used in conventional
extrusion.

hydrostatic stress. The average value of the
three normal stresses. The hydrostatic stress
is a quantity that is invariant relative to the
orientation of the coordinate system in which
the stress state is defined.

I

IACS. See percent IACS (%IACS).
impact extrusion. The process (or resultant
product) in which a punch strikes a slug
(usually unheated) in a confining die. The
metal flow may be either between punch and
die or through another opening. The impact
extrusion of unheated slugs is often called
cold extrusion.

impact line. A blemish on a drawn sheet metal
part caused by a slight change in metal
thickness. The mark is called an impact line
when it results from the impact of the punch
on the blank; it is called a recoil line when it
results from transfer of the blank from the die
to the punch during forming, or from a
reaction to the blank being pulled sharply
through the draw ring.

impact strength. A measure of the resiliency or
toughness of a solid. The maximum force or
energy of a blow (given by a fixed procedure)
that can be withstood without fracture, as
opposed to fracture strength under a steady
applied force.

impression. A cavity machined into a forging
die to produce a desired configuration in the
workpiece during forging.

inclusion. A physical and mechanical disconti-
nuity occurring within a material or part,
usually consisting of solid, encapsulated
foreign material. Inclusions are often capable
of transmitting some structural stresses and
energy fields, but to a noticeably different
degree than from the parent material.

increase in area. An indicator of sheet metal
forming severity based on percentage increase
in surface area measured after forming.

ingot. A casting intended for subsequent roll-
ing, forging, or extrusion.

ingot conversion. A primary metalworking
process that transforms a cast ingot into a
wrought mill product.

ingot metallurgy. A processing route consist-
ing of casting an ingot that is subsequently
converted into mill products via deformation
processes.

inoculant. Materials that, when added to
molten metal, modify the structure and thus
change the physical and mechanical proper-
ties to a degree not explained on the basis of
the change in composition resulting from
their use. Ferrosilicon-base alloys are com-
monly used to inoculate gray irons and

ductile irons.
intellectual property. Knowledge-based prop-
erty, usually represented by patents, copy-
rights, trademarks, or trade secrets.

interface heat-transfer coefficient (IHTC).
Coefficient defined as the ratio of the heat
flux across an interface to the difference in
temperature of material points lying on either
side of the interface. In bulk forming, the
IHTC is usually a function of the die and
workpiece surface conditions, lubrication,
interface pressure, amount of relative sliding,
and so on.

intermetallic alloy. A metallic alloy usually
based on an ordered, stoichiometric com-
pound (e.g., Fe3Al, Ni3Al, TiAl) and often
possessing exceptional strength and environ-
mental resistance at high temperatures, unlike
conventional (less highly alloyed) disordered
metallic materials.

interstitial-free steels. Steels where carbon and
nitrogen are removed in the steelmaking
process to very low levels, and any remaining
interstitial carbon and nitrogen is tied up with
small amounts of alloying elements that form
carbides and nitrides, that is, titanium and
niobium. Although these steels have low
strength, they exhibit exceptional formability.

ionic bond. (1) A type of chemical bonding in
which one or more electrons are transferred
completely from one atom to another, thus
converting the neutral atoms into electrically
charged ions. These ions are approximately
spherical and attract each other because of
their opposite charges. (2) A primary bond
arising from the electrostatic attraction
between two oppositely charged ions.

ironing. An operation used to increase the
length of a tube or cup through reduction of
wall thickness and outside diameter, the inner
diameter remaining unchanged.

isostatic pressing. A process for forming a
powder metallurgy compact/metal-matrix
composite or for sealing casting porosity by
applying pressure equally from all directions.
See also hot isostatic pressing (HIP).

isothermal forging. A hot forging process in
which a constant and uniform temperature is
maintained in the workpiece during forging
by heating the dies to the same temperature
as the workpiece.

isothermal transformation (IT) diagram.
A diagram that shows the isothermal time
required for transformation of austenite to
begin and to finish as a function of
temperature.

isotropy. The condition in which the properties
are independent of the direction in which
they are measured.

J

J-integral. A mathematical expression invol-
ving a line or surface integral that encloses
the crack front from one crack surface to the
other, used to characterize the fracture
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toughness of a material having appreciable
plasticity before fracture. The J-integral
eliminates the need to describe the behavior
of the material near the crack tip by
considering the local stress-strain field
around the crack front; JIc is the critical
value of the J-integral required to initiate
growth of a preexisting crack.

Joffe effect. Change in mechanical properties,
especially the fracture strength, resulting
from testing in an environment that modifies
the surface characteristics of the material.

K

Keeler-Goodwin diagram. The forming-limit
diagram for low-carbon steel commonly used
for sheet metal forming.

kinetics. Term describing the rate at which a
metallurgical process (e.g., recovery, recrys-
tallization, grain growth, phase transforma-
tion) occurs as a function of time or, if during
deformation, of strain.

kinks. Sharp bends or buckles caused by
localized plastic deformation of a sheet.

klink. An internal crack caused by too rapid
heating of a large workpiece.

knockout. A mechanism for releasing work-
pieces from a die.

knockout mark. A small protrusion, such as a
button or ring of flash, resulting from
depression of the knockout pin from the
forging pressure or the entrance of metal
between the knockout pin and the die.

knockout pin. A power-operated plunger
installed in a die to aid removal of the
finished forging.

Kronecker symbol. A second-order tensor, dij.
dij = 1 for i = j; dij = 0 for i 6¼ j.

L

lancing. Cutting along a line in the workpiece
without detaching a slug from the blank.

laser cutting. A cutting process that severs
material with the heat obtained by directing a
laser beam against a metal surface. The
process can be used with or without an
externally supplied shielding gas.

lateral extrusion. An operation in which the
product is extruded sideways through an
orifice in the container wall.

lattice. A regular geometrical arrangement of
points in space.

lattice constants. See lattice parameter.
lattice parameter. The length of any side of a
unit cell of a given crystal structure. The term
is also used for the fractional coordinates x,
y, z of lattice points when these are variable.

leveling. The flattening of rolled sheet, strip, or
plate by reducing or eliminating distortions.

limiting dome height (LDH) test. A mechan-
ical test, usually performed unlubricated on
sheet metal, that simulates the fracture
conditions in a practical press-forming opera-

tion. The results are dependent on the sheet
thickness.

limiting drawing ratio (LDR). See deforma-
tion limit.

linear elastic fracture mechanics. A method
of fracture analysis that can determine the
stress (or load) required to induce fracture
instability in a structure containing a crack-
like flaw of known size and shape. See also
stress-intensity factor.

liners. Thin strips of metal inserted between the
dies and the units into which the dies are
fastened.

loose metal. A defect in an area of a stamping
where very little contour is present. The
metal in the area has not been stretched,
resulting in a shape with no stiffness. The
area may have waves in it or may sag so that
there is a dish in an area that is intended to be
flat or nearly flat. This defect differs from oil
canning in that the metal cannot be snapped
back into the desired shape when a load is
removed or reversed on the area.

low-angle boundary. Boundary separating
adjacent grains whose misorientation is less
than 15�. See also subgrain.

lubricant. A material applied to dies, molds,
plungers, or workpieces that promotes the
flow of metal, reduces friction and wear, and
aids in the release of the finished part.

lubricant residue. The carbonaceous residue
resulting from lubricant that is burned onto
the surface of a hot forged part.

Lüders lines. Elongated surface markings or
depressions, often visible with the unaided eye,
that form along the length of a round or sheet
metal tension specimen at an angle
of approximately 55� to the loading axis.
Caused by localized plastic deformation, they
result from discontinuous (inhomogeneous)
yielding. Also known as Lüders bands, Hart-
mann lines, Piobert lines, or stretcher strains.

lumped-parameter model. A mathematical
model in which the distributed properties of
physical quantities are replaced with their
lumped equivalents. When a problem can be
analyzed in terms of a finite number of
discrete elements, it can be expressed by
ordinary differential equations. To describe
the more realistic case of distributed para-
meters having many values spread over a
field in space requires the use of partial
differential equations.

M

machinability. The relative ease with which
material is removed from a solid by con-
trolled chip-forming in a machining process.

major strain. Largest principal strain in the
sheet surface. Often measured from the major
axis of the ellipse resulting from deformation
of a circular grid.

malleability. The characteristic of metals that
permits <M> plastic deformation in com-
pression without fracture.

mandrel. (1) A blunt-ended tool or rod used to
retain the cavity in a hollow metal product
during working. (2) A metal bar around
which other metal can be cast, bent, formed,
or shaped. (3) A shaft or bar for holding work
to be machined.

mandrel forging. The process of rolling or
forging a hollow blank over a mandrel to
produce a weldless, seamless ring or tube.

Mannesmann process. A process for piercing
tube billets in making seamless tubing. The
billet is rotated between two heavy rolls
mounted at an angle and is forced over a
fixed mandrel.

Marforming process. A rubber-pad forming
process developed to form wrinkle-free
shrink flanges and deep-drawn shells. It
differs from the Guerin process in that the
sheet metal blank is clamped between the
rubber pad and the blankholder before
forming begins.

martensite. A generic term for microstructures
formed by diffusionless phase transformation
in which the parent and product phases have
a specific crystallographic relationship.
Martensite is characterized by an acicular
pattern in the microstructure in both ferrous
and nonferrous alloys. In alloys where the
solute atoms occupy interstitial positions in
the martensitic lattice (such as carbon in iron),
the structure is hard and highly strained; but
where the solute atoms occupy substitutional
positions (such as nickel in iron), the marten-
site is soft and ductile. The amount of high-
temperature phase that transforms to marten-
site on cooling depends to a large extent on the
lower temperature attained, there being a
rather distinct beginning temperature (Ms)
and a temperature at which the transformation
is essentially complete (Mf).

mass-conserving process. A manufacturing
process in which the mass of the starting
material is approximately equal to the mass
of the final product or part. Examples are
casting, precision forming, and powder
processes.

match. A condition in which a point in one die
half is aligned properly with the correspond-
ing point in the opposite die half, within
specified tolerance.

matched edges (match lines). Two edges of
the die face that are machined exactly at 90�
to each other and from which all dimensions
are taken in laying out the die impression and
aligning the dies in the forging equipment.

material heat. The pedigree of the starting
stock or billet used to make a forging.

matrix phase. The continuous (interconnected)
phase in an alloy with two or more phases.
In cast or wrought materials, the matrix phase
is often comprised of the first phase to solidify.

mechanical texture. Directionality in the shape
and orientation of microstructural features
such as inclusions, grains, and so on.

mechanical working. The subjecting of mate-
rial to pressure exerted by rolls, hammers, or
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presses in order to change the shape or
physical properties of the material.

mechanistic modeling. An approach that re-
quires a fundamental understanding of the
physics and chemistry governing the process.
These laws and principles are used to
describe the process and its parameters. The
results are then validated against controlled
test results.

mesh. (1) The number of screen openings per
linear inch of screen; also called mesh size.
(2) The screen number on the finest screen of
a specified standard screen scale through
which almost all of the particles of a powder
sample will pass.

metadata. Descriptive data about the material
for which data are reported. Metadata include
a complete description of the material
(producer, heat number, grade, temper, etc.),
a complete description of the test method,
and information about the test plan.

metal. An opaque lustrous elemental chemical
substance that is a good conductor of heat and
electricity and, when polished, a good reflec-
tor of light. Most elemental metals are malle-
able and ductile and are, in general, denser
than other elemental substances. As to struc-
ture, metals may be distinguished from
nonmetals by their atomic binding and
electron availability. Metallic atoms tend to
lose electrons from the outer shells, the
positive ions thus formed being held together
by the electron gas produced by the separation.
The ability of these “free electrons” to carry an
electric current, and the fact that this ability
decreases as temperature increases, establish
the prime distinctions of a metallic solid.

microalloyed steel. A low-to-medium-carbon
steel usually containing small alloying addi-
tions of niobium, vanadium, nitrogen, and so
on whose thermomechanical processing is
controlled to obtain a specific microstructure
and thus a suite of properties.

microhardness test. An indentation test using
diamond indentors at very low loads, usually
in the range of 1 to 1000 g.

microstructure. The structure of polished and
etched metals as revealed by a microscope.

mill finish. A nonstandard (and typically
nonuniform) surface finish on mill products
that are delivered without being subjected to
a special surface treatment (other than a
corrosion-preventive treatment) after the
final working or heat treating step.

mill product. Any commercial product of a
mill.

mill scale. The heavy oxide layer that forms
during the hot fabrication or heat treatment of
metals.

minimum bend radius. The smallest radius
about which a metal can be bent without
exhibiting fracture. It is often described in
terms of multiples of sheet thickness.

minor strain. The principal strain in the sheet
surface in a direction perpendicular to the

major strain. Often measured from the minor
axis of the ellipse resulting from deformation
of a circular grid.

mischmetal. From the German mischmetall,
with roots mischen (to mix) and metall
(metal), it is a natural mixture of rare earth
metals containing approximately 50 wt% Ce,
25% La, 15% Nd, and 10% other rare earth
metals, iron, and silicon. It is commonly used
to make rare earth additions to alloys (e.g.,
magnesium alloys), rather than using more
expensive pure forms of the rare earth metals.

mismatch. The misalignment or error in
register of a pair of forging dies; also applied
to the condition of the resulting forging.
The acceptable amount of this displacement
is governed by blueprint or specification
tolerances. Within tolerances, mismatch is a
condition; in excess of tolerance, it is a
serious defect. Defective forgings can be
salvaged by hot reforging operations.

misorientation. Angular difference between
the orientations of two grains adjacent to a
grain boundary, between a twin and its parent
matrix, and so on.

mixed dislocation. Any combination of a screw
dislocation and an edge dislocation.

model. A physical, mathematical, or otherwise
logical representation of a system, entity,
phenomenon, or process.

modeling. Application of a standard, rigorous,
structured methodology to create and validate
a physical, mathematical, or otherwise logi-
cal representation of a system, entity, phe-
nomenon, or process.

modulus of elasticity (E). The measure of
rigidity or stiffness of a metal; the ratio of
stress, below the proportional limit, to the
corresponding strain. In terms of the stress-
strain diagram, the modulus of elasticity is
the slope of the stress-strain curve in the
range of linear proportionality of stress to
strain. Also known as Young’s modulus. For
materials that do not conform to Hooke’s law
throughout the elastic range, the slope of
either the tangent to the stress-strain curve at
the origin or at low stress, the secant drawn
from the origin to any specified point on the
stress-strain curve, or the chord connecting
any two specific points on the stress-strain
curve is usually taken to be the modulus of
elasticity. In these cases, the modulus is
referred to as the tangent modulus, secant
modulus, or chord modulus, respectively.

modulus of rigidity. See shear modulus.
Monte Carlo modeling. Numerical modeling

technique, based on statistical mechanics,
that can be used to describe the migration of
grain boundaries in polycrystalline aggre-
gates during annealing or deformation pro-
cesses and thus is applied to describe
recrystallization, grain growth, and the
accompanying evolution of texture. Also
referred to as the Potts technique.

m-value. See strain-rate sensitivity.

N

near-net shape forging. A forging produced
with a very small finish allowance over the
final part dimensions and requiring some
machining prior to use.

necking. (1) The reduction of the cross-
sectional area of metal in a localized area
by uniaxial tension or by stretching. (2) The
reduction of the diameter of a portion of the
length of a cylindrical shell or tube.

necklace recrystallization. Partial static or
dynamic recrystallization that nucleates het-
erogeneously on grain boundaries in various
steels, nickel-base superalloys, and so on. A
microstructure of fine (necklace-like) grains
lying on the original grain boundaries is thus
produced.

net shape forging. A forging produced to
finished part dimensions that requires little
or no further machining prior to use.

neural network. Nonlinear regression-type
methodology for establishing the correlation
between input and output variables in a
physical system. For example, neural networks
can be used to correlate processing variables
to microstructural features or microstructural
features to mechanical properties.

neuron. A node in a neural-network system that
can be considered as an internal variable and
whose value is a function of the neurons in
the previous layer.

Newtonian fluid. A fluid exhibiting Newtonian
viscosity wherein the shear stress is propor-
tional to the rate of shear.

no-draft (draftless) forging. A forging with
extremely close tolerances and little or no
draft that requires minimal machining to
produce the final part. Mechanical properties
can be enhanced by closer control of grain
flow and by retention of surface material in
the final component.

nominal strain. The unit elongation given by
the change in length divided by the original
length. Also called engineering strain.

nominal stress. The unit force obtained when
the applied load is divided by the original
cross-sectional area. Also called engineering
stress.

nonfill (underfill). A forging condition that
occurs when the die impression is not
completely filled with metal.

normal anisotropy. A condition in which a
property or properties in the sheet thickness
direction differ in magnitude from the same
property or properties in the plane of the
sheet.

normal distribution. The probability density
function used to describe the various proper-
ties of materials and the distribution of most
random variables encountered in engineering
design.

notching. An unbalanced shearing or blanking
operation in which cutting is done around
only three sides (usually) of a punch.

710 / Reference Information

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



n-value. A term commonly referred to as the
strain-hardening exponent derived from the
relationship between true stress, s, with true
strain, e, given by s = Ken. Preferably called
the strain-hardening exponent.

O

objective function. Mathematical function
describing a desired material or process
characteristic whose optimization is the goal
of process design. In bulk forming, typical
objective functions may include forging
weight (minimum usually is best), die fill
(minimum underfill is best), and uniformity
of strain or strain rate (maximum uniformity
is best). In design optimization, it is the
grouping of design parameters that is
attempted to be maximized or minimized,
subject to the problem constraints. Also
known as criterion function.

offal. Sheet metal section trimmed or removed
from the sheet during the production of
shaped blanks or the formed part. Offal is
frequently used as stock for the production of
small parts.

offset. The distance along the strain coordinate
between the initial portion of a stress-strain
curve and a parallel line that intersects the
stress-strain curve at a value of stress
(commonly 0.2%) that is used as a measure
of the yield strength. Used for materials that
have no obvious yield point.

offset yield strength. The stress at which the
strain exceeds by a specified amount (the
offset) an extension of the initial proportional
portion of the stress-strain curve; expressed
in force per unit area.

Olsen ductility test. A cupping test in which a
piece of sheet metal, restrained except at the
center, is deformed by a standard steel ball
until fracture occurs. The height of the cup at
the time of fracture is a measure of the
ductility.

open-die forging. The hot mechanical forming
of metals between flat or shaped dies in
which metal flow is not completely restricted.
Also known as hand or smith forging. See
also hand forge (smith forge).

optimization. The process of searching for the
best combination of design parameters. De-
sign optimization suggests that, for a given
set of possible designs and design criteria,
there exists a single design that is best or
optimal.

orange peel. In metals, a surface roughening in
the form of a pebble-grained pattern that
occurs when a metal of unusually coarse
grain size is stressed beyond its elastic limit.

orientation-distribution function (ODF).
Mathematical function describing the nor-
malized probability of finding grains of given
crystallographic orientations/Euler angles.
Because crystallographic orientations are in
terms of Euler angles, the description of
texture using ODFs is unambiguous, unlike

pole figures. See also texture, preferred
orientation, and pole figure.

Ostwald ripening. The increase in the average
size of second-phase particles, accompanied
by the reduction in their number, during
annealing, deformation, or high-temperature
service exposure. Ostwald ripening leads to a
decrease in the total surface energy asso-
ciated with matrix-particle interfaces. Also
known as coarsening.

outliers. Observed values much lower or higher
than most other observations in a data set.
Values identified as outliers should be
investigated. Data should be screened for
outliers, because they have substantial
influence on statistical analysis.

oxidation. A reaction where there is an increase
in valence resulting from a loss of electrons.
Such a reaction occurs when most metals or
alloys are exposed to atmosphere and the
reaction rate increases as temperature in-
creases.

oxide-dispersion-strengthened (ODS) alloys.
A class of materials in which fine oxide
particles are incorporated in metal powders,
compacted, and then fabricated into finished
forms by deformation processing. The result-
ing material has improved thermal softening
resistance with excellent thermal and elec-
trical conductivity. Examples are ODS
copper alloys and sintered aluminum powder.

oxidized surface. A tightly adhering oxide
surface layer that results in modified surface
color and reduced reflectivity. It is often
accompanied by surface penetration of oxide
that causes brittleness.

P

pack rolling. Hot, flat rolling process in which
the workpiece (or a stack of workpieces) in
the form of plate, sheet, or foil is encased in a
sacrificial can to reduce/eliminate contam-
ination (e.g., oxygen pickup) or poor work-
ability due to roll chill.

pancake forging. A rough forged shape,
usually flat, that can be obtained quickly
with minimal tooling. Usually made by
upsetting a cylindrical billet to a large height
reduction in flat dies. Considerable machin-
ing is usually required to attain the finish
size.

parting. A shearing operation used to produce
two or more parts from a stamping.

parting line. The line along the surface of a
forging where the dies meet, usually at the
largest cross section of the part. Flash is
formed at the parting line.

parting plane. The plane that includes the
principal die face and is perpendicular to the
direction of ram travel. When parting sur-
faces of the dies are flat, the parting plane
coincides with the parting line. Also referred
to as the forging plane.

pass. (1) A single transfer of metal through a
stand of rolls. (2) The open space between

two grooved rolls through which metal is
processed.

peak count. In surface measurements, the
number of asperities above a given (defined)
height cut-off level and within a given width
cut-off. Frequency is taken at 50 min./in.

peak density. The average number of peaks
within the specified cut-off levels.

peak height. Peak-to-valley magnitude as
measured by a suitable stylus instrument.
Peak height is related to roughness height,
depending on uniformity of surface irregula-
rities.

peen forming. A dieless, flexible-manufactur-
ing technique used primarily in the aerospace
industry for forming sheet metals by way of
the deformation imparted by the controlled-
velocity impact of balls.

percent IACS (%IACS). In 1913, values of
electrical conductivity were established and
expressed as a percent of a standard. The
standard chosen was an annealed copper wire
with a density of 8.89 g/cm3, a length of 1 m,
a weight of 12 g, with a resistance of 0.1532
O at 20 �C (70 �F). The 100% IACS
(International Annealed Copper Standard)
value was assigned with a corresponding
resistivity of 0.017241 Omm2/m. The percent
IACS for any material can be calculated by %
IACS = 0.017241 Omm2/m � 100/volume
resistivity.

perforating. The punching of many holes,
usually identical and arranged in a regular
pattern, in a sheet, workpiece blank, or
previously formed part. The holes are usually
round but may be any shape. The operation is
also called multiple punching. See also
piercing.

permanent set. The deformation or strain
remaining in a previously stressed body after
release of the load.

permeability (magnetic). A general term used
to express various relationships between
magnetic induction and magnetizing force.
These relationships are either “absolute
permeability,” which is a change in magnetic
induction divided by the corresponding
change in magnetizing force, or “specific
(relative) permeability,” the ratio of the
absolute permeability to the permeability of
free space.

phenomenological model. Empirical or data-
based modeling that relies on collecting data
from observations, specifying the correlation
structure between variables, using numerical
techniques to find parameters for the struc-
ture such that the correlation between the
data is maximized, and then validating the
model against a test data set.

phonon (wave). An organized movement of
atoms or molecules, such as a sound wave.

pickup. Small particles of oxidized metal
adhering to the surface of a mill product.

piercing. The general term for cutting (shearing
or punching) openings, such as holes and
slots, in sheet material, plate, or parts. This
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operation is similar to blanking; the differ-
ence is that the slug or piece produced by
piercing is scrap, while the blank produced
by blanking is the useful part.

pinchers. Surface defects having the appear-
ance of ripples or of elongated areas of
variable surface texture extending at an acute
angle to the sheet rolling direction and often
branching. Pinchers are usually caused by
poor hot rolled strip shape or improper
drafting or incorrect crown on the cold
reduction mill. They are sometimes referred
to as feather pattern.

pinning. The retardation or complete cessation
of grain growth during annealing or deforma-
tion by second-phase particles acting on grain
boundaries.

Piobert lines. See Lüders lines.
pit. A small, clean depression in a sheet surface
caused by the rolling-in of foreign particles
such as sand, steel, and so on that subse-
quently fall out.

planar anisotropy. A term indicating variation
in one or more physical or mechanical
properties with direction in the plane of the
sheet. The planar variation in plastic strain
ratio is commonly designated as Dr, given by
Dr = (r0 + r90 � 2r45)/2. The earing tendency
of a sheet is related to Dr. As dr increases, so
does the tendency to form ears.

plane strain. Deformation in which the normal
and shear components associated with one of
the three coordinate directions are equal to
zero. Bulk forming operations that approx-
imate plane-strain conditions include sheet
rolling and sheet drawing.

plane stress. Stress state in which the normal
and shear components of stress associated
with one of the three coordinate directions
are equal to zero. Most sheetforming opera-
tions are performed under conditions approx-
imating plane stress.

planishing. Smoothing a metal surface by
rolling, forging, or hammering; usually the
last pass or passes of a shaping operation.

plastic deformation. The permanent (inelastic)
distortion of metals under applied stresses
that strain the material beyond its elastic
limit. The ability of metals to flow in a plastic
manner without fracture is the fundamental
basis for all metalforming processes.

plastic flow. The phenomenon that takes place
when metals or other substances are stretched
or compressed permanently without rupture.

plastic instability. The deformation stage
during which plastic flow is nonuniform
and necking occurs.

plasticity. The property of a material that
allows it to be repeatedly deformed without
rupture when acted upon by a force sufficient
to cause deformation and that allows it to
retain its shape after the applied force has
been removed.

plastic-strain ratio (r-value). A measure of
normal plastic anisotropy is defined by the
ratio of the true width strain to the true

thickness strain in a tensile test. The average
plastic strain ratio, rm, is determined from
tensile samples taken in at least three direc-
tions from the sheet rolling direction, usually
at 0, 45, and 90�. The rm is calculated as rm =
(r0 + 2r45 + r90)/4. The ratio of the true width
strain to the true thickness strain in a sheet
tensile test is r = ew/et. A formability
parameter that relates to drawing, it is also
known as the anisotropy factor. A high r-value
indicates a material with good drawing
properties.

ploughing. Plastic deformation of the surface of
the softer component of a friction pair.

point lattice. A set of points in space located so
that each point has identical surroundings.
There are 14 ways of so arranging points in
space, corresponding to the 14 Bravais
lattices.

Poisson’s ratio (n). The absolute value of the
ratio of transverse (lateral) strain to the
corresponding axial strain resulting from
uniformly distributed axial stress below the
proportional limit of the material in a tensile
test.

pole figure. Description of crystallographic
texture based on a stereographic-projection
representation of the times-random probabil-
ity of finding a specific crystallographic pole
with a specific orientation relative to sample
reference directions. For axisymmetric com-
ponents, the sample reference directions are
usually the axis and two radial directions; for
a sheet material, the rolling, transverse, and
sheet-normal directions are used. Because
pole figures provide information only with
regard to the orientation of one crystal-
lographic pole, several pole figures or an
orientation-distribution function (derivable
from pole-figure measurements) are needed
to fully describe crystallographic texture. See
also orientation-distribution function.

polycrystalline aggregate. The collection of
grains/crystals that form a metallic material.

polygonization. A recovery-type process dur-
ing the annealing of a worked material in
which excess dislocations of a given sign
rearrange themselves into low-energy, low-
angle tilt boundaries.

population. A statistical concept describing the
total set of objects or observations under
consideration.

porosity. Fine holes or voids within a solid; the
amount of these pores is expressed as a
percentage of the total volume of the solid.

postforming. Any treatment after the part has
been formed, such as annealing, trimming,
finishing, and so on.

powder forging. The plastic deformation of a
powder metallurgy compact or preform into a
fully dense finished shape by using compres-
sive force; usually done hot and within closed
dies.

powder metallurgy (PM). The technology and
art of producing metal powders and using
metal powders for production of mass

materials and shaped objects.
precipitation hardening. Hardening in metals
caused by the precipitation of a constituent
from a supersaturated solid solution.

precision. In testing, a measure of the varia-
bility that can be expected among test results.
The precision of an instrument indicates its
ability to reproduce a certain reading. Preci-
sion is the inverse of standard deviation.
A decrease in the scatter of test results is
represented by a smaller standard deviation,
leading directly to an increase in precision.

precision forging. A forging produced to closer
tolerances than normally considered standard
by the industry.

preferred orientation. Nonrandom distribution
of the crystallographic orientations of the
grains comprising a polycrystalline aggregate.

preform. (1) The forging operation in which
stock is preformed or shaped to a predeter-
mined size and contour prior to subsequent
die forging operations. When a preform
operation is required, it will precede a forging
operation and will be performed in conjunc-
tion with the forging operation and in the
same heat. (2) The initially pressed powder
metallurgy compact to be subjected to
repressing.

prelubed sheet. A sheet or coil that has had a
lubricant applied during mill processing to
serve as a forming lubricant in the fabrication
plant.

press forging. The forging of metal between
dies by mechanical or hydraulic pressure;
usually accomplished with a single work
stroke of the press for each die station.

press forming. Any sheet metal forming
operation performed with tooling by means
of a mechanical or hydraulic press.

pressing. The product or process of shallow
drawing sheet or plate.

press load. The amount of force exerted in a
given forging or forming operation.

principal strain. The normal strain on any of
three mutually perpendicular planes on which
no shear strains are present.

principal strain direction. The direction of
action of the normal strains.

principal stress. One of the three normal
stresses in the coordinate system in which
all of the shear stresses are equal to zero.

prior particle boundary (PPB). An apparent
boundary between the pre-existing powder
metal particles that is still evident within the
microstructure of consolidated powder me-
tallurgy products because of the presence of
carbide or other phases that form at these
boundaries.

probability density function (PDF). A math-
ematical function that, when integrated
between two limits, gives the probability that
a random variable assumes a value between
these limits.

processing map. A map of strain rate versus
temperature that delineates the regions that
should be avoided in processing to prevent
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the formation of poor microstructures or
voids or cracks. These maps are generally
created by the dynamic material modeling
method or by mapping extensive results of
processing experience.

process model. A mathematical description of
the physical behavior underlying amanufactur-
ing process that is used to predict performance
of the process in terms of operating parameters.
Most often, process models are reduced to
software and are manipulated with computers.

process modeling. Computer simulation of
deformation, heat treating, and machining
processes for the purpose of improving
process yield and material properties.

profile (contour) rolling. In ring rolling, a
process used to produce seamless rolled rings
with a predesigned shape on the outside or
the inside diameter, requiring less volume of
material and less machining to produce
finished parts.

progressive die. A die planned to accomplish a
sequence of operations as the strip or sheet of
material is advanced from station to station,
manually or mechanically.

progressive forming. Sequential forming at
consecutive stations with a single die or
separate dies.

projection welding. Electrical resistance weld-
ing in which the welds are localized at
embossments or other raised portions of the
sheet surface.

proof load. A predetermined load, generally
some multiple of the service load, to which a
specimen or structure is submitted before
acceptance for use.

proof stress. The stress that will cause a
specified small permanent set in a material.
A specified stress to be applied to a member
or structure to indicate its ability to withstand
service loads.

proportional limit. The greatest stress a
material is capable of developing without a
deviation from straight-line proportionality
between stress and strain. See also elastic
limit and Hooke’s law.

punch. (1) The male part of a die—as distin-
guished from the female part, which is called
the die. The punch is usually the upper
member of the complete die assembly and is
mounted on the slide or in a die set for
alignment (except in the inverted die). (2) In
double-action draw dies, the punch is the inner
portion of the upper die, which is mounted on
the plunger (inner slide) and does the drawing.
(3) The act of piercing or punching a hole.
Also referred to as punching.

punching. The die shearing of a closed contour
in which the sheared-out sheet metal part is
scrap.

punch nose radius. The shape of the punch
end, contacting the material being formed to
allow proper material flow or movement.

punch press. (1) In general, any mechanical
press. (2) In particular, an endwheel gap-
frame press with a fixed bed, used in piercing.

Q

quarter hard. A temper of nonferrous alloys
and some ferrous alloys characterized by
tensile strength approximately midway be-
tween that of dead soft and half-hard tempers.

quench aging. Hardening by precipitation that
results after the rapid cooling from solid
solution to a temperature below which the
elements of a second phase become super-
saturated. Precipitation occurs after the
application of higher temperatures and/or
times and causes increases in yield strength,
tensile strength, and hardness.

quenching. Rapid cooling of metals from a
suitable elevated temperature, generally ac-
complished by immersion in water, oil,
polymer solution, or salt, although forced
air is sometimes used.

R

rabbit ear. Recess in the corner of a metal-
forming die to allow for wrinkling or folding
of the blank.

radial draw forming. The forming of sheet
metals by the simultaneous application of
tangential stretch and radial compression
forces. The operation is done gradually by
tangential contact with the die member. This
type of forming is characterized by very close
dimensional control.

radial forging. A process using two or more
moving anvils or dies for producing shafts
with constant or varying diameters along
their length or tubes with internal or external
variations in diameter. Often incorrectly
referred to as rotary forging.

radial roll (main roll, king roll). The primary
driven roll of the rolling mill for rolling rings
in the radial pass. The roll is supported at
both ends.

ram. The moving or falling part of a drop
hammer or press to which one of the dies is
attached; sometimes applied to the upper flat
die of a steam hammer. Also referred to as
the slide.

R-curve. In fracture mechanics, a plot of crack-
extension resistance as a function of stable
crack extension, which is the difference
between either the physical crack size or
the effective crack size and the original crack
size. R-curves normally depend on specimen
thickness and, for some materials, on tem-
perature and strain rate.

recovery. Process occurring during annealing
following cold or hot working of metals in
which defects such as dislocations are
eliminated or rearranged by way of mechan-
isms such as dipole annihilation, the forma-
tion of subgrains, and subgrain growth.
Recovery usually leads to a reduction in
stored energy, softening, reduction or elim-
ination of residual stresses, and, in some
instances, changes in physical properties.
Recovery may also serve as a precursor to

static recrystallization at sufficient levels of
prior cold or hot work. See also dynamic
recovery.

recrystallization. A process of nucleation and
growth of new strain-free grains or crystals in
a material. This process occurs upon heating
above the recrystallization temperature
(approximately 40% of the metal absolute
melting temperature) during/after hot work-
ing or during annealing after cold working.
Recrystallization can be dynamic (occurring
during straining), static (occurring following
deformation, typically during heat treatment),
or metadynamic (occurring immediately
after deformation due to the presence of
recrystallization nuclei formed during defor-
mation).

recrystallization texture. Crystallographic tex-
ture formed during static or dynamic recrys-
tallization. The specific texture components
that are formed are dependent on the nature
of the stored work driving recrystallization
and the nucleation and growth mechanisms
that underlie recrystallization.

redrawing. The second and successive deep-
drawing operations in which cuplike shells
are deepened and reduced in cross-sectional
dimensions.

reduction. (1) In cupping and deep drawing, a
measure of the percentage of decrease from
blank diameter to cup diameter, or of the
diameter reduction in redrawing. (2) In
forging, extrusion, rolling, and drawing,
either the ratio of the original to the final
cross-sectional area or the percentage of
decrease in cross-sectional area.

reduction in area. The difference between the
original cross-sectional area and the smallest
area at the point of rupture in a tensile test;
usually stated as a percentage of the original
area.

redundant work. Energy in addition to that
required for uniform flow expended during
processing due to inhomogeneous deformation.

relative density. Ratio of density to pore-free
density.

relief. Clearance obtained by removing materi-
al, either behind or beyond the cutting edge
of a punch or die.

repressing. The application of pressure to a
sintered compact; usually done to improve a
physical or mechanical property or for
dimensional accuracy.

rerolling quality. Rolled billets from which the
surface defects have not been removed or
completely removed.

residual stress. An elastic stress that exists in a
solid body without an imposed external force.
Residual stresses often result from forming or
thermal processing and are caused by such
factors as cold working, phase changes,
temperature gradients, or rapid cooling.

response surface modeling. A statistical,
mathematical, or graphical model that des-
cribes the variation of the response variable
in terms of the parameters of the problem.
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restriking. (1) The striking of a trimmed but
slightly misaligned or otherwise faulty forging
with one or more blows to improve alignment,
improve surface condition, maintain close
tolerances, increase hardness, or effect other
improvements. (2) A sizing operation in which
coining or stretching is used to correct or alter
profiles and to counteract distortion. (3) A
salvage operation following a primary forging
operation inwhich the parts involvedare rehit in
the same forging die in which the pieces were
last forged.

retained austenite. An amount of the high-
temperature face-centered cubic phase of iron
(austenite) that does not transform to mar-
tensite (is retained) when quenched to room
temperature.

reverse drawing. Redrawing of a sheet metal
part in a direction opposite to that of the
original drawing.

reverse flange. A sheet metal flange made by
shrinking, as opposed to one formed by
stretching.

reverse redrawing. An operation after the first
drawing operation in which the part is turned
inside out by inverting and redrawing,
usually in another die, to a smaller diameter.

rheology. The science of deformation and the
flow of matter.

ring compression test. A workability test that
uses the expansion or contraction of the hole
in a thin compressed ring to measure the
frictional conditions. The test can also be
used to determine the flow stress.

ring rolling. The process of shaping weldless
rings from pierced disks or shaping thick-
walled ring-shaped blanks between rolls that
control wall thickness, ring diameter, height,
and contour.

rod. A solid round section 9.5 mm (3/8 in.) or
greater in diameter whose length is great in
relation to its diameter.

roll. Tooling used in the rolling process to
deform material stock.

roll bending. The curving of sheets, bars, and
sections by means of rolls.

rolled-in scale. Localized areas of heavy oxide
not removed by the hot mill descaling sprays
and rolled out to elongated streaks during
further processing.

roller leveling. Leveling by passing flat sheet
metal stock through a machine having a
series of small-diameter staggered rolls that
are adjusted to produce repeated reverse
bending.

roll feed. A mechanism for feeding strip or
sheet stock to a press or other machine. The
stock passes between two revolving rolls
mounted one above the other, which feed it
under the dies a predetermined length at each
stroke of the press. Two common types of
drive are the oscillating-lever type and the
rack-and-pinion type. The single-roll feed
may be used to either push or pull the stock to
or from the press. The double-roll feed is
commonly used with wider presses (left to

right) or in other cases where a single-roll
feed is impractical.

roll flattening. The flattening of sheets that
have been rolled in packs by passing them
separately through a two-high cold mill with
virtually no deformation. Not to be confused
with roller leveling.

roll forging. A process of shaping stock
between two driven rolls that rotate in
opposite directions and have one or more
matching sets of grooves in the rolls; used to
produce finished parts of preforms for
subsequent forging operations.

roll former. A device with three or more rolls
positioned to progressively plastically form
sheet or strip metal into curved or linear
shapes.

roll forming. A process in which coil sheet or
strip metal is formed by a series of shaped
rolls into the desired configuration. Metal-
forming through the use of power-driven rolls
whose contour determines the shape of the
product; sometimes used to denote power
spinning.

rolling. The reduction of the cross-sectional
area of metal stock, or the general shaping of
metal products, through the use of rotating
rolls.

rolling mandrel. In ring rolling, a vertical roll
of sufficient diameter to accept various sizes
of ring blanks and to exert rolling force on an
axis parallel to the main roll.

rolling mills. Machines used to decrease the
cross-sectional area of metal stock and to
produce certain desired shapes as the metal
passes between rotating rolls mounted in a
framework comprising a basic unit called a
stand. Cylindrical rolls produce flat shapes;
grooved rolls produce rounds, squares, and
structural shapes.

roll mark. A mark in light relief on the sheet
surface produced by an indentation in the
cold reduction mill work roll surface.

roll straightening. The straightening of metal
stock of various shapes by passing it through
a series of staggered rolls (the rolls usually
being in horizontal and vertical planes) or by
reeling in two-roll straightening machines.

roll threading. The production of threads by
rolling the piece between two grooved die
plates, one of which is in motion, or between
rotating grooved circular rolls.

roping. A surface defect consisting of a series
of generally parallel markings or ripples on
areas of rolled formed sheet parts that have
undergone substantial strain. The ripples are
always parallel to rolling direction.

rotary forging. A process in which the work-
piece is pressed between a flat anvil and a
swiveling (rocking) die with a conical work-
ing face; the platens move toward each other
during forging. Also called orbital forging.
Compare with radial forging.

rotary shear. A sheet metal cutting machine
with two rotating-disk cutters mounted on
parallel shafts driven in unison.

rotary swager. A swaging machine consisting
of a power-driven ring that revolves at high
speed, causing rollers to engage cam surfaces
and force the dies to deliver hammerlike
blows on the work at high frequency. Both
straight and tapered sections can be pro-
duced.

rotary swaging. A bulk forming process for
reducing the cross-sectional area or otherwise
changing the shape of bars, tubes, or wires by
repeated radial blows with one or more pairs
of opposed dies.

rough blank. A blank for a forming or drawing
operation, usually of irregular outline, with
necessary stock allowance for process metal,
which is trimmed after forming or drawing to
the desired size.

roughing stand. The first stand (or several
stands) of rolls through which a reheated
billet or slab passes in front of the finishing
stands. See also rolling mills.

roughness cut-off level. Terms used in the
measurement of surface roughness. (a) Width
cut-off: the greatest spacing of repetitive
surface irregularities used in the measure-
ment of roughness, usually 0.030 in.
(b) Height cut-off: the minimum surface
irregularity in peak count determinations,
usually 50 min.

roughness height. The average height of sur-
face irregularities with reference to a mean or
nominal surface as determined by height and
width cut-offs. It may be expressed as the
deviation from the nominal surface, as
arithmetic average, or as root mean square.

rubber forming. A sheet metal forming
process in which rubber is used as a
functional die part.

rubber-pad forming. A sheet metal forming
operation for shallow parts in which a
confined, pliable rubber pad attached to the
press slide (ram) is forced by hydraulic
pressure to become a mating die for a punch
or group of punches placed on the press bed
or baseplate. Developed in the aircraft
industry for the limited production of a large
number of diversified parts, the process is
limited to the forming of relatively shallow
parts, normally not exceeding 40 mm (1.5 in.)
deep. Also known as the Guerin process.
Variations of the Guerin process include the
Marforming process, the fluid-cell process,
and fluid forming.

run. The quantity produced in one setup.
r-value. The ratio of true width strain to true
thickness strain. Often called plastic-strain
ratio.

S

saddening. The process of lightly working an
ingot in the initial forging operation to break
up and refine the coarse, as-cast structure at
the surface.

scale pattern. A transverse surface pattern on
cold rolled sheet caused by intermittent
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removal of the scale in the scale-breaker
operation prior to pickling. The result is a
pattern of overpickled areas that are not
eliminated in cold reduction.

Schmid factor. In a uniaxial tension test, the
geometric factor that corresponds to the
product of the cosine of the angle between
the tension axis and the slip-plane normal and
the cosine of the angle between the tension
axis and the slip direction. Often denoted asm.

Schmid’s law. Criterion that slip in metallic
crystals is controlled by a critical resolved
shear stress that depends on specific material,
strain rate, and test temperature but is
independent of the stress normal to the slip
plane.

scoring. (1) The marring or scratching of any
formed part by metal pickup on the punch or
die. (2) The reduction in thickness of a
material along a line to weaken it intention-
ally along that line.

scratches. Lines generally caused by sliding of
the sheet surface over sharp edges of
processing equipment or over other sheets.

scratch resistance. The ability of a material to
resist scratching. It is a function of the
material hardness, although the lubricity of
the surface will also play a part.

screw dislocation. A line imperfection that
corresponds to the axis of a spiral structure in
a crystal and is characterized by a distortion
joining normally parallel lines together to
form a continuous helical ramp (with a pitch
of one interplanar distance) winding about
the dislocation.

screw press. A high-speed press in which the
ram is activated by a large screw assembly
powered by a drive mechanism.

scuffing. Localized damage caused by the
occurrence of solid-phase welding between
sliding surfaces. No local surface melting
occurs.

seam. A surface defect appearing as thin lines
in the rolling direction of sheet metals due to
voids elongated during rolling.

seaming. The process of joining sheet metal
parts by interlocking bends.

secant modulus. The slope of the secant drawn
from the origin to any specified point on the
stress-strain curve. See also modulus of
elasticity.

secondary recrystallization. See abnormal
grain growth.

secondary sheet. A shearing action that occurs
between soft work metal and a cutting edge
as a result of insufficient clearance.

secondary tensile stress. Tensile stress that
develops during a bulk deformation process
conducted under nominally compressive
loading due to nonuniform metal flow
resulting from geometry, friction, or die-
chilling effects. Secondary tensile stresses are
most prevalent in open-die forging opera-
tions.

segregation. A nonuniform distribution of alloy-
ing elements, impurities, or microphases.

seizure. The stopping of relative motion
between two bodies as the result of severe
interfacial friction. Seizure may be accom-
panied by gross surface welding.

semifinisher. An impression in a series of
forging dies that only approximates the finish
dimensions of the forging. Semifinishers are
often used to extend die life or the finishing
impression, to ensure proper control of grain
flow during forging, and to assist in obtaining
desired tolerances.

seminotching. A process similar to notching
except that the cutting operation is a partial
one only, permitting the cut shape to remain
with the blank or part.

set. The shape remaining in a stamped or press-
formed part after the punch force is removed.
See also permanent set.

severe plastic deformation. Processes of
plastic deformation with accumulated natural
logarithmic strains more than 4 that are
usually used to change material structure
and properties.

shank. The portion of a die or tool by which it
is held in position in a forging unit or press.

shape distortion. A dimensional change due to
warping or bending resulting mainly from
thermal treatment.

shape fixability. The ability of a material to
retain the shape given to it by a forming
operation.

shaving. Backflow of the clad or sleeve
material during hydrostatic coextrusion.

shear. (1) A machine or tool for cutting metal
and other material by the closing motion of
two sharp, closely adjoining edges, for
example, squaring shear and circular shear.
(2) An inclination between two cutting edges,
such as between two straight knife blades or
between the punch cutting edge and the die
cutting edge, so that a reduced area will be
cut each time. This lessens the necessary
force but increases the required length of the
working stroke. This method is referred to as
angular shear. (3) The act of cutting by
shearing dies or blades, as in a squaring
shear. (4) The type of force that causes or
tends to cause two contiguous parts of the
same body to slide relative to each other in a
direction parallel to their plane of contact.

shear band. Region of highly localized shear
deformation developed during bulk forming
(and sometimes during sheet forming) as a
result of material properties (such as a high
flow-softening rate and low rate sensitivity
of the flow stress), metal flow geometry,
friction, chilling, and so on.

shear burr. A raised edge resulting from
metal flow induced by blanking, cutting, or
punching.

shearing. A cutting operation in which the
work metal is placed between a stationary
lower blade and movable upper blade and
severed by bringing the blades together.
Cutting occurs by a combination of metal
shearing and actual fracture of the metal.

shear modulus (G). The ratio of shear stress to
the corresponding shear strain for shear
stresses below the proportional limit of the
material. Values of shear modulus are usually
determined by torsion testing. Also known as
modulus of rigidity.

shear strength. The maximum shear stress a
material can sustain. Shear strength is
calculated from the maximum load during a
shear or torsion test and is based on the
original dimensions of the cross section of
the specimen.

shear stress. (1) A stress that exists when
parallel planes in metal crystals slide across
each other. (2) The stress component tangen-
tial to the plane on which the forces act.

sheet. Any material or piece of uniform
thickness and of considerable length and
width as compared to its thickness. With
regard to metal, such pieces under 6.5 mm (¼
in.) thick are called sheets, and those 6.5 mm
(¼ in.) thick and over are called plates.
Occasionally, the limiting thickness for steel
to be designated as sheet steel is No. 10
Manufacturer’s Standard Gage for sheet
steel, which is 3.42 mm (0.1345 in.) thick.

sheet forming. The plastic deformation of a
piece of sheet metal by tensile loads into a
three-dimensional shape, often without sig-
nificant changes in sheet thickness or surface
characteristics. Compare with bulk forming.

shell four-ball test. A lubricant test in which
three balls are clamped in contact, as in an
equilateral triangle. The fourth ball is held in
a rotating chuck and touches each of the
stationary balls. Load is applied through a
lever arm system that pushes the stationary
balls upward against the rotating ball.

shim. A thin piece of material used between
two surfaces to obtain a proper fit, adjust-
ment, or alignment.

shot peening. A method of cold working metals
in which compressive stresses are induced in
the exposed surface layers of parts by
impingement of a stream of shot (small
spherical particles), directed at the metal
surface at high velocity under controlled
conditions. It differs from blast cleaning in
primary purpose and in the extent to which it
is controlled to yield accurate and reprodu-
cible results. Although shot peening cleans
the surface being peened, this function is
incidental. The major purpose of shot peen-
ing is to increase fatigue strength. Shot for
peening is made of iron, steel, or glass.

shrinkage. The contraction of metal during
cooling after hot forging. Die impressions are
made oversized according to precise shrink-
age scales to allow the forgings to shrink to
design dimensions and tolerances.

shrink flanging. The reduction of the length of
the free edge after the flanging process.

shuttle die. A multiple-station die in which the
separated workpieces are fed from station to
station by bars that are positioned in the die
proper. Also known as a transfer die.
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sidepressing. A deformation process in which a
cylinder is laid on its side and deformed in
compression. It is a good test to evaluate the
tendency for fracture at the center of a billet,
or for evaluating the tendency to form shear
bands.

side thrust. The lateral force exerted between
the dies by reaction of a forged piece on the
die impressions.

single-stand mill. A rolling mill designed such
that the product contacts only two rolls at a
given moment.

sinking. The operation of machining the im-
pression of a desired forging into die blocks.

sintering. The densification and bonding of
adjacent particles in a powder mass or
compact by heating to a temperature below
the melting point of the main constituent.

size effect. The behavior in which the dimen-
sions of the test specimen affect the value of
the mechanical property measured. Most
prominent for fatigue properties and strength
of brittle materials, where strength is lower
for large section size.

sizing. (1) Secondary forming or squeezing
operations needed to square up, set down,
flatten, or otherwise correct surfaces to
produce specified dimensions and tolerances.
(2) Some burnishing, broaching, drawing,
and shaving operations are also called sizing.
(3) A finishing operation for correcting
ovality in tubing. (4) Final pressing of a
sintered powder metallurgy part.

skin lamination. A subsurface separation that
can result in surface rupture during forming.

slab. A flat-shaped semifinished rolled metal
ingot with a width not less than 250 mm
(10 in.) and a cross-sectional area not less
than 105 cm2 (16 in.2).

slabbing. The hot working of an ingot to a flat
rectangular shape.

sleeve. Outer layer of a coextruded or codrawn
product. See also clad.

slide. The main reciprocating member of a
press, guided in the press frame, to which the
punch or upper die is fastened; sometimes
called the ram. The inner slide of a double-
action press is called the plunger or punch-
holder slide; the outer slide is called the
blankholder slide. The third slide of a triple-
action press is called the lower slide, and the
slide of a hydraulic press is often called the
platen.

slide adjustment. The distance that a press
slide position can be altered to change the
shut height of the die space. The adjustment
can be made by hand or by power mechan-
ism.

sliding friction test—flat dies. A test in which
a sheet steel sample is placed between two
flat, hardened die faces and pulled through
the dies under conditions that permit record-
ing of the load applied to the dies and the
force required to pull the strip.

sliding friction test—wedge dies. Similar to
the flat die test assembly except that one or

both of the flat dies has a wedge configura-
tion to confine the edges of the specimen.
This permits development of unit loadings in
excess of compressive strength of the speci-
men, and cold reduction of drawn strip is
readily accomplished.

slip. Crystallographic shear process associated
with dislocation glide that underlies the large
plastic deformation of crystalline metals and
alloys. Slip is usually observed on close-
packed planes along close-packed directions,
in which case it is referred to as restricted
slip. In body-centered cubic materials, such
as alpha iron, slip occurs along any plane
containing a close-packed direction and is
referred to as pencil glide.

slip-line field. Graphical technique used to
estimate the deformation and stresses in-
volved in plane-strain metalforming pro-
cesses.

slitting. Cutting or shearing along single lines
to cut strips from a sheet or to cut along lines
of a given length or contour in a sheet or
workpiece.

sliver. A surface defect consisting of an
elongated thin layer of partially attached
metal.

slotting. A stamping operation in which elon-
gated or rectangular holes are cut in a blank
or part.

slug. (1) The metal removed when punching a
hole in a forging; also termed punchout.
(2) The forging stock for one workpiece cut
to length.

smith forging. See hand forge (smith forge).
smudge. A dark-appearing surface contamina-
tion on annealed sheet generally resulting
from cold-reduction oil residues or carbon
deposited from annealing gas with an
unfavorable CO/CO2 ratio. Smudge may
adversely affect painting or plating but may
be beneficial in the prevention of galling.

smut. A contaminant consisting of fine, dark-
colored particles on the surface of pickled
sheet products. This usually results from
heavy oxidation of the steel surface during
hot rolling.

snap through. Shock in a die due to the sudden
beginning and completion of fractures in
cutting dies, causing the compressed punch to
elastically snap into tension.

solid modeling. A form of computer modeling
in which the three-dimensional features of
the part or object are represented. With solid
modeling, a cut through the model reveals
interior details. The method also permits
accurate calculation of mass properties (e.g.,
mass and moment of inertia), and, with full
color, shading, and shadowing, it creates
realistic displays. Solid models may be
integrated with motion analysis software to
create realistic simulations. Solid models
may also be linked with finite-element
models.

sow block. A block of heat treated steel placed
between the anvil of the hammer and the

forging die to prevent undue wear to the
anvil. Sow blocks are occasionally used to
hold insert dies. Also called anvil cap.

space lattice. A set of equal and adjoining
parallelepipeds formed by dividing space by
three sets of parallel planes, the planes in any
one set being equally spaced. There are seven
ways of so dividing space, corresponding to
the seven crystal system structures. The unit
parallelepiped is usually chosen as the unit
cell of the system. Due to geometrical
considerations, atoms can only have one of
14 possible arrangements, known as Bravais
lattices.

spalling. The removal of small pieces of metal
from the working face of the die, usually as a
result of severe heat checking. Spalling is
most likely in hard materials with low
ductility.

spank. A press operation used to reform parts
that have already had their major contour
formed or drawn in the conventional manner.
The spank operation is often used where it is
not possible to produce the final contour,
such as sharp creases or corners, in a single
forming operation. It is also used at the end
of a production line where large sheet metal
parts have become distorted due to previous
operations, such as trimming, punching,
forming, and flanging. Spanking is used to
bring the panels back to the desired contour.
See also restriking.

special boundary. A grain boundary between
two grains whose crystallographic lattices
have a certain fraction (1/N, in which N is an
integer) of coincident lattice points. Such
boundaries, denoted using the notation SN,
may have low mobility and surface energy.

specific heat. Amount of heat required to
change the temperature of one unit weight
of a material by one degree.

specific modulus. The material elastic modulus
divided by the material density.

specific strength. The material strength divided
by the material density.

spheroidization. Process of converting a
lamellar, basketweave, or acicular second
phase into an equiaxed morphology via
deformation, annealing, or a combination of
deformation followed by annealing.

spinning. The forming of a seamless hollow
metal part by forcing a rotating blank to
conform to a shaped mandrel that rotates
concentrically with the blank. In the typical
application, a flat-rolled metal blank is forced
against the mandrel by a blunt, rounded tool;
however, other stock (notably, welded or
seamless tubing) can be formed. A roller is
sometimes used as the working end of the
tool.

spinoidal hardening. Strengthening caused by
the formation of a periodic array of coherent
face-centered cubic solid-solution phases on
a submicrostructural size level.

springback. The elastic recovery of metal after
stressing. The extent to which metal tends to
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return to its original shape or contour after
undergoing a forming operation. This is
compensated for by overbending or by a
secondary operation of restriking.

stacking-fault energy (SFE). The energy asso-
ciated with the planar fault formed by
dissociated dislocations in crystalline materi-
als. Low-SFE materials typically have wide
stacking faults, and high-SFE materials very
narrow or no stacking faults. The SFE affects a
number of material properties, such as work-
hardening rate and recrystallization. Materials
with low SFE undergo rapid dislocation
multiplication and hence show high work-
hardening rates and relative ease of dynamic
recrystallization because of the difficulty of
dynamic recovery. Materials with high SFE
energies usually exhibit low work-hardening
rates because of the ease of dynamic recovery
and are difficult to recrystallize.

stamping. A general term to denote all press-
working. In a more specific sense, stamping
is used to imprint letters, numerals, and
trademarks in sheet metal, machined parts,
forgings, and castings. A tool called a stamp,
with the letter or number raised on its surface,
is hammered or forced into the metal, leaving
a depression on the surface in the form of the
letter or number.

standard deviation. A measure of the disper-
sion of observed values or results from the
average, expressed as the positive square root
of the variance.

static friction. The force tangential to the
interface that is just sufficient to initiate
relative motion between two bodies under
load.

sticker breaks. Repetitive transverse lines,
often curved, caused by localized welding
of coil wraps during annealing and subse-
quent separation of these welded areas during
an uncoiling operation. Also referred to as
sticker marks.

stiffness. Resistance to elastic deformation.
stochastic search methods. A large group of
optimization techniques that uses probabil-
istic methods. Two common methods are
genetic algorithms and simulated annealing.

stock. A general term used to refer to a supply
of metal in any form or shape and also to an
individual piece of metal that is formed,
forged, or machined to make parts.

stoichiometric. Having the precise weight
relation of the elements in a chemical
compound, or quantities of reacting elements
or compounds being in the same weight
relation as the theoretical combining weight
of the elements involved.

straightening. A finishing operation for
correcting misalignment in a forging or
between various sections of a forging.

strain. The unit of change in the size or shape
of a body due to force, in reference to its
original size or shape.

strain aging. The changes in ductility, hard-
ness, yield point, and tensile strength that

occur when a metal or alloy that has been
cold worked is stored for some time. In steel,
strain aging is characterized by a loss of
ductility and a corresponding increase in
hardness, yield point, and tensile strength.

strain hardening. An increase in hardness and
strength caused by plastic deformation at
temperatures below the recrystallization
range. Also known as work hardening.

strain-hardening coefficient or exponent. The
value n in the relationship s = Ken, where s
is the true stress; e is the true strain; and K,
which is called the strength coefficient, is
equal to the true stress at a true strain of 1.0.
The strain-hardening exponent, also called
n-value, is equal to the slope of the true
stress/true strain curve up to maximum load,
when plotted on log-log coordinates. The
n-value relates to the ability of a sheet
material to be stretched in metalworking
operations. The higher the n-value, the better
the formability (stretchability). Also called
work-hardening exponent.

strain lines. Surface defects in the form of
shallow line-type depressions appearing in
sheet metals after stretching the surface a few
percent of unit area or length. See also Lüders
lines.

strain rate. The time rate of deformation
(strain) during a metalforming process.

strain-rate sensitivity. The degree to which
mechanical properties are affected by
changes in deformation rate. Quantified by
the slope of a log-log plot of flow stress (at
fixed strain and temperature) versus strain
rate. Also known as the m-value.

strength. The ability of a material to withstand
an applied force.

strength coefficient (K). A constant related to
the tensile strength used in the power-law
equation s = Ken. In mechanical engineering
nomenclature, it is called so, and the power-
law equation is given as s = soe

n. See also
n-value.

stress. The intensity of the internally distributed
forces or components of forces that resist a
change in the volume or shape of a material
that is or has been subjected to external
forces. Stress is expressed in force per unit
area. Stress can be normal (tension or
compression) or shear.

stress concentration. On a macromechanical
level, the magnification of the level of an
applied stress in the region of a notch, void,
hole, or inclusion.

stress-concentration factor (Kt). A multiply-
ing factor for applied stress that allows for
the presence of a structural discontinuity such
as a notch or hole; Kt equals the ratio of the
greatest stress in the region of the disconti-
nuity to the nominal stress for the entire
section. Also called theoretical stress-
concentration factor.

stress-intensity factor. A scaling factor, usual-
ly denoted by the symbol K, used in linear
elastic fracture mechanics to describe the

intensification of applied stress at the tip of a
crack of known size and shape. At the onset
of rapid crack propagation in any structure
containing a crack, the factor is called the
critical stress-intensity factor, or the fracture
toughness. Various subscripts are used to
denote different loading conditions or frac-
ture toughnesses.

stress raisers. Design features (such as sharp
corners) or mechanical defects (such as
notches) that act to intensify the stress at
these locations.

stress relaxation. Drop in stress with time
when material is maintained at a constant
strain. The drop in stress is a result of plastic
accommodation processes.

stress relief. The removal or reduction of
residual stress by thermal treatment, mechan-
ical treatment (shot peening, surface rolling,
stretching, bending, and straightening), or
vibratory stress relief.

stress-strain curve. A graph in which corre-
sponding values of stress and strain from a
tension, compression, or torsion test are
plotted against each other. Values of stress
are usually plotted vertically (ordinates or
y-axis) and values of strain horizontally
(abscissas or x-axis). Also known as stress-
strain diagram.

stretchability. The ability of a material to
undergo stretch-type deformation.

stretcher leveling. The leveling of a piece of
sheet metal (that is, removing warp and
distortion) by gripping it at both ends and
subjecting it to a stress higher than its yield
strength.

stretcher straightening. A process for straigh-
tening rod, tubing, and shapes by the
application of tension at the ends of the
stock. The products are elongated a definite
amount to remove warpage.

stretcher strains. Elongated markings that
appear on the surface of some sheet materials
when deformed just past the yield point.
These markings lie approximately parallel to
the direction of maximum shear stress and
are the result of localized yielding. See also
Lüders lines.

stretch flanging. The stretching of the length of
the free edge after the flanging process.

stretch forming. The shaping of a sheet or part,
usually of uniform cross section, by first
applying suitable tension or stretch and
then wrapping it around a die of the desired
shape.

stretching. The mode of deformation in which
a positive strain is generated on the sheet
surface by the application of a tensile stress.
In stretching, the flange of the flat blank is
securely clamped. Deformation is restricted
to the area initially within the die. The
stretching limit is the onset of metal failure.

striking surface. Those areas on the faces of a
set of dies that are designed to meet when the
upper die and lower die are brought together.
The striking surface helps protect impres-
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sions from impact shock and aids in main-
taining longer die life.

strip. A flat-rolled metal product of some
maximum thickness and width, arbitrarily
dependent on the type of metal; narrower
than sheet.

stripping. The removal of the metal strip from
the punch after a cutting operation. Also a
term referring to the removal of a part
adhering to the punch on the upstroke after
forming.

subcritical crack growth (SCG). A failure
process in which a crack initiates at a
preexisting flaw and grows until it attains a
critical length. At that point, the crack grows
in an unstable fashion, leading to catastrophic
failure. Typical examples of SCG processes
are fatigue failure and stress corrosion.

subgrain. Micron-sized volume bounded by
well-defined dislocation walls. The misor-
ientations across the walls are low angle in
nature, that is, <15�.

subpress die. A die that is closed by the press
ram but opened by springs or other means
because the upper shoe is not attached to the
ram.

subsow block (die holder). A block used as an
adapter in order to permit the use of forging
dies that otherwise would not have sufficient
height to be used in the particular unit or to
permit the use of dies in a unit with different
shank sizes.

superplastic forming. Forming using the
superplasticity properties of material at
elevated temperatures.

superplastic forming and diffusion bonding.
The process of combining the diffusion
bonding cycle into the superplastic forming.

superplasticity. The ability of certain metals to
develop extremely high tensile elongations at
elevated temperatures and under controlled
rates of deformation. Materials that show high
strain-rate sensitivity (�0.5) at deformation
temperatures often exhibit superplasticity.
The phenomenon is often developed through
a mechanism of grain-boundary sliding in
very fine-grained, two-phase alloys.

support plate. A plate that supports a draw ring
or draw plate. It also serves as a spacer.

surface finish. The classification of a surface in
terms of roughness and peak density.

surface hardening. A localized heat treating
process that produces a hard-quenched sur-
face in steel without introducing additional
alloying elements. Surface hardening can be
produced by flame, induction, or laser or
electron beam thermal treatments.

surface hardness. The hardness of that portion
of the material very near the surface, as
measured by microhardness or superficial
hardness testers.

surface oxidation. Development of an oxide
film or layer on the surface of metals in
oxidizing environments. Oxidation at high
temperatures is occasionally referred to as
sealing.

surface roughness. The fine irregularities in
the surface texture that result from the
production process. Considered as vertical
deviations from the nominal or average plane
of the surface.

surface texture. Repetitive or random devia-
tions from the nominal surface that form the
pattern of the surface. Includes roughness,
waviness, and flaws.

surface topography. The fine-scale features of
a surface as defined by the size and
distribution of asperities. Surface topography
is measured by surface roughness and the
direction of surface features (lay).

swage. (1) The operation of reducing or
changing the cross-sectional area of stock
by the fast impact of revolving dies. (2) The
tapering of bar, rod, wire, or tubing by
forging, hammering, or squeezing; reducing
a section by progressively tapering length-
wise until the entire section attains the
smaller dimension of the taper.

sweep device. A single or double arm (rod)
attached to the upper die or slide of a press
and intended to move the operator’s hands to
a safe position as the dies close, if the
operator’s hands are inadvertently within the
point of operation.

Swift cup test. A simulative test in which
circular blanks of various diameter are
clamped in a die ring and deep drawn into a
cup by a flat-bottomed cylindrical punch. The
ratio of the largest blank diameter that can be
drawn successfully to the cup diameter is
known as the limiting drawing ratio or
deformation limit.

T

Taguchi method. A technique for designing
and performing experiments to investigate
processes in which the output depends on
many factors (e.g., material properties, pro-
cess parameters) without having to tediously
and uneconomically run the process using all
possible combinations of values of those
variables. By systematically choosing certain
combinations of variables, it is possible to
separate their individual effects.

tailor-welded blank. Blank for sheet forming
typically consisting of steels of different
thickness, grades/strengths, and sometimes
coatings that are welded together prior to
forming. Tailor-welded blanks are used to
make finished parts with a desirable variation
in properties such as strength, corrosion
resistance, and so on.

tangent bending. The forming of one or more
identical bends having parallel axes by wiping
sheet metal around one or more radius dies in
a single operation. The sheet, which may have
side flanges, is clamped against the radius die
and then made to conform to the radius die by
pressure from a rocker-plate die that moves
along the periphery of the radius die. See also
wiper forming (wiping).

tangent modulus. The slope of the stress-strain
curve at any specified stress or strain. See
also modulus of elasticity.

Taylor factor. The ratio of the required stress
for deformation under a specified strain state
to the critical resolved shear stress for slip (or
twinning) within the crystals comprising a
polycrystalline aggregate. The determination
of the Taylor factor assumes uniform and
identical strain within each crystal in the
aggregate and provides an upper bound on
the required stresses. The Taylor factor
averaged over all crystals in a polycrystalline
aggregate (= M) provides an estimate of the
effect of texture on strength.

tearing. Failure and localized separation of a
sheet metal.

temper. In nonferrous alloys and in some
ferrous alloys (steels that cannot be hardened
by heat treatment), the hardness and strength
produced by mechanical or thermal treat-
ment, or both, and characterized by a certain
structure, mechanical properties, or reduction
in area during cold working.

temperature-compensated strain rate. Para-
meter used to describe the interdependence of
temperature and strain rate in the description
of thermally activated (diffusion-like) defor-
mation processes. It is defined as _e exp
(Q/RT), in which _e denotes the strain rate,
Q is an apparent activation energy character-
izing the micromechanism of deformation,
R is the gas constant, and T is the absolute
temperature. Flow stress, dynamic recrystal-
lization, and so on at various strain rates and
temperatures are frequently interpreted in
terms of the temperature-compensated strain
rate. Also known as the Zener-Hollomon
parameter (Z).

tempering. (1) In heat treatment, reheating
hardened steel to some temperature below the
eutectoid temperature to decrease hardness
and/or increase toughness. (2) The process of
rapidly cooling glass from near its softening
point to induce compressive stresses on the
surface balanced by interior tension, thereby
imparting increased strength.

template (templet). A gage or pattern made in
a die department, usually from sheet steel;
used to check dimensions on forgings and as
an aid in sinking die impressions in order to
correct dimensions.

tensile ratio. The ratio of the tensile strength to
yield strength. It is the inverse of the yield ratio.

tensile strength. In tensile testing, the ratio of
maximum load to original cross-sectional
area. Also known as ultimate strength.
Compare with yield strength.

tensile stress. A stress that causes two parts of
an elastic body, on either side of a typical
stress plane, to pull apart. Contrast with
compressive stress.

tension. The force or load that produces
elongation.

tensor order. A measure of the number of
directional dimensions associated with a
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quantity. A scalar, for example, has a tensor
order of 0, indicating that it has no direction-
ality associated with it. A vector, having a
single direction, is a quantity with a tensor
order of 1. The Reynolds stress tensor, the
product of two vectors, has a tesnor order of
2. Higher-order tensors exist with a number
of directions equal to their tensor order.

tetrahedral element. The element for three-
dimensional finite-element modeling that is
tetrahedron shaped (four faces) and has four
nodes; also called the tet element.

texture. The description of the relative prob-
ability of finding the crystals comprising a
polycrystalline aggregate in various orienta-
tions.

thermal conductivity. Ability of a material to
conduct heat. The rate of heat flow, under
steady conditions, through unit area, per unit
temperature gradient in the direction perpen-
dicular to the area. It is given in SI units
as watts per meter Kelvin (W/m K); in
customary units as (Btu/ft2 �F).

thermal fatigue. Fracture resulting from the
presence of temperature gradients that vary
with time in such a manner as to produce
cyclic stresses in a structure.

thermocouple. A device for measuring tem-
perature, consisting of two dissimilar metals
that produce an electromotive force roughly
proportional to the temperature difference
between their hot and cold junction ends.

thermomechanical processing (TMP). A gen-
eral term covering a variety of processes
combining controlled thermal and deforma-
tion treatments to obtain synergistic effects,
such as improvement in strength without loss
of toughness. Same as thermal-mechanical
treatment.

thick-film lubrication. A condition of lubrica-
tion in which the film thickness of the
lubricant is appreciably greater than that
required to cover the surface asperities when
subjected to the operating load. See also thin-
film lubrication.

thin-film lubrication. A condition of lubrica-
tion in which the film thickness of the
lubricant is such that the friction and wear
between the surfaces is determined by the
properties of the surfaces as well as the
characteristics of the lubricant.

three-point bending. The bending of a piece
of metal or a structural member in which the
object is placed across two supports and
force is applied between and in opposition to
them.

tilt boundary. Grain boundary for which the
crystal lattices of the grains on either side
of the boundary are related by a rotation
about an axis that lies in the plane of the
boundary.

torsion. A twisting deformation of a solid or
tubular body about an axis in which lines that
were initially parallel to the axis become
helices.

torsional stress. The shear stress on a trans-
verse cross section resulting from a twisting
action.

total elongation. The total amount of perma-
nent extension of a testpiece broken in a
tensile test; usually expressed as a percentage
over a fixed gage length. See also elongation,
percent.

toughness. The ability of a material to resist an
impact load (high strain rate) or to deform
under such a load in a ductile manner,
absorbing a large amount of the impact
energy and deforming plastically before
fracturing. Such impact toughness is fre-
quently evaluated with Charpy or Izod
notched impact specimens. Impact toughness
is measured in terms of the energy absorbed
during fracture. Fracture toughness is a
measure of the ability of a material to
withstand fracture in the presence of flaws
under static or dynamic loading of various
types (tensile, shear, etc.). An indicator of
damage tolerance, fracture toughness is
measured in terms of Mpa

ffiffiffiffi
m
p

or ksi
ffiffiffiffiffiffi
in:
p

transformation-induced plasticity (TRIP).
A phenomenon occurring chiefly in certain
highly alloyed steels that have been heat
treated to produce metastable austenite or
metastable austenite plus martensite, whereby,
on subsequent deformation, part of the
austenite undergoes strain-induced transfor-
mation to martensite. Steels capable of
transforming in this manner, commonly re-
ferred to as TRIP steels, are highly plastic
after heat treatment but exhibit a very high
rate of strain hardening and thus have high
tensile and yield strengths after plastic defor-
mation at temperatures between 20 and 500
�C (70 and 930 �F). Cooling to –195 �C (–320
�F) may or may not be required to complete
the transformation to martensite. Tempering
usually is done following transformation.

transformation temperature. The temperature
at which a change in phase occurs. This term
is sometimes used to denote the limiting
temperature of a transformation range.

transition temperature. (1) An arbitrarily
defined temperature that lies within the
temperature range in which metal fracture
characteristics (as usually determined by tests
of notched specimens) change rapidly, such
as the ductile-to-brittle transition temperature
(DBTT). The DBTT can be assessed in
several ways, the most common being the
temperature for 50% lowest temperature at
which the fracture is 100% ductile (100%
fibrous criterion). The DBTT is commonly
associated with temper embrittlement and
radiation damage (neutron irradiation) of
low-alloy steels. (2) Sometimes used to
denote an arbitrarily defined temperature
within a range in which the ductility changes
rapidly with temperature.

Tresca yield criterion. Prediction of yielding
in ductile materials when the maximum shear

stress on any plane reaches a critical value, t
= tc.

triaxiality. The ratio of the hydrostatic (mean)
stress to the flow (effective) stress. Triaxi-
ality provides a measure of the tendency for
cavities to grow during deformation proces-
sing.

trimming. The mechanical shearing of flash or
excess material from a forging with a
trimmer in a trim press; can be done hot or
cold.

triple junction/triple point. Point at which
three grains meet in a polycrystalline aggre-
gate. Also, region in which high stress
concentrations may develop during hot work-
ing or elevated-temperature service, thus
nucleating wedge cracking.

true strain. (1) The ratio of the change in
dimension, resulting from a given load
increment, to the magnitude of the dimension
immediately prior to applying the load
increment. (2) In a body subjected to axial
force, the natural logarithm of the ratio of the
gage length at the moment of observation to
the original gage length. Also known as
natural strain.

true stress. The value obtained by dividing the
load applied to a member at a given instant
by the cross-sectional area over which it acts.

tube stock. A semifinished tube suitable for
subsequent reduction and finishing.

twinning. Also called deformation or mechan-
ical twinning, it is a deformation mechanism,
similar to dislocation slip, in which small
(often plate- or lens-shaped) regions of a
crystal or grain reorient crystallographically
to adopt a twin relationship to the parent
crystal. It is particularly common in noncubic
metals (e.g., alpha-titanium and tetragonal
tin) and in many body-centered cubic metals
deformed at high rates and/or low tempera-
tures. Twinning is often accompanied by an
audible crackling sound, from which “crying
tin” gets its name.

twist boundary. Grain boundary for which the
crystal lattices of the grains on either side of
the boundary are related by a rotation about
an axis that lies perpendicular to the plane of
the boundary.

TZM. A high-creep-strength titanium, zirco-
nium, and molybdenum alloy used to make
dies for the isothermal forging process.

U

ultimate strength. The maximum stress
(tensile, compressive, or shear) a material
can sustain without fracture; determined by
dividing maximum load by the original cross-
sectional area of the specimen. Also known
as nominal strength or maximum strength.

ultrasonic inspection. The use of high-
frequency acoustical signals for the purpose
of nondestructively locating flaws within raw
material or finished parts.
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underfill. A portion of a forging that has
insufficient metal to give it the true shape
of the impression.

uniform elongation (eu). The elongation that
occurs at maximum load and immediately
preceding the onset of necking in a tensile
test.

upset. The localized increase in cross-sectional
area of a workpiece or weldment resulting
from the application of pressure during
mechanical fabrication or welding.

upset forging. A forging obtained by upset of a
suitable length of bar, billet, or bloom.

upsetter. A horizontal mechanical press used to
make parts from bar stock or tubing by upset
forging, piercing, bending, or otherwise
forming in dies. Also known as a header.

upsetting. The working of metal so that the
cross-sectional area of a portion or all of the
stock is increased. See also heading.

V

vacuum forming. Sheetforming process most
commonly used for titanium in which a blank
is placed into a chamber that has a heated die,
and a vacuum is applied to creep form the
part onto the die. The part is usually covered
with an insulating material, and the bag is
outside this material.

validation. The process of substantiating that
material property test data have been gener-
ated according to standard methods and
practices, or other indices of quality, relia-
bility, and precision. The validation process
is the first step toward ratification or
confirmation of the data, making them
legally effective and binding in some speci-
fied application.

variability of data. The degree to which
random variables deviate from a central
value or mean. In statistical terms, this is
measured by the sample standard deviation or
sample variance.

vent. A small hole in a punch or die for
admitting air to avoid suction holding or for
relieving pockets of trapped air that would
prevent die closure or action.

vent mark. A small protrusion resulting from
the entrance of metal into die vent holes.

viscoelasticity. A property involving a combi-
nation of elastic and viscous behavior that
makes deformation dependent on both tem-
perature and strain rate. A material having
this property is considered to combine the
features of a perfectly elastic solid and a
perfect fluid.

viscosity. Bulk property of a fluid or semifluid
that causes it to resist flow.

visioplasticity. A physical-modeling technique
in which an inexpensive, easy-to-deform
material (e.g., clay, wax, lead) is gridded
and deformed in subscale tooling to establish
the effects of die design, lubrication, and so
forth on metal flow and defect formation by

way of postdeformation examination of grid
distortions.

W

warm working. Deformation at elevated tem-
peratures below the recrystallization tem-
perature. The flow stress and rate of strain
hardening are reduced with increasing tem-
perature; therefore, lower forces are required
than in cold working. See also cold working
and hot working.

wear plates. Replaceable elements used to face
wearing surfaces on a hydraulic press.

wear resistance. Resistance of a sheet metal to
surface abrasion. See also erosion resistance.

web. A relatively flat, thin portion of a forging
that effects an interconnection between ribs
and bosses; a panel or wall that is generally
parallel to the forging plane.

wedge compression test. A simple workability
test in which a wedge-shaped specimen is
compressed to a certain thickness. This gives
a gradient specimen in which material has
been subjected to a range of plastic strains.

Widmanstätten structure. Characteristic
structure produced when preferred planes
and directions in the parent phase are favored
for growth of a second phase, resulting in the
precipitated second phase appearing as
plates, needles, or rods within a matrix.

wiper forming (wiping). Method of curving
sheet metal sections or tubing over a form
block or die in which this form block is
rotated relative to a wiper block or slide
block.

wire. A thin, flexible, continuous length of
metal, usually of circular cross section and
usually produced by drawing through a die.

wire drawing. Reducing the cross section of
wire by pulling it through a die.

wire drawing test. A test in which a cylindrical
draw die is used to reduce the diameter of
wire. The drawing force is measured and
reflects lubricant effectiveness.

wire rod. Hot rolled coiled stock that is to be
cold drawn into wire.

workability. See also formability, which is a
term more often applied to sheet materials.
The ease with which a material can be shaped
through plastic deformation in bulk forming
processes. It involves both the measurement
of the resistance to deformation (the flow
properties) and the extent of possible plastic
deformation before fracture occurs (ductility).

work hardening. See strain hardening.
work-hardening exponent. See strain-harden-
ing exponent.

workpiece. General term for the work material
in a metalforming operation.

wrap forming. See stretch forming.
wrinkling. A wavy condition obtained in deep
drawing of sheet metal in the area of the
metal between the edge of the flange and the
draw radius. Wrinkling may also occur in

other forming operations when unbalanced
compressive forces are set up.

wrought material. Material that is processed
by plastic deformation, typically to produce a
recrystallized microstructure. Cast and
wrought materials are produced by ingot
casting and deformation processes to produce
final mill products.

Y

yield. Evidence of plastic deformation in
structural materials. Also known as plastic
flow or creep.

yield point. The first stress in a material,
usually less than the maximum attainable
stress, at which an increase in strain occurs
without an increase in stress. Only certain
metals—those that exhibit a localized, het-
erogeneous type of transition from elastic to
plastic deformation—produce a yield point.
If there is a decrease in stress after yielding, a
distinction can be made between upper and
lower yield points. The load at which a
sudden drop in the flow curve occurs is called
the upper yield point. The constant load
shown on the flow curve is the lower yield
point.

yield point elongation. The extension asso-
ciated with discontinuous yielding that occurs
at approximately constant load following the
onset of plastic flow. It is associated with the
propagation of Lüder’s lines or bands.

yield ratio. The ratio of the yield strength to the
tensile strength. It is the inverse of the tensile
ratio.

yield strength. The stress at which a material
exhibits a specified deviation from propor-
tionality of stress and strain. An offset of
0.2% is used for many metals. Compare with
tensile strength.

yield stress. A stress at which a steel exhibits
the first measurable permanent plastic defor-
mation.

Young’s modulus. A measure of the rigidity of
a metal. It is the ratio of stress, within the
proportional limit, to corresponding strain.
Young’s modulus specifically is the modulus
obtained in tension or compression.

Z

Zener-Hollomon parameter (Z). See tempera-
ture-compensated strain rate.
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 introduction  221 

 recrystallization kinetics, effect of rates of 

   nucleation and growth on 222 

 recrystallized grain size, effect of rates of 

   nucleation and growth on 223 

 t50, effects of strain, strain rate, and 

   temperature 223 
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JMAK models 

 finite-element method simulations, 

   implementation in 573 

 fundamentals of 570 

 grain-size predictions in 572 

 introduction  570 

 TMP, for   570 

Joffe effect   709 

Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

   kinetics 221 

Johnson-Mehl-Avrami-Kolmororov (JMAK) 

   relationship 260 

K 

Keeler-Goodwin diagram 709 

Kinetics    4 709 

King roll. See Radial roll 

Kinks     84 403 459 709 

Kirkendall porosity 160 

Klink     709 

Knockout    709 

Knockout pin  709 

Kronecker symbol 709 

L 

Lancing    709 

Langevin force approach 300 

Laplace transformations 

 applications of 

  complex differentiation 693 

  periodic functions 693 

  real definite integration 692 

  real indefinite integration 692 

  second independent variable, 

   differentiation with 693 

  second independent variable, 

   integration with 693 
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 differential equations, operational 

   method for solving 693 

 theorems   692 

 transformation rules 

  direct laplace transformation 691 

  inverse transformation 691 

  inverse transformation of product 691 

  linear transformations L and L_1 692 

  nth derivative, transformation of 691 

  nth integral, transformation of 691 

Larson-Miller parameter 402 

Laser cutting   709 

Lateral extrusion 709 

Lattice    16 709 

Lattice constants 187 482 483 484 

Lattice parameter 709 

Leveling    709 

Levy-von Mises yield criterion 35 

Limiting dome height (LDH) test 709 

Limiting drawing ratio (LDR) 709 

 See Deformation limit 

Linear elastic fracture mechanics 

  (LEFM)  410 419 709 

 See also Stress-intensity factor 

Linear finite-element problems 43 

Linear thermal expansion of metals 

   and alloys 602 

Line-of-sight deposition, modeling 99 

Liners     626 709 

Loose metal   709 

Low-angle boundary 229 709 

 See also Subgrain 

Low-energy ORs (LEORs) 183 

Lubricant   127 709 

Lubricant residue 709 
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 emulsions   135 

 overview   135 

 regimes   136 

 rolling aluminum with 135 

Lüders lines   709 

Lumped-parameter methods 34 

Lumped-parameter model 34 36 709 

M 

Machinability  709 

Magnetic transition 176 

Main roll. See Radial roll 

Major strain   709 

Malleability   709 

Mandrel    709 

Mandrel forging  709 

Mannesmann process 709 

Marangoni effect 71 

Marforming process 709 

Martensite   17 709 

Martensitic transformation, models for 

 conclusions  201 

 introduction  191 

 kinetics, overall 200 

 martensitic growth 

  nonthermoelastic growth 197 

  thermoelastic growth 196 

 martensitic nucleation 195 

 physics of displacive transformations 192 

Mass-conserving process 709 

Match     121 709 

Matched edges (match lines) 709 

Material heat  709 

Matrix phase   158 709 

MBE process   76 

McClintock Model 328 

Mechanical texture 709 
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Mechanical working 709 

Mechanistic modeling 426 710 

Mesh     36 710 

Mesh generation  38 

Meshed-solution methods 34 

Meshed-solution models 36 

Meshes, unstructured 62 64 

Mesoscale (or grain scale) approach 

   for CDRX 

 equations   229 

 introduction  229 

 model description 229 

 predictions  230 

Mesoscale (or grain scale) approach for DDRX 

 equations 

  dislocation density, effect of grain-boundary 

   migration on 225 

  dynamic recovery 225 

  grain growth and shrinkage 225 

  nucleation  226 

  parameters, strain rate and temperature 

   dependence of 226 

  strain hardening 225 

  volume conservation 225 

 geometrical framework 224 

 introduction  224 

 numerical predictions 226 

 Saki and Jonas criterion 228 

 steady state, simplified analysis for 

  flow stress and average grain size 227 

  overview  227 

  steady-state flow stress, strain rate and 

   temperature dependence of 228 

Metadata    710 

Metal     5 710 
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Metals and alloys 

 density functional theory (DFT), application in 

  from crystal structure to input file—examples 

   of VASP input files 482 

  elastic constants 485 

  entropic contributions to the free energy 486 

  lattice parameters 483 

  overview  482 

 density of   599 

 electrical conductivity 606 

 linear thermal expansion of 602 

 thermal conductivity of 604 

Metals processing, modeling for 

 future outlook  5 

 introduction  3 

 material behavior models 

  mechanistic models 5 

  phenomenological models 4 

  statistical models 4 

Metric conversion guide 

 base, supplementary, and derived SI units 611 

 conversion factors 612 

 introduction  611 

Microalloyed steel 50 494 501 710 

Microhardness test 710 

Microsegregation 73 

Microstructure  3 710 

Mill finish   710 

Mill product   522 528 566 710 

Mill scale    710 

Minimum bend radius 710 

Minor strain   710 

Mischmetal   710 

Mismatch    16 84 120 364 710 

Misorientation  182 710 

Mixed dislocation 378 710 

MOCVD    76 

Model     3 710 

www.iran-mavad.com 
مرجع مهندسى مواد و متالورژى



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Model quality management 

 example: mechanistic martensite 

   start temperature (Ms) 

  calibration  17 

  validation  18 

  verification 18 

 fundamentals of 15 

 introduction  15 

 mechanistic material models, calibration of 

  example: analytical 

   precipitation-strengthening model 16 

  example: martensitic and bainitic 

   transformation kinetics in the austenitic 

   decomposition of steels 16 

  example: mechanistic precipitation 

   models 16 

  overview  15 

 validation 

  benchmarking 17 

  boundary-value tests 17 

  degenerate problem tests 17 

  overview  16 

  real-world observations 17 

  sensitivity tests 17 

 verification  16 

Model-informed atomistic modeling 183 

Modeling    3 710 

Modeling diffusion 

 constant D equations 162 

 diffusion, fundamentals of 155 

 diffusion data, sources of 155 

 diffusion in technology 155 

 introduction  155 

 multicomponent problems 169 

 multiphase problems 169 

 variable D problems 169 

Modulus of elasticity (E) 558 710 

Modulus of rigidity 710 
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Mold-wall cracks 364 

Mold-wall erosion 364 

Monte Carlo modeling 710 

Monte Carlo models 

 algorithms   279 

 applications 

  abnormal grain growth 276 

  anisotropic grain growth 275 

  grain growth 275 

  recrystallization 277 

  Zener-Smith pinning theory 278 

 discrete topological 575 

 experimental parameters, incorporating into 

  misorientation distributions 272 

  realistic energies and mobilities 274 

  textures  272 

 final remarks  281 

 introduction  267 

 method 

  boundary energy 269 

  boundary mobility 270 

  dynamics  268 

  overview  268 

  pinning systems 271 

  simulation variables 268 

  stored energy 271 

Monte Carlo Potts model. 

   See Monte Carlo models 

Monte Carlo simulations 93 

Mosaic    283 

Multiaxial Stress States 330 

Multicomponent alloys, modeling diffusion in. 

   See Modeling diffusion 

Multiscale modeling 100 

 basic ideas of  100 

 concurrent analysis 101 

 examples   101 
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 introduction  100 

 strategies for  100 

M-value    340 343 344 462 463 

      473 

 See also Strain-rate sensitivity 

N 

Near-net shape forging 710 

Necking    334 710 

Necklace recrystallization 710 

Net shape forging 710 

Network and vertex models 

 2-D boundaries, discretization of 284 

 2-D model, equation of motion for 286 

 3-D boundaries, discretization of 285 

 3-D model, equation of motion for 288 

 applications 

  2-D normal grain growth 

   simulation 289 

  3-D normal grain growth, 

   simulation of 291 

  grain growth in systems with finite 

   mobility of the boundary 

   junctions 293 

  grain growth under the action 

   of an external force 292 

 history of   282 

 initialization of the microstructure 283 

 introduction  282 

 summary   294 

 topological transformations 

  2-D   288 

  3-D   289 

  overview  288 

Neural network  392 710 
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Neural-network (NN) modeling 

 examples 

  creep rupture and hot-strength 438 

  fatigue crack growth 437 

 introduction  435 

 method   435 

 noise    435 

 overfitting   435 

 transparency  437 

 uncertainties  435 

Neural-network (NN) models 

 introduction  553 

 modeling, use of 

  example: applications of ANN in modeling 

   maraging steel properties 560 

  example: correlation of composition, 

   processing, and properties of austenitic 

   stainless steels 560 

  example: time-temperature transformation 

   diagrams 559 

  materials selection 562 

  new alloy design 561 

  processing parameters, 

   optimization of 562 

  properties of existing materials, 

   predicting 559 

  software and graphical user 

   interfaces, organization of 558 

  theoretical studies 563 

 NN training, algorithm of computer program for 

  example: yield strength of 

   titanium alloys 557 

  NN, architecture of 556 

  optimal model parameters 558 

  posttraining procedures 558 

  pretraining procedures 555 

  random sets, effects of creating 556 

  training parameters 556 
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 principles, basic 

  contradicting information 555 

  example: maraging steels 554 

  input parameters 554 

  introduction 553 

  training  555 

  training algorithm 555 

 principles and procedures 553 

 software systems, upgrading 

  database enhancement 563 

  retraining  563 

 summary   564 

Neuron    553 710 

Newtonian fluid  57 79 659 666 667 

      710 

Newton-Raphson method 45 

Nickel-base superalloys, modeling of 

   microstructure evolution during the 

   thermomechanical processing of 

 current status  581 

 future outlook  581 

 hot working, microstructure evolution during 

  dynamic recrystallization, effect of 

   process variables on 567 

  dynamic recrystallization, effect of 

   stacking-fault energy on 567 

  recrystallization mechanisms 566 

 introduction  566 

 JMAK models. See JMAK models 

 mesoscale physics-based models 

  early   576 

  Montheillet and Thomas 578 

  Sommitsch et al 577 

 modeling changes 568 
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Nickel-base superalloys, modeling of 

   microstructure evolution during the 

   thermomechanical processing of (Cont.) 

 topological models 

  continuous: network/vertex models 576 

  discrete: cellular automata 574 

  discrete: Monte Carlo 575 

  introduction 573 

No-draft (draftless) forging 710 

Nominal strain  329 336 710 

Nominal stress  250 710 

Nonfill (underfill) 28 359 710 

Nonlinear finite-element problems 43 

Normal anisotropy 710 

Normal distribution 710 

Notching    710 

Nucleation, definition of 203 

 See also Nucleation processes 

Nucleation processes 

 conclusions  217 

 introduction  203 

 kinetic approach 

  classical nucleation theory 213 

  cluster description, limitations of 216 

  cluster dynamics 211 

  cluster dynamics, extensions of 214 

  cluster gas thermodynamics 210 

  overview  210 

 phase-field simulations 217 

 thermodynamic approach 

  capillary approximation 204 

  examples  208 

  heterogeneous nucleation 207 

  nucleation  203 

  steady-state nucleation rate 206 

  transient nucleation 206 

N-value    352 496 711 
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O 

Objective function 711 

Offal     711 

Offset     109 394 511 711 

Offset yield strength 711 

Olsen ductility test 711 

Open-die forging 333 347 349 711 

 See also Hand forge (smith forge) 

Optimization   5 711 

Orange peel   711 

Ordered phases  176 

Ordinary differential equations 

 first-order 

  exact differential equation 678 

  homogeneous equations 678 

  linear differential equation 678 

  overview  678 

  Riccati equations 678 

  solution, methods of 678 

  variables, separation of 678 

 introduction  677 

 linear differential equations with 

   constant coefficients 680 

 Pfaffian differential equations 679 

 second-order 

  homogeneous differential equation 

   with constant coefficients 679 

  homogeneous linear 679 

  nonhomogeneous differential equations 

   with constant coefficients 679 

  order, depression of 679 

  overview  679 

 simultaneous total differential equations 680 

Orientation relationship (OR) 182 

Orientation-distribution function (ODF) 711 

 See also Pole figure; Preferred orientation; 

   Texture 

Orowan Mechanism (Dislocation Bypass) 382 
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Ostwald ripening 380 383 526 711 

Outliers    17 711 

Oxidation    107 711 

Oxide scale mechanical behavior 

 descaling   134 

 introduction  133 

 pickup on a roll 134 

 rolling aluminum with lubrication 134 

Oxide scale, thermal effect of 131 

Oxide-dispersion-strengthened 

   (ODS) alloys 711 

Oxidized surface  711 

P 

Pack rolling   711 

Pancake forging  331 545 711 

Partial differential equations 

 first-order 

  characteristic equations 680 

  general solution 681 

  interpreted geometrically 680 

  linear first-order partial equation 680 

 overview   680 

 second order 

  equations linear in the second derivatives 681 

  homogeneous equation with constant 

   coefficients 681 

  overview  681 

 variables, separation of 682 

Parting    711 

Parting line   711 

Parting plane  711 

Pass     42 711 

Peak count   711 

Peak density   711 

Peak height   711 

Peen forming   711 

Percent IACS (%IACS) 711 
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Perforating   711 

 See also Piercing 

Periodic system for ferrous metallurgists 587 

Periodic table of elements 585 

Permanent set  377 711 

Permeability (magnetic) 508 711 

Phase equilibria and phase diagram modeling 

 background  443 

 concluding remarks 454 

 introduction  443 

 overview   443 

 stable phase equilibria, algorithm to 

   calculate 444 

 thermodynamic description of multicomponent 

   system, rapid method for obtaining differential equation . 

  Mg-Al-Ca-Sr, obtaining a thermodynamic 

   description of 449 

  Mg-Al-Sr, developing a thermodynamic 

   description of 446 

  overview  446 

 thermodynamically calculated phase diagrams 

  binary phase diagrams 450 

  higher-order phase diagrams 451 

  partition coefficients 454 

Phase-field microstructure modeling 

 examples 

  critical nucleus in cubic → tetragonal 

   transformationhomogeneous. equation 305 

  dislocation and γ/y′ microstructure 

   interaction 306 

  dislocation core structure 305 

  y′ rafting during creep deformation 308 

 fundamentals 

  conserved field, kinetics of 297 

  generalized diffusion equation 297 

  gradient term, role of 298 

  introduction 297 

  long-range elastic interactions 299 
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Phase-field microstructure modeling 

 fundamentals (Cont.) 

  microscopic versus coarse-grained 

   phase-field models 298 

  microstructure, field description of 297 

  nondisturbed field, kinetics of 298 

  structural relaxation 298 

  total energy functional and variation 297 

 growth and coarsening, modeling 

  introduction 302 

  multicomponent diffusion 303 

  multiphase-field method 303 

  simulation length scale 302 

 material specific inputs: thermodynamic 

   and kinetic data 303 

 nucleation 

  activation energy and critical nucleus 

   configuration, calculation of 300 

  elastic energy, incorporation of 300 

  explicit nucleation algorithm 300 

  Langevin force approach 300 

  overview  299 

 summary   308 

Phenomenological model 4 308 492 526 531 

      711 

Phonon (wave)  194 195 198 199 480 

      711 

Physisorption  83 

Pickle line scratch 708 

Pickup    134 711 

Piercing    48 461 711 

Pilling-and-Ridley Model 328 

Pinchers    712 

Pinning    271 712 

Piobert lines. See Lüders lines 

Pipe diffusion  404 

Pit      461 712 

Planar anisotropy 45 712 
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Plane strain   23 712 

Plane stress   44 425 517 712 

Planishing   712 

Plasma-assisted CVD 76 

Plasma-enhanced CVD (PECVD) 99 

Plastic deformation 11 712 

Plastic flow   5 712 

Plastic flow, internal-state variable modeling of 

 assessment 

  outstanding issues 470 

  parameter identification, modeling 

   base for 469 

 bcc metals   465 

 field of point obstacles, dislocation 

   movement in 

  dislocation percolation 459 

  dislocation storage 460 

  introduction 459 

 flow stress and strain hardening, basic 

   equations for 

  athermal hardening 461 

  dynamic recovery 461 

  flow stress  460 

 hexagonal metals 466 

 overview   458 

 single-phase alloys 

  class 1, crystal properties 468 

  class 2, dislocation interaction 469 

  introduction 468 

 stage IV 

  overview  466 

  work hardening model 467 

 strain hardening of fcc polycrystals 

  deformation rate and temperature, 

   scaling of 463 

  flow stress and work hardening, scaling 

   relationships for 462 
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Plastic flow, internal-state variable modeling of 

 strain hardening of fcc polycrystals (Cont.) 

  stacking fault energy (SFE), material 

   scaling by 464 

  work hardening in stage III, 

   relationships for 461 

Plastic instability 331 712 

Plasticity    23 712 

Plastic-strain ratio (r-value) 712 

Plate elements  42 

Ploughing   712 

Point lattice   712 

Poisson’s ratio (v) 38 366 437 712 

Pole figure   538 712 

 See also Orientation-distribution 

   function (ODF) 

  Polycrystalline aggregate 237 712 

Polygonization  220 712 

Population   86 712 

Porosity    70 712 

Postforming   712 

Powder forging  712 

Powder metallurgy (PM) 712 

Power-law breakdown 404 

Precipitation hardening 379 600 712 

Precision    16 712 

Precision forging 712 

Preferred orientation 246 536 712 

Preform    23 712 

Prelubed sheet  712 

Press forging   712 

Press forming  712 

Press load   712 

Pressing    109 349 358 712 

Principal strain  236 328 523 712 

Principal strain direction 712 

Principal stress  35 712 

Prior particle boundary (PPB) 712 
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Probability density function (PDF) 712 

Probes    115 

Process model  47 87 713 

Processing map  541 712 

Profile (contour) rolling 713 

Progressive die  713 

Progressive forming 713 

Projection welding 713 

Proof load   713 

Proof stress   713 

Proportional limit 713 

 See also Elastic limit; 

Psychrometrics  623 

Punch     129 713 

Punch nose radius 713 

Punch press   349 713 

Punching    136 713 

PVD 

 versus CVD  77 

 processes, types of 76 

 related processes 76 

Q 

Quarter hard  713 

Quench aging  713 

Quench processes 

 boiling heat transfer 119 

 turbulence   118 

 wall treatment  119 

Quenching. See also Distortion 

 convection  106 114 

 definition of  713 

 film boiling  112 

 gas quenching, CFD simulation of 119 

 nucleate boiling regime 114 

 oil-quenched automotive pinions, 

   CFD simulation of 119 

 overview   106 
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Rabbit ear   713 

Racking    107 109 

Radial draw forming 713 

Radial roll   713 

Ram     713 

Rayleigh-Ritz procedure 40 

R-curve    713 

Reactive magnetron sputtering 76 

Reactive sputtering deposition 98 

Reactive sputtering (RS) processes 98 

Real-world observations 17 

Recovery    221 713 

 See also Dynamic recovery 

Recrystallizationratio 

 Avrami kinetics and 221 

 CDRX, mesoscale (or grain scale) 

   approach for 229 

 cellular automaton models of. 

   See Cellular automaton models 

 DDRX, mesoscale (or grain scale) 

   approach for 224 

 definition of  713 

 dynamic recrystallization (DRX) 220 

 dynamic recrystallization, kinetics of 223 

 JMAK model for static 

   recrystallization 221 

 Monte Carlo models for. See Monte Carlo models 

 static recrystallization (SRX) 220 

Recrystallization texture 511 713 

Redrawing   512 713 

Reduction   23 713 

Reduction in area 377 713 

Redundant work 26 713 

Relative density  325 333 335 713 

Relief     713 

Repressing   713 

Rerolling quality 713 
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Residual stress  11 713 

Response surface modeling 713 

Restriking   714 

Retained austenite 201 714 

Reverse drawing  714 

Reverse flange  714 

Reverse redrawing 714 

Rheology    367 660 714 

Rice-and-Tracey Model 328 

Ring compression test 127 129 137 138 714 

Ring rolling   28 714 

Rod     23 714 

Roll     25 714 

Roll bendinglaw  714 

Roll feed    714 

Roll flattening  714 

Roll forging   714 

Roll former   714 

Roll forming   714 

Roll mark   714 

Roll straightening 714 

Roll threading  714 

Rolled-in scale  714 

Roller leveling  714 

Rolling    3 714 

Rolling mandrel  714 

Rolling mills   491 714 

ROLPAS: a 3-D FEM for hot rolling 

 deformation analysis 502 

 heat-transfer analysis 503 

 overview   502 

Roping    714 

Rotary forging  714 

Rotary shear   714 

Rotary swager  714 

Rotary swaging  714 

Rotational symmetry 38 

Rough blank   714 
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Roughing stand  714 

   See also Rolling mills 

Roughness cut-off level 714 

Roughness height 714 

Rounded-bracket notation 157 

RRK theories  87 

RRKM theory  87 

Rubber forming  714 

Rubber-pad forming 714 

Run     42 714 

R-value    555 714 

R-Z models   351 

S 

Saddening   714 

Saki and Jonas criterion 228 

Scale pattern   134 714 

Schmid factor  237 383 550 715 

Schmid’s law   4 232 234 235 715 

Schmid’s law, generalized 232 

Scoring    715 

Scratch resistance 715 

Scratches    715 

Screw dislocation 84 307 378 386 461 

      715 

Screw press   715 

Scuffing    715 

Seam     357 364 715 

Seaming    715 

Secant modulus  239 715 

   See also Modulus of elasticity (E) 

Secondary recrystallization. 

   See Abnormal grain growth 

Secondary sheet  715 

Secondary tensile stress 715 

Segregation   715 

Seizure    715 
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Self-consistent modeling 239 243 

   See also Texture evolution 

Semi Implicit Method for Pressure 

   Linked Equations (SIMPLE 

   algorithm) 62 90 

Semifinisher   715 

Seminotching  715 

Sensitivity tests  17 

Set      59 715 

   See also Permanent set 

Severe plastic deformation 220 715 

Shank     715 

Shape distortion  715 

Shape fixability  715 

Shape rolling   50 

Shaving    715 

Shear     27 715 

Shear band   241 348 715 

Shear burr   715 

Shear modulus (G) 715 

Shear strength  24 128 382 715 

Shear stress   24 715 

Shearing    128 715 

Sheet     23 715 

Sheet forming  44 715 

Sheet metal forming 

 finite-element analysis (FEA) 

  continuum models 45 

  crystal-plasticity models 46 

  elastic-plastic stress integration 45 

  overview  44 

Shell four-ball test 715 

Shim     715 

Shot peening   413 715 

Shrink flanging  715 

Shrinkage   65 715 

Shuffle transitions 195 

Shuttle die   715 
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Side thrust   716 

Sidepressing   716 

Single-stand mill 716 

Sinking    716 

Sintering    341 716 

Size effect    137 383 384 425 469 

      716 

Sizing     716 

Skin lamination  716 

Slab     4 716 

Slab method (SM) 

 example: drawing of plates, rods, and tubes 24 

 example: extrusion 25 

 example: flat and shape rolling 25 

 example: forging 26 

 example: plane-strain compression 

   of a block 24 

 overview   23 

 plastic deformation processes, 

   modeling fracture during 347 

Slabbing    716 

Sleeve     716 

   See also Clad 

Slide     72 716 

Slide adjustment  716 

Sliding friction test—flat dies 716 

Sliding friction test—wedge dies 716 

Slip     5 716 

Slip-line field   4 5 348 716 

Slip-line field analysis 348 

Slitting    716 

Sliver     716 

Slotting    716 

Slug     716 

Smith forging. See Hand forge (smith forge) 

Smudge    716 

Smut     716 

Snap through  716 
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Solid modeling  716 

Solidification, transport phenomena during. 

   See Transport phenomena 

Solidification processes, heat-transfer interface 

   effects for 

 casting-mold interface heat-transfer 

   phenomena 144 

 examples 

  bar and plate 149 

  titanium cylinder and tube 149 

 interface heat-transfer coefficient, 

   incorporating in models 145 

 interface heat-transfer coefficient, quantifying 

   experimentally 

  analytical challenges 146 

  experimental challenges 146 

  gap size  146 

  overview  145 

 interface heat-transfer coefficient, selecting 

   for a given casting configuration 147 

 introduction  144 

 summary   150 

Solidification processing, modeling of 

   microstructure evolution during 

 cellular automaton method 

  growth   317 

  indices   316 

  nucleation  316 

  overview  315 

 direct structure simulation at macroscopic 

   scale, coupling of 318 

 introduction  312 

 phase field method 

  hypereutectic AlCuSiMg alloy, 

   equiaxed solidification of 314 

  multicomponent alloy thermodynamics 314 

  nucleation  314 

  overview  313 
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Solidification processing, modeling of 

   microstructure evolution during 

 phase field method (Cont.) 

  steel, microsegregation in 315 

 summary   320 

Sow block   716 

Space lattice   716 

Spalling    716 

Spank     716 

Special boundary 542 716 

Specialized differencing techniques 62 

Specific heat   57 716 

Specific modulus 716 
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